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We prove that the Lie superalgebra of regular differential operators on the superspace CM|N[t, t−1]
has an essentially unique non-trivial central extension.

1. Introduction

TheW infinity algebras naturally arise in various physical systems, such as two-dimensional
quantum gravity and the quantum Hall effects (see the review [1, 2] and references there
in). The most fundamental one is the W1+∞ which is the central extension of the Lie algebra
of regular differential operators on the circle [1–5], and it contains the W∞ algebra as
a subalgebra. Various extensions where constructed: super extension (W1|1

∞ ) [6, 7], u(M)
matrix version ofW1+∞(WM

1+∞) [8], and the most general super matrix generalization WM|N
1+∞

presented in [1, 2, 9]. It seems difficult to decide where and when the first definition
of a (version of) super-W algebra appeared, but a book by Guieu and Roger [10] has a
good historical and bibliographic base, including the pioneering papers of Radul where the
superanalogues of the Bott-Virasoro cocycles were introduced (see [11]). The original W1+∞
corresponds to M = 1, N = 0. The general study of representation theory of W infinity
algebras started in the remarkable work [4] by Kac and Radul and continued in several works
(some of them are [6, 12–14]). Matrix generalizations are deeply related to the main examples
of infinite rank conformal algebras (see [15–17]).

The super matrix generalizationWM|N
1+∞ is defined as a specific central extension of the

Lie superalgebra of regular differential operators on the superspace C
M|N[t, t−1]. Only in the

special case ofW1+∞ (i.e.,M = 1,N = 0)was it proved that the 2-cocycle defining this central
extension is unique up to coboundary [18]. The main goal of the present work is to extend
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this result to the super matrix generalizationWM|N
1+∞ . Similar studies of central extensions for

q-analogs and other versions can be found in [19, 20].

2. Basic Definitions and Main Result

Let L and ̂L be two Lie superalgebras over C. The Lie superalgebra ̂L is said to be a one-
dimensional central extension of L if ̂L is the direct sum of L and CC as vector spaces and the
Lie superbracket in ̂L is given by

[a, b]̂= [a, b] + Ψ(a, b)C, [a,C]̂= 0, (2.1)

for all a, b ∈ L, where [·, ·] is the Lie bracket in L andΨ : L×L → C is a 2-cocycle on L, that is,
a bilinear C-valued form satisfying the following conditions for all homogeneous elements
a, b, c ∈ L:

(1) Ψ(a, b) = −(−1)|a||b|Ψ(b, a),

(2) Ψ([a, b], c) = Ψ(a, [b, c]) − (−1)|a||b|Ψ(b, [a, c]),
(2.2)

where |a| denote the parity of a. A central extension is trivial if ̂L is the direct sum of a
subalgebraM and CC as Lie algebras, whereM is isomorphic to L. A 2-cocycle correspond-
ing to a trivial central extension is called a 2-coboundary, and it is given by an f ∈ L∗ as
follows:

αf(a, b) = f([a, b]), (2.3)

for a, b ∈ L. It is easy to check that αf is a 2-cocycle. We say that the 2-cocycles Ψ, φ are
equivalent if φ − Ψ is a 2-coboundary. The second cohomology group of L with coefficients
in C is the set of equivalent classes of 2-cocycles, and it will be denoted by H2(L,C). If dim
H2(L,C) = 1, we say that L has an essentially unique nontrivial one-dimensional central
extension.

Now, we will introduce the Lie superalgebra that will be considered in this work. Let
us denote by Mat(M | N) the associative superalgebra of linear transformations on the
complex (M | N)-dimensional superspace C

M|N . Namely, we consider the set of all (M +
N) × (M +N)matrices of the form

A =

(

A0 A+

A− A1

)

, (2.4)

where A0, A+, A−, A1 areM ×M,M ×N,N ×M,N ×N matrices, respectively, with complex
entries. The Z2-gradation is defined by declaring that matrices of the form (2.4) with A+ =
A− = 0 are even, and those with A0 = A1 = 0 are odd. We denote by |A| the degree of A with
respect to this Z2-gradation. The supertrace is defined by

Str(A) = tr
(

A0
)

− tr
(

A1
)

, (2.5)

and it satisfies Str(AB) = (−1)|A||B|Str(BA).
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Let Das be the associative algebra of regular differential operators on the circle, that is,
the operators on C[t, t−1] of the form

E = ek(t)∂kt + ek−1(t)∂
k−1
t + · · · + e0(t), where ei(t) ∈ C

[

t, t−1
]

. (2.6)

The elements

Jlk = −tl+k(∂t)l (l ∈ Z+, k ∈ Z) (2.7)

form its basis, where ∂t denotes d/dt. Another basis of Das is

Llk = −tkDl (l ∈ Z+, k ∈ Z), (2.8)

where D = t∂t. It is easy to see that

Jlk = −tk[D]l. (2.9)

Here and further we use the notation

[x]l = x(x − 1) . . . (x − l + 1). (2.10)

Denote by SDM|N
as the associative superalgebra of (M +N)× (M +N) (super)matrices

with entries in Das. The Z2-gradation is the one inherited by the corresponding Z2-gradation
in Mat(M | N). By taking the usual superbracket we make SDM|N

as into a Lie superalgebra,
which is denoted by SDM|N . A set of generators is given by {tsf(D)A : s ∈ Z, f ∈ C[x],
A ∈ Mat(M |N)}.

