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Abstract The use of the successive projections algorithm
(SPA) for elimination of uninformative variables in interval
selection, and unfold partial least squares regression (U-PLS)
modeling of excitation-emission matrices (EEM), when under
the inner filter effect (IFE) is reported for first time. Post-
calibration residual bilinearization (RBL) was employed
against events of unknown components in the test samples.
The inner filter effect can originate changes in both the shape
and intensity of analyte spectra, leading to trilinearity losses in
both modes, and thus invalidating most multiway calibration
methods. The algorithm presented in this paper was named
iSPA-U-PLS/RBL. Both simulated and experimental data sets
were used to compare the prediction capability during: (1)
simulated EEM; and (2) quantitation of phenylephrine
(PHE) in the presence of paracetamol (PAR) (or acetamino-
phen) in water samples. Test sets containing unexpected com-
ponents were built in both systems [a single interference was
taken into account in the simulated data set, while water sam-
ples were added with varying amounts of ibuprofen (IBU),
and acetyl salicylic acid (ASA)]. The prediction results and

figures of merit obtained with the new algorithm were com-
pared with those obtained with U-PLS/RBL (without intervals
selection), and with the well-known parallel factors analysis
(PARAFAC). In all cases, U-PLS/RBL displayed better EEM
handling capability in the presence of the inner filter effect
compared with PARAFAC. In addition, iSPA-U-PLS/RBL
improved the results obtained with the full U-PLS/RBLmodel,
in this case demonstrating the potential of variable selection.

Keywords Interval selection . Successive projections
algorithm . Unfolded-partial least squares . Second order
calibration . Inner filter effect

Introduction

Algorithms that model multiway data have been widely de-
scribed in the literature [1–11]. Such methods may be catego-
rized into those with intrinsic second order advantages, which
are based on obtaining pure profiles of the system’s constitu-
ents [1]: parallel factor analysis (PARAFAC) [3], variants
PARFAC2 [4], PARALIND (PARAFAC for data with linear
dependencies) [5]; multivariate curve resolution coupled to
alternating least-squares (MCR-ALS) [6]; and generalized
rank annihilation GRAM [7]. On the other hand, other
multiway methods are able to exploit the second order advan-
tage after a post-calibration step called residual bilinearization
(RBL) [8]: unfolded-partial least square (U-PLS) [9]; N-way
partial least squares (N-PLS) [10]; and bilinear least squares
(BLLS) [11].

All of these multiway approaches are based on mathemat-
ical and statistical assumptions about the behavior of data [1,
2]. If the data do not obey the assumptions, low accuracy
models are obtained. Possible problems, such as extreme
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analytical signal overlap, identical analyte and interference
profiles in one of the modes, linear dependence, and
bilinearity/trilinearity breaks must all be taken into con-
sideration when choosing an algorithm to model
multiway data [1, 2].

Partial least squares combined with RBL for unfolded data
was initially proposed by Öhman et al. [8], and then popular-
ized by Olivieri’s research group [12–14]. It has been reported
as a successful strategy for modeling peculiar situations, such
as excitation-emission matrices (EEM) when inner filter effect
occurs [15, 16], and in cases involving strong overlap in one
mode, and linear dependence in the other mode [17].

Inner filter effect occurs in chemical fluorescence spectros-
copy analysis systems when a chemical species (fluorescent or
not) absorbs either excitation or emission that corresponds to
another species. This originates changes in both profiles (ex-
citation and/or emission). Interestingly, the shape of the
emission-excitation spectra of the analyte can be modified
from sample to sample, while breaking tri-linearity in both
modes [15, 16, 18].

The enhanced performance of U-PLS/RBLwhenmodeling
inner filter effect can be attributed to the structure of the un-
folded data, i.e., instrumental matrices J×K cannot be bilinear,
but I×JK matrices are bilinear (assuming the unfolding of a
tensor I×J×K, in an I×JK matrix), in combination with the
flexibility of modeling using latent variables. Although it has
long been believed that PLS is insensitive to noise [19], it has
been shown that PLS models can be improved when com-
bined with algorithms for variable selection [20]. The vari-
ables selection methods consist of a combinatorial search
(by variables subset) to get models with better predictive abil-
ity, and more interpretable, simple, and robust models [21].

