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We theoretically study the spectral properties of a one dimensional semiconductor-superconductor-
ferromagnetic insulator (SE-SU-FMI) hybrid nanostructure, motivated by recent experiments where such devices
have been fabricated using epitaxial growing techniques. We model the hybrid structure as a one-dimensional
single-channel semiconductor nanowire under the simultaneous effect of two proximity-induced interactions:
superconducting pairing and a (spatially inhomogeneous) Zeeman exchange field. The coexistence of these
competing mechanisms generates a rich quantum phase diagram and a complex subgap Andreev bound state
(ABS) spectrum. By exploiting the symmetries of the problem, we classify the solutions of the Bogoliubov-de
Gennes equations into even and odd ABS with respect to the spatial inversion symmetry x → −x. We find the
ABS spectrum of the device as a function of the different parameters of the model: the length L of the coexisting
SU-FMI region, the induced Zeeman exchange field h0, and the induced superconducting coherence length ξ .
In particular we analyze the evolution of the subgap spectrum as a function of the length L. Interestingly, we
generically find spin-polarized ABS emerging in the subgap region, which, depending on the ratio h0/�, can
eventually cross below the Fermi energy at certain critical values Lc, and induce spin- and fermion parity-
changing quantum phase transitions. We argue that this type of device constitute a promising highly-tunable
platform to engineer subgap ABS.

DOI: 10.1103/PhysRevB.107.214505

I. INTRODUCTION

The interplay of superconductivity and magnetism at the
microscopic scale has attracted a great deal of attention in
recent years [1–4]. For instance, the Yu-Shiba-Rusinov (YSR)
states [5–7] arising from the exchange interaction of an atomic
magnetic moment in contact with a superconductor, have been
proposed as fundamental building blocks to engineer quantum
devices with topologically nontrivial ground states. In particu-
lar, the so-called “Shiba chains” (i.e., one-dimensional arrays
of magnetic atoms deposited on top of a clean superconductor)
are systems predicted to support Majorana zero modes at the
ends of the chain [8–10], and could be used in topologically-
protected quantum computation schemes. Low-temperature
scanning-tunneling microscopy (STM) experiments have con-
firmed the presence of intriguing zero-energy end modes
[11–17].

Other systems where the competition of superconductivity
and magnetism at the nanoscale generates exotic subgap states
are superconductor (SU)–ferromagnet (FM) heterostructures,
such as SU-FM-SU Josephson junctions and SU-FM proxim-
ity devices [18–20]. More recently, a novel class of hybrid
device, i.e., semiconductor (SE) nanowire systems combined
with superconductors and ferromagnetic insulator (FMI) ma-
terials have been fabricated using molecular-beam epitaxy
techniques [21–23]. These SE-SU-FMI hybrid structures al-
low to build nanostructures with specific tailored properties,

which are impossible to obtain with the isolated individual
components.

Despite the evident differences between the above-
mentioned physical systems, from the theoretical perspective
they can be described within the same unified theoretical
model combining superconductivity and local exchange fields
at the microscopic scale. Subgap states generated in these
structures are generically referred to as Andreev bound states
(ABS), as they emerge due to Andreev reflection processes
taking place at the interfaces and/or inhomogeneities of the
SU order parameter [19,24]. In this context, YSR states can be
considered as a particular class of ABS emerging in atomic-
sized heterostructures. In this paper, we will refer to either
ABS or YSR states depending on the context, but it should be
kept in mind that they are essentially the same type of subgap
excitation.

A generic feature of all ABS is that they appear symmetri-
cally around the Fermi level EF , and localize spatially around
the impurity or the FM region. Their energy position within
the gap depend on the value of the exchange field and on other
experimental parameters. Interestingly, whenever one of these
states crosses EF , a spin- and parity-changing quantum phase
transition, usually known as the “0 − π” phase transition,
occurs [1,25]. In the case of atomic “Shiba impurities” or
ultra-short SU-FM-SU junctions (i.e., junctions in which the
length L of the FM region is much smaller than λF , the Fermi
wavelength of the superconductor [26]), it is customary to
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FIG. 1. Schematic representation of the SC-FMI heterostructure.

consider the magnetic scatterer as a point-like classical spin S
located at the point R0, interacting via a contact s-d exchange
interaction HZ = J (r) S · s(r) with the host superconducting
electrons [6]. Here J (r) = J0δ(r − R0) is the local exchange
potential and s(r) is the spin density vector of the electronic
fluid. Subsequent theoretical works considered atomic-sized
systems with finite- (albeit short-ranged) exchange interac-
tions with spherical symmetry [7,27–29]. In that case, theory
predicts the existence of multiple YSR states labeled by their
orbital momentum �, a prediction that has been recently con-
firmed in STM experiments [30–32]. The behavior of subgap
states and the associated 0 − π quantum phase transitions has
also been studied in the opposite limit L � λF in the context
of ballistic SU-FM-SU Josephson junctions with generic spin-
dependent fields in the sandwiched region [33–35]. In this
case the results differ from the well-known results of atomic-
sized YSR states due to the finite extension of the magnetic
profile. In particular, the subgap spectrum of long SU-FM-SU
junctions with zero phase difference is known to be double
degenerate [19,34], showing the inherent complexity of these
hybrid heterostructures. On the experimental side, the pos-
sibility to engineer and control the position of the subgap
states by a modification of the fabrication parameters (e.g.,
the length L or exchange field h0 via different FM materials)
opens interesting perspectives for potential electronic devices,
where the precise knowledge of the subgap spectrum is crucial
to control their transport properties.

Motivated by the experimental developments mentioned
above, in this paper we study the subgap states emerging
in one-dimensional (1D) SE-SU-FMI heterostructures where
the SU and the FMI layers simultaneously generate coex-
isting proximity-induced pairing and exchange interactions
over a finite and arbitrary length L in the SE nanowire, as
schematically shown in Fig. 1. This coexistence is a crucial
aspect of this device, which makes it unique and different
from the above-mentioned SU-FM-SU junctions, where such
overlap occurs only at the SU-FM interface. Our main goal
in this paper is to study and understand the behavior of the

subgap ABS in this device as a function of the experimen-
tally relevant parameters of the model, i.e., the length L of
the FMI region and the magnitude of the induced exchange
field h0. As mentioned above, a device similar to that shown
in Fig. 1 has been recently experimentally realized in SE
nanowires with epitaxially-grown SU and FMI layers [21–23],
and has been further investigated theoretically [36,37]. While
the main interest of those works was to design a device with
nontrivial topological SU ground state hosting Majorana zero
modes, here we will study the regime of parameters favoring
a topologically-trivial ground state. As we will show below
(see Sec. II), this case is already very complex and rich as
a result of the antagonistic SU and FM interactions and, to
the best of our knowledge, the detailed behavior of subgap
states and the quantum phase diagram emerging in such a
system have not been explicitly studied before. Our results in-
dicate the generic presence of spin-polarized ABS, which can
induce spin- and parity-changing quantum phase transitions
(SP-QPT). Interestingly, recent experimental studies suggest
that such spin-polarized ABS have been observed in transport
experiments [23].

