
The Alternative Epac/cAMP Pathway and the MAPK
Pathway Mediate hCG Induction of Leptin in Placental
Cells
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Abstract

Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works
as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line
or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels
in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an
expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin
promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is
involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with
(Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression,
whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a
significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was
found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that
hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation
increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/
Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe)
stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter
activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in
placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling
pathway.
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Introduction

The major role of the placenta is to establish a crosstalk between

maternal and fetal circulations. In addition, the placenta works as

an endocrine tissue that produces steroids, peptide hormones,

growth factors and cytokines that are crucial for the establishment

and maintenance of pregnancy. Several cytokines and growth

factors, such as leptin, are known to influence trophoblast

migration, proliferation and invasion [1].

Leptin, the product of the LEP gene, is a small non-glycosylated

pleiotropic peptide of 146 aminoacid residues (16 kDa), firstly

found to be secreted by adipose tissue [2], with the function of

modulation of satiety and energy homeostasis [3]. Compelling

evidence also implicated leptin in reproductive functions such as

the regulation of fertility, ovarian function, oocyte maturation,

embryo development and implantation [4,5,6]. The synthesis and

secretion of leptin as well as its functional receptors by trophoblast

cells have been widely demonstrated [7,8], suggesting that leptin

may act through a paracrine or autocrine mechanism. In this way,

previous studies have demonstrated the interactions between leptin

and some placental hormones, implicating leptin as a modulator of

placental endocrine function [9]. Moreover, leptin stimulates the

process of proliferation and protein synthesis, and inhibits

apoptosis [10,11,12,13] in human trophoblastic cells.

Deregulation of leptin metabolism and/or leptin function in the

placenta may be implicated in the pathogenesis of various

disorders during pregnancy, such as recurrent miscarriage,

gestational diabetes, intrauterine growth restriction, and pre-

eclampsia [14,15].
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Placental leptin production is strictly regulated and there are

differences between the regulation of transcription of human

placental and adipose leptin [16]. In fact, the human leptin gene

has an enhancer located at 21.9 kb that is activated by a

placental-specific transcription factor [17]. In this context, we have

previously reported that human chorionic gonadotropin (hCG), a

key hormone in pregnancy, upregulates placental leptin [18].

HCG mediates its action through the LH/hCG receptor, and

its major function is to maintain the progesterone production of

corpus luteum during early pregnancy. Binding of hCG to its

receptor generates, in the classical response, an increase in cyclic

adenosine monophosphate (cAMP) concentration and a conse-

quent activation of protein kinase A (PKA) (29). We previously

observed that (Bu)2cAMP not only did not enhance hCG effect but

also inhibited hCG dependent leptin expression in placental cells

[18]. The LH/hCG receptor has also been shown to mediate

activation of the mitogen-activated protein kinase (MAPK) (56,

57), Janus kinase and PI3K signaling pathways (58). Certainly, we

demonstrated that hCG treatment specifically activates MEK and

extracellular signal-regulated kinase 1/2 (ERK1/2) phosphoryla-

tion in placental cells and that this signal transduction pathway is

involved in hCG leptin up-regulation [18].

On the other hand, in a previous work we reported that the

expression of placental leptin is also regulated by cAMP [19].

Increases in intracellular cAMP classically lead to the activation of

PKA, which phosphorylates intracellular substrates, including the

cAMP response element binding protein (CREB) [20,21].

However, several reports have provided evidence that cAMP

affects some cellular processes independently of PKA [22,23,24].

Indeed, in that previous work, we demonstrated that leptin up-

regulation by cAMP involves a crosstalk between PKA and MAPK

signaling pathways [19]. It was also shown that hCG enhanced

leptin expression in placental cells involving a crosstalk between

cAMP and p38 pathways [25]. In many cellular activities cAMP

signaling has others mediators besides PKA, including cyclic

nucleotide-gated ion channels, and exchange protein directly

activated by cAMP (Epac) [26]. Interestingly, the two Epac1 and

Epac2 isoforms were identified as cAMP-binding proteins with

guanine nucleotide exchange factor (GEF) activities for the small

GTPases, Rap1 and Rap2 [27]. Upon cAMP binding, Epac

proteins undergo a conformational change, which relieves the

autoinhibition and then activates Rap proteins to regulate

numerous cellular actions [28].

It was demonstrated that the cAMP pathway can regulate ERK

signaling through several distinct mechanisms providing important

crosstalk between hormones and growth factor signaling. A model

that explains the activation of ERK by cAMP includes the

involvement of either Rap1 or Ras, and might include PKA

independent actions of cAMP [29].

The role of Epacs in Rap1 activation has been supported by

studies using 8-CPT-2Me-cAMP, a cAMP analogue that retains a

high affinity for Epac but does not activate PKA [30]. Epac-

mediated cAMP signaling is involved in cellular functions such as

cell differentiation, secretion/exocytosis, cell adhesion and cell–cell

junctions [31].

It was seen that in first and second trimester placenta, both

Epac1 and Epac2 were expressed in villous syncytiotrophoblast

(STB), cytotrophoblast (CTB), stroma, blood vessels and extra-

villous trophoblast (EVT). In term placenta, Epac1 and Epac2

were mainly distributed in the STB layer, EVT and blood vessels.

Interestingly, Epac1 and Epac2 were localized at the plasma

membrane and in the cytoplasm of BeWo cells, respectively [32].

The physiological significance of Epac expression on trophoblast

function is not completely known. In the last few years, the Epac

signaling pathway was associated with the cAMP-mediated

functional differentiation and syncytialization of human tropho-

blasts [32].

Since hCG and cAMP play a critical role in the control of

numerous placental hormones and seem to mediate leptin gene

expression in placenta, and given that multiple effectors can be

involved in the transduction of cAMP signaling, we reasoned that

leptin expression may be regulated through different effectors of

the cAMP signaling cascade. In the present work, we hypothesized

that placental leptin, as a key molecule of the implantation and

pregnancy, is finely regulated by hCG, a central hormone in

pregnancy, and that this regulation depends on a delicate balance

between MAPK and Epac/cAMP signaling pathways. Thus, we

aimed to investigate the mechanisms governing the regulation of

leptin expression by hCG and cAMP in human placenta and to

unravel the signaling pathways involved.