Variable selection methods combined with PLS regression
can be dynamic or randomized. The subset of selected vari-
ables may be composed of individual variables (which are
distributed throughout the analytical signal), or of intervals
of variables [22]. According to Höskuldsson, the latter ap-
proach has advantages over the former, since a score vector
gives a more stable prediction and is preferred [23].

Recently, Gomes et al. showed that the performance of PLS
models may be improved [24, 25] by employing a variant of
the successive projection algorithm (SPA) [26–28] for interval
selection, i.e., iSPA coupled with PLS (iSPA-PLS), when
selecting intervals in near infrared spectra (NIR) for quantita-
tive analysis of complex samples such as beer and wheat [24].
In addition, iSPA has shown its potential as a variable selec-
tion tool when coupled with N-PLS/RBL (iSPA-N-PLS/RBL)
for quantitation of ofloxacin in water samples in the presence
of two un-calibrated quinolones (ciprofloxacin and
danofloxacin) [25]. The previous works of our group involv-
ing selection of intervals coupled to PLSmodels as mentioned
in this manuscript above are not suitable for handling EEM
when inner filter effect is present. The iSPA-PLS is related to

modeling first-order data and does not apply to second-order
data, in this case EEM data. The iSPA-N-PLS is not able to
handle trilinearity breaks in two modes.

The present report proposes a new algorithm, namely i-
SPA-U-PLS/RBL, which combines the advantages of variable
selection (to remove non-informative variables) and the flex-
ibility using latent variables of the unfolded second order data,
able to properly handle inner filter effect. This work, based on
our knowledge, is the first report of variables selection being
coupled to U-PLS/RBL when handling EEM data in the pres-
ence of inner filter effect.

The performance of the proposed algorithm is tested in two
case studies. First, a simulated excitation-emission matrix
(EEM) set is used to mimic determination of an analyte in
the presence of both inner filter effect and unknown com-
pounds in the test sample. Secondly, an EEM is used for quan-
tification of phenylephrine (PHE) in water samples in the
presence of paracetamol (or acetaminophen) (PAR), which
causes inner filter effect by modifying the PHE signal in both
instrumental modes. Test set samples were also spiked with
two potential interferents, ibuprofen (IBU) and acetyl salicylic
acid (AAS), to demonstrate how the proposedmethod exploits
the second order advantage. The results obtained were com-
pared with those obtained by U-PLS/RBL without intervals
selection, as well as the well-known PARAFAC.

Background and theory

Notation

In what follows, the tensor data, matrices, vectors, and scalars
will be, respectively, denoted by bold italic capital letters, bold
capital letters, bold lowercase letters, and by lowercase italic
characters. The ‘T’ superscript indicates a transposition of a
vector or matrix.

PARAFAC

PARAFAC is an algorithm for decomposition of trilinear
multiway data, which can be understood as a generalization
of principal component analysis (PCA) for higher order data,
or as a restricted case of the Tucker3 method [29]. For a three-
way array (X(I×J×K)), each element (xi jk ) is given by Eq. 1.

xi jk ¼
X N

n¼1
ainb jnckn þ ei jk ð1Þ

where a are score proportional to the concentration, b and c are
the elements, respectively, associated with instrumental
modes 1, 2. For the decomposition of a three-way array, a,
b, and c are stored in matrices A, B, and C, respectively. The
matrices A, B, and C can be obtained by minimizing the
residuals sum of the squares eijk. For the chemical data, the
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B and C matrices carry information about the pure profiles of
each constituent of the system, generating signals in J and
K; the diagonal matrix A contains scores proportional to
concentration [30].

The matricesA,B, andC are unknown in principle, and are
obtained using alternating least squares after providing a boot,
which can be obtained using random or direct trilinear decom-
position. Unlike what occurs in PCA, PARAFAC factors
are obtained simultaneously, are non-cumulative, and
non-orthogonal [30].

When employing PARAFAC for quantitative pur-
poses, the three-way array can be composed of instru-
mental response matrices, each measured from each of
the various standards and the unknown sample. To ob-
tain the analyte concentration in an unknown sample,
we use a regression model contained in the diagonal
matrix A, composed of the scores of the calibration
samples versus their standards concentrations. The un-
known concentration is calculated using an interpolation
model known as pseudo-univariate calibration [31].

U-PLS/RBL

The U-PLS algorithm is an adaptation of the two-way PLS
regression proposed by Lindberg et al. [32] for multiway data
modeling. In the case of a three-way array X(I×J×K), each ma-
trix XI containing the analytical signal (J×K) is vectorized,
giving a row vector xT(1×JK). Organization of these row vectors
generates the matrix X(I×JK), which is then modeled via con-
ventional PLS [33].