The article is organized as follows. In Sec. II, we in-
troduce the model representing a 1D SE-SU-FMI hybrid
nanowire, discuss the solution to the Bogoliubov-de Gennes
equations for the subgap states, and derive a generic equa-
tion for the subgap spectrum. In Sec. III, we analyze the
results in two specific limits, where we recover well-known
results: (a) the semiclassical limit, where the superconducting
coherence length ξ is much larger than the Fermi wavelength
λF , and (b) the atomic YSR limit, in which the exchange-field
induced by the FMI region becomes a delta-function poten-
tial, i.e., infinitesimally narrow (L � λF ), and infinitely deep
(h0 � EF ), in such a way that the product h0.L = J is kept
constant. In both cases, well-known analytical solutions to the
subgap spectrum can be recovered. In addition, we numeri-
cally solve the characteristic equation for the subgap states
and provide a generic description of the subgap spectrum, not
restricted to any of these limits. We find a rich behavior of
the subgap ABS, where the competing FM exchange and SU
pairing interactions give rise to SP-QPT. Finally, in Sec. IV,
we present a summary and our conclusions.

II. THEORETICAL MODEL

We focus on the system schematically depicted in Fig. 1,
which represents a 1D SE-SU-FMI hybrid nanostructure of
total length Lw, similar to those fabricated in Refs. [21–23].
We model this system with the Hamiltonian H = Hw + H� +
HZ, where

Hw =
∑

σ

∫ Lw
2

− Lw
2

dx ψ†
σ (x)

[
− h̄2∂2

x

2m∗ − μ

]
ψ†

σ (x), (1)

H � = �

∫ Lw
2

− Lw
2

dx [ψ†
↑(x)ψ†

↓(x) + H.c.], (2)

HZ =
∫ Lw

2

− Lw
2

dx h(x)[ψ†
↑(x)ψ↑(x) − ψ

†
↓(x)ψ↓(x)]. (3)

Here Hw is the Hamiltonian of a single-channel SE nanowire
of length Lw, in which the fermionic operator ψσ (x)
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annihilates an electron at position x with spin projection σ =
↑,↓ and effective mass m∗. The parameter μ is the chemical
potential, which can be experimentally varied applying exter-
nal gates beneath the nanostructure.

The terms H� and HZ represent, respectively, the
proximity-induced pairing interaction encoded by the parame-
ter �, and the Zeeman exchange interaction introduced by the
FMI and described by a space-dependent exchange field h(x),
which we assume oriented along the z direction (see Fig. 1).
Moreover, since these interactions are externally induced into
the semiconductor, we make the additional assumption that
� is unaffected by the presence of h(x). Alternatively, one
can assume that � is already the renormalized value, which
takes into account the effect of the FMI, see Refs. [23,36].
In any case, this fact does not affect our conclusions qualita-
tively. As mentioned before, these two terms can be effectively
induced by the presence of epitaxially-grown SU and FMI
shells in contact with the SE nanowire [21–23]. It has been
experimentally confirmed [22] that the FMI shell (EuS in
that case) consists of a single magnetic monodomain, and
therefore modeling this layer by the Hamiltonian HZ is a rea-
sonable approximation. In addition, the epitaxially-generated
interfaces are essentially disorder-free, a necessary condition
to produce a proximity-induced hard gap [38–40]. This feature
allows to neglect the effects of disorder and considerably
simplifies the theoretical description. The presence of both,
a hard proximity-induced superconductor gap and an effec-
tively induced Zeeman field, in these nanowires have been
reported in transport measurements in Refs. [21–23]. In ad-
dition, note that in the above model we have neglected the
effect of the Rashba spin-orbit interaction (RSOI). While this
interaction is crucial for the emergence of a topologically
nontrivial (i.e., D class) superconducting phase supporting
Majorana zero-modes [41], here we will focus strictly on the
topologically-trivial ground state. As we will show below,
even in the absence of RSOI the competition between SU
and FM interactions is already quite complex, and makes the
topologically-trivial case very interesting in itself.

We note that since the total single-particle fermionic spin
along z,

sz = 1

2

∫ Lw
2

− Lw
2

dx [ψ†
↑(x)ψ↑(x) − ψ

†
↓(x)ψ↓(x)] (4)

is a conserved quantity, which verifies [sz, H] = 0, we can la-
bel the electronic eigenstates of H with σ = {↑,↓} (note that
in the presence of a RSOI, sz is generically a nonconserved
quantity, a fact that technically complicates the resolution of
this problem). Therefore, we introduce the following Nambu
spinors with well-defined spin projection along z,

�↑(x) =
(

ψ↑(x)

ψ
†
↓(x)

)
, �↓(x) =

(
ψ↓(x)

ψ
†
↑(x)

)
, (5)

related to each other via the charge-conjugation transforma-
tion �σ̄ (x) = Kτx�σ (x), where τx is the 2×2 Pauli matrix,
and K is the complex conjugation operator. In terms of these
spinors the Hamiltonian writes

H = 1

2

∑
σ

∫ Lw
2

− Lw
2

dx �†
σ (x)HBdG,σ (x)�σ (x), (6)

where the Bogoliubov-de Gennes (BdG) Hamiltonian is de-
fined as

HBdG,σ =
⎛
⎝− h̄2∂2

x
2m − μ + σh(x) σ�

σ�
h̄2∂2

x
2m + μ + σh(x)

⎞
⎠. (7)

In this expression, the spin projection σ =↑ (↓) on the left-
hand side corresponds to the + (−) sign in the definition of the
BdG matrix. Using the above charge-conjugation transforma-
tion, we note that the BdG Hamiltonian Eq. (7) verifies the
following symmetry transformation

KτxHBdG,σ = −H∗
BdG,σ̄Kτx, (8)

and therefore, provided χσ (x) is a solution of the BdG eigen-
value equation

HBdG,σ (x)χσ (x) = Eσχσ (x), (9)

with eigenenergy Eσ , the transformed spinor χσ̄ (x) =
Kτxχσ (x), is also a solution with eigenenergy Eσ̄ = −Eσ .

In what follows, we assume for simplicity the thermody-
namic limit Lw → ∞, and we focus on the features introduced
by the magnitude and spatial dependence of h(x), which is
crucial for the rest of this paper. In addition, we assume the
following step-like spatial profile for the exchange field:

h(x) =
{

−h0 if |x| < L
2 ,

0 if |x| � L
2 ,

(10)

which models a uniform FMI shell of length L in contact with
the SE nanowire (see Fig. 1). This choice for h(x) allows to
split the problem into regions with either |x| < L

2 or |x| > L
2 ,

with generic exponential solutions

χσ (x) ∼
(

uσ (x)
vσ (x)

)
eikx. (11)

Linear combinations of Eq. (11), with appropriate coefficients
and with allowed values of k for each region, must be built so
that continuity of the total wavefunction and its derivative at
the interfaces is satisfied. With this requirement, the solution
of Eq. (9) is finally obtained.

