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Abstract: Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation
of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysi-
ological conditions, making them a significant target of interest in toxicological research. In recent
years, there has been a growing need to understand the intricate effects of xenobiotics on human
health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans),
a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and
mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been
used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This
review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on
mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial
dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed,
emphasizing their essential role in cellular viability and the regulation of processes such as autophagy,
apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic,
cadmium, and manganese are examined in the context of their impact on mitochondrial function and
the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the
utilization of C. elegans as an experimental model providing a promising platform for investigating
the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge
could contribute to the development of strategies to mitigate the adverse effects of contaminants and
drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting
human health.

Keywords: arsenic; C. elegans; cadmium; manganese; mitochondria; mercury; ethanol; pesticides

Cells 2023, 12, 2124. https://doi.org/10.3390/cells12172124 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12172124
https://doi.org/10.3390/cells12172124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2157-5984
https://orcid.org/0000-0002-0784-2468
https://orcid.org/0000-0002-8673-1909
https://orcid.org/0000-0003-4614-669X
https://orcid.org/0000-0001-9578-3092
https://orcid.org/0000-0001-8728-3346
https://orcid.org/0000-0002-2619-1656
https://doi.org/10.3390/cells12172124
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12172124?type=check_update&version=1


Cells 2023, 12, 2124 2 of 28

1. Introduction

Mitochondria are double-membrane organelles in eukaryotes frequently referred to
as the powerhouses of cells [1]. Cellular respiration relies on mitochondrial complexes
that lead to ATP generation through oxidative phosphorylation and the tricarboxylic acid
cycle [1,2]. In addition to energy sources, mitochondria play crucial roles in regulating cell
signaling, growth, and death [3]. Indeed, mitochondrial dysfunction is directly associated
with pathophysiological conditions owing to its pivotal role in coordinating cell fate. Several
environmental pollutants and drugs can alter the mitochondrial fine-tuned balance and
trigger cellular dysfunction [4–6].

The increasing need to understand the intricate effects of contaminants and drugs of
abuse on human health requires the use of effective scientific research tools. The nema-
tode Caenorhabditis elegans (C. elegans) is a powerful model widely used to investigate
several phenomena underlying toxic mechanisms since C. elegans displays remarkable
homology (up to 80%) with the mammalian genome [7,8]. C. elegans has been extensively
employed to address the mechanism of mitochondrial dysfunction in the pathophysiology
of neurodegenerative disorders, and behavioral alterations, and to elucidate the impact of
contaminants on mitochondrial functioning [4,9].

Here, we review the effects of several contaminants and drugs of abuse on mitochon-
dria using the experimental model of C. elegans and highlight the potential of the nematode
to address investigations regarding mitochondrial dysfunction induced by xenobiotics.

2. Mitochondrial Dysfunction
2.1. General Aspects

The mitochondria is a small organelle composed of two phospholipid bilayer mem-
branes, a highly selective external and an internal with multiple invaginations, tubular or
lamellar structures called cristae, which are connected by narrow tubular structures, the
cristae junctions [10]; it is filled with a matrix in which several enzymes reside, as well as
proteins and mitochondrial DNA that encodes around 13 proteins in humans [11]. It has
been posited that this organelle originated from the fusion of phagocyted aerobic bacteria
which were not digested by a host anaerobic cell (probably methanogenic archaea) and
were then preserved by endosymbiosis [12]. The mitochondria became the cell power-
house by optimizing ATP production through the coupling of the electron transport chain
and oxidative phosphorylation. Notably, this organelle can also control processes such
as autophagy, apoptosis and calcium homeostasis [13]. In addition, mitochondria form
a dynamic network that changes in shape, size and morphology in response to distinct
events, including energetic demands, various stressors, and aging. These dynamics are
mediated by fission and fusion, as well as the processes of mitochondrial transport, biogen-
esis, and degradation [14]. These functions and processes are conserved in C. elegans, as are
genes related to the Krebs cycle, electron transport chain (ETC), oxidative phosphorylation,
lipolysis and apoptosis, just to name a few [14]. Notably, intact and functional mitochondria
are essential for eukaryotic cell viability.

However, several conditions can impair mitochondrial function and lead to mitochon-
drial dysfunction in vertebrates and invertebrates as well. This process is characterized by
the loss of organelle efficiency in producing ATP; however, other processes that depend on
the mitochondria, such as proteostasis, will be impaired [15].

DNA mutations and damage: Mitochondria have their own DNA (mtDNA), but
nuclear DNA also codifies important mitochondrial proteins. These mutations can interfere
with the optimal functioning of mitochondrial proteins in ATP production, leading to
their dysfunction in C. elegans as well [16]. Furthermore, drugs that can cause irreparable
mtDNA damage such as mycotoxin aflatoxin B1 and the chemotherapeutic cisplatin, cause
increased dopaminergic damage in worms [17]. In this regard, we will explore in the next
topic some mitochondrial gene mutations that cause human diseases and can be modeled
in C. elegans.
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Oxidative stress: The presence of oxygen in the mitochondria makes it the cell center
for reactive oxygen species (ROS) production. To prevent the amplification of chain ROS
production, mitochondria have antioxidant enzymes such as superoxide dismutase [18].
However, some events can trigger an imbalance between prooxidants and antioxidants
and trigger mitochondrial dysfunction. Factors such as mutations, exposure to toxicants,
aging, immune response and diseases such as cancer and diabetes induce oxidative stress or
other processes that lead to lipid peroxidation, protein oxidation, DNA damage, apoptosis
activation and opening of the mitochondrial permeability transition pore (mPTP), resulting
in loss of mitochondrial membrane integrity and membrane potential [14].

Defects in the electron transport chain (ETC): The ETC is responsible for the generation
of the proton gradient that will drive ATP formation in complex V or F1/F0 ATP synthase.
Mutations, deficiencies or inhibition of the proteins involved in the ETC, such as Com-
plex I, Complex III, or Complex IV, can impair the electron flow, alter the mitochondrial
membrane potential (∆ψm) generated by proton pumps and reduce ATP production [19].
Some mutations in genes related to the ETC and oxidative phosphorylation may disturb
mitochondrial function and make worms more vulnerable to stress. For instance, mev-1
mutation (an ortholog of human (succinate dehydrogenase complex subunit C) reduces
C. elegan’s lifespan and increases oxidative stress [20]. In addition, it has been found that
a mutation in a subunit of F-ATP synthase (OSCP) initiates the opening of the mPTP and
shortens the worms’ lifespan [21].