Using the set of calibration samples, the number of
factors A should be estimated, (which corresponds to the
I×JK matrix ranking), usually using cross-validation
procedures [34]. Another parameter of the U-PLS mod-
el, the regression coefficients vector v, is used to predict
the analyte concentration (yu) in an unknown sample
Xu, as shown in Eq. 2,

yu ¼ tTuv ð2Þ

where tu represents the scores of the sample Xu obtain-
ed by the projection of the vectored matrix Xu against
the calibration set loadings, truncated for A factors (see
Eq. 3).

tu ¼ WTP
� �−1

WTvec Xuð Þ ð3Þ

However, the scores obtained by Eq. 3 become unsuitable
for prediction of yu when unexpected constituents (those not
present in the calibration samples) appear in the sample Xu

[35]. The presence of unmodeled constituents can be evi-
denced by comparing the standard deviation of the instrumen-
tal noise (Scal) obtained for the calibration samples set (see

Eq. 4a) with the residual standard deviation (Sp) for sample
Xu calculated based on the Eq. 4b,

Scal ¼ vec uXcalð Þ−TPT
�� ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JK−Að ÞI
p

ð4aÞ
Sp ¼ vec Xuð Þ−PTuk k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JK−Að Þ

p
ð4bÞ

where uXcal is a matrix I×JK obtained by unfolding of
the three-way size array I×J×K, and || . || is the Eu-
clidean norm. When Sp is noticeably larger than Scal, it
is a strong indication that nonmodeled constituents are
present in Xu, and a post-calibration procedure known
as residual bilinearization can be applied to the residual
matrix (Ep, see Eq. 5) of the sample Xu,

Ep ¼ reshape vec Xuð Þ − PTu½ � ð5Þ

where, in this case, “reshape” is the operation of
converting a vector of dimensions 1×JK into a matrix
of J×K. In the residual bilinearization procedure, Ep is
decomposed thru decomposition of singular values as
shown in Eq. 6.

BunexGunex Cunexð ÞT ¼ SVD Ep

� � ð6Þ

Bunex and Cunex are eigenvector matrices, and Gunex is the
matrix ofEp eigenvalues. ThematricesBunexGunex(Cunex)

T are
then truncated to give a number of factors (Ni) corresponding
to the number of unexpected constituents in Xu. In other
words, Ni is the rank of Ep. The product BunexGunex(Cunex)

T,
called Sint, contains the profiles of the unmodeled compo-
nents. This information is used to modify the tu scores guided
by minimizing eRBL (see Eq. 7).

During the residual bilinearization procedure, loadings ob-
tained for the calibration set are maintained constant, and eRBL
minimization is carried out by a Gauss-Newton procedure as
shown in Eq. 7.

vec Xuð Þ ¼ PTu þ vec SintÞ þ eRBLð ð7Þ

The interferents profiles stored in Sint are continuously up-
dated during the Gauss-Newton minimization employing
Eqs. 5 and 6. To estimate the optimal Ni value, the standard
residue deviation after the residual bilinearization procedure
can be calculated as in Eq. 8.

SRBL ¼ eRBLk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J−N ið Þ K−N ið Þ−A½ �

p
ð8Þ

In practice, the behavior of SRBL in increasing Ni is
observed; an adequate Ni furnishes similar values for
SRBL and Scal.

Successive projection algorithm

The SPA was initially proposed to select subsets of variables
for subsequent multiple linear regression in first order
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calibration [26]. Briefly, SPA consists of two phases. Phase
(1): variable chains are generated by successive projec-
tion steps, where for an instrumental response matrix X
(I×J), starting from each column J, a vector z1=xj is
set. Then, the other columns of X are projected onto a
matrix Pi (orthogonal to z1), and a matrix SEL is ob-
tained as the phase (1) result, which stores the indexes
of the less correlated variables, starting with xj [27].
Phase (2): the chains of variables stored in SEL are
evaluated using an appropriate cost function, generically
named Jcost. For calibration, it is customary to employ
the root mean square error of validation or cross-
validation (RMSEV or RMSECV) [26, 28].

iSPA combined with U-PLS/RBL

The algorithm proposed in this report is an extension of iSPA-
PLS for three-way unfolded data [24]. In the iSPA-U-PLS
algorithm, a three-way array (Xcal I×J×K) for calibration sam-
ples is initially unfolded in J and Kmodes, generating the two
matrices uXcal-1 and uXcal-2, with respective dimensions IK×J
and IJ×K.