Note that the BdG Hamiltonian (7) is even under space in-
version x → −x, and therefore its eigenstates must be even or
odd under this transformation of coordinates. This symmetry
allows to reduce the number of unknowns of the problem (i.e.,
coefficients of the linear combination). Replacing the above
ansatz Eq. (11) into the BdG eigenvalue Eq. (9), and looking
for localized solutions with energy within the gap |Eσ | < �,
we obtain the following expressions for the eigenstates be-
longing to the even-symmetry subspace:

χe,σ

(
x >

L

2

)
= Ae

1σ

(
1

σe−iϕσ

)
e−κσ x + Ae

2σ

(
1

σeiϕσ

)
e−κ∗

σ x,

(12)

χe,σ

(
−L

2
� x � L

2

)

= Be
1σ

(
1

σe−ησ

)
cos kσ x + Be

2σ

(
1

σeησ

)
cos k̄σ x, (13)
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and the following expressions for the odd-symmetry eigen-
functions:

χo,σ

(
x >

L

2

)
= Ao

1σ

(
1

σe−iϕσ

)
e−κσ x + Ao

2σ

(
1

σeiϕσ

)
e−κ∗

σ x,

(14)

χo,σ

(
−L

2
� x � L

2

)
= Bo

1σ

(
1

σe−ησ

)
sin kσ x

+ Bo
2σ

(
1

σeησ

)
sin k̄σ x, (15)

where the coefficients {Aν
1σ , Aν

2σ , Bν
1σ , Bν

2σ }, with ν = {e, o},
are unknowns to be fixed. In addition, in the above expressions
we have introduced the parametrization

cos ϕσ = Eσ

�
, (16)

cosh ησ = Eσ + σh0

�
, (17)

where we fix the definition of ϕσ to the interval ϕσ ∈ (0, π ].
The phase variable ϕσ is associated to the Andreev reflec-
tion taking place at the interfaces xb = ±L/2. Note that the
parametrization in Eq. (17) makes sense whenever the right-
hand side is positive. If this condition is not satisfied, one can
always use the symmetry Eq. (8) to send Eσ → −Eσ̄ and σ →
σ̄ . In addition, note that whenever 1 � (Eσ + σh0)/� the pa-
rameter ησ is purely real, while for 0 < (Eσ + σh0)/� < 1 it
is purely imaginary. Finally, we have introduced the quantities

κσ ≡ −ikF

√
1 + 2i

kF ξ
sin ϕσ , (18)

kσ ≡ kF

√
1 + 2

kF ξ
sinh ησ , (19)

k̄σ ≡ kF

√
1 − 2

kF ξ
sinh ησ , (20)

and the definition of the coherence length of the (proximity-
induced) 1D superconductor ξ = h̄vF /�. Notice also that the
spatial dependence of the wavefunctions in the region x <

−L/2 can be readily obtained by symmetry from the relations
χe,σ (x) = χe,σ (−x), and χo,σ (x) = −χo,σ (−x).

We can intuitively understand the form of the scattering
solutions in the regions x > L/2 and x < −L/2 in the limit
kF ξ � 1 (i.e., the semiclassical limit, see Sec. III A), where
the momentum κσ in Eq. (18) can be expanded as κσ �
−ikF + sin ϕσ /kF ξ , and the eigenfunctions Eqs. (12) and (14)
take the form

χν,σ

(
x >

L

2

)
≈

[
Aν

1σ

(
1

σe−iϕσ

)
eikF x + Aν

2σ

(
1

σeiϕσ

)
e−ikF x

]

× e− sin ϕσ x
ξ , (21)

with ν = {e, o}. In this way, it becomes evident that the com-
ponent proportional to Aν

1σ corresponds to a right-moving
particle with momentum +kF , while Aν

2σ corresponds to a left-
moving particle with momentum −kF . In addition, the wave-
functions exponentially decay into the superconductor within
a localization length λloc = ξ/ sin ϕσ = ξ/

√
1 − (Eσ /�)2.

These results are in complete agreement with Ref. [35], where
the spectrum of SU-FM-SU Josephson junctions has been
recently studied as a function of the length L of the FM region.
However, in our case, the presence of a finite pairing gap � in
the region −L/2 < x < L/2 (as opposed to the assumption
� = 0 in the FM region in that paper), gives rise to important
differences, which we analyze below in Sec. III.

A. Continuity conditions at the interface

We now impose the continuity conditions on the wavefunc-
tion and its derivative at the boundary xb = L/2,

χν,σ (x−
b ) = χν,σ (x+

b ), (22)

∂xχν,σ (x−
b ) = ∂xχν,σ (x+

b ). (23)

Note that the same equations are obtained by symmetry at the
other boundary −xb. Inserting the solutions Eqs. (12)–(15),
we can express the continuity equations in matrix form as

(
1 σe−iϕσ

σe−iϕσ 1

)(
aν

1σ

aν
2σ

)
=

(
1 σe−ησ

σe−ησ 1

)(
Fν

( kσ L
2

)
0

0 Fν

( k̄σ L
2

)
)(

bν
1σ

bν
2σ

)
, (24)

−
(

1 σe−iϕσ

σe−iϕσ 1

)(
κσ 0
0 κ∗

σ

)(
aν

1σ

aν
2σ

)
= −s(ν)

(
1 σe−ησ

σe−ησ 1

)(
kσ Gν

( kσ L
2

)
0

0 k̄σ Gν

( k̄σ L
2

)
)(

bν
1σ

bν
2σ

)
, (25)

where we have conveniently redefined the unknown coeffi-
cients as

Aν
1σ → eκσ L/2aν

1σ Bν
1σ → bν

1σ (26)

Aν
2σ → σeκ∗

σ L/2e−iϕσ aν
2σ Bν

2σ → σe−ησ bν
2σ , (27)

in order to give these equations a more symmetric form.
In addition, we have used the notation s(ν) = +1(−1) for
ν = e(o), and Fe(x) = Go(x) ≡ cos(x), Ge(x) = Fo(x) ≡
sin(x) for compactness.

In each subspace (even or odd) we have four equations and
four unknowns. Eliminating the variables (bν

1σ , bν
2σ )T , and

writing the equation for (aν
1σ , aν

2σ )T , we find from the
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nullification of the corresponding determinant the following equations:

cosh ησ cos ϕσ − 1

sinh ησ sin ϕσ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|κσ |2 − (Kσ + K̄σ ) Re κσ + Kσ K̄σ

(K̄σ − Kσ ) Im κσ

(even-symmetry subspace),

|κσ |2 + (Qσ + Q̄σ ) Re κσ + Qσ Q̄σ

(Qσ − Q̄σ ) Im κσ

(odd-symmetry subspace),

(28)

where we have defined the quantities

Kσ = kσ tan

(
kσ L

2

)
, (29)

K̄σ = k̄σ tan

(
k̄σ L

2

)
, (30)

Qσ = kσ cot

(
kσ L

2

)
, (31)

Q̄σ = k̄σ cot

(
k̄σ L

2

)
. (32)

From Eq. (28), the eigenvalue Eσ for each subspace is finally
obtained. This equation summarizes our main theoretical re-
sults. In the next Sec. III we analyze the numerical solution
and different important limits.

B. Spin-changing quantum phase transitions

We now focus on the quantum phase transitions, which
occur whenever one of the subgap states crosses EF . In this
section we follow the theoretical method of Ref. [35] to obtain
a spin Friedel sum rule. We start by analyzing the spinors
defined in Eq. (5), and consider the norm of the “up” spinor

q↑ =
∫ Lw/2

−Lw/2
dx [ψ†

↑(x)ψ↑(x) + ψ↓(x)ψ†
↓(x)].