Mitochondrial membrane permeability: Changes in the permeability of the inner and
outer mitochondrial membranes can disrupt the electrochemical gradient required for
ATP synthesis. This can be caused by alterations in the expression or function of proteins
involved in maintaining mitochondrial membrane integrity, by oxidative stress, immune
response, calcium influx and toxicants, but other factors can also induce permeability
alterations [22]. For example, the mPTP is a non-selective channel in the inner mitochondrial
membrane permeable to molecules smaller than 1.5 kDa. It includes both mitochondrial
F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT), with matrix cyclophilin
D (CypD), facilitating the transition to the pore-forming conformation [23]. Its opening is
regulated by a variety of factors, such as high levels of calcium and ROS, and the presence
of certain drugs or toxins [24,25]. One inhibitor of the mPTP is cyclosporin A, which has
been demonstrated to extend C. elegans lifespan and increase stress resistance [26]. The
alteration in mitochondrial membrane permeability can also be caused by the apoptotic
process induced by the intrinsic pathway. Internal cellular signals, such as DNA damage or
oxidative stress can initiate the intrinsic pathway, leading to the activation of pro-apoptotic
proteins [27]. These pro-apoptotic proteins can promote mitochondrial outer membrane
permeabilization, causing the release of cytochrome c and other apoptotic factors from
the mitochondria into the cytoplasm. In C. elegans, EGL-1, CED-9, CED-4, and CED-3
are the core executioners of worm apoptotic cell death, with CED-9 localized in the outer
mitochondrial membrane. Furthermore, the process does not involve cytochrome c release,
indicating that the mitochondrial involvement is still little known in worms [28].

Impaired calcium homeostasis: Mitochondria play a vital role in regulating cellular
calcium levels by sequestering and buffering cytosolic calcium. The endoplasmic reticulum
is responsible for storing calcium and there is a mitochondrial communication that allows
its uptake to control the levels [29]. Calcium is important for mitochondrial function,
as it activates enzymes from the TCA cycle and increases ATP production [30]. How-
ever, disturbances in this process cause massive calcium influx from the outer and inner
membranes transporters, overwhelming mitochondrial calcium capacity. Mitochondrial
calcium overload, which, when combined with other stressors such as oxidative damage,
results in the formation and opening of the mPTP [31,32]. This has been evidenced in
C. elegans presenilin mutants, which presented neuronal and behavioral defects dependent
on elevated mitochondrial calcium-induced oxidative respiration and concomitant ROS
generation [33]. Mutations in presenilin genes cause the altered expression of endoplasmic
reticulum calcium transporters, thereby increasing cytosolic calcium levels [34].
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Mitophagy defects: Mitophagy is a process by which damaged or dysfunctional
mitochondria are selectively degraded and removed. In C. elegans, mitophagy is essential
for development and defects in this process can render worms less resistant to toxins [35] in
addition to leading to progressive accumulation of the dysfunctional mitochondrial mass
during aging, resulting in persistent cell malfunctions [36]. Drugs such as haloperidol and
sevoflurane can impair mitophagy and cause neurotoxicity [37].

Impaired mitochondrial dynamics: The mitochondrial dynamics rely on biogenesis
(mitochondrial division by mtDNA replication); fission (the division of the mitochondria,
without mtDNA replication) and fusion (the association of two mitochondria for content
exchange). These processes maintain mitochondrial homeostasis, regulate mitochondrial
form, volume and function, and are increasingly understood to be critical components of
the cellular stress response. Several studies have demonstrated that deficiencies in the
genes related to these processes render worms less resistant to toxicants such as paraquat,
acrolein, rotenone and cisplatin [38].

Aging: The ETC reactions throughout the whole lifetime of any species are a source
of continuous electron leakage, and incomplete oxygen reduction at Complex IV during
C. elegans life leads to ROS production and oxidative stress, as occurs in mammals [14].
As evidence, supplementation with antioxidants can extend the nematode’s longevity by
attenuating oxidative stress and aging-related endpoints such as locomotion and lipofuscin
levels [39]. Furthermore, the accumulation of mutations in mitochondrial DNA [40] and
the deregulation of the mitochondrial unfolded protein response (UPRmt) [41] contribute
to the aging process in worms.

Immune response: The mitochondria play an important role in the innate immune
response as they are targets for virulence factors and microbial toxins seeking hemes and
iron–sulfur proteins, triggering a mitochondrial stress response that may counteract the
infection [42]. Indeed, excessive or chronic inflammatory responses induce ROS production
in the mitochondria to act as signaling molecules and to activate immune cells [43]. For
instance, the pathogenic bacteria Pseudomonas aeruginosa secrete multiple toxins capable
of perturbing oxidative phosphorylation (OXPHOS), including cyanide, siderophores,
and phenazines, which impair OXPHOS Complex IV, host iron acquisition, and electron
transport, respectively [44,45]. Furthermore, cytokines such as tumor necrosis factor (TNF)-
alpha and Interleukin-1 (IL-1), can activate the nuclear factor-kappa B (NF-κB) pathway
and alter the mitochondrial biogenesis and dynamics as well [46]. Notably, C. elegans
lives naturally in a microbe-rich environment [47]. The mitochondrial unfolded protein
response (mUPR) is induced to protect against pathogens [48]; however, if this system
fails, there is repression of this response and increased ROS production, thereby leading
to the nematode’s death [49]. In addition, pathogens such as Bacillus thuringiensis have a
toxin that opens pores in the mitochondria, resulting in the loss of mitochondrial potential
and its dysfunction [49]. In contrast, it has been demonstrated that mild mitochondrial
dysfunction induced by Complex I inhibitor rotenone can activate the p38 MAPK-mediated
immune pathway in intestinal cells, which was protective to dopaminergic neurons [50].

In this regard, several environmental toxins, drugs, or chemicals can directly affect
mitochondrial function. For example, exposure to heavy metals, pesticides, or medications
may impair mitochondrial activity (inhibit ETC, induce mPTP, alter the expression of chap-
erones and antioxidant genes, and/or induce mtDNA mutations [51] For instance, airborne
exposure to the solvent toluene in C. elegans triggered dopaminergic and cholinergic dam-
age, associated with reduced Complex I activity, lower ATP synthesis, apoptosis in the
germline cells and loss of mitochondrial mass [52,53]. The docking analysis further indi-
cated that toluene could interact with the PSST look of NADH dehydrogenase (Complex I),
reducing its activity. The effects of metals, metalloids and organic molecules will be further
explored in this review.
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2.2. Human-Related Mitochondrial Disorders Modeled in C. elegans

Mitochondrial diseases are a class of severe conditions. Because mitochondria is es-
sential to ATP production in most of the tissues, especially in the central nervous system
and muscles, the symptoms are mostly related to the functions they control: loss of muscle
coordination, muscle weakness, neurological deficits, including seizures, learning disabili-
ties, visual and hearing problems [12]. Moreover, developmental delay, respiratory issues,
thyroid and adrenal dysfunction may also be observed. In addition to mitochondrial dis-
eases caused by mutations in the genes required for mitochondrial function, mitochondrial
defects have been linked to a variety of age-related disorders, including neurodegenerative
diseases, cardiovascular diseases, cancer, and diabetes [54].