These matrices are partitioned into intervals. It is assumed
that the J (mode 1) variables j1, j2, …, jJ and K (mode 2)
variables k1, k2,…kK have been divided into S1 and S2 non-
overlapped intervals of lengths S11, S

1
2,…, S1w1 and S

2
1, S

2
2,

…, S2w2, respectively. In general, the intervals will have the
same length, but this is not required. If J and/or K are non-
divisible byw, the remainder of the division can be distributed
among the intervals so that S11+S

1
2 + ⋅ ⋅ ⋅ + S1w1=J, and S

2
1+

S22 + ⋅ ⋅ ⋅ + S2w2=K.
The iSPA-U-PLS/RBL algorithm can be divided into two

phases. In phase 1, the columns of uXcal-1 and uXcal-2 are
partitioned according to the intervals of previously defined
variables. The column with the largest norm within each of
the S intervals is taken as a representative element of that
interval. The S representative columns obtained in this way
are stored in a matrix Scal-1 (IK×s1) and Scal-2 (IJ×s2). The
SPA projection operations (described in reference [25]) are
then carried out by using the columns Scal-1 and Scal-1 instead
of uXcal. Therefore, at the end of phase 1, the indexes in the
resulting matrix SEL-1 and SEL-2 will correspond to their
respective intervals under consideration in mode 1 and
mode 2.

In phase 2, U-PLS is employed to build models for each
combination of intervals associated with the indexes stored in
matrices SEL-1 and SEL-2. For each combination of intervals
stored in SEL-1, all combinations in SEL-2 are evaluated. Up
to w-1 intervals in each instrumental mode can be se-
lected. A pictorial representation of iSPA-U-PLS/RBL is
shown in Fig. 1.

The best combination of intervals for each sample of the
test set is then chosen on the basis of the smallest value of a

cost function, namely Jcost (see Eq. 9). R represents the value
associated with the RBL procedure, calculated as shown in
Eq. 10,

jcost ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy i −byiÞ2

I

s
þ R ð9Þ

R ¼ j1− SRBL
Scal

j ð10Þ

where SRBL is the residual for test sample u, and Scal is the
residual for the overall calibration set (see Eq. 8). The cost
function used in the iSPA-U-PLS selection of intervals is com-
posed of two terms: (1) the RMSECV, which ensures that the
selected intervals have good correlation with the dependent
variable (y); and (2) the R value, which allows taking into
account the RBL procedure applied (after calibration) to
achieve the second-order advantage. If no unexpected constit-
uent occurs in the test sample (Su approximately equal Scal),
residual bilinearization is suppressed (Ni=0), and Jcost be-
comes equal to RMSECV, and the same interval set is selected
for all test samples.

The R term aims to guide interval selection towards regions
having less interferent contributions. For each test sample u, it
is possible to select different intervals according to the sample
composition. Ideally, SRBL should be as similar as possible to
Scal. Therefore, Eq. 9 aims to select intervals that display low
instrumental noise by calculating as if the analyte and
interferents were absent, and also avoiding areas having no
signal.

Experimental

Simulated data

The simulated data were generated in order to mimic EEMs
affected by inner filter effects of any species on the analyte
signal. A calibration set consisting of six EEMs, (each with a
dimension of 31×31, and containing two components, one
analyte and one species causing inner filter effect), was built
in triplicate using the pure profiles of each component
displayed in Fig. 2a. The concentration range for the analyte
was between 1 and 6, with an increment of 1 unit, whereas for
the species causing the inner filter effect, random concentra-
tions between 2 and 4 were set. The inner filter effect on the
analyte signal [36] in the calibration samples was computed
(see Fig. 2b) according to Eq. 11,

Xcali ¼ ycaliS1 � exp −ε2 j þ ε2k
� �

yi f i
n o

þ yi f iS2 ð11Þ

whereXcali is the ith calibration sample with dimensions J×K,
and ycali is a scalar representing the concentration ofXcali. S1 is
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the EEM for the analyte at unit concentration. The term exp

�ℇ2 j þ ℇ2k

� �
yi f i represents the contribution of inner filter

effect to the analyte signal. ℇ2 j

� �
yi f i, and ℇ2 j

� �
yi f i represent

the channel absorptions for J and K, respectively, and yi f iS2 is

the signal of the species that causes inner filter effect at con-
centration yif .