Our study demonstrates that hCG induces leptin expression in

placenta through the MAPK pathway and cAMP stimulation. At

the same time, the role of cAMP as a second messenger of hCG

would be PKA independent and involves the activation of the

alternative cAMP/Epac pathway.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all subjects and all

study procedures were approved by ethical review committees at

the Virgen Macarena University Hospital and the Alejandro

Posadas National Hospital (Bioethics Comitte ‘‘Dr. Vicente

Federico del Giudice’’).

Cell Culture and Treatments
The human choriocarcinoma cell lines BeWo and JEG-3 were

purchased from the American Type Culture Collection (ATCC,

Rockville, MD). Cells were grown in DMEM-F12 (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS),

100 U/ml penicillin, 100mg/ml, streptomycin, 2 mM glutamine

(Invitrogen), and 1 mM sodium pyruvate (Sigma Chemical Co.,

St. Louis, MO) at 37 C in 5% CO2. To test the effect of cAMP,

the cAMP analogue dibutyryl cAMP [(Bu)2cAMP] (1 mM to

1 mM) (Sigma Chemical Co.) was used to facilitate cell entrance.

The effect of recombinant hCG (Sigma Chemical Company, St.

Louis, MO) was tested at different doses (5 IU hCG/ml to 100 IU

hCG/ml). In experiments designed to analyze the signal trans-

duction pathways involved in hCG stimulation of leptin, the cell-

permeable adenylyl cyclase inhibitor SQ22,536 (100 mM), the

selective inhibitor of cAMP-dependent protein kinase (PKA) H89

(10 mM), the MAPK kinase (MEK) inhibitor PD98059 (50 mM)

and the selective cAMP analogue that stimulates Epac, 8CPT-

2me-cAMP (10 mM) (Sigma Chemical Co.) were used. Inhibitors

were added 30 min before hCG or cAMP analogues treatment,

except in experiments performed to determine protein phosphor-

ylation, in which the inhibitors were added 10 min before

treatments. All treatments were performed in DMEM-F12 media

supplemented with 1% FBS unless indicated. Serum present in the

media of incubation was reduced from 10 to 1% to lower

nonspecific effects.

Placental Explants Collection and Processing
Human placentas (n = 9) were obtained after cesarean section or

vaginal delivery after normal term pregnancies and immediately

suspended in ice-cold PBS and transported to the laboratory,

where they were washed two to three times in sterile PBS to

remove excess blood. Villous tissue free of visible infarct,
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calcification or hematoma was sampled from at least five

cotyledons at a distance midway between the chorionic and basal

plates. These core parts of cotyledons were cut into multiple cubic

segments (10 to 15 mg wet weight) and thoroughly rinsed with

cold Hanks’ medium pH 7.4 (137 mM NaCl, 5 mM KCl,

1 mM CaCl2, 1 mM MgSO4, 0.3 mM Na2HPO4,

0.4 mM KH2PO4, and 4 mM NaHCO3). None of the donor

patients suffered from anomalous pregnancy. This study was

approved by the patient’s written consent and by the local ethical

committee.

Treatments of Placental Explants
Placental explants were randomly distributed in tubes contain-

ing 1 ml of DMEM-F12 medium (n = 1 explant/tube, four

replicates per treatment). Placental explants were maintained in

a shaking water bath at 37uC during 5 min to equilibrate

temperature, pre-incubated during 30 min when indicated with

50 mM PD98059, 10 mM H89 and incubated in the same medium

supplemented or not with hCG (100 IU/ml) and/or 10 mM Cpt-

O-Me or 10 mM (Bu)2cAMP during 4 h for leptin expression

analysis and 15 min for phosphorylation experiments. Explants

were removed from the bath, centrifuged for 2 min at 2000 g at

4uC and resuspended in 500 ml of lysis buffer (16PBS, 1%

Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl

sulfate (SDS), and 10 mg/ml phenylmethanesulfonyl fluoride

(PMSF)) during 30 min at 4uC on an orbital shaker and later

centrifuged at 10000 g for 20 min. Supernatants were analyzed by

Western blot.

For real-time PCR, after thoroughly washing with phosphate

buffer saline, the tissues were immediately frozen at 80uC and

stored until extraction of total RNA.

Western Blot Analysis
Cells were seeded at 50–60% confluence in DMEM-F12

medium supplemented with 10% FBS. Each treatment was

performed in the same media supplemented with 1% FBS during

3 days for leptin immunoblot or during 10 min for protein

phosphorylation determinations. Total cell lysates were prepared

in lysis buffer. The lysates were centrifuged at 10,000 g for 10 min

to remove cellular debris. The protein concentration of the

supernatant was determined by the Bradford staining method

[33], with BSA as standard. Lysates were mixed with Laemmli’s

sample buffer containing 2% sodium dodecyl sulfate and 30 mM

b-mercaptoethanol, boiled for 5 min, resolved by SDS-PAGE on a

12% gel, and electrophoretically transferred to a nitrocellulose

membrane (Hybond; Amersham Pharmacia Biotech, Piscataway,

NJ) thereafter. Membranes were equilibrated in 1X PBS, and

nonspecific binding sites were blocked by 5% nonfat milk in PBS

at room temperature for 1 h. The membranes were then

immunoblotted with polyclonal rabbit antihuman leptin Y20

(1:1000) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or with

polyclonal rabbit antiphospho-ERK 1/2 (Thr202/Tyr204)

(1:3000) (New England Biolabs). Loading controls were performed

by immunoblotting the same membranes with polyclonal rabbit

anti-b-actin (1:5000) (Sigma Chemical Co.), or with polyclonal

rabbit anti total-ERK 1/2 (1:3000). The antibodies were detected

using horseradish peroxidase-linked goat anti-rabbit IgG (1:10000)

(Santa Cruz Biotechnology, Inc.) and visualized by the Amersham

Pharmacia enhanced chemiluminescence signaling system and a

Bio-Imaging Analyzer Fujifilm LAS-1000 (Fuji Photo Film Co.,

Ltd., Tokyo, Japan). Quantification of protein bands was

determined by densitometry using Image J ink 1.45 program

(National Institute of Health, Bethesda, MD, USA).