As previously mentioned, the mitochondrial machinery of C. elegans1 is highly similar
to that of mammals, as are the processes this organelle controls, and the mechanisms by
which its dysfunction occurs. Because the C. elegans genome is completely known and the
generation of mutants is easy, especially with the advance of CRISPR techniques, modeling
mitochondrial diseases in this nematode has become a great tool for drug discovery or to
study the interaction with toxicants. These mutants have been recently reviewed to a great
extent by Onraet and Zuryn (2023) [14]. Therefore, here, we will focus on mitochondrial
dysfunction models and their relationship with metals, metalloids and organic molecules.

A Complex II deficiency has been associated with a mitochondrial disease called Leigh
syndrome which results in metabolic changes leading to lactic acidosis [55]. The Complex
II enzyme succinate dehydrogenase catalyzes the electron transport from succinate to
ubiquinone and is composed of four subunits, one of them named Cyt-1/ceSDHC, which
consists of a cytochrome b560 that binds to ubiquinone. Mutations in this subunit have
been related to the inherited propensity for developing head and neck tumors [56]. In
C. elegans, the homologous subunit is MEV-1 and mutations in mev-1 cause increased ROS
production, increased lipofuscin, protein carbonylation [57] and induction of the apoptotic
pathway, thereby reducing the worms’ lifespan [58]. These mutants are hypersensitive to
triclosan, a powerful antimicrobial chemical with potential endocrine-disrupting properties,
as demonstrated by increased ROS levels and reduced lifespan [59]. Furthermore, mev-1
mutants presented reduced ATP levels following exposure to arsenite, which was more
significant in relation to other ETC mutants (nuo-6 for Complex I, isp-1 for Complex III, and
atp-2 for Complex V) [60].

CISD/NEET are mitochondrial iron–sulfur cluster binding proteins, and mutations
in their genes have been implicated in the pathogenesis of Wolfram neurodegenerative
syndrome type 2, a rare and devastating disorder [61]. cisd-1 is the single ortholog of
CISD1/MitoNEET and CISD2/NAF-1 in C. elegans, and mutants display common fea-
tures observed in mammals such as damage to motor neurons, disruption of ETC, re-
duced lifespan and altered proteostasis, as evidenced by increased neurodegeneration in
aggregation-prone nematodes expressing polyQ40 (Huntington’s disease) and mutated
alfa-synuclein (Parkinson’s disease) [15]. Exposure to the pesticide paraquat, a superoxide
radical anion generator which inhibits Complex I, promoted increased ROS production in
relation to wildtype worms, which was mitigated by overexpression of CISD-1 [62]. Of
note, overexpression of CISD-1 also promoted higher phosphorylation of PMK-1 following
paraquat exposure, indicating a promotion of the immune response against pathogens [62].

Mutations in genes related to mitochondrial dynamics such as fission (DRP1), fusion
(MFN2, OPA1, FZO-1), and mitophagy (PINK1, PARK2) are associated with cardiac, neu-
ronal diseases, and cancer, just to name a few [63,64]. The major executor of fission is
the dynamin-related protein 1 (DRP1). DRP1 is mainly cytosolic but translocates to the
mitochondrial surface in order to mediate fission of the organelle. In C. elegans, overexpres-
sion of drp-1 causes mitochondrial fragmentation [65], whereas the knockout of this gene
causes the mitochondrial matrix to retract into large blebs that are both surrounded and
connected by tubules of outer membrane [65]. These mutants showed higher sensitivity to
several toxicants, particularly, reduced survival following paraquat, arsenite and rotenone
exposure, and reproductive toxicity caused by paraquat and arsenite [66].
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Mitochondrial fusion is a process that requires outer and inner membrane proteins to
merge two mitochondria, which will exchange material and promote tubular and elongated
mitochondria, improving its function [38]. This process is so important that mitofusin
(MFN2) mutation causes Charcot-Marie-Tooth neuropathy type 2A, while optic atrophy 1
(OPA1) mutations cause dominant optic atrophy [38]. In C. elegans, the homologous proteins
are FZO-1 and EAT-3, respectively. Mutations in these genes caused delayed larval growth
following exposure to aflatoxin B1, cisplatin and at a higher extent, to arsenite, which also
caused reduced oxygen consumption and ATP levels in worms at the L4 stage [66].

Damaged mitochondria can be eliminated via mitophagy, as the loss of membrane po-
tential results in the accumulation of PTEN-induced putative kinase 1 (PINK1) on the outer
membrane. PINK1 phosphorylates outer mitochondrial membrane proteins, including
MFN2, and recruits the E3 ubiquitin ligase parkin (PARK2) from the cytosol. Parkin then
ubiquitinates these proteins targeting the mitochondrion for autophagic degradation [67].
Indeed, mutations in PINK1 and PARK2 are associated with early-onset familial Parkinson’s
disease (PD), PARK2 mutations being responsible for about 40% of the cases [68]. These
features have been replicated in C. elegans mutants lacking PD-related genes. Loss of the
mitophagy genes pink-1 and pdr-1/parkin results in heightened susceptibility to neurodegen-
eration caused by 6-hydroxy- dopamine (6-OHDA), a chemical model of dopaminergic and
noradrenergic neurodegeneration in Parkinson’s disease [69]. Furthermore, pdr-1 mutants
accumulate more manganese than wildtype worms and present higher ROS levels [70].
These mutants presented no alteration in the expression of divalent metal transporters, but
a decrease in the efflux transporter ferroportin [71], resulting in increased Mn levels. High
Mn levels are threatening as this metal accumulates in dopaminergic neurons and causes
neuronal damage in humans and in C. elegans as well [7].

Altogether, these data indicate that environmental or occupational exposure to tox-
icants can, in addition to inducing mitochondrial dysfunction (which will be further ex-
plored in the next sections), also accelerate the progression of genetic mitochondrial diseases
or complicate the symptoms by aggravating mitochondrial damage.

3. C. elegans and Specific Toxins/Toxicants
3.1. Metals/Metalloid

The presence of harmful chemicals, especially hazardous metals in the environment,
remains an important public health concern [72,73]. In this section, we describe how
mitochondrial dysfunction can be impacted by metals/metalloids and the importance of
C. elegans strains in deciphering the mechanism involved. Moreover, we also describe the
involvement of drugs of abuse and pesticides in mitochondrial dysfunction.

3.1.1. Arsenic

Arsenic (As) is a metalloid that is widely present in the environment due to geologic
and anthropogenic sources. This element is recognized as an important toxicant, with As
ranked as the first substance in the Hazardous Substance Priority List established by the
US ATSDR [74]. Moreover, it is recognized as a carcinogenic and genotoxic element [75,76].
The major route of exposure to As are contaminated water and food such as rice and
other cereals [77,78]. Other sources of exposure are industrial mining and refining activ-
ities, such as the smelting of metals, production of pharmaceuticals, manufacturing of
pesticides [79,80].