Recalling the definition of the single-particle sz operator [see
Eq. (4)], it is straightforward to associate these two quantities
through the relation q↑ = 2sz − 1. Since sz is a conserved
quantity, so is the norm q↑ of the “up” Nambu spinors. This
connection allows to interpret q↑ as an effective “conserved
charge”. Similar considerations allow to write the relation
q↓ = −2sz − 1. Due to the particle-hole relation Eq. (8), the
information about sz can be obtained with either q↑ or q↓. A
more symmetric form involving both conserved charges is

sz = q↑ − q↓
4

. (33)

While redundant, this expression makes explicit that in the
spin-symmetric case q↑ = q↓, the net spin sz must vanish
(sz = 0).

We now return to Hamiltonian Eq. (7), and let us separate
the effect of the proximity-induced Zeeman field, by writing
it as HBdG,σ = H0,σ + Vσ , where

H0,σ =
(

− h̄2∂2
x

2m − μ σ�

σ�
h̄2∂2

x
2m + μ

)
, (34)

Vσ =
(

σh(x) 0
0 σh(x)

)
. (35)

In this form, we can interpret the effect of the exchange field
as a “perturbation” on an otherwise homogeneous 1D super-
conductor represented by H0,σ . Therefore, the full and the
unperturbed single-particle Green’s functions in this problem
are respectively defined as

Gσ (z) = [z − H0,σ − Vσ ]−1, (36)

G0,σ (z) = [z − H0,σ ]−1, (37)

From here, the total number of effective “up” charges Q↑
induced in the ground state due to the potential Vσ , compared
to the unperturbed homogeneous SU wire, can be computed
as

�Q↑ = − 1

π
Im Tr

∫ ∞

−∞
dε nF (ε)�G↑(ε + iδ), (38)

where �Gσ (z) ≡ Gσ (z) − G0,σ (z). At T = 0, Eq. (38) can
be easily computed from the well-known expression of the
Friedel sum rule [42],

�Q↑ = 1

π

∫ 0

−∞
dε

[
∂η↑(ε)

∂ε
− ∂η0,↑(ε)

∂ε

]
(39)

= η↑(0) − η0,↑(0)

π
(40)

where we have defined the phase shifts [35,42],

ησ (ε) = Im ln det Gσ (ε + iδ), (41)

η0,σ (ε) = Im ln det G0,σ (ε + iδ), (42)

and where we have used that the phase shifts vanish in the
limit ε → ±∞.

Since the system is noninteracting, the Green’s function
Eq. (36) can be written in terms of single-particle eigenstates
|α, σ 〉, with α a generic label, as

Gσ (z) =
∑

α

|α, σ 〉〈α, σ |
z − Eα,σ

. (43)

Therefore, after simple algebra, and using the above relations
and the fact that in the absence of magnetic field sz = 0 [see
Eq. (33)], the total Sz of the ground state is

Sz = �Q↑
2

= 1

2

[∑
α

�(−Eα,↑) −
∑
α′

�
(−E0

α′,↑
)]

, (44)

where �(ε) is the unit-step function. The above expression
allows to interpret the total Sz of the ground state as a function
of the “up” Nambu spinors with energy below EF = 0, as
compared to the (unperturbed) situation h0 = 0. Since the
effective charges are quantized in integer numbers, the total
spin Sz can only change in discrete “jumps” of 1/2 whenever
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a subgap state with projection up crosses below EF (note that
we have defined dimensionless spin operators). This inter-
pretation makes sense since the ground state becomes spin
polarized when the exchange field h0 becomes large enough
[i.e., the Zeeman energy of up-spin electron is decreased, see
Eqs. (3) and (10)].

III. RESULTS

We start this section by analyzing different limits of the
general result given in Eq. (28). In particular, in Sec. III A we
focus on the semiclassical limit, and in Sec. III B we study the
atomic limit, where we recover the YSR results. In both cases,
Eq. (28) reduces to well-known analytical results. Finally
in Sec. III C we show results corresponding to intermediate
regimes, obtained by solving numerically Eq. (28).

A. Semiclassical limit

Generally speaking, the semiclassical limit is verified when
EF is the largest scale of the problem [43]. In particular,
the condition EF � � (which is very well satisfied in most
experimental systems) can be expressed as kF ξ � 1, recalling
that after linearization of the normal quasiparticle disper-
sion, i.e., εk,σ � ±h̄vF k, where the +(−) sign corresponds to
right-(left-)movers, the Fermi energy can be approximated as
EF � h̄kF vF . In this case, Eqs. (18)–(20) reduce to

rσ ≡ κσ

kF
� −i + sin ϕσ

kF ξ
, (45)

ζσ ≡ kσ

kF
� 1 + sinh ησ

kF ξ
, (46)

ζ̄σ ≡ k̄σ

kF
� 1 − sinh ησ

kF ξ
, (47)

to leading order in O(kF ξ )−1, and Eq. (28) becomes

cosh ησ cos ϕσ − 1

sinh ησ sin ϕσ

� s(ν)
1 + tan

( kF Lζσ

2

)
tan

( kF Lζ̄σ

2

)
tan

( kF Lζσ

2

) − tan
( kF Lζ̄σ

2

) ,

= s(ν) cot

(
L sinh ησ

ξ

)
, (48)

where we have used the trigonometric identity tan (x + y) =
(tan(x) + tan y)/(1 + tan x tan y). In general this transcenden-
tal equation cannot be solved analytically. However, in the
regime of parameters EF � h0 � �, where the exchange
field h0 is much larger than �, we can write cosh ησ ≈
sinh ησ ≈ | h0

�
| � 1 [see Eqs. (16) and (17)], and Eq. (48)

reduces to cot ϕσ = s(ν) cot(Lh0/h̄vF ). Equivalently we can
write this result as

arccos

(
Eσ

�

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LEσ

h̄vF
+ σ

Lh0

h̄vF
+ 2nπ, (even)

LEσ

h̄vF
+ σ

Lh0

h̄vF
+ (2n + 1)π. (odd)

(49)

This result can be interpreted as a semiclassical Bohr-
Sommerfeld quantization condition for particles, which per-
form a complete a closed loop in the region −L/2 < x < L/2

[43]. In particular, it exactly coincides with theoretical results
obtained for SU-FM-SU Josephson junctions with a normal
(i.e., � = 0) FM region [33–35], the only difference being
that within our theoretical treatment, we can distinguish the
symmetry of the solutions. The similarity of these results can
be rationalized noting that a SU-FM-SU junction where the
FM region is normal, corresponds to taking the limit h0 � �

in our Eq. (48) while keeping the ratio Eσ /� finite (since Eσ

corresponds to a subgap state, it is always bounded by �),
thus resulting in Eq. (49). This shows that our Eq. (28) is a
generic relation describing different situations regardless of
the magnitude of the ratio h0/�.

B. YSR-impurity limit

We now consider the atomic limit in which the exchange
profile becomes point-like, L → 0, while h0 → ∞, in such a
way that the product Lh0 = J = const. Under these assump-
tions the magnetic barrier becomes a delta function and the
Hamiltonian in Eq. (3) can be written as

HZ ≈ −J
∫ ∞

−∞
dx δ(x)[ψ†

↑(x)ψ↑(x) − ψ
†
↓(x)ψ↓(x)]. (50)

This is the usual model used in the seminal papers on YSR
states [5–7]. In this case, it is easy to see that the odd-
symmetry solutions decouple from the above Hamiltonian
(50) as they vanish at x = 0, and only even solutions can
couple to the delta potential.