Plasmids
The luciferase (Luc) reporter constructs are based on pGL-3

basic vector. They were all kindly provided by Oksana Gavrilova

[17]. pRSV-b-gal contains the b-galactosidase gene under the

control of the Rous sarcoma virus (RSV) promoter and was used

to normalize the efficiency of individual transfections. pMtC-a is a

5.4-kb expression vector plasmid containing the cDNA for the a
isoform of the mouse cAMP-dependent protein kinase (PKA)

catalytic subunit [34]. pMt-REV is a 7.6-kb expression vector that

contains a dominant negative mutant cDNA of the mouse PKA

regulatory I-subunit (PKI) inserted between the mouse metallo-

thionein-promoter and the polyadenylation signal sequence of the

human GH gene [35].

Plasmids pMT2-HA-Rap1A contained the coding sequence for

murine Rap1A [36]; pMT2-HA-Epac, pMT2-HA-Rap1GAP and

expression vector for negative mutant of CREB, pCREBM1, were

a generous gift of Dr O. Coso (Department of Physiology and

Molecular Biology, FCEN, UBA, Buenos Aires, Argentina).

Plasmid CREBM1 contains a conservative serine-to-alanine

substitution at position 133 that destroys the PKA phosphorylation

site [37]. Plasmid pGL3-CRE-Luc containing the CRE element

cloned next to the luciferase gene was kindly provided by Adalı́

Pecci (Department of Biological Chemistry, FCEN, UBA, Buenos

Aires, Argentina).

In experiments using expression plasmids, the empty vectors

were used as controls. To perform transient transfection assays,

plasmids were purified using the Maxipreps Wizard kit (Promega

Corp., Madison, WI), and the concentration of DNA was

estimated spectrophotometrically.

Transient Transfection Experiments
For transient transfection experiments, BeWo cells were plated

at a density of 2.56105 cells/ml onto six-well dishes containing

2 ml of DMEM-F12 plus 10% FBS. Cells were incubated for 24 h.

Medium was replaced, and transfection of cells was performed

according to the standard liposome-mediated method. To

determine the sensitivity of the method in this cell type, a standard

dose of reporter plasmid vs. light emission was performed (data not

shown). Typically, 5 mg of the Luc reporter and 5 mg of pRSVb-

gal internal control construct were transfected using 5 ml of

LipofectAMINE (Life Technologies, Inc., Gaithersburg, MD). The

medium was replaced after 5 h with DMEM-F12 1% FBS with

the addition of the different effectors. Transfection analysis was

performed by duplicate in each of at least three independent

experiments.

Assays for Luc and b-galactosidase Activities
Luc activity in cell lysates was measured using the Luc Assay

System (Promega Corp.). Cells were washed with PBS and

harvested 72 h after transfection using 50 ml of lysis buffer. Cell

extracts were centrifuged and 30 ml of the supernatant was mixed

with 50 ml of Luc assay buffer. Luc activity was measured with the

GloMax-Multi+ Microplate Multimode Reader luminometer

(Promega Corp). b-Galactosidase activity was assayed using

1 mg of onitrophenyl-D-galactopyranoside (AmResco, Solon,

OH) as the substrate in buffer Z (60 mM Na2HPO4,

40 mM NaH2PO4,10 mM KCl, 1 mM MgSO4, and 0.07% b-

mercaptoethanol) and incubated at 37uC until yellow staining.

The product was determined by absorption at 420 nm. This value

was used to correct variations in transfection efficiency. Luc results

were calculated as the ratio of Luc activity per unit of b-

galactosidase activity. Duplicate samples were analyzed for each

data point.

Regulation of Leptin Expression in Placental Cells
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Quantitative Real-Time RT-PCR (qRT-PCR) Assay
Abundance of leptin mRNA was determined by qRT-PCR.

Total RNA was extracted from JEG-3 or placental explants using

TRISURE reagent, according to the manufactures instructions

(Bioline Co., Essex, UK). Concentration and purity of the isolated

RNA were estimated spectrophotometrically at 260 and 280 nm.

For cDNA synthesis, 5 mg of total RNA was reverse transcribed at

50uC during 1 h using the Transcriptor first Strand cDNA

synthesis Kit (Roche, Indianapolis, IN). Quantitative real- time

PCR was performed using the following primers based on the

sequences of the National Center for Biotechnology Information

GenBank database: leptin: forward, 59GAACCCTGT-

GATTCTT39; reverse, 59CCAGGTCGTTATTTGG39; and

cyclophilin: forward, 59CTTCCCCGATACTTCA 39; rever-

se,59TCTTGGTGCTACCTC39. Quantitative RT-PCR Master

Mix Reagent kit was obtained from Roche (Fast Start universal

SYBR Green), and PCRs were performed on a Chromo 4 DNA

Engine (Bio-Rad, Hercules, CA). A typical reaction contained

10 mM of forward and reverse primer, 3 ml of cDNA, and the final

reaction volume was 25 ml. The reaction was initiated by

preheating at 50uC for 2 min, followed by heating at 95uC for

10 min. Subsequently, 41 amplification cycles were carried out as

follows: denaturation 15 sec at 95uC and 1 min annealing and

extension at 58uC. The threshold cycle (CT) from each well was

determined by the Opticon Monitor 3.1.32 Program (BioRad

Laboratories Inc). Relative quantification was calculated using the

22DDCT method [38]. For the treated samples, evaluation of

22DDCT indicates the fold change in gene expression, normalized

to a housekeeping gene (cyclophilin), and relative to the untreated

control. Melting curve analysis was performed to confirm

specificity of amplification. Reaction mixtures without reverse

transcriptase or RNA were run in parallel to ensure the absence of

sample contamination.

Intracellular cAMP Determination
BeWo cells were incubated in sterile 96-well plate with a seeding

density of 10000 cells per well. Cells were cultured in DMEM-F12

10% FBS during 24 h. Medium was replaced by DMEM-F12 1%

SFB and cells were treated with hCG (0–500 IU/ml) for 72 h.

Then, cAMP-Glo assay kit was used according to manufacturer’s

instruction (Promega Corp.). Luminescence was measured using

the GloMax-Multi+ Microplate Multimode Reader luminometer

(Promega Corp).

Data Analysis
For Western blots analysis, representative images of at least

three independent experiments are shown along with quantifica-

tion of immunoreactive bands. Quantitative RT-PCR experiments

were repeated separately at least three times to ensure reproduc-

ible results. Transient transfection experiments were repeated at

least three times and each treatment performed by duplicates.