Oxidative stress is a major result of the induced toxic effects after As exposure. Several
studies reported that As induced an increase in ROS, such as superoxide anions, hydroxyl
radicals, hydrogen peroxide, singlet oxygen and peroxyl radicals and As also induced the
depletion of antioxidant defense enzymes, such as SOD, CAT, GPx, as well as the depletion
of GSH [81–84]. Mitochondria are the primary target of As-induced toxic effects, indirectly
via ROS accumulation or directly via the condensation of the mitochondrial matrix and the
opening of permeability transition pores [85].
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C. elegans has been instrumental in addressing As-induced toxicity. Low-dose arsenite
was shown to increase ROS formation, promoting the upregulation of mitochondria pro-
teins to increase the lifespan, while higher concentrations reduced longevity, demonstrating
that As can modulate the lifespan through the activation of mitochondrial ROS formation
by a process named mitochondrial hormesis [86].

Using the C. elegans model, Luz et al. (2016) reported that the metalloid induced
an alteration in mitochondrial function, including the reduction in ATP-like respiration
and spare respiratory capacity and augmented proton leaks, whereby worms deficient
in electron transport chain Complexes I, II, and III, but not ATP synthase, were sensitive
to As exposure [87]. The same group tested whether exercise afforded protection against
mitochondrial dysfunction and lethality, demonstrating that after a 24 h exposure of
arsenite, an exercised animal had improved mitochondrial health and lower lethality. In
agreement with this, exercise protected worms from rotenone, which is a strong inhibitor
of mitochondrial respiratory Complex I, and extended the worms’ lifespan. Further, the
authors suggested that exercise conditioning could protect mitochondrial dysfunction
against As exposure and age-related decline in mitochondrial health [88].

Important processes such as mitochondria fission, fusion and mitophagy are related
to the stress response in response to As exposure [89]. Nematode exposure to low-dose As,
which acts as a mithormetic substance, led to improved mitochondrial function. Moreover,
with C. elegans mutant strains deficient in mitochondria fusion and fission, it was shown
that those strains were more sensitive to As than the wild-type [66]. Additionally, As
exposure preferentially disrupted the mitochondrial function in fusion-deficient worms,
suggesting that the disruption of the pyruvate metabolism and Krebs-cycle activity trigger
the mitochondrial deficits [66].

3.1.2. Cadmium

Cadmium (Cd) is a toxic and non-essential heavy metal that is recognized as a threat
to human health. Cd exposure can occur through contaminated food and water intake,
occupational inhalation, or cigarette smoking [90,91]. Upon absorption, Cd accumulates in
target organs (including the liver and kidneys) and has a long half-life of up to 10 years,
which contributes to its high toxicity [92]. Chronic Cd exposure is associated with the
emergence of a myriad of diseases, including hypertension, renal failure, neurodegenerative
disorders, and cancer [93,94].

Impaired autophagy, DNA damage, and redox signaling imbalances are well-recognized
mechanisms of Cd toxicity [92,95]. Notably, the latter phenomenon has been extensively
investigated. Although oxidative stress is a hallmark of Cd poisoning, Cd is not a Fenton-
like metal; hence, Cd is not a direct ROS generator but modulates other pro-oxidative
sources that result in the overproduction of superoxide and hydrogen peroxide [96,97]. As
Cd leads to mitochondrial dysfunction, Cd-associated ROS generation has been attributed
to mitochondrial impairments [98].

Indeed, mitochondria are direct targets of Cd-induced toxicity. Once in the mitochon-
dria, Cd induces ROS production by inhibiting Complex III, the mitochondrial complex
most sensitive to Cd [98]. Beyond ROS generation per se, Cd also depletes the enzymatic
(catalase, GPx, and SOD) and non-enzymatic (GSH and metallothioneins) antioxidant
defense machinery [99,100]. Consequently, an insufficient anti-oxidative apparatus and
increased ROS generation trigger oxidative stress and altered redox state, and mediate
intracellular stress responses and macromolecular damage. Cd blocks the ETC by impairing
electron flow through the complexes, disrupting mitochondrial respiration by increasing
the inner membrane permeability and decreasing the mitochondrial membrane poten-
tial [98,100,101]. Due to the Cd-induced blockage of ETC, there is excessive mitochondrial
ROS production, which can cause the opening of the permeability transition pore, DNA
damage, and mutations [102,103].

Based on the potential genotoxic effect caused by Cd and the poor DNA repair ma-
chinery in mtDNA, Leuthner et al. employed C. elegans to assess the potential of cadmium
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chloride (CdCl2) to induce mtDNA damage and mutagenesis [104]. Interestingly, CdCl2
led to higher levels of damage in mtDNA than in nuclear DNA, which was also reported
by González-Hunt and collaborators [17]; however, chronic CdCl2 exposure failed to in-
duce single-nucleotide mutations in wild-type worms [104]. Since mitophagy is a crucial
process in removing damaged mitochondria, the authors tested the impact of CdCl2 in the
mitophagy-deficient strains pink-1 and dcl-1. Only the pink-1 strain showed higher levels of
mtDNA damage induced by Cd; however, no mutations were detected [104]. Associated
data demonstrated that CdCl2 causes mtDNA damage accumulation, but C. elegans is
resistant to CdCl2-induced mtDNA mutagenesis via a mitophagy-independent mechanism,
which highlights other potential evaluative mechanisms of mtDNA repair [104].

Cd can disrupt mitochondrial morphology, leading to mitochondrial fragmentation,
non-functional mitophagy, and the inhibition of ATP synthase [98,100]. An imbalance in
the mitochondrial respiratory chain function is a hallmark of impaired cellular metabolism
associated with neurodegenerative diseases and cancer onset and progression [105,106].
To evaluate how environmental toxicants could alter the oxygen consumption rate (OCR),
worms exposed to Cd showed reduced OCR in a dose-dependent manner [107,108]. Inter-
estingly, OCR suppression due to Cd exposure is positively associated with worm growth
inhibition [108].

Notably, using transcriptional profiling and data-modeling approaches, Swain et al.
reported that C. elegans exposed to Cd displayed an altered physiological mode of action
and transcriptional signature, with alterations particularly focused on stress response and
energy metabolism [109]. The authors reported that Cd exposure induced transcriptional
alterations in several genes related to ATP turnover and mitochondrial biogenesis and
functioning [109], which reinforces mitochondria as a direct target of Cd. The mechanism
of Cd-induced mitochondrial dysfunctions is illustrated in Figure 1.

3.1.3. Manganese

Manganese (Mn) is a ubiquitous trace metal that can be found in our environment and
commonly acquired through our diet. In the appropriate amount, this metal is involved in
many key biological processes such as the synthesis and activation of enzymes (e.g., oxi-
doreductase, transferase), metabolism of glucose and lipids, as well as providing protection
from oxidative stress [110]. However, while some Mn is essential for our body to maintain
homeostasis, excessive amounts of Mn have been linked with many neurodegenerative
diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s
disease (HD), as well as several metabolic syndromes [111].