The test set, which consists of 50 samples of random ana-
lyte and species concentrations causing inner filter effect in the
range of 2 to 5 units, was constructed according Eq. 12,

Xtesti ¼ ytestiS1 � exp −ε2 j þ ε2k
� �

ytest−i f i
n o

þ ytest−i f iS2 þ yintiS3 ð12Þ

where the term yintiS3 corresponds to the unexpected com-
pound, which was added to the test samples only, in random

concentrations (see Fig. 2a). For all concentration values, the
level of noise was 1 %, and the signal was 5 %.

Experimental data set

All reagents (phenylephrine, ibuprofen, acetyl salicylic acid,
and paracetamol) used in this work were obtained from the
Pharmaceutical Quality Control Laboratory of the Faculty of
Biochemistry and Biological Sciences, Universidad Nacional
del Litoral, Santa Fé, Argentina. Stock solutions at a concen-
tration of 100 mg L−1 of phenylephrine (aqueous), ibuprofen
(HPLC quality methanol), acetyl salicylic acid (aqueous), and
paracetamol (aqueous), at a concentration 200 mg L−1 were
prepared. For work solutions of ibuprofen, an adequate
amount of stock solution was placed in a 10.00 ml volumetric

Fig. 1 Pictorial representation of iSPA-U-PLS/RBL algorithm (a) phase 1 and (b) phase 2

Fig. 2 Noiseless profile used for building simulated data set (a) pure
profiles for ( ) analyte, ( ) constituent
causing IFE ( ) and uncalibrated constituent. Solid and

dotted lines are emission and excitation respectively. (b) Analyte original
profile ( ) and, in the presence of inner filter effect (− −)
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flask, and the solvent was evaporated by a gentle stream of
nitrogen. The flask was then completed to the mark with Milli-
Qwater; the ultrapurewater was obtained from aMilli-Qwater
purification system from Millipore (Bedford, MA, USA).

The calibration set was prepared by dilution of appropriate
volumes of phenylephrine stock solution to obtain the follow-
ing concentrations: 0.248, 0.379, 0.496, 0.627, 0.744 mg L−1

in duplicate. In addition, all the calibration solutions were
completed with paracetamol so as to obtain a final concentra-
tion of paracetamol equal to 10.000 mg L−1. A fractional cen-
tral composite design of four factors, at five levels was follow-
ed. A test set of 17 samples was also prepared in Milli- Q
water; the concentration levels for the test samples are
displayed in Table 1.

Spectrofluorimetric measurements were performed using a
Perkin Elmer (Waltham, Massachusetts, USA) LS-55 lumi-
nescence spectrometer equipped with a Xenon discharge
lamp, Monk-Gillieson type monochromators and a gated
photomultiplier and using 1.00 cm quartz cells. Excitation-
emission fluorescence matrices were recorded varying the ex-
citation wavelength between 215 and 240 nm (each 2 nm),
and registering the emission spectra profile from 270 to
360 nm each 0.5 nm. For all cases, the excitation-emission
matrices have dimension of 181×13, so that calibration and
test data correspond to array 10×181×13 and 17×181×13,
respectively. The slit band widths for the excitation and emis-
sion monochromators were fixed at 10 nm and the detector
voltage at 650 V.

Chemometrics procedure and software

The algorithm reported in this paper was developed in the
MatLab environment employing the algorithm U-PLS-RBL
in command lines written by Olivieri (available at
(http://www.chemometry.com/Index/Links%20and%
20downloads/Programs/Olivieri/RBL.zip). The PARAFAC
code is available at http://www.models.kvl.dk/algorithms. U-
PLS/RBL models and figure of merit were computed using
graphical interfaceMVC2 [37] and are available at www.iquir.
conicet.gov.ar/descragas/mvc2.rar.

Results

Simulated data

Before modeling the simulated data with PARAFAC, U-PLS/
RBL, and iSPA-U-PLS/RBL, the number of factors required
to fit the data for each model were investigated. To obtain the
adequate number for PARAFAC, the core consistency diag-
nostic concept (CORCONDIA) was employed [31]. It was
computed decomposing a three-way build, with one simulated
test sample, together with the calibration set. For U-PLS and
iSPA-U-PLS, the log (PRESS) variation as a function of the
number of latent variables (A), and included in the model (for
the calibration set only) was evaluated. The full instrumental
signal was used for U-PLS, whereas the best interval indicated
by iSPA was considered for iSPA-U-PLS. The results are
shown in Fig. 3.