Results are expressed as the meanSD. The statistical significance

was assessed by ANOVA followed by Bonferroni’s multiple

comparison post hoc test and was calculated using the GraphPad

Instat computer program (GraphPad, San Diego, CA). A P value

less than 0.05 was considered statistically significant.

Results

HCG Stimulates Leptin Expression and Increases cAMP
Levels in placenta

The choriocarcinoma cell lines BeWo and JEG-3 were used as

models for trophoblastic cells as previously reported [7,39].

Previous results have demonstrated that leptin and leptin receptor

are expressed in these cell lines, suggesting that leptin is probably

exerting both paracrine and autocrine effects [11]. We have

previously shown that hCG and cAMP stimulate leptin expression

in BeWo and JEG-3 cells, as well as in placental explants [18,19].

In this regard, we aimed to demonstrate that hCG stimulates

leptin expression not only at the protein but also at the mRNA

level. Figure 1A shows that hCG (25–100 IU/ml) enhanced leptin

mRNA expression in JEG-3 cells, measured by qRT-PCR.

Maximal effect was achieved at 50 IU/ml, reaching a 11,7-fold

increase. The same effect was observed in placental explants

(Fig. 1B), where hCG significantly stimulated leptin mRNA

expression, reaching a 14,5-fold maximal increase at 100 IU/ml.

These results reinforce the notion that hCG has a role in

regulating leptin expression. On the other hand, we have

previously observed that treatment of trophoblastic cells with

(Bu)2cAMP causes a complete loss of hCG leptin induction [18].

For this reason, we aimed to determine if hCG could enhance

cAMP levels in the placenta. As seen in Fig. 1C, treatment with

hCG caused an increase in cAMP levels in BeWo cells, in a dose

dependent manner. Maximal effect was achieved at 500 IU/ml

hCG, a dose that elevated intracellular cAMP concentration to

3,8 mM. To further confirm activation of the cAMP pathway by

hCG, we performed a transient transfection assay with a vector

containing tandem CRE elements fused to the Luc reporter gene

(pCRE-Luc). BeWo cells were treated with hCG (50 or 100 IU/

ml), 1 mM (Bu)2cAMP or cotransfected with the expression

plasmid for the transcription factor CREB. Results are shown in

Fig. 1D. HCG stimulated CRE elements activity, reaching a 1,72-

fold induction with 100 IU/ml of hCG. This stimulation was even

higher than the stimulation caused by cAMP or by cotransfection

with CREB. To establish a link between hCG and CREB

transactivation on the leptin promoter, we performed a cotrans-

fection with pL1951 and an expression plasmid for a mutant

CREB (CREBM1), containing a conservative serine-to-alanine

substitution at position 133 that destroys the PKA phosphorylation

site. Results in Figure 1E show that CREBM1 was completely

unable to activate transcription of leptin promoter both in the

presence or absence of hCG. Cotransfection with CREBM1

caused a significant inhibition of hCG stimulation of leptin

promoter activity, with a 112-fold reduction compared with hCG

treatment. Taken together, these results demonstrate that hCG is

able to increase cAMP levels in trophoblastic cells and this effect

probably leads not only to activation of CREB protein but also to

the stimulation of the transcription of different genes trough CRE

elements.

High cAMP Levels Interfere with hCG Stimulation of
Leptin Expression

Previous data have shown that treatment with hCG (50 or

100 IU/ml) in combination with (Bu)2cAMP causes a complete

loss of hCG induction of leptin expression in placental cells [18].

These results were observed both at the transcriptional and protein

levels. In order to measure cAMP effect on hCG enhanced leptin

mRNA expression, we performed quantitative RT-PCR in

placental explants. As expected, hCG and cAMP increased leptin

mRNA levels 64 and 66-fold respectively (Fig. 2A). When hCG

treatment was combined with cAMP, leptin mRNA expression

was inhibited 62-fold relative to hCG treatment.

Some authors have shown that hCG receptor can be positively

or negatively regulated depending on cAMP concentration and

time of exposure [40]. This evidence raises the possibility that the

observed inhibition of hCG leptin induction, may be due to high

intracellular cAMP levels generated by hCG treatment (Fig0 1C)

combined with exogenously added (Bu)2cAMP. In this context, we

Regulation of Leptin Expression in Placental Cells
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determined leptin expression by Western blot in BeWo cells

treated with low and non stimulatory hCG concentrations in

combination or not with (Bu)2cAMP. Under these experimental

conditions, cAMP treatment led to a significant increase in hCG

leptin induction (Fig. 2B). Maximal effect was achieved at 1 mM

(Bu)2cAMP with a 2,81-fold increase. As expected, treatment with

5 or 10 IU/ml hCG alone, had no effect on leptin expression.

Taken together, these results demonstrate that high cAMP

concentrations could lead to inhibition of the hCG stimulatory

effect.

The hCG Stimulatory Effect on Leptin Expression is
Blocked by PKA Activation

PKA activation is the classical pathway activated by cAMP

when the levels of this nucleotide rise [41]. Therefore, we next

investigated the involvement of PKA on leptin induction by hCG.

BeWo cells were treated with 100 IU/ml hCG in the presence or

absence of 10 mM H89, a specific PKA inhibitor. Leptin

expression was measured by Western blot analysis (Fig. 3A). As

previously seen, 100 IU/ml hCG produced a 2,32-fold induction

of leptin expression. This effect was even higher when cells were

pretreated with 10 mM H89, reaching a 2,87-fold induction over

control. We next decided to examine the effect of PKA activation

on hCG leptin induction at the transcriptional level. BeWo cells

were transiently transfected with pL1951 Luc reporter construct

and treated with hCG, H89 or SQ (a specific adenilyl cyclase

inhibitor), and/or cotransfected with the expression plasmid for

the catalytic subunit of PKA, as indicated. As displayed in Fig. 3B,

treatment with hCG significantly stimulated leptin promoter

activity and this effect was enhanced 2-fold upon combination

with H89. Moreover, hCG effect on leptin expression was

inhibited 8,7-fold when cells overexpressed the catalytic PKA

subunit. Treatment with SQ alone or in the presence of hCG

showed no effect on leptin expression. All together, these results

suggest that the PKA signaling pathway is not involved in the

mechanisms regulating hCG leptin induction. Furthermore, the

observed cAMP inhibition of hCG action on placental leptin could

be mediated by PKA activation.