While the relationship between Mn and these disease processes is poorly understood,
there is ongoing research to suggest that its accumulation and disruption of mitochondrial
function may play a crucial role in the pathogenesis of several disease states [112]. It is
well established that under aerobic conditions, mitochondria generate superoxide radicals
via the consumption of oxygen. Mitochondria have several antioxidant defense systems
(e.g., superoxide dismutase, glutathione peroxidase) that allow it to tolerate the excess ROS.
However, when these defense systems are exhausted, a state of oxidative stress is created,
causing mitochondrial damage.

Brown et al. proposed several mechanisms by which Mn can disrupt mitochondrial
function: by inhibition of energy transduction, increased generation of free radicals, or
induction of mutations in the mitochondrial genome [113,114]. This proposal has also
been supported by several in vivo studies such as that by Galvani et al., which demon-
strated Mn’s inhibition of the mitochondrial electron transfer chain in several neuronal
cell lines [115]. This disruption of the electron transport chain may enhance the generation
of free radicals and induce mutations in the mitochondrial genome as well. Furthermore,
there is also evidence to suggest that excessive Mn also disrupts mitochondrial [Ca2+]
leading to calcium overload and cellular damage under pathological conditions [114].
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Figure 1. The mechanisms of Cd-induced mitochondrial dysfunction. Cadmium affects Complex
III of the mitochondrial respiratory chain resulting in electron leakage and subsequent superoxide
formation. Complex I may also contribute to the production of superoxide in mitochondrial matrix.
Cd-induced disturbances in electron transport chain also results in reduced proton gradient and
inhibition of ATP-synthase (Complex V), ultimately leading to reduced ATP production and energy
deficiency. In addition to increased superoxide production, Cd exposure also reduces mitochondrial
antioxidant system by depleting non-enzymatic antioxidant pool (GSH, thioredoxin) and inhibiting
mitochondrial antioxidant enzymes. Excessive mitoROS generation upon Cd exposure induces lipid
peroxidation, promotes mitochondrial permeability transition pore opening, as well as increases in
mitochondrial cytochrome c leakage and subsequent apoptosis activation through mitochondrial
pathway. Cd-induced ROS overproduction also results in DNA damage that is further aggravated by
inhibition of DNA reparation mechanisms, contributing to mtDNA mutagenesis.

C. elegans has been used as a model in exploring the pathogenesis of many neurode-
generative diseases. Cooper et al. demonstrated in their study using C. elegans that there
exists a relationship between the dysfunctions of mitochondrial genes (e.g., PINK1) and
the pathogenesis of PD [116]. However, despite evidence of Mn’s deleterious effect on
mitochondria, future studies using C. elegans as a model may provide more insight into the
pathogenesis of these disease states.

3.1.4. Mercury

Mercury (Hg) is a heavy metal known for its toxicity. Unlike Mn, however, there exists
no known physiological role for Hg in humans. Despite its limited role in our biological pro-
cesses, common exposure to this heavy metal from the ingestion of contaminated fish and
inhalation from occupational exposure can cause a plethora of detrimental effects [117,118].
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Several forms of mercury exist, each with its own associated toxicity. Inhaled mercury
vapor primarily affects the brain. Mercurous material damages the gut and kidneys, and
methyl mercury is widely distributed throughout the body [117].

Exposure to Hg has been demonstrated through rat cell line PC21 to cause impair-
ment of cell viability due to ROS formation and deregulation of intracellular antioxidants
associated with mitochondrial dysfunction [119]. Furthermore, Hg exposure induces a
dose-dependent mitochondrial swelling and the release of cytochrome c, a hallmark of
mitochondrial dysfunction and apoptosis [119]. Even small amounts of mercury have been
demonstrated to cause nerve cell changes that are typical for AD [120]. There is also an
association between exposure to Hg and the development of ALS, although the connection
and pathophysiology is poorly understood [120].

Several studies have characterized the effects of Hg on the developing nervous system
using C. elegans as a model. Xing et al. demonstrated the degeneration of GABAergic
neurons, observed in neurodegenerative diseases such as Huntington’s, after treatment
with HgCl2 in younger larvae (L1–L3) [121]. Martinez et al. also demonstrated the loss
of dopaminergic neurons, observed in Parkinson’s later in life, following early-life (L1)
MeHg exposure [122]. Numerous neurobehavioral studies have confirmed MeHg-induced
neurodevelopmental toxicity in young C. elegans as well [123]. However, although the
relationship between Hg exposure and neurodegenerative changes has been observed, the
mechanism of toxicity is still not well understood. The pathogenesis of certain disease
states such as AD and HD related to Hg exposure is also not yet been well characterized.

3.1.5. Iron and Cupper

Iron (Fe) is a vital trace element necessary for numerous physiological processes. Its
significance extends to critical cellular functions such as mitochondrial support, facilitating
the processing of neurotransmitters, enabling effective oxygen transportation, being a
fundamental factor in cellular growth, differentiation, DNA synthesis, and the generation
of ATP. However, Fe has the capacity to generate reactive oxygen species (ROS) through
processes such as the Fenton and Haber–Weiss reactions. These reactions yield a highly
reactive hydroxyl radical ion (OH·), which in turn leads to damage in neuronal cells [124].
Furthermore, disruptions in the balance of Fe within the mitochondria result in diminished
ATP production, the release of cytochrome c, and the fracturing of mitochondrial structures,
thereby causing changes in morphology [125,126]. In this regard, our group recently ad-
dressed the involvement of Fe in the C. elegans model to investigate molecular mechanisms
such as oxidative stress, mitochondrial dysfunction, disrupted homeostasis, and how these
factors contribute to neurodegenerative diseases triggered by Fe [127,128].

Indeed, the evaluation of mitochondrial Fe metabolism and mitochondrial ROS demon-
strated that suppressing mitoferrin-1 led to a decreased mitochondrial Fe content and a
reduction in mitochondrial ROS levels in the CL2006 and GMC101 strains, suggesting that
diminishing mitoferrin-1 expression may attenuate features inherent in the advancement
of Alzheimer’s disease in C. elegans. Moreover, the authors proposed a significant role of
mitoferrin-1 in the mitochondrial-Fe metabolism during disease progression [126].

Recently, studies have demonstrated the important role of mitochondrial homeostasis
during aging processes. For instance, CISD-1, a mitochondrial iron–sulfur cluster binding
protein plays a role in extending the lifespan in C. elegans. This extension is achieved
via the activation of autophagy and the mitochondrial intrinsic apoptotic pathways. The
protein, CED-9, known for its anti-cell-death functions, acts downstream to convey the
effects of CISD-1 on maintaining proper protein balance, neuronal health, and overall
lifespan. Additionally, maintaining the intracellular levels of Fe in cells is crucial for
the proper functioning of CISD-1. Interestingly, even slight increases in Fe supply are
able to attenuate the aging process and partially improve impaired mitochondrial energy
production and protein balance in C. elegans lacking CISD-1 [15]. In addition, Schiavi et al.,
showed that mitochondria hormesis delays aging by limiting Fe availability in C. elegans.
The authors suggest that part of this mechanism involves the mitigation of ferroptosis,
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a type of non-apoptotic cell death triggered by iron-induced lipid peroxidation. This
mitigation occurs through interactions with various essential components of ferroptosis
and is likely facilitated by the independence of the enzyme GPx redox system [129].