Let WM,N
1+∞ = SDM|N ⊕ CC be the central extension of SDM|N by a one-dimensional

vector space with a specified generator C, whose commutation relation for homogeneous ele-
ments is given by

[

trf(D)A, tsg(D)B
]

= tr+sf(D + s)g(D)AB − (−1)|A||B|tr+sf(D)g(D + r)BA

+ Ψ
(

trf(D)A, tsg(D)B
)

C,
(2.11)

where the 2-cocycle Ψ is given by

Ψ
(

trf(D)A, tsg(D)B
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎝

∑

−r≤j≤−1
f
(

j
)

g
(

j + r
)

⎞

⎠Str(AB) if r = −s ≥ 0,

0, if r + s /= 0.

(2.12)

Now, we are in condition to state our main result.

Theorem 2.1. One has the following: dimH2(SDM|N,C) = 1.
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3. Proof of Theorem 2.1

We will need the explicit expression of the bracket of basis elements of type (2.9) in SDM|N :

[

tm[D]lEij , t
n[D]kErs

]

= tm+n
(

[D + n]l[D]kδjrEis − (−1)|Eij ||Ers|[D]l[D +m]kδisErj
)

.

(3.1)

In particular, we have

[

t−1DEii, tm[D]lEii
]

= (l +m)tm−1[D]lEii,

[

t−l−1[D]lEii, DEii
]

= (l + 1)t−l−1[D]lEii,

[

Eii, t
m[D]lEij

]

= tm[D]lEij , i /= j.

(3.2)

Let β be a 2-cocycle on SDM|N . We consider the linear functional in SDM|N defined by

fβ
(

tm−1[D]lEii
)

=
1

l +m
β
(

t−1DEii, tm[D]lEii
)

, l /= −m,

fβ
(

t−l−1[D]lEii
)

=
1

l + 1
β
(

t−l−1[D]lEii, DEii
)

,

fβ
(

tm[D]lEij
)

= β
(

Eii, t
m[D]lEij

)

, i /= j.

(3.3)

Then β1 = β − αfβ is a 2-cocycle on SDM|N that is equivalent to β, and using (3.3), we obtain

β1
(

t−1DEii, tm[D]lEii
)

= 0, l /= −m,

β1
(

t−l−1[D]lEii, DEii
)

= 0,

β1
(

Eii, t
m[D]lEij

)

= 0, i /= j.

(3.4)

In order to complete the proof we need to show that Ψ = aβ1 for some a ∈ C. By
observing the supertrace that appears in the expression ofΨ in (2.12), we immediately obtain
that for any f, g ∈ Das

Ψ
(

fEij , gEsk
)

= 0 if i /= k or j /= s. (3.5)

In Lemmas 3.1 and 3.2, we will show that β1 also satisfies (3.5).
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Lemma 3.1. For any f, g ∈ Das, β1(fEii, gEsj) = 0 if i /= j or i /= s.

Proof. Case j = i and s /= i.

Using that Eii is even, i /= s, and (2.2), we obtain that

β1
(

fEii, gEsi
)

= β1
(

fEii,
[

Ess, gEsi
])

= −β1
([

Ess, gEsi
]

, fEii
)

= −β1
(

Ess,
[

gEsi, fEii
])

+ β1
(

gEsi,
[

Ess, fEii
])

= −β1
(

Ess,
(

g ◦ f)Esi
)

= 0,
(

using i /= s and (3.4)
)

,

(3.6)

where g ◦ f is the product in Das.

Case j /= i and s = i.

In this case we have

β1
(

fEii, gEij
)

= β1
(

fEii,
[

gEij , Ejj
])

= −β1
([

gEij , Ejj
]

, fEii
)

= −β1
(

gEij ,
[

Ejj , fEii
])

+ β1
(

Ejj ,
[

gEij , fEii
]) (

by (2.2)
)

= β1
(

Ejj ,
(

f ◦ g)Eij
)

= 0
(

using i /= j and (3.6)
)

.

(3.7)

Case j /= i and s /= i.