As in the previous section, note that the limit h0→∞
implies cosh ησ ≈ sinh ησ ≈ | h0

�
| � 1. However, the limit

h0 → ∞ is not compatible with the semiclassical approach,
as it violates the requirement h0 � EF . Therefore we cannot
use here our previous Eq. (49). Instead, we must first take the
limit ησ � 1 together with the limit L → 0, which applied to
Eqs. (19) and (20) yield

kσ → kF

√
2h0

h̄vF kF
, (51)

k̄σ → ikF

√
2h0

h̄vF kF
. (52)

In addition Eqs. (29)–(32) become

Kσ → kF h0L

h̄vF
= kF ρ0J, (53)

K̄σ → −kF h0L

h̄vF
= −kF ρ0J, (54)

where the expressions for the density of states per spin of
1D quasiparticles at the Fermi energy ρ0 = 1/h̄vF , and the
exchange coupling J = h0L, have been used. Replacing these
expressions into Eq. (28) for the even-symmetry solutions, we
obtain

σ
Ee

σ√
�2 − (Ee)2

σ

= 1 − (ρ0J )2

(2Jρ0)
. (55)

From this expression, we can easily solve for Ee
σ

Ee
σ

�
= σ

1 − (ρ0J )2

1 + (ρ0J )2 , (56)
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FIG. 2. Energy of the spin-polarized Andreev bound states (upper panel) and total spin Sz(lower panel) as a function of kF L, for kF ξ = 7.8
and h0/� = 3.0 (left panel) and kF ξ = 3.4 and h0/� = 2.1 (right panel). Blue and red colors correspond to even and odd states respectively.
Lines starting from the top gap edge at positive energy E/� = 1 (bottom gap edge at negative energy E/� = −1) correspond to up (down)
spin projections of the states. For smaller values of kF L (right panel), plateaus corresponding to regions of integer and half-integer spin are
more separated and might become easier to observe in experiments.

which is the well-known expression for the energy of YSR-
impurity subgap level [1,5–7] . This result indicates that any
finite value of J produces a YSR in-gap state. This type of
subgap YSR states has been observed in several STM ex-
periments on atomic magnetic adsorbates on superconducting
substrates [30,44–48].

For completeness, and in order to illustrate the general
scope of Eq. (28), here we also show the result for the YSR
odd states for a small (but finite) L. Using similar approxima-
tions, we obtain the expression

Eo
σ

�
= σ

1√
1 + ( ρ0Jk2

F L2

6

)2
, (57)

where it becomes evident that in addition to a finite value of
J , a finite value of kF L is needed to observe an odd-symmetry
subgap YSR state.

C. Spin-polarized subgap spectrum in generic cases

As stated in Sec. II, Eq. (28) implicitly defines the energy
of the subgap states as a function of the parameters h0/�, kF ξ ,
and kF L. These parameters can be directly or indirectly con-
trolled in experiments, i.e., the parameter h0 can be controlled
by modifying the FMI material, the length L of the FMI region
can be modified varying the length Lw of the semiconductor
via vapor-liquid-solid (VLS) method and subsequent evapo-
ration of the FMI material [21], and the parameter kF in the
semiconductor can be varied by changing the SE material or
by introducing external gates to modify the chemical potential

μ. Therefore, due to this high degree of tunability, hybrid
heterostructures of this kind might offer a unique platform to
produce and control engineered subgap states. Probably the
easiest way to experimentally control the subgap electronic
structure is by producing different devices with the same FMI
material and different lengths L. Therefore, in this section we
show the numerical solutions of Eq. (28) with fixed parame-
ters h0/� and kF ξ (which control the “operation regime” of
the device), and calculate both the energy dependence of the
even- and odd-symmetry ABS, and the total spin Sz of the
ground state of device as a function of L (i.e., dimensionless
variable kF L).

Generally speaking, the overall evolution of the ABS spec-
trum from L = 0 to L → ∞ is quite complex and deserves
a detailed explanation. As shown in Fig. 2, as the parameter
kF L increases, more and more subgap states emerge from the
gap edges. This behavior is reminiscent of a quantum particle
in a square-well potential, typically taught in introductory
quantum mechanics courses [49], where increasing the width
L of the well increases the number of allowed bound states. In
our case, the emergence of new ABS as kF L increases can be
intuitively understood in terms of a competition between su-
perconductivity and magnetic field: The magnetic field tends
to break Cooper pairs and to locally disrupt superconductivity
in the magnetic region by introducing spin-polarized subgap
states that become macroscopic in number for large L, even-
tually populating the whole gap.

We note that for any finite L, even- and odd-symmetry
states are generically nondegenerate (except at isolated
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FIG. 3. Energy of the spin-polarized Andreev bound states as a
function of kF L for the three different values of h0 (h0/� = 0.8,

1.54, 2.2 for the lower, middle, and upper panels) and kF ξ = 8.2.
Blue and red colors correspond to even and odd states respectively.
Lines starting from negative (positive) energies correspond to down
(up) spin projections of the state. Note that the value of h0/� sets the
asymptotic limit for the Andreev states and is crucial to determine
the overall subgap spectrum.

points). However, as it is clear from Figs. 2 and 3, their energy
difference (evidenced as oscillations of the blue and red lines
around the semiclassical value) decreases very rapidly and
the solutions become degenerate in the limit L → ∞. This
transition from nondegenerate YSR states in the limit L → 0,
to double degenerate ABS states for L → ∞ has been dis-
cussed in previous papers on ballistic SU-FM-SU junctions
[19,33–35], and in the case of extended Shiba impurities in
1D nanowires [50]. It is also clearly visible in Fig. 2, and
more dramatically in Fig. 3 below. In our 1D geometry, this
degeneracy in the limit L → ∞ can be intuitively understood
by linearizing the spectrum around the Fermi energy, and
expressing the original fermionic operators in terms of right-
and left-moving fields slowly varying in the scale of k−1

F
[51], i.e., ψσ (x) ≈ eikF xψR,σ (x) + e−ikF xψL,σ (x). The slowly-
varying fields ψR,σ (x) and ψL,σ (x) are two independent chiral
fermionic fields obeying the usual anticommutation relations,
in terms of which the original Hamiltonian becomes [50]

Hw ≈
∑

σ

∫ ∞

−∞
dx[−ih̄vF ψ

†
R,σ (x)∂xψR,σ (x)

+ ih̄vF ψ
†
L,σ (x)∂xψL,σ (x)], (58)

H � ≈ �

∫ ∞

−∞
dx [ψ†

R,↑(x)ψ†
L,↓(x) + ψ

†
L,↑(x)ψ†

R,↓(x) + H.c.],

(59)

HZ ≈ −
∫ ∞

−∞
dx h0[ψ†

R,↑(x)ψR,↑(x) − ψ
†
R,↓(x)ψR,↓(x)

+ ψ
†
L,↑(x)ψL,↑(x) − ψ

†
L,↓(x)ψL,↓(x)], (60)

where oscillating terms proportional to e±2ikF x have been
neglected as they cancel out in the limit L → ∞ due to de-
structive interference. Defining the new chiral Nambu spinors

�1,σ (x) =
(

ψR,σ (x)

ψ
†
L,σ̄ (x)

)
, �2,σ (x) =

(
ψL,σ (x)

ψ
†
R,σ̄ (x)