Taken together, the crosstalk between Fe homeostasis and mitochondrial function
using the C. elegans model has been employed to explore emerging molecular mechanisms,
such as ferroptosis, a process implicated in the onset of neurodegenerative disease. Fur-
thermore, the C. elegans model offers a platform to investigate mechanisms involving the
regulators of Fe transport and the proteins associated with neurodegenerative disorders as
well as strategies to promote health with future extrapolation to humans.

Similar to Fe, copper (Cu) is essential for several cell functions, including oxygen
metabolism, iron uptake, and ROS detoxification [130]. Cu serves as a cofactor for cytosolic
and mitochondrial SOD1, countering ETC-generated ROS, while also aiding in mitochon-
drial Fe uptake as a cofactor of ferroxidases, vital for FeS cluster assembly and heme
biosynthesis [131]. In addition, the assembly of cytochrome c oxidase requires Cu from
metallochaperones [131]. Cu overload can occur due to the dysregulation of its metabolism
or excessive environmental exposure and lead to cell death [132]. Secondary to the Fenton
reaction, Cu is involved in ROS production through different pathways. In this context, Cu
ions can trigger mitochondrial dysfunctions by altering the activity of Complex I, II, and
IV [133] or by depleting the cellular GHS pool [134], leading to oxidative stress.

In C. elegans, Cu-induced toxicity is marked by oxidative stress [135], DNA dam-
age [136], and neurodegeneration [137]. Although there is a lack of studies on Cu-induced
mitochondrial dysfunctions in C. elegans, several outcomes related to Cu toxicity highlight
the role of mitochondria as a potential targets. Transcriptional analysis shows that Cu-
exposed worms display an aging-related phenotype marked by differential gene expression
in longevity pathways, including mitochondrial respiration and stress [138].

Notably, Cu tolerance was observed in mutants of the divalent metal transporters,
smf-1 or smf-2, indicating their involvement in Cu-induced DAergic neurodegeneration, as
reported by Mashock et al., in 2016 [137]. The transporter family, smf, assumes a significant
role in responding to manganese-induced toxicity [7]. It is plausible that interference with
the optimal function of this transporter family imparts the effects of Cu-induced toxicity.
The versatility of C. elegans as a model organism emerges as a potential tool to untangle the
mechanisms by which Cu affects mitochondrial dynamics and exerts its toxicity. Further
investigations are required to evaluate the impact of both Cu and Cu-containing mixtures
on mitochondria in C. elegans.

3.2. Drugs of Abuse

Addiction is, phylogenetically, a very ancient process, as many mechanisms underly-
ing addictive behaviors are present in invertebrates [139,140]. This chronic and relapsing
brain disorder behaviorally characterized by compulsive seeking despite adverse conse-
quences, involves both heritable and epigenetic mechanisms. Thus, although the prospect
of modeling some complex behavioral states, such as “motivation” in C. elegans, is debat-
able [141], there are reports that this organism develops a conditioned preference for cues
that had been previously paired with several drugs, including cocaine, methamphetamine,
and nicotine [142–144]. However, there is little evidence of the adverse effects of drug abuse
in C. elegans, with significant evidence coming from ethanol (EtOH), as will be detailed
below [145,146].

Several studies have been performed in C. elegans with psychostimulants. Regarding
methamphetamine, it was shown that environmentally relevant levels produce transgener-
ational cumulative damage in C. elegans, evidenced by impaired viability and decreased
fecundity [147]. Cocaine, on the other hand, stimulates egg-laying, a behavior that is de-
pendent on acetylcholine functionality [148]. Finally, the amphetamine-induced dopamine
efflux through the dopamine transporter (DAT-1) was accompanied by changes in swim-
ming behavior in C. elegans [149,150]. Interestingly, a tolerance to the psychostimulant
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effects was reported after repeated treatment with amphetamine with a more robust impact
observed after longer intervals between treatments [151].

Concerning EtOH, C. elegans shows adaptive changes evidenced as an enhanced at-
traction to the drug in a concentration-dependent fashion [152], with increased preference
following chronic exposure [146]. Moreover, worms self-exposed to EtOH in a chemoattrac-
tion paradigm, even in the absence of prior conditioning [144,153], found their behavior
prevented by naltrexone (a pan-opioid antagonist) or varenicline (a nicotinic cholinergic
receptor partial agonist), both drugs used in the treatment of alcohol use disorders (AUDs).
Aversion-resistant seeking, characterized by a disruption in the control of EtOH intake
due to an imbalance between the craving for the drug and the mediation of aversive stim-
uli, was also recently described in C. elegans [154,155]. Notably, following pre-exposure
to EtOH, worms showed behaviors characteristic of addiction in humans [156], such as
sensitization, tolerance, and withdrawal that could be partially or fully reversed by re-
exposure to a low dose of the drug [146,157–159]. Based on these antecedents, it is clear that
C. elegans is an excellent model for identifying both behaviors and molecular mechanisms
mediating drug effects as well as potential therapeutical targets [140]. In effect, acute
EtOH exposure induces biphasic responses in the living organisms that are considered a
sensitive indicator of toxicity [160], and occur at the same internal EtOH concentration that
produces intoxication in humans and other mammals [161]. In search for the molecular
bases of these behaviors, several reports demonstrate that EtOH activates BK channels
encoded by slo-1, while mutations in this gene produce resistance to the drug’s effects
on locomotion [153,162]. Interestingly, acute functional tolerance is a neuronal plasticity
phenomenon in worms, aimed at adapting to the environment [152,163], which is also
associated with BK activation [153].