Figure 1. hCG stimulates leptin mRNA expression and enhances cAMP levels in placenta. (A) JEG-3 cells (16106 cells) were plated in
complete DMEM-F12 media supplemented with 1% FBS and incubated during 3 days with different doses of hCG (IU/ml). (B) Placental explants were
obtained as indicated in Materials and Methods and treated with increasing hCG concentrations. In (A) and (B), total RNA was extracted as described
in Material and Methods. Leptin mRNA was quantified by real time RT-PCR. Cyclophilin was used as internal standard. (C) BeWo cells (16105) were
seeded in 96-well plate and treated during 24 h with increasing concentrations of hCG, as indicated. cAMP-Glo assay kit was used to measure
intracellular cAMP concentration. (D) Cells were transiently transfected with pCre-Luc plasmid construction and treated with hCG, (Bu)2cAMP or
cotransfected with CREB, as indicated, during 72 h in DMEM-F12 media supplemented with 1% FBS. Luciferase activity was measured in cellular
extracts and normalized to b-galactosidase activity. Activity obtained with empty vector (PGL-3 basic vector) was set as a control. (E) BeWo cells were
transiently transfected with pL1951 and treated with 100 IU/ml hCG and/or cotransfected with CREBM plasmid. Cells were incubated during 72 h in
DMEM-F12 1% FBS media. Luciferase activity was measured in cellular extracts and normalized to b-galactosidase activity. Activity obtained with
empty vector (PGL-3 basic vector) was set as a control. Results shown are from a representative experiment and are expressed as means 6 S.E.M. for
three independent experiments performed in duplicates. *p,0.05, **p,0.01, ***p,0.001 vs control; ###p,0.001 vs hCG treatment.
doi:10.1371/journal.pone.0046216.g001
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PKA Inhibits the hCG Activation of MAPK Signaling
Pathway

We have previously demonstrated that hCG stimulates the

MAPK/ERK signaling transduction pathway in placental cells

[18]. Other authors have also reported such ability of LH/hCG

receptor in different tissues [42,43,44]. In this way, we aimed to

investigate the effect of MAPK inhibition on leptin mRNA

expression in trophoblastic cells. JEG-3 cells were treated with

hCG or/and PD98059, a pharmacologic inhibitor that blocks

MEK’s ability to activate ERKs. Leptin mRNA was measured by

qRT-PCR. Results shown in Fig.4A confirmed that hCG

significantly stimulated leptin mRNA and that cotreatment with

MEK inhibitor completely blocked this induction. Based on these

results, we hypothesized that cAMP inhibition of hCG effect on

leptin expression could be partially due to the impairment of

MAPK signaling pathway by PKA.

Figure 2. cAMP induces leptin stimulation by hCG at low hormone concentrations. (A) Placental explants were processed as previously
described and treated with increasing hCG and/or (Bu)2cAMP concentrations during 4 h. Total RNA was extracted as described in Material and
Methods. Leptin mRNA was quantified with real time RT-PCR. Cyclophilin was used as internal standard. (B) BeWo cells (16106 cells) were plated in
complete DMEM-F12 media supplemented with 1% FBS and incubated during 3 days with different doses of hCG (IU/ml) and/or (Bu)2cAMP (mM), as
indicated. Cell extracts were prepared as indicated in Materials and Methods. Proteins were separated on SDS-PAGE gels and leptin expression was
determined by Western-blot. Molecular weights were estimated using standard protein markers. Loading controls were performed by
immunoblotting the same membranes with anti-b-actin. Bands densitometry is shown in lower panels. Molecular weight (kDa) is indicated at the
right of the blot. Representative results from three replicates are shown. **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0046216.g002
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To this end, we evaluated ERK activation in BeWo cells treated

with hCG in the presence or not of H89. ERK 1/2 phosphor-

ylation was assessed by Western blot. As seen in Fig. 4B, hCG

induced a 6-fold increase in ERK phosphorylation. When hCG

was combined with H89, the activation of ERK reached an 8-fold

increase compared to the control and a 4-fold induction above

hCG treatment. Moreover, when we treated placental explants

with hCG in combination with H89 and PD98059, we observed

an inhibition in hCG stimulation of leptin expression, measured by

real time PCR (Fig. 4C). Results shown in Fig. 4D demonstrates

that phosphorylation of ERK 1/2 is inhibited when placental

explants are treated with hCG plus H89 and PD98059. The effect

of MAPK inhibition prevails over the inhibition of PKA,

suggesting that the MAPK signaling pathway would be the main

pathway involved on the stimulatory effect of hCG on leptin

expression.

Taking together, these results demonstrate that hCG stimulates

the MAPK pathway and that cAMP/PKA pathway activation is

probably blocking this effect.

The Alternative cAMP/Epac Signaling Pathway is Involved
in Placental Leptin Induction by hCG

It was reported that cAMP can activate MAPK through

members of the Ras superfamily of proteins. In this mechanism,

cAMP binds to the guanidine exchange factor Epac and activates

Rap1, which then increases the phosphorylation of MAPK

[27,45]. Based on these evidences, we decided to study the role

of the cAMP/Epac alternative pathway on the hCG leptin

induction. We first determined whether the activation of the

cAMP/Epac pathway induces leptin expression in placental cells.

We performed cotransfection experiments with pL1951 plasmid

and expression plasmids for Rap1b and Epac proteins. Results are

shown in Fig. 5A. The overexpression of Rap1 alone, or both

Rap1 and Epac, produced a significant induction of leptin

promoter activity. In addition, we cotransfected cells with

pL1951 plasmid, Epac and RapGAP, a Rap1 GTPase-activating

protein which accelerates the ability of Rap1 to hydrolyze GTP

into GDP [46]. The overexpression of RapGAP protein caused a

significant inhibition of leptin promoter stimulation by Epac

(Fig. 5B).