)
, (61)

the Hamiltonian of the system can be expressed in terms of
two decoupled chiral sectors

H = 1

2

∑
σ=↑,↓

∑
j=1,2

∫ ∞

−∞
dx �

†
j,σ (x)H j,σ (x)� j,σ (x), (62)

with the definitions of the chiral BdG Hamiltonians

H j,σ =
(

(−1) j ivF ∂x − σh0 σ�

σ� −(−1) j ivF ∂x − σh0

)
. (63)

The Nambu spinors Eq. (61) define two independent chiral
subspaces related by the inversion symmetry of the orig-
inal Hamiltonian, i.e., under the space inversion operation
x ↔ −x, the fermionic operators transform as ψL,σ (x) ↔
ψR,σ (x), and consequently we conclude that �1,σ (x) ↔
�2,σ (x), which must then be degenerate. In addition, the
particle-hole transformation Kτx in this representation pro-
duces �1,σ (x) → �2,σ̄ (x), and therefore H1,σ → −H2,σ̄ ,
implying that the solutions verify the particle-hole sym-
metry property E1,σ = −E2,σ̄ . Moreover, notice that as-
suming periodic boundary conditions, the problem can be
solved with the solutions ψR,σ (x) ∼ eikx and ψL,σ (x) ∼ e−ikx,
and the dispersion relation becomes E1,σ (k) = E2,σ (k) =
±

√
(h̄vF k)2 + �2 − σh0. This allows to understand the emer-

gence of the double degeneracy in the spectrum of subgap
states. In addition, from here it is easy to see that a renor-
malized quasiparticle gap 2�ren = 2|� − h0| is obtained.

In terms of the chiral Nambu spinors, the most general
solution is the linear combination

�σ (x) = AeikF x�1,σ (x) + Be−ikF x�2,σ (x). (64)

This form can be recovered by combining the degenerate even
and odd solutions in Eqs. (13) and (15) in the semiclassical
limit where kF ξ � 1.

From the analysis of the linearized Hamiltonian, we
conclude that the degeneracy in the limit L → ∞ arises
from the absence of chirality-breaking terms, i.e., terms
∼�

†
1,σ (x)�2,σ (x) [e.g., single particle backscattering terms

ψ
†
R,σ (x)ψL,σ (x) or Cooper-pairing channels ψ

†
R(L),↑

(x)ψ†
R(L),↓(x) carrying momentum ∓2kF ]. These terms are

strongly suppressed due to rapidly oscillating exponentials
∼e±2ikF x, which occur whenever the magnetic FMI region is
uniform and its length L is much larger than k−1

F . In other
words, the product kF L must be kF L � 1, consistent with
our numerical results in Figs. 2 and 3. Only for small values
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of kF L, where this destructive interference is incomplete,
residual couplings of the type ∼�

†
1,σ (x)�2,σ (x) remain, and

the degeneracy is lifted. Finally, we stress that the degeneracy
in the limit L → ∞ is a robust property to the presence of
interactions, as shown in previous papers [50].

On the other hand, in the limit L → 0 and for any finite
value of the Zeeman field h0, both (even and odd) solutions
converge to Eσ /� → ±1, indicating that the FMI region is no
longer relevant (i.e., it physically drops from the description).
However, the behavior near L = 0 is quite different for each
case: while the even-symmetry solution tends to Eσ /� → 1
as [see Eq. (56)]

Ee
σ

�
≈ σ

[
1 − 2

(
h0L

h̄vF

)2

. . .

]
, (65)

from Eq. (57) we conclude that the odd solution behaves as

Eo
σ

�
≈ σ

[
1 − 1

2

(
h0k2

F L3

6h̄vF

)2

. . .

]
, (66)

therefore approaching the gap edge much faster as L → 0, as
expected.

Besides the general features of the spectrum discussed up
to this point, its evolution as L increases is strongly affected by
the values of the parameters kF ξ and h0/�. In the following
sections we analyze their effects in more detail.

1. Effect of varying the parameter kFξ

This parameter can be considered as a “knob”, which tunes
the device from the semiclassical behavior (kF ξ large, see left
panel in Fig. 2) into a “quantum” regime (kF ξ small, see right
panel) where the spectrum is dominated by quantum oscil-
lations. The hybrid heterostructure under study is promising
in this sense since, due to the combination of materials (in
particular, semiconductors with a much smaller kF as com-
pared to metals), it is in principle possible to experimentally
control kF ξ . In addition, kF could be further modified by
introducing external gates (through the modification of the
chemical potential μ of the SE nanowire). To illustrate the
dramatic changes in the spectrum as kF ξ varies, in Fig. 2 we
show the numerically obtained subgap spectra as a function
of kF L for kF ξ = 7.8 and h0/� = 3.0 (left panel), for and
kF ξ = 3.4 and h0/� = 2.1 (right panel). Solid blue (red)
lines correspond to even(odd)-symmetry solutions. Moreover,
since we always assume h0 > 0, solutions emerging from the
top edge E/� = 1 (bottom edge E/� = −1) correspond to
spin up (spin down) solutions. In addition, note the reflection
symmetry of the solutions around the horizontal E = 0 axis, a
consequence of the particle-hole symmetry of the BdG Hamil-
tonian, Eq. (8).

Upon decreasing kF ξ , the subgap spectrum becomes much
more intricate due to the enhanced even-odd energy-splitting,
which results in an amplified oscillatory behavior of the ABS
(we have reduced the range of kF L in the right panel for
clarity in the figure). Unfortunately, in the regime kF ξ ∼ 1
no analytic expressions for the subgap ABS are possible, but
qualitative considerations can be provided. In fact, the ampli-
fied oscillations can be traced back to the larger energy depen-
dence of the momenta Eq. (18)–(20) as kF ξ decreases. Then,

whereas for large kF ξ all these quantities converge to a static
(i.e., energy-independent) value ∼kF , the limit of small kF ξ

produces a larger effect on the space dependence of the wave
functions through the exponential factors in Eqs. (12)–(15).
This in turn produces larger interference effects, and more
pronounced splitting of the even-odd degeneracy.

This phenomenological behavior enables interesting possi-
bilities, such as the chance to observe half-integer spin (and
fermion parity-switching) quantum phase transitions in the
ground state. To illustrate this effect, we show the ground-state
Sz transitions in the bottom panels of Fig. 2 in each case.
While for larger kF ξ , the half-integer Sz steps are very narrow
due to the almost-degenerate even-odd solutions (i.e., the even
and odd solutions cross zero energy almost at the same value
of kF L), for smaller kF ξ the Sz transitions occur in well-
defined half-integer steps. This behavior is well explained by
the enhanced lifting of the even-odd degeneracy, which allows
to observe one ABS crossing zero energy at a time.

2. Effect of varying the parameter h0/�

In Fig. 3 we show the evolution of the subgap spectrum
as a function of kF L, for different values of the Zeeman
field h0/� = 0.8, 1.54, and 2.2, and for a fixed relatively
large value kF ξ = 8.2, allowing to interpret these results
in terms of the semiclassical approximation. Here we can
clearly distinguish three qualitatively different regimes: (a)
the “weak field” regime h0 < � (top panel) where the ABS
do not cross E = 0, (b) the “intermediate field” regime � <

h0 < 2� (middle panel) where the ABS can eventually cross
zero energy, and quantum phase transitions can be induced,
and finally (c) the “strong field” (2� < h0) regime (bottom
panel), where the ABS can be found anywhere in the region
−1 < Eσ /� < 1. In all cases, the value of h0 determines the
asymptotic limit to which the ABS approach for large L (see
dashed black lines in Fig. 3). Below we briefly discuss the
main features of the spectrum in each regime.