In addition, experimental evidence in C. elegans revealed that long EtOH exposure (8 h)
had profound effects on the transcriptome, including genes involved in neuronal function,
lipid microenvironment, and physiological responses to EtOH. In contrast, short EtOH
exposures (up to 2 h) induced the expression of the metabolic enzymes involved in EtOH’s
metabolism, in particular, alcohol dehydrogenase, ADH [164], the sodh-1 reporter gene with
equivalent functions to the ADH enzyme [161,165]. Accordingly, the first step in EtOH
metabolization occurring in C. elegans is slow, reversible, and sustained, with tissular EtOH
concentrations not substantially decreasing during a single steady exposure [161,166].
On the other hand, several alh genes encode for ALDH, suggesting the mitochondrial
isoenzyme is one of the principal actors in EtOH neurotoxicity. In this regard, the gene gas-1
encodes for nicotinamide adenine dinucleotide (NADH), the ALDH cofactor reoxidized in
mitochondrial Complex I, which is crucial for EtOH sensitivity in the nematode [167]. A
mutation in gas-1 causes hypersensitivity to the sedative effects of all straight-chain alcohols
up to C12 and volatile anesthetics [168]. Other evidence of EtOH effects in mitochondria
was provided by Oh et al., who recently demonstrated fragmentation of this organelle,
probably because of fission from the internal membrane [169]. In this line, dauer larvae
exposed to EtOH survive much longer because EtOH prevents or delays mitochondrial
fragmentation and deterioration during energy depletion [170]. Importantly, the amount
and time of EtOH exposure in mammals were associated with the severity of mitochondrial
dysfunction, starting with an imbalance in the redox response followed by decreased ATP
production and the opening of the mitochondrial permeability transition pore (mPTP).
Next, decreased activity of the ETC and the loss of mitochondrial membrane potential is
observed (hangover), followed by high Ca2+ concentrations (chronic toxicity) that finally
lead to the prolonged opening of mPTP, triggering neuronal death during withdrawal. It is
unknown at present whether these processes can be recapitulated in C. elegans, a topic that
deserves further study to unravel the functional and structural changes that occur in the
mitochondria in response to prolonged EtOH exposure.

In summary, even though C. elegans does not allow modeling of the whole spectrum
of complexities present in AUDs in humans, this nematode has demonstrated its ability
to reproduce important aspects of EtOH toxicity. Furthermore, invertebrates offer many
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possibilities for advancing the understanding of the behavior, genes, and mechanisms
underlying EtOH-induced behaviors. In the first place, the drug is metabolized by mecha-
nisms similar to those in vertebrates and invertebrates show similar signs of intoxication;
secondly, the molecular pathways mediating the EtOH actions and/or AUD-related behav-
iors are similar to those in vertebrates, and third, the behaviors that are used as criteria for
determining AUDs (such as tolerance, preference, and reinstatement of EtOH consumption
after periods of abstinence), can also be recapitulated in invertebrates [170]. Furthermore,
elegant genetic tools available in these models can be used to dissect the causalities be-
tween different behavioral components and their contributions to the development and
maintenance of AUDs.

3.3. Pesticides

These are a diverse class of chemical compounds aimed at controlling pests that are
present in low concentrations in the environment with a wide range of properties that
determine different modes of toxicity. The nematode C. elegans is considered a suitable
model to evaluate their adverse effects, with the most studied endpoints being survival,
reproduction, redox status, and energy metabolism [171–174].

The mitochondria, as the powerhouse of the cell, possess a high vulnerability to envi-
ronmental toxicants [51], with many pesticides affecting the mtDNA or genes associated
with changes in bioenergetics. Pesticides are responsible for excessive ROS production,
alterations in mitochondrial membrane permeability, calcium homeostasis, ATP production,
mitochondrial complex activity, and/or oxygen consumption. Consequently, dysfunctional
mitochondria will eventually lead to cell death by apoptosis either by intrinsic pathways
involving the mitochondria and DNA damage or through the extrinsic pathway [175].

Thus, there follows a brief description of several pesticides or families of pesticides,
with a focus on those reported to affect the cellular redox balance and/or the mitochondrial
functionality, providing the tight relationship between these two scenarios that ultimately
determine the cell integrity. Additionally, references to dopaminergic neurotoxicity are
also included, given the potential association between certain pesticides, mitochondrial
dysfunction, and the pathogenesis of Parkinson’s disease (PD) [176].

3.3.1. Paraquat

Paraquat or 1, 1′-dimethyl-4, 4′-bipyridinium ion was developed in the early 1960s
as a non-selective contact herbicide that has redox properties [177]. It is poorly absorbed
by inhalation, but when ingested orally, causes an acute intoxication episode with se-
vere sickness and death, while chronic exposure has been associated with the etiology of
PD [178,179]. Due to its toxicity, paraquat is banned in many countries, but licensed persons
are allowed to use it with some restrictions [180]. The main toxic mechanism is related to
the interference in the redox cycle of glutathione and thioredoxin generating intracellular
ROS, including O2

•−, H2O2, and HO• [181]. It can also interact with nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase (NOx) and inducible nitric oxide synthase
(iNOS), generating ROS and reactive nitrogen species (RNS) in the cytosol [182]. High
levels of NO can react with O2

•− to form highly toxic peroxynitrite anions (ONOO–).
Paraquat can also disrupt the oxidation of NAD(P)H to NAD(P)+ in the ETC Complex I,
by accepting electrons to form paraquat+, which in turn can generate O2

•− and lead to
other ROS products such as HO• [183]. Additionally, brain mitochondria ETC Complex III
was also shown to be affected by paraquat-induced H2O2 levels, reducing the mitochon-
drial transmembrane potential and cytochrome c release, leading overall to mitochondrial
dysfunction [184]. Interestingly, a mitochondria-targeted compound, MitoParaquat was
developed to be used to selectively increase O2

•− production within the mitochondrial
matrix in vitro and in vivo [185]. Importantly, as C. elegans presents a glutathione cycle
similar to that of mammals [186], the synthetic antioxidant, N-acetyl cysteine has the ability
to prevent paraquat-induced mortality [187], and increase life expectancy in wild-type or
Complex I-deficient strains [188], as well as resistance to environmental stressors such as
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paraquat [189,190]. Moreover, paraquat triggered structural damage in mitochondria, ATP
depletion, and increased autophagy in a concentration-dependent manner in transgenic
worms with GFP-tagged mitochondria and decreased the expression of genes involved in
mitochondrial Complexes I, II, and III in transgenic worms with GFP-tagged mitochondrial
Complexes [191].

Paraquat increased the number of fragmented mitochondria and reduced the mem-
brane potential, the activity of Complexes I–IV, and the levels of pyruvate and lactate,
whereas ATP production was not affected. In addition, after paraquat treatment, the
transcript levels of marker genes were significantly upregulated, which implies a close
connection between mitochondrial dysfunction and the oxidative stress response [192].
Finally, recent reports demonstrate that chronic multigenerational exposure of C. elegans to
mitochondrial toxicants such as paraquat can affect reproduction and aging by a mitochon-
drial dysfunction-altering dynamic, probably through elevated ROS production that leads
to oxidative damage to the DNA [193]. The effects of paraquat on mitochondrial functions
are demonstrated in Figure 2.
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Figure 2. The proposed role of paraquat in mitochondrial dysfunction. Paraquat exposure affects
functioning of mitochondrial electron transport chain through its interaction with Complex I by
accepting electrons with the formation of paraquat radical (PQ+•). The latter reacts with molecular
oxygen (O2) with the formation of superoxide (O2

−•) and subsequent ROS overproduction in the
mitochondrial matrix. Similar mechanism is reported for Complex III. PQ-induced alterations in
electron transport chain ultimately results in reduction in mitochondrial transmembrane potential
and reduced ATP synthesis by Complex V. Overaccumulation of mitoROS mediates PQ-induced lipid
peroxidation, mtDNA damage, mPTP opening, and cytochrome c leakage with subsequent induction
of apoptosis.
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3.3.2. Rotenone

Rotenone is a highly toxic, naturally occurring botanical pesticide mainly used in
organic farming. Due to its ability to inhibit mitochondrial Complex I and to create an
oxidative stress environment in the cell, rotenone is used as a chemical stressor in the study
of PD and to recapitulate hallmarks of parkinsonism and has selectivity for dopaminergic
neurons [194–196]. The C. elegans response to rotenone involves multiple metabolic changes
that might result in compensation without significant changes in oxygen consumption
or steady-state ATP levels [17,197]. Transgenic α-synuclein worms decreased the cell
viability and reduced mitochondrial respiration in response to rotenone, with no change
in the structural features of the dopaminergic neurons’ mitochondria [198]. Additionally,
mitochondrial DNA replication is suppressed by rotenone, pointing out the role of mtDNA
biogenesis and mitochondrial content in the process of dopaminergic neuron damage and
degeneration in C. elegans [199].