We next investigated the involvement of the cAMP/Epac

pathway on the hCG dependent leptin induction. First, we

analyzed the effects of the general cAMP analogue (Bu)2cAMP

and the Epac selective cAMP analogue 8-(4-chloro-phenylthio)-2-

Omethyladenosine-39, 59-cyclic monophosphate (8-CPT-2Me-

cAMP, also referred in the text and figures as CPT-OMe) [47],

on leptin upregulation by hCG. To this end, we treated BeWo

cells with hCG, (Bu)2cAMP and CPT-OMe and leptin expression

was assessed by Western blot. Fig. 5C shows that hCG as well as

CPT-OMe produced a significant increase in leptin expression,

with a 2-fold induction when compared to the control. Moreover,

when hCG was combined with CPT-OMe, such stimulation was

significantly higher than stimulation with hCG alone. On the

other hand, treatment with hCG and (Bu)2cAMP inhibited leptin

upregulation as previously seen. As shown in Fig. 5D, similar

results were observed in placental explants. These results suggest

that activation of the cAMP/Epac alternative signaling pathway,

and not the PKA pathway participates in hCG upregulation of

leptin. To confirm the observed results, we performed transient

transfection experiments with pL1951 plasmid. As shown in

Figure 3. PKA blocks hCG stimulation of leptin. (A) BeWo cells were incubated during 3 days with hCG and/or H89, as indicated. Extracts from
cells were prepared as previously described and loaded in a 12% SDS-PAGE. Leptin expression was determined by Western-blot. Loading controls
were performed by immunoblotting the same membranes with anti-b-actin. Bands densitometry is shown in lower panels. Molecular weight (kDa) is
indicated at the right of the blot. Representative results from three replicates are shown. (B) BeWo cells were transiently transfected with pL1951 and
treated with 100 IU/ml hCG, 10 mM H89 and/or 100 mM SQ, or cotransfected with a plasmid expressing the catalytic subunit of PKA (PKA) (1 mg/ml)
(C), or with a dominant negative mutant of the regulatory subunit of PKA (PKI) (1 mg/ml). Cells were incubated during 72 h in DMEM-F12 1% FBS
media. Luciferase activity was measured in cellular extracts and normalized to b-galactosidase activity. Activity obtained with empty vector (PGL-3
basic vector) was set as a control. Results are expressed as mean 6 S.E.M. for three independent experiments. *p,0.05, **p,0.01, ***p,0.001 vs.
control; #p,0.05, ###p,0.001 vs. hCG treatment.
doi:10.1371/journal.pone.0046216.g003
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Fig.5E, hCG treatment caused a significant induction in leptin

promoter activity. CPT-OMe produced a 4,5-fold increase in

leptin expression. When cells were treated with hCG in

combination with CPT-OMe, a 3-fold induction was observed.

In order to study the crosstalk between the PKA, cAMP/Epac

and MAPK pathways in leptin induction, BeWo cells were treated

with hCG, H89 and/or CPT-OMe. Leptin expression was

measured by Western blot (Fig. 5F). The cAMP analogue

produced a 3,4-fold induction of leptin expression compared with

control. This stimulation was enhanced when CPT-OMe was

combined with hCG, reaching a 8-fold induction above control in

accordance with previous results. In addition, CPT-OMe in

combination with H89 caused a 5-fold increase above CPT-OMe

treatment, suggesting that leptin expression involves the cAMP/

Epac signaling pathway independently of PKA activation. To

further investigate the involvement of this pathway in the hCG

effect on leptin expression, we performed transient cotransfection

experiments using the reporter pL1951 construction and the

expression plasmids for the proteins Epac and Rap1. BeWo cells

were treated or not with 50 IU/ml hCG. Results are shown in

Fig.5G. Cotransfection with Rap1 or with both Epac and Rap1

caused a 2,33 and 3-fold induction in leptin expression,

respectively. In addition, when cells were cotransfected with Epac

or Rap1 and treated with hCG, we observed a significant

stimulation of leptin promoter activity, reaching a 3-fold induction

over control in both cases. Overexpression of both Epac and Rap1

Figure 4. PKA inhibits ERK activation by hCG. (A) JEG-3 cells (16106 cells) were plated in complete DMEM-F12 media supplemented with 1%
FBS and incubated during 3 days with hCG (IU/ml) and/or PD98059. Total RNA was extracted as described in Material and Methods. Leptin mRNA was
quantified by real time RT-PCR. Cyclophilin was used as internal standard. Results are expressed as mean 6 S.E.M. for three independent experiments
performed in triplicates. (B) BeWo cells were incubated for 15 min with hCG and/or H89 as indicated. Extracts from cells were prepared as previously
described and loaded in a 12% SDS-PAGE. ERK 1/2 phosphorylation was determined by Western blot. Total ERK 1/2 protein level in extracts was
determined as loading control. Molecular weights were estimated using standard protein markers. Bands densitometry is shown in lower panel.
Results shown are from a representative experiment and are expressed as means 6 S.E.M. for three independent experiments **p,0.01 ***p,0.001
vs control; ###p,0.001 vs hCG treatment. (C) Placental explants were processed as previously described pre-incubated during 30 min with 50 mM
PD98059 and/or 10 mM H89 and treated with 100 IU/ml hCG during 4 h (C) or 15 min (D). (C) Total RNA was extracted as described in Material and
Methods. Leptin mRNA was quantified by real time RT-PCR. Cyclophilin was used as internal standard. (D) Extracts were prepared as previously
described and loaded in a 12% SDS-PAGE. ERK 1/2 phosphorylation was determined by Western blot. Total ERK 1/2 protein level in extracts was
determined as loading control. Molecular weights were estimated using standard protein markers. Bands densitometry is shown in lower panel.
doi:10.1371/journal.pone.0046216.g004
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plus hCG caused a significant 2,4-fold increase. When Epac or

Rap1 were overexpressed and cells were treated with hCG, the

stimulation was even higher than when treated with hCG alone.

Taken together, these data suggest that hCG induction of leptin

gene in placental cells is mediated not only by the MAPK signaling

pathway activation but also by the alternative cAMP/Epac

signaling pathway.