By taking the usual bracket, we make the associative algebra Das into a Lie algebra which is
denoted by D. Observe that

D = SD1|0. (3.8)

It is easy to show that [D,D] = D; therefore, for any f ∈ D, we have

f =
∑

l

[

fl, hl
]

, fl, hl ∈ D. (3.9)

Thus, if j /= i and s /= i, using (2.2),

β1
(

fEii, gEsj
)

= β1

(

∑

l

[

flEii, hlEii
]

, gEsj

)

=
∑

l

β1
(

flEii,
[

hlEii, gEsj
]) −

∑

l

β1
(

hlEii,
[

flEii, gEsj
])

= 0.

(3.10)

The proof is finished.
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Lemma 3.2. For any f, g ∈ Das and i /= j, s /= k, β1(fEij , gEsk) = 0 when i /= k or j /= s.

Proof. If i /= j and k /= i, we have

β1
(

fEij , gEsk
)

= β1
([

Eii, fEij
]

, gEsk
)

= β1
(

Eii,
[

fEij , gEsk
]) − β1

(

fEij ,
[

Eii, gEsk
])

= δj,sβ1
(

Eii,
(

f ◦ g)Eik
) − δi,sβ1

(

fEij , gEik
)

= −δi,sβ1
(

fEij , gEik
) (

using(3.4)
)

.

(3.11)

Hence we have β1(fEij , gEsk) = 0.
Finally, using skew-symmetry and the previous case, if i /= j, s /= k, and s /= j, we have

that β1(fEij , gEsk) = 0.

Now, it remains to consider the expression β1(fEij , gEji). In order to do it, consider
again the Lie algebraD = SD1|0 (see (3.8)) and denote by ψD the 2-cocycleΨ defined in (2.12)
withM = 1 andN = 0.

In fact, from the expression of Ψ, we have

Ψ
(

fA, gB
)

= ψD
(

f, g
)

Str(AB). (3.12)

Lemma 3.3. There exist ai ∈ C such that for all f, g ∈ Das

β1
(

fEii, gEii
)

= aiψD
(

f, g
)

. (3.13)

Moreover, the constants ai satisfy ai = (−1)|Eij |aj for all i /= j.

Proof. Let γi : D × D → C be the bilinear map defined by (i = 1, . . . ,M +N)

γi
(

f, g
)

= β1
(

fEii, gEii
)

. (3.14)

Since Eii is even, we have that γi is a 2-cocycle in D.
The following statement was proved in [18] (see Proof of Theorem2.1 in page 74 and

(3.2) and (3.3) in this work): if a 2-cocycle β1 in D satisfies (l ∈ Z+, m ∈ Z)

β1
(

tm[D]l, t
−1D
)

= 0,

β1
(

t−1−l[D]l, D
)

= 0.
(3.15)

Then β1 = aψD for some a ∈ C. Now, using (3.4), we have that γi satisfies (3.15); thus, we get
γi = aiψD for some ai ∈ C, proving the first part of this lemma.
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In order to prove the second part, consider i /= j. Then

β1
(

tEii, t
−1Eii

)

= β1
(

t
(

Eii − (−1)|Eij ||Eji|Ejj
)

, t−1Eii
)

(

by Lemma 3.1
)

= β1
(

[

Eij , tEji
]

, t−1Eii
)

= β1
(

Eij ,
[

tEji, t
−1Eii

])

− (−1)|Eij ||Eji|β1
(

tEji,
[

Eij , t
−1Eii

])

= β1
(

Eij , Eji
)

+ (−1)|Eij ||Eji|β1
(

tEji, t
−1Eij

)

.

(3.16)

Similarly,

β1
(

tEjj , t
−1Ejj

)

= β1
(

tEjj , t
−1
(

Ejj − (−1)|Eij ||Eji|Eii
))

(

by Lemma 3.1
)

= β1
(

tEjj ,
[

Eji, t
−1Eij

])

= β1
(

[

tEjj , Eji
]

, t−1Eij
)

+ β1
(

Eji,
[

tEjj , t
−1Eij

])

= β1
(

tEji, t
−1Eij

)

− β1
(

Eji, Eij
)

= β1
(

tEji, t
−1Eij

)

+ (−1)|Eij ||Eji|β1
(

Eij , Eji
)

.

(3.17)

Therefore, β1(tEii, t−1Eii) = (−1)|Eij ||Eji|β1(tEjj , t−1Ejj), which means that, ai = (−1)|Eij |aj for all
i /= j, finishing the proof.

Lemma 3.4. β1(Eij , gEji) = β1(gEij , Eji) for i /= j and g ∈ Das.