As can be seen in Fig. 3a, three factors gave the best PARA
FAC model fit (four factors produce a drastic fall in the
CORCONDIA value). A visual inspection of Fig. 3b (blue
solid line) indicates that three factors are necessary to fit the
data with U-PLS, which seems to be consistent, the calibration
set contains two components, but a third additional factor is
required to model the IFE, which causes changes in the ana-
lyte profile from sample to sample.

Interestingly, the minimum of the log (PRESS) curve ver-
sus A is reached only with two latent variables for the range
selected by iSPA [i.e., a less complex model is built (Fig. 3b)
(green dotted line)]. When analyzing the test set samples, the
number of unknown constituents was accessed considering
the stabilization log SRBL. In both cases (with and without
selection), and for all the test samples, only one factor was
required to successfully achieve the second-order advantage
(see Fig. 3c).

As can be appreciated in Fig. 3d, a narrow interval through-
out the second mode was selected by iSPA-U-PLS as the best
subset of variables for modeling the simulated EEM affected
by inner filter effect. Since only two latent variables (unlike
the full model) were required for modeling, it could be

Table 1 Composition of the experimental test set samples

Sample PHE IBU AAS PAR

1 0.37 0.37 0.054 8.00

2 2.37 0.28 0.074 12.50

3 0.32 0.40 0.064 20.00

4 0.28 0.37 0.054 12.50

5 0.32 0.32 0.079 17.00

6 0.39 0.32 0.064 8.00

7 0.28 0.28 0.054 12.50

8 0.37 0.37 0.074 8.00

9 0.32 0.32 0.064 17.00

10 0.32 0.32 0.064 12.50

11 0.37 0.28 0.054 12.50

12 0.25 0.32 0.064 17.00

13 0.32 0.25 0.064 12.50

14 0.32 0.32 0.049 5.00

15 0.32 0.32 0.064 12.50

16 0.28 0.37 0.074 8.00

17 0.28 0.28 0.074 17.00

Composition based on a factorial composite central design. All concen-
trations are in μg mL−1
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postulated that a region less affected by the inner filter effect
was selected by the iSPA algorithm.

The full data with dimensions of 31×31 for each EEM
when unfolded generates a 1×961 vector, so the full model
should contain 962 PLS regression coefficients, taking into
account the b0. On the other hand, interval selection (iSPA)
reduced the size of the EEM to 31×7; this corresponds to 218
PLS regression coefficients. The number of objects (samples)
in both cases does not change (six samples in triplicate), yet,
from a mathematical point of view, the best approach is that
which uses the fewest number of parameters possible. Our
model, having the fewest number of parameters, was satisfac-
torily explained with only two latent variables, whereas the
full U-PLS/RBL model requires three latent variables.
Employing PARAFAC, U-PLS/RBL, and iSPA-U-PLS/
RBL, predictions on the test samples were conducted, and
the results are displayed in Table 2.

Considering the root mean square error of prediction
(RMSEP) values presented in Table 2, it can be con-
cluded that PARAFAC was not able to handle the data
with inner filter effect in two modes and, as a result, a
high RMSEP value was obtained. On the other hand,
when the inner filter effect was properly modeled
through the versatile structure of latent U-PLS variables,
a significant improvement was achieved. The RMSEP
value was 20 times smaller when compared with PA-
RAFAC. However, this result was slightly improved
by the combined use of U-PLS/RBL modeling and iSPA
intervals selection. This demonstrates that in cases
where inner filter effect occurs, variable selection is a
useful tool.

Regarding the accuracy of the investigated models, it can
clearly be seen in Fig. 4a that the elliptical joint predictive
confidence regions (EJCR) for PARAFAC do not contain
the ideal point for slope and intercept. On the contrary, U-
PLS/RBL and iSPA-U-PLS/RBL EJCRs contain the ideal
point, indicating no significant systematic errors.