Discussion

Although little is known about the exact physiological role of

leptin during human pregnancy, recent observations suggest that

this hormone could be a key player in the regulation of embryo

implantation as well as in the maintenance of pregnancy. Leptin is

synthesized in the placenta [7] and pregnancy results in elevated

leptin levels [48]. Maternal plasma leptin levels decline to normal

values 24 h after delivery [49]. In normal pregnancy, plasma

leptin concentration was found to be in the range 7.4–19 ng/ml

[7]. Many physiological roles have been suggested for leptin in

human pregnancy such as regulation of placental function and

development, embryo implantation and growth

[14,15,50,51,52,53,54,55]. Little is known about the regulation

of leptin expression in placenta. In this way, it has been reported

that leptin synthesis is regulated by steroid hormones [56,57],

glucocorticoids and insulin [16]. It was also demonstrated that the

Figure 5. hCG induces leptin expression through the cAMP/Epac alternative signaling pathway. (A) BeWo cells were transiently
cotransfected with pL1951 and Epac (1 mg/ml) and/or Rap1b (1 mg/ml) proteins expression plasmids. (B) BeWo cells were transiently cotransfected
with pL1951 Epac (1 mg/ml) and/or RapGAP (1 mg/ml) proteins expression plasmids. (C) and (E) BeWo cells (16106 cells) were plated in complete
DMEM-F12 media supplemented with 1% FBS and incubated during 3 days with different doses of Cpt-OMe, hCG, (Bu)2cAMP, and H89, as indicated.
Cell extracts were prepared as indicated in Materials and Methods. Proteins were separated on SDS-PAGE gels and leptin expression was determined
by Western-blot. Molecular weights were estimated using standard protein markers. Loading controls were performed by immunoblotting the same
membranes with anti-b-actin. Bands densitometry is shown in lower panels. Molecular weight (kDa) is indicated at the right of the blot.
Representative results from three replicates are shown. (D) Cells were transfected with pL1951 plasmid construction and treated with hCG and/or
Cpt-OMe, as indicated. (F) BeWo cells were cotransfected with pL1951 and/or Epac and Rap1b and treated with hCG (IU/ml). In (A), (B), (D) and (F) cells
were incubated during 72 h in DMEM-F12 1% FBS media. Luciferase activity was measured in cellular extracts and normalized to b-galactosidase
activity. Activity obtained with empty vector (PGL-3 basic vector) was set as a control. Results are expressed as mean 6 S.E.M. for three independent
experiments. *p,0.05, **p,0.01, ***p,0.001 vs. control; #p,0.05, ##p,0.01, ###p,0.001 vs. hCG treatment. (G) Placental explants were
processed as previously described and treated with 100 IU/ml hCG and/or 10 mM Cpt-O-Me or 10 mM (Bu)2cAMP as indicated during 4 h. Proteins
were separated on SDS-PAGE gels and leptin expression was determined by Western-blot. Molecular weights were estimated using standard protein
markers. Loading controls were performed by immunoblotting the same membranes with anti-b-actin. Bands densitometry is shown in lower panels.
Molecular weight (kDa) is indicated at the right of the blot.
doi:10.1371/journal.pone.0046216.g005
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human leptin gene is actively engaged by hypoxia through

mechanisms that are common to other hypoxia-inducible genes

[58]. Moreover, we have previously shown that leptin expression

in placenta is upregulated by some important pregnancy signals

such as hCG, cAMP and estradiol [18,19,25,59]. In particular, in

the present work, we have studied the mechanisms involved in the

regulation of leptin expression by hCG in BeWo and JEG-3

human choriocarcinoma cells. These cells express both leptin and

its receptor [11]. They maintain many characteristics of human

trophoblast cells and have been widely used to study placental

cellular signaling [60,61,62]. Despite we used different cell lines,

both JEG-3 and BeWo, are extensively used for the study of

trophoblast function, and share many properties with villous

trophoblasts in terms of their morphology, biochemical markers

and hormone secretion [63]. The similarities between these lines

and trophoblast is of particular interest in view of the difficulty

involved in obtaining large amounts of freshly isolated trophoblast

cells and in succeeding in transfection procedures [64]. In spite of

similarities in several aspects, they differ in other characteristics,

such as their proliferative activity and degree of differentiation.

Thus, BeWo cells are less differentiated than JEG-3 cells, but they

have higher rates of proliferation [65]. Normal trophoblastic

explants from healthy donors were also studied to confirm the

physiological relevance of the results. The findings in this study

confirmed that hCG stimulates leptin expression in human

placenta. We observed that hCG was able to increase leptin

mRNA transcription not only in JEG-3 cells but also in term

placental explants. HCG has many important functions during the

course of pregnancy, including stimulation of progesterone

production, decidualization, angiogenesis and cytotrophoblast

differentiation [66,67,68]. HCG is already expressed in eight-cell

embryos and is secreted in high local concentrations by the

blastocyst entering the uterine cavity. Therefore, it is probably one

of the embryonic signals involved in the embryo-maternal dialogue

during the implantation window [69]. Binding of hCG to its

receptor generates signal transduction through activation of the

associated heterotrimeric G-proteins and, in the classical response,

there is an increase in cAMP and a consequent activation of PKA

[70,71]. In this way, here we have demonstrated that hCG

increases cAMP intracellular levels in placental cells. Our results

are in accordance with previous reports that observed that hCG

augments intracellular cAMP in placenta [72,73]. In addition, we

have found that hCG can activate CRE element activity in

transient transfection experiments. The core of the CRE sequence

is found in a variety of regulatory elements of genes that are

activated by PKA. The main transcription factor that binds CREs

is CREB, which is activated principally by phosphorylation. We

have found that CREB is involved in leptin induction by hCG,

suggesting that hCG stimulation of leptin could be mediated by

the cAMP/PKA signaling pathway. However, there are many

Figure 6. The MAPK and the alternative cAMP/Epac signaling pathways participate in leptin stimulation by hCG in placenta.
Proposed model of the signaling pathways involved in hCG stimulation based on current data and its relation to leptin expression. Pointed arrow:
Stimulation; Flat arrow: Inhibition. Dash arrow: possible pathways involved.
doi:10.1371/journal.pone.0046216.g006
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other signaling pathways that activate CREB. Several studies have

reported that different kinases are able to phosphorylate and

activate CREB [74]. In fact, we found that (Bu)2cAMP not only

did not enhance hCG effect but even inhibited hCG-dependent

leptin mRNA expression in placental cells. It was recently

described that treating rats with hCG or chronically raising cAMP

production, downregulate LH/CG receptor. High concentrations

of hCG or cAMP negatively regulate surface receptors in ovary

and testis cells, thus decreasing the abundance of all receptor

transcripts [71]. The end of signaling mediated by G protein-

coupled receptor due to an excess of ligand has been described

both in vivo and in vitro in different cell types [75,76]. Our results

suggest that could exist alternative signaling pathways activated by

hCG, that prevent the rapid desensitization of the receptor in the

presence of high ligand concentrations, as occurs during implan-

tation and pregnancy. Some authors have shown that hCG

receptor is up- or down-regulated depending on the cAMP

concentration used and the exposure time [40]. In this context, we

demonstrated that low cAMP concentrations (,1 mM) combined

with low hCG concentrations (,10 IU/ml), induce leptin

placental expression. These observations strongly suggest that a

rise in endogenous cAMP level interferes with hCG leptin

stimulation.