(a) Weak-field regime 0 < h0 < �. This regime is char-
acterized by a Zeeman field, which is not strong enough to
destroy the superconducting gap. In this case none of the
ABS is able to cross E = 0 and in the limit L → ∞ they
asymptotically approach the value Eσ /� → σ (1 − h0/�)
(see horizontal dashed black lines), and therefore a renormal-
ized gap remains (see top panel in Fig. 3). More quantitatively,
in the semiclassical limit [Eq. (48)] they obey the asymptotic
expression valid for kF L → ∞,

E ν
σ

�
� σ

⎡
⎢⎣1 − h0

�
+ π2

2

(
ξ

L

)2
⎛
⎝1 − s(ν)ξ

L

√
2�

h0
− 1

⎞
⎠

2
⎤
⎥⎦,

(67)

with s(ν) = 1(−1) for ν = e(o). From here, we can clearly
see that whereas the even-odd averaged quantities (i.e., the
semiclassical values) approach the asymptotic limit as L−2,
the energy difference between even and odd solutions (i.e.,
the amplitude of the oscillation around the semiclassical limit)
decreases as L−3, and the solutions become degenerate in
the limit L → ∞. On the other hand, the quasiparticle gap
in the limit L → ∞ is renormalized to 2�ren = 2|� − h0|,
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consistent with our previous result using chiral fields. Note
that this gap renormalization is quite specific to this device,
and is not present, for instance, in the case of Ref. [35], where
the magnetic region is normal and not superconducting, and
in addition the system corresponds to a “short” SU-FM-SU
junction with L < ξ , and therefore only few subgap states are
allowed.

Another feature of the weak-field regime is that the ABS
require a minimal length Lmin to emerge in the subgap region.
This can be easily understood in terms of Eq. (49), where a
minimal magnetic phase, represented by the product Lh0/h̄vF ,
must be accumulated in order to produce an observable in-
gap ABS. Finally, concerning the spin quantum number of the
ground state, since none of the ABS cross EF , no SP-QPT are
expected according to the results of Sec. II B and the value of
the ground state spin remains a spin-singlet Sz = 0.

(b) Intermediate field regime. � < h0 < 2�: In this case
the Zeeman field h0 is sufficiently strong to force the ABS
to cross the Fermi level, eventually inducing SP-QPT (see
middle panel in Fig. 3). The nth critical value Lc,n can be
obtained imposing the condition Eσ = 0 on the semiclassical
approximation in Eq. (48),

Lν
c,n = ξ

arctan
(−s(ν) ∓

√( h0
�

)2 − 1
) + nπ√( h0

�

)2 − 1
, (68)

with s(ν) = 1(−1) for ν = e(o).
In this regime, the ABS follow the same asymptotic be-

havior as in Eq. (67), approaching Eσ /� → σ (1 − h0/�),
although the overall subgap spectrum is completely different
due to the closing of the gap, and due to the overlap of the E↑
and E↓ spin-polarized spectrum as L increases beyond the first
critical Lc,0. In fact, in the regime L > Lc,0 the quasiparticle
gap becomes completely populated (and washed away) by
subgap states. Moreover, we predict an accumulation of levels
in the region −� + h0 < E < � − h0, which can eventually
form a peak structure in the total density of states.

(c) Strong field regime 2� < h0. Finally, in this regime (see
bottom panel in Fig. 3), the asymptotic dashed lines fall within
the continuum and it is no longer possible to obtain an analytic
expression for the spin-polarized ABS behavior in the limit
L → ∞. As a result, the subgap ABS can be found anywhere
in the subgap region −1 < Eσ /� < 1. In addition, we note
that the minimal length required to observe in-gap ABS has
reduced to Lmin ≈ 0.

IV. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the subgap electronic
properties in the one dimensional SE-SU-FMI heterostructure
schematically depicted in Fig. 1, a novel physical system
recently fabricated using molecular beam epitaxy techniques
(MBE). The main motivation to study this type of hybrid sys-
tems is that, via a careful combination of different materials,
the emergent characteristics can be completely different from
those of the individual components, providing a way to build
devices with tailored properties and specific functionalities.
In particular, much of the experimental effort has focused on
the realization of topological superconducting phases hosting

Majorana zero modes, with possible applications in topolog-
ical quantum computing [21–23]. A distinguishing feature of
these heterostructures is the coexistence of antagonistic su-
perconductor and ferromagnetic insulating layers over a finite
and arbitrary length L in a semiconductor wire, a combination
that confers unique spectral properties, which cannot be found
in elemental materials in nature.

In particular, we have modelled the hybrid structure as-
suming noninteracting fermions in a one-dimensional single-
channel nanowire under the effect of two proximity-induced
interactions: a SU pairing and a space-dependent Zeeman
exchange coupling [see Eqs. (1)–(3)]. We have solved the
associated Bogoliubov-de Gennes equations and, by imposing
standard continuity conditions on the wave functions, we have
obtained an equation [Eq. (28)] defining the subgap ABS
spectrum of the device. This single equation encodes our main
theoretical results. We stress that our approach is equivalent
to other works using the scattering-matrix formalism. We
have analytically solved Eq. (28) in two paradigmatic limits:
the semiclassical limit (Sec. III A) and the Yu-Shiba-Rusinov
limit, typical of atomic magnetic moments interacting with a
superconductor (Sec. III B). In both cases, we have been able
to recover well-known analytical results, providing important
sanity checks for our theoretical results. As a consequence of
the symmetries of the Hamiltonian (i.e., inversion x → −x
and sz spin symmetries), it was possible to classify the so-
lutions into even- and odd-symmetry, and with sz labels
σ =↑,↓. In particular, we note that the even-odd classifica-
tion, arising in the present case due to the inversion symmetry
of the Hamiltonian, is nothing but the 1D analog of the clas-
sification in angular momentum eigenstates � occurring in 3D
spherically-symmetric Hamiltonians [7,28,29].

An important generic feature of the subgap ABS obtained
in this paper is their spin polarized nature. We have studied the
subgap spectrum of spin-polarized ABS as a function of dif-
ferent parameters, namely: the length of the magnetic region
(through the dimensionless parameter kF L), the strength of
the Zeeman exchange induced by the FMI (parameter h0/�),
and the superconducting coherence length (parameter kF ξ ).
We stress that each one of these parameters could in principle
(directly or indirectly) be controlled in experiments. However,
due to its potential relevance for on-going experimental ef-
forts, we have in particular focused our study on the evolution
of the subgap spectrum as a function of the length L (i.e., as
it is probably the easiest parameter to vary in experiments),
for fixed parameters kF ξ and h0/�. The parameter L can be
controlled by, e.g., changing the experimental growing condi-
tions of the semiconductor nanowires using the VLS growth
method. In Figs. 2 and 3 we have analyzed the evolution of the
subgap spectrum in terms of the parameter kF L for different
values of h0/� and kF ξ . Roughly speaking, while kF ξ con-
trols the “semiclassical vs quantum” operation regime of the
device, and the magnitude of the even-odd energy separation,
the parameter h0/� essentially controls the energy separa-
tion of the E↑ and E↓ spin-polarized solutions, eventually
enabling many interesting physical phenomena such as the
possibility to observe multiple ABS crossing zero energy, the
existence of multiple SP-QPTs in the device, quasiparticle gap
renormalization � → �ren = |� − h0| in the limit of large
kF L, etc.. An important conclusion here is that in order to
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experimentally observe a quantum phase transition, the con-
dition h0 > � must be fulfilled.