Proof. Since i /= j,

β1
(

Eij , gEji
)

= β1
(

Eij ,
[

Eji, gEii
])

= β1
([

Eij , Eji
]

, gEii
)

+ (−1)|Eij ||Eji|β1
(

Eji,
[

Eij , gEii
])

= β1
(

Eii, gEii
) − (−1)|Eij ||Eji|β1

(

Ejj , gEii
) − (−1)|Eij ||Eji|β1

(

Eji, gEij
)

= aiψD
(

1, g
)

+ β1
(

gEij , Eji
)

,
(

by Lemmas 3.3 and 3.1
)

= β1
(

gEij , Eji
) (

by definition of ψD
)

(3.18)
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Lemma 3.5. β1(fEij , gEji) = β1(fEii, gEii) for i /= j and any f, g ∈ Das.

Proof. Observe that

β1
(

fEii, gEii
)

= β1
([

fEij , Eji
]

, gEii
) (

by Lemma 3.1
)

= β1
(

fEij ,
[

Eji, gEii
]) − (−1)|Eij ||Eji|β1

(

Eji,
[

fEij , gEii
])

= β1
(

fEij , gEji
)

+ (−1)|Eij ||Eji|β1
(

Eji,
(

g ◦ f)Eij
)

= β1
(

fEij , gEji
) − β1

((

g ◦ f)Eij , Eji
)

.

(3.19)

Similarly,

β1
(

fEii, gEii
)

= (−1)|Eij ||Eji|β1
(

fEjj , gEjj
) (

by Lemma 3.3
)

= (−1)|Eij ||Eji|β1
(

fEjj ,
[

gEji, Eij
]) (

by Lemma 3.1
)

= (−1)|Eij ||Eji|β1
([

fEjj , gEji
]

, Eij
)

+ (−1)|Eij ||Eji|β1
(

gEji,
[

fEjj , Eij
])

= (−1)|Eij ||Eji|β1
((

f ◦ g)Eji, Eij
)

+ β1
(

fEij , gEji
)

= −β1
((

f ◦ g)Eij , Eji
)

+ β1
(

fEij , gEji
) (

by Lemma 3.4
)

.

(3.20)

Hence, from (3.19) and (3.20), we obtain

β1
([

f, g
]

Eij , Eji
)

= 0. (3.21)

Since [D,D] = D, we have β1(DEij , Eji) = 0. Therefore, (3.19) becomes the statement of this
lemma.

Proof of Theorem 2.1. From the previous lemmas, one can easily see that β1 = a1Ψ, by observ-
ing that the relation between the a′is in Lemma 3.3 is essentially the supertrace term in expres-
sion (2.12) of Ψ.

Acknowledgments

C. Boyallian and J.L. Liberati were supported in part by grants of Conicet, ANPCyT, Fun-
dación Antorchas, Agencia Cba Ciencia, Secyt-UNC, and Fomec (Argentina).

References

[1] H. Awata, M. Fukuma, Y. Matsuo, and S. Odake, “Representation theory of W1+∞ algebra,” in
Proceedings of the Workshop Quantum Field Theory, Integrable Models and Beyond, T. Inami et al., Ed.,
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan, February 1994.

[2] H. Awata, M. Fukuma, Y. Matsuo, and S. Odake, “Representation theory of W1+∞ algebra,” Progress
of Theoretical Physics Supplement, vol. 118, pp. 343–373, 1995.

[3] I. Bakas, B. Khesin, and E. Kiritsis, “The logarithm of the derivative operator and higher spin algebras
ofW∞ type,” Communications in Mathematical Physics, vol. 151, no. 2, pp. 233–243, 1993.



Advances in Mathematical Physics 9

[4] V. Kac and A. Radul, “Quasifinite highest weight modules over the Lie algebra of differential
operators on the circle,” Communications in Mathematical Physics, vol. 157, no. 3, pp. 429–457, 1993.

[5] C. N. Pope, L. J. Romans, and X. Shen, “Ideals of Kac-Moody algebras and realisations ofW∞,” Physics
Letters B, vol. 245, no. 1, pp. 72–78, 1990.

[6] H. Awata, M. Fukuma, Y. Matsuo, and S. Odake, “Quasifinite highest weight modules over the super
W1+∞ algebra,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 151–179, 1995.

[7] E. Bergshoeff, M. Vasiliev, and B. de Wit, “The super-W∞(λ) algebra,” Physics Letters B, vol. 256, no. 2,
pp. 199–205, 1991.

[8] S. Odake and T. Sano, “W1+∞ and super-W∞ algebras with SU(N) symmetry,” Physics Letters B, vol.
258, no. 3-4, pp. 369–374, 1991.

[9] S. Odake, “Unitary representations of W infinity algebras,” International Journal of Modern Physics A,
vol. 7, no. 25, pp. 6339–6355, 1992.
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