It is known that the PKA pathway plays a central role in

biological signaling of various hormones in the placenta, such as

epinephrine, prostanoids, and hCG [77]. When we treated cells

with H89, we observed that this PKA inhibitor enhanced hCG

stimulation of leptin expression. Moreover, we demonstrated that

this effect occurs at the transcriptional level. Based on this, we

hypothesized that PKA activation by high cAMP levels might be

responsible for the impairment of hCG effect. In fact, several

reports have provided evidence that cAMP affects some cellular

processes independently of PKA [22,23,24]. We have previously

demonstrated that hCG stimulates leptin placental expression, at

least in part, through the MAPK/ERK signaling pathway [18]. In

this study, we confirmed those results, demonstrating that the

inhibition of the MAPK signaling pathway (using MEK inhibitor,

PD98059) completely blocks hCG induction of leptin mRNA

expression. The LH/hCG receptor has been shown to mediate

activation of MAPK signaling pathway [42,43,44,78,79]. In view

of the obtained results, we hypothesized that cAMP inhibition of

hCG effect on leptin expression could be due not only to a

desensitization/down-regulation of LH/hCG receptor [71,80] but

also to an inhibition of MAPK signaling pathway generated by

PKA activation. Our results demonstrated that induced ERK

phosphorylation by hCG in trophoblastic cells is increased when

PKA is specifically inhibited with H89. Depending on the cell type

and culture conditions, the activation of PKA results in the

activation or the inhibition of ERK 1/2 pathway [81,82].

On the other hand, the activation of PKA is known to

counteract the Ras/Raf-1/MEK signaling pathway [83,84,85,86]

that is essential to trigger ERK phosphorylation. Cyclic AMP,

however, seemingly promotes ERK activity in several cell types,

including 3T3- preadipocytes, ovarian granulosa cells, melanoma,

pituitary cells, and neuronal cells [27,28].

As we have demonstrated that hCG increases cAMP levels in

placental cells, we studied the possibility that an alternative cAMP

signaling pathway, independent of PKA, could be participating in

hCG leptin up-regulation. Given that hCG induces leptin

expression through the MAPK signaling pathway, we searched

for the pathway linking the cAMP signal to ERK activation.

Although the most important target of cAMP is PKA, recently, a

cAMP-guanine nucleotide exchange factor (cAMP-GEF)/Epac,

emerged as a Rap1-specific GEF [26,27], indicating that cAMP

can modulate ERKs via the Epac/Rap1/B-Raf pathway in a

PKA- and Ras-independent manner [27,28,87,88].

In the present work we have demonstrated that leptin

expression is induced in placenta through the cAMP/Epac

alternative signaling pathway by two different approaches. First

the overexpression of Epac and Rap1 proteins resulted in a

significant increase in leptin promoter activity. Furthermore, when

trophoblastic cells were treated with CPT-OMe, a cAMP

analogue that specifically activates Epac, an increase in leptin

expression was observed. Our results demonstrate that cAMP

stimulates placental leptin expression not only through the PKA

dependent pathway, as previously demonstrated [19], but also

through the cAMP/Epac alternative pathway. On the other hand,

since PKA might be responsible for cAMP inhibition of hCG effect

on leptin, we speculated that the cAMP/Epac alternative pathway

is involved in hCG leptin induction. We found that cAMP-

dependent activation of Epac1 and Rap1 but not PKA is able to

induce hCG leptin expression. Indeed, stimulation of Epac with

CPT-OMe caused an increase in hCG effect on leptin protein

expression and leptin promoter activity. It was previously reported

that besides to the inhibition of Ras-Raf-Mek cascade, PKA may

negatively regulate Rap1 itself [89], thus PKA may also inhibit

MAPK stimulation through the cAMP/Epac signaling pathway.

In cells expressing the Raf isoform B-Raf, cAMP is known to

activate ERK via the activation of Rap1 [87,90,91,92,93].

Furthermore, it was reported that B-Raf is expressed in

trophoblastic cells and ablation of B-Raf abrogated ERK

phosphorylation [94]. Even though MAPK activation by Epac/

Rap1/B-Raf is one possible pathway involved in leptin induction

by hCG, we do not discard the involvement of other signaling

pathways downstream of Rap1, independent of ERK signaling.

Although the physiological significance of Epac expression on

trophoblast function remains unknown, here we have shown that

Epac is an important player in the induction of leptin expression

by hCG. We have presented evidence indicating that hCG

stimulates leptin expression in placenta through a signal

transduction pathway including Epac, Rap1, and probably B-

Raf, up-stream of the MEK-ERK cascade. This pathway

integrates the cAMP signal to promote leptin expression in a

PKA independent manner. On the other hand, hCG could

stimulate leptin through MAPK signaling pathways involving the

Ras and Raf-1 proteins, in a cAMP independent manner.

Therefore, the activation of the MAPK and cAMP/Epac signaling

pathways underlie the stimulation of leptin expression by hCG. At

the same time, hCG is capable of activating the classical cAMP/

PKA pathway in placenta, but this pathway would not be involved

in the stimulation of leptin by hCG. In turn, cAMP generated by

the action of several effectors through the activation of PKA,

would stimulate leptin. All these interrelationships are pictured in

the model shown in Fig. 6.

In summary, although multiple pathways are required for leptin

stimulation by cAMP, only some of them are dependent on PKA,

while others, like pathways activated by hCG, would be

independent of PKA. Until now, no studies have addressed the

role of the cAMP/Epac in the regulation of leptin by hCG in

placenta. Based on our results we can speculate that the activation

of the cAMP/Epac signaling pathway would provide an alterna-

tive pathway to avoid the inhibition of leptin hCG stimulation

when PKA is activated, thus ensuring leptin expression require-

ments during pregnancy.

The molecular actions of leptin and mechanisms coordinating

its expression and activity in trophoblasts are not fully elucidated.

In this work we showed a novel mechanism activated by hCG in

placenta to induce leptin expression.
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