EJCR, at least as suggested by recent papers from the liter-
ature [38–42], corresponds to the joint confidence interval for
slope and intercept of the linear fit obtained by ordinary least
squares, between nominal values and those predicted by the
model using an independent test set. Obviously, the size of the
ellipse is directly related to the accuracy of the method,
allowing, for example, comparison of the two methods. In

Fig. 3 Selection of number of
factors. (a) PARAFAC core
consistency diagnostic for typical
simulated test sample. (b)
Logarithm of the full cross-
validation PRESS versus the
number of U-PLS latent variables
(A): U-PLS (blue solid line), and
iSPA-U-PLS (green dotted line).
(c) U-PLS prediction residuals
[log (SRBL)] versus the number of
unexpected components (Ni). (d)
Surface plot for a typical simulated
test sample and selected interval

Table 2 Figures of merit obtained for the simulated data

Models Figures of merit

RMSEP SEN γ−1 LOD LOQ

PARAFAC 1.584 2.50 0.023 2.1 6.4

U-PLS/RBL 0.077 2.12 0.005 0.06 0.2

iSPA-U-PLS/RBL 0.066 0.46 0.023 0.09 0.3
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addition, if the ideal point (0, 1) falls inside the EJCR, bias is
absent [43].

Finally, the values for figures of merit, sensitivity, inverse
of analytical sensitivity, limit of detection, and limit of quan-
titation, are also presented in Table 2. The sensitivity for U-
PLS/RBL and iSPA-U-PLS/RBL models was estimated as
reported in [44], which define the sensitivity as the ratio of
the uncertainties in signal and concentration (Eq. 13),

SEN j ¼ ½var xð Þ=var yð Þ�
1
2 ¼ vT½PT I−ZintZ

þ
int
ÞP�−1v

� o−1
	

ð13Þ

where the “J” subscript indicates the Jacobean approach (see
reference [44]), v are the regression coefficients, P is the cal-
ibration loadings matrix, I is an identity matrix with dimen-
sion JK×JK, and Zint contains information from unexpected
constituents. For PARAFAC, the figures of merit were esti-
mated as described in reference [45].

According to the results presented in Table 2, it can be seen
that the PARAFAC and U-PLS/RBL sensitivity values are
similar, and higher than that obtained for iSPA-U-PLS/RBL.
This is due to the fact that the latter model employs only a
narrow range of variables. On the other hand, the LOD and
LOQ values obtained by full U-PLS and iSPA-U-PLS/RBL
were comparable, and lower than those obtained by PARA
FAC. This is due to the fact that the computation of the latter
figures of merit takes into account the standard deviation of
residual fit, which, as was commented above, is better for
models based on latent variables [44].

Experimental data set

In this section, the performance of the proposed algorithm is
evaluated modeling an experimental data set of EEMs

gathered for phenylephrine quantitation in the presence of
paracetamol, causing a strong inner filter effect on the phen-
ylephrine signal in both instrumental modes (excitation, and
emission profile). A calibration set consisting of five standard
solutions of phenylephrine and paracetamol in duplicate was
used to model the inner filter effect. Subsequently, the con-
centration of phenylephrine in 17 water samples spiked with
phenylephrine and paracetamol was predicted. These samples
were also spiked with two other drugs: ibuprofen and acetyl
salicylic acid (see Table 1). The presence of these two
unmodeled constituents requires that the second order advan-
tage is successfully obtained to ensure good predictions.

Figure 5a shows the contour plot corresponding to an EEM
recorded for a standard solution of phenylephrine (0.248 mg
L−1). The effect caused by the presence of paracetamol (at
10.0 mg L−1), i.e., changes in the phenylephrine signal caused
by inner filter effect, can be observed in Fig. 5b.

Fig. 4 Elliptical joint confidence regions for the slope and intercept of
the regression of predicted concentrations versus nominal values for
PARAFAC (blue dashed line), U-PLS/RBL (red dash-dotted line), and
iSPA-U-PLS/RBL (green solid line) for the simulated system

Fig. 5 Contour plot corresponding to a pure PHE standard solution (a)
and (b) to a mixture solution of PHE and PAR
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When analyzing the simulated system, an assessment of the
number of factors that might adequately describe the data
variability was initially conducted. Four factors were neces-
sary for PARAFAC modeling, whereas two latent variables
were used for both U-PLS and iSPA-U-PLS. Phenylephrine
predictions on the set of spiked water samples were then per-
formed; the results are shown in Table 3. The number of un-
expected components in the residual bilinearization step for
U-PLS and iSPA-U-PLS models was selected (as described
above) for the simulated data. For most cases in U-PLS/RBL,
two factors were necessary to achieve the second-order advan-
tage, but for some test samples, only one factor was required.
In iSPA-U-PLS/RBL, two factors were required in every case.