Interpreting L as a “tunable” parameter has another the-
oretical advantage, as it enables to address the interesting
fundamental question of how to connect two paradigmatic
limits in SU-FM hybrid devices: the atomic limit (kF L → 0),
where the physics is that of the well-known nondegenerate
YSR states, and the ballistic limit (kF L � 1) where the spec-
trum of the subgap ABS becomes double degenerate. Until
very recently, these limits were treated as disconnected from
each other. In Ref. [35] this issue was addressed in the par-
ticular case of SU-FM-SU junctions in the limit L < ξ . Here
we have revisited this intriguing question for a different setup
where such constraint does not exist, and have studied the
evolution of the subgap spectrum as a function of L. The
above-mentioned symmetry classification into even and odd
solutions is critically important to allow the interpretation of
the degeneracy in the limit kF L → ∞ as an “even-odd degen-
eracy”. At the same time, it enables to explain the degeneracy
lifting in the limit L → 0, where only even states prevail in
the subgap region of energies. Using an approximate model of
one-dimensional fermions with linearized dispersion, we have
provided a simple picture where the even-odd degeneracy nat-
urally emerges as a consequence of destructive interferences
of terms e±i2kF x arising from single-particle backscattering
mechanisms.

The continuous evolution of the subgap spectrum as a
function of kF L allows a better understanding of previous
experimental STM results on atomic magnetic adsorbates on
superconducting substrates, where the subgap YSR states are
usually interpreted in terms of a point-like magnetic mo-
ment [30,44–48]. While the delta-function limit is obviously a
mathematical idealization, in terms of our model the observed
YSR states can be rationalized assuming a finite value of kF L
and a (more physically appealing) finite value of the atomic
local field h0. This is precisely the case if we note that for
magnetic impurities (e.g., Fe, Co, or Mn atoms) deposited on
top of bulk metallic S surfaces (e.g., Pb or Al), the spatial
extension of the short-ranged Zeeman field can be estimated
as the size of the d-shell orbitals L ∼1 Å, while the Fermi
wavevector of bulk superconductors (e.g., Pb) is kF ∼ 1 −
2×1010 m−1 (see Ref. [52]). This type of adsorbate/substrate
combination yields a parameter kF L ∼ 1, which is within
the regime where we recover observable subgap states (see
Figs. 2 and 3). On the other hand, in 1D semiconductor het-
erostructures as those of Refs. [21–23], kF is usually much
smaller than in metallic superconductors. Measurements of
the number of carriers from the Hall conductance RH in 2D
InGaAl quantum wells [53] yield the estimated value kF ∼
2.2×107 m−1, three orders of magnitude smaller as compared
to bulk Pb. This much smaller value of kF allows for much
larger, experimentally accessible values of L, while keeping
values of h0 also within experimental reach. All together, this
combination makes these hybrid materials a much more ver-
satile platform to control the spectrum of YSR/ABS subgap
states.

To characterize the SP-QPTs occurring in the device, we
have computed the value of the total Sz using a spin version

of the Friedel sum rule {see Eq. (44) and also Ref. [35]}.
We stress that these transitions are a generalization of the
well-known “0 − π” transition occurring in atomic YSR im-
purities [25,54] or quantum dots coupled to superconductors
[55–57]. From this perspective, the difference with respect to
atomic systems is that instead of a single transition, actually
multiple transitions can occur due to the finite extension L of
the “impurity” and the many ABS states with different sym-
metry, which can eventually cross below EF . Interestingly, we
stress that the occurrence of these quantum phase transitions
can be tuned varying the length L.

We now briefly address the effect of the Rashba spin-orbit
interaction (RSOI) and disorder, which has been neglected in
our paper. As mentioned previously, the RSOI was neglected
to simplify the theoretical description of this (already quite
complex and rich) problem. This interaction can drive the
system into the topological superconductor class D [58,59],
hosting Majorana zero modes at the ends (see e.g., Ref. [41]
for a related setup), and in that case we expect qualitative
changes with respect to the results presented here. In par-
ticular, in the presence of a RSOI, the spin sz is no longer
a good quantum number, and the resulting ABS become a
linear combination of spin-up and spin-down Nambu spinors
in Eq. (5). This fact technically complicates the theoretical
analysis presented in this paper, as the BdG Hamiltonian
becomes a 4×4 matrix instead of the simpler 2×2 matrix in
Eq. (7). In addition, important qualitative differences emerge,
e.g., the ground state cannot be classified according to its
total Sz, and the spin Friedel sum rule presented in Sec. II B
is no longer valid. For small but nonvanishing values of the
RSOI parameter αR we expect the ABS subgap spectrum to
be modified due to the mixing of the spin branches depicted
in Figs. 2 and 3, with the opening of avoided crossings and
gaps proportional αR. Concomitantly, the sharp steps in Fig. 2
signaling the SP-QPTs are expected to become smeared and
continuous. Consequently, our results only apply to experi-
mental SE-SU-FMI systems where the Rashba energy term
ESOC = α2

Rm∗/2 is negligible compared to � and h0. Regard-
ing the effect of disorder in this setup, we note that it might
be a relevant effect as a random disorder potential will even-
tually break the inversion symmetry of the model and might
lift the predicted even-odd degeneracy in the limit kF L � 1.
However, we believe the energy-lifting effect might be weak
in epitaxially-grown samples, where disorder is a relatively
small effect.

Finally, concerning the possibility to experimentally detect
the results predicted in this paper, we note that the spin-
polarized ABS subgap spectrum in epitaxially-grown devices,
as well as the eventual occurrence of the predicted SP-QPTs,
is within experimental reach using present-day techniques.
One of such techniques is electron-tunnelling transport. In
particular, spin-dependent tunneling spectroscopy has re-
vealed the presence of spin-polarized ABS, as shown in
Ref. [23]. Such spin-polarized ABS spectrum is similar to
the one obtained in our paper, and is experimentally revealed
in the cotunnelling processes. Interestingly, in that reference,
ABS can be gate tuned through the Fermi energy, which leads
to a SP-QPT. Moreover, in that experiment, the fermion parity
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of the ground state can be directly revealed as an even-odd
effect in Coulomb-blockaded transport. Another experimental
technique is microwave spectroscopy, as was shown recently
in Ref. [60]. In that paper, microwave spectroscopy of An-
dreev states in superconducting weak links tailored in an
InAs-Al (core-full shell) epitaxially grown nanowires was per-
formed, and the results were interpreted as zero-field spin-split
Andreev states. These experimental results show that some of
the predictions in our paper could be tested in the laboratory.
In particular, while it seems complicated to have direct ex-
perimental access to the total Sz in the device, detecting the
SP-QPTs with enough resolution using the above-mentioned

techniques might allow to infer the quantum Sz of the ground
state.
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