As was expected, the PARAFACmodels showed poor pre-
dictive ability, with a RMSEP of 0.164 μg L−1. On the other
hand, when the internal filter effect was taken into account by
the PLS/RBL modeling, prediction was significantly im-
proved (RMSEP of 0.089 μg L−1), representing an average
prediction error reduction of 45 %. In addition, when iSPA is
coupled to U-PLS/RBL, the improvement in prediction was
even better (with a reduction in the average prediction error on
the order of 60 and 22 % with respect to the values of RMSEP
obtained by PARAFAC and U-PLS/RBL, respectively). This
shows that simply using a subset of more selective sensors
enhances the capability of U-PLS/RBL.

With respect to the other figures of merit, similar behavior
to that observed in the simulated data was observed for the
experimental system. The application of iSPA provided
models with enhanced accuracy because of an increase in
selectivity, yet decreasing sensitivity was observed. The inter-
val selected by iSPA-U-PLS/RBL is shown in Fig. 6a and, as
can be seen, the region’s results are less affected by the para-
cetamol caused inner filter effect than for the whole field.

Once again, the use of variable selection promotes a reduc-
tion of the number of parameters to be estimated (regression
coefficients).Whereas the full model contains 2354 regression
coefficients, the iSPA-U-PLS contains 1171 regression coef-
ficients (i.e., a reduction of 50 %). In this case study, an EEM
of 181×13, 13 emission spectra were recorded at 181 wave-
lengths, at different excitation wavelengths. After interval se-
lection, the emission range was reduced to 90 wavelengths;
this implies in simpler models (fewer parameters).

As a complementary evaluation of the proposed algo-
rithm’s performance, Fig. 6b shows the EJCR for the slope
and intercept of the regression of predicted concentrations
versus nominal values, as obtained by bivariate least squares.
The three EJCRs suggest that the attenuation of the

Table 3 Figures of merit
obtained for PHE in the test set Models Figures of merit

RMSEP
(μg mL−1)

SEN γ−1 (μg mL−1) LOD (μg mL−1) LOQ (μg mL−1)

PARAFAC (4)a 0.164 0.135 0.4 0.2 0.7

U-PLS/RBL (2)a 0.089 2.959 0.3 0.008 0.02

iSPA-U-PLS/RBL (2)a 0.069 0.013 0.07 0.03 0.08

a Number of factors.

Fig. 6 (a), Surface plot for a test sample and selected in interval, and (b),
elliptical joint confidence regions for the slope and intercept of the
regression of predicted concentrations versus nominal PHE
concentration values for PARAFAC (blue dashed line), U-PLS/RBL
(red das-dotted line), and iSPA-U-PLS/RBL (green solid line) for the
experimental system
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phenylephrine signal by inner filter effect generates a negative
bias (or underestimated concentrations) in all models. How-
ever, for iSPA-U-PLS/RBL, this bias is not significant because
its respective ellipse contains the ideal point for slope and
intercept, one and zero, respectively. The latter can be seen
as another advantage of the model with selection of variables
with the proposed method, at least in this case study.

Conclusion

This work, based on our knowledge, is the first report of
variables selection by iSPA being coupled to U-PLS/RBL
(the iSPA-U-PLS/RBL algorithm). The coupling of U-PLS/
RBL to iSPA improved accuracies, indicating that variable
selection is a useful approach when handling data with certain
peculiarities, as is the case of EEM with an inner filter effect
problem. The ability of iSPA-U-PLS/RBL to properly model
EEMwith tri-linearity loss in both modes by inner filter effect,
while still achieving the second-order advantage when unex-
pected constituents are present was demonstrated in two case
studies: simulated and experimental data (the latter corre-
sponding to the quantitation of phenylephrine in spiked water
samples by fluorescence spectroscopy).

With respect to sensitivity, the values are similar to each
other; this is a very positive point. Intervals selected by iSPA-
U-PLS/RBL promoted models with equal or better predictive
ability compared with the full U-PLS/RBL model, even
employing a reduced set of sensors. In other words, it means
that variable selection does not drastically affect the sensitiv-
ity, since sensitivity increases with the number of channels.
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