3.3.3. Thiocarbamates (and Benomyl)

The thiocarbamate pesticides have been used since 1940 and are considered of low or
intermediate toxicity, although they contain chelated metals including Mn (maneb), Mn/Zn
(mancozeb), and other elements that can be released as potentially toxic ions or even other
toxic metabolites as isothiocyanates and ethylene-thiourea [200].

Benomyl is a benzimidazole fungicide widely used in agriculture that, although
restricted in the USA and Europe, is still used in developing countries. It undergoes
bioactivation to S-methyl N-butyl thiocarbamate sulfoxide, a potent aldehyde dehydroge-
nase (ALDH) inhibitor in liver and brain mitochondria [201–203], thus inducing oxidative
stress and apoptosis in neural cells [204]. There is evidence that Mn/Zn ethylene-bis-
dithiocarbamate derivatives impair locomotion, and induce damage to both GABAergic
and dopaminergic neurons in the model organism C. elegans [205–207]. In addition, this
compound is responsible for mitochondrial Complex I inhibition and concomitant H2O2
production [208,209].

Similar to disulfiram [210], environmental exposure to thiocarbamates promotes cellu-
lar damage by direct inhibition of the ALDH isoenzymes associated with the accumulation
of toxic aldehydes, particularly DOPAL (3,4-dihydroxyphenylacetaldehyde) and 4-HNE
(4-hydroxy-2-nonenal) [211,212], evidencing the crucial role of these isoenzymes in several
pathologies [213]. Interestingly, ALDH inhibition results from the 4-HNE-cysteine adduct
formation in the active site of ALDH, a process reversible at low 4-HNE concentrations
and irreversible at higher ones [214]. DOPAL is toxic via several mechanisms: protein
cross-linking oxidation to quinones, hydroxyl radical production, and increased toxic-
ity exerted by other agents [215]. Thus, the NAD(P)-dependent ALDH superfamily is
considered a critical step in the removal of toxic aldehydes and its dysfunction has been
associated with pesticide exposure, aging, and neurodegenerative diseases, particularly
PD [216–219]. Both mitochondrial ALDH2 and cytosolic ALDH1A1 catalyze DOPAL to a
3,4-dihydroxyphenylacetic acid (DOPAC) formation, which in most tissues, except substan-
tia nigra, is ultimately converted by the enzyme catechol o-methyltransferase (COMT) to
homovanillic acid (HVA), the end product of the dopamine metabolism [217,220,221].

3.3.4. Organophosphates and Carbamates

Organophosphate compounds, the oldest chemicals used as warfare nerve agents in
the 1940s, are widely used in insect control [222]. The primary effect of these compounds
is the inhibition of the acetylcholinesterase enzyme, leading to acetylcholine buildup and
a subsequent failure of transmission, but other mechanisms such as the disruption of
energetics and redox signaling have also been documented [223,224]. Importantly, the mito-
chondrial effects of some organophosphates require enzymatic activation to the oxon form.
In C. elegans, Williams and Dusenbery (1990) were the first to report a reduction in move-
ment in nematodes exposed to malathion and dichlorvos at high, but not environmentally
relevant exposure levels [225]. While feeding behavior, brood size, and body length were
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also affected, it was only recently that redox status and mitochondrial respiration attracted
attention as endpoints in pesticide exposure in C. elegans [226]. In effect, Leung et al., 2019,
demonstrated mtDNA damage after exposure to chlorpyrifos in C. elegans, although is not
clear whether this occurs at levels below acetylcholinesterase inhibition [227]. In another
report, phoxim (O, O-diethyl O-(alpha-cyanobenzylideneamino), phosphorothioate) an
organic phosphorus pesticide, and carbaryl (1-naphthyl methylcarbamate), a carbamate
insecticide, caused oxidative stress and altered the antioxidant enzyme activities and their
gene expressions in C. elegans [228]. Finally, quinalphos (O, O-diethyl O-quinoxalin-2-yl
phosphorothioate), a synthetic organophosphorus pesticide, altered oxidative stress-related
genes which the authors propose as biomarkers for monitoring quinalphos exposure.

3.3.5. Pyrethrins and Pyrethroids

Pyrethroids and their synthetic derivatives, pyrethrins, produce prolonged depolar-
ization of the nerve membrane acting on the opening of the sodium channels of the nerve.
Among the relatively few studies described in C. elegans, deltamethrin reduced survival in a
concentration-dependent manner affecting the expression of voltage-gated calcium channel
α1 subunits, locomotion, egg-laying, and foraging behavior [229]. Cypermethrin, a-cyano-
3-phenoxybenzyl ester of 2,2-dimethyl-3-(2,2-dichloro vinyl)-2-2-dimethyl cyclopropane
carboxylate induces oxidative stress by increasing free radicals, decreasing reduced glu-
tathione levels, increasing protein carbonyl levels and altering the activities of antioxidant
enzymes [230], thus altering the redox status; an effect that merits further attention in terms
of the mitochondrial participation.

3.3.6. Glyphosate

Glyphosate (N-phosphonomethyl-glycine) is the active ingredient of a herbicide ex-
tensively used in the world. The mechanism of action is related to the inhibition of
5-enolpyruvylshikimate-3-phosphate synthase, an enzyme involved in the synthesis of
aromatic amino acids in plants [231]. Although glyphosate itself is relatively non-toxic,
its commercially available formulations affect survival, locomotion, and fertility, and in-
duce changes in the gene expression of the antioxidant enzymes in C. elegans [232]. Other
reports demonstrated that glyphosate formulations induced neurodegeneration in both
dopaminergic and GABAergic neurons that along with redox imbalance and mitochon-
drial dysfunction are a hallmark of neurological diseases [206,207]. Interestingly, chronic
glyphosate formulations administered to C. elegans increased H2O2 production and glu-
tathione sulfur transferase-4 (GST-4) upregulation along with mitochondrial inhibition
as evidenced by reduced oxygen consumption, proton gradient, and ATP production,
probably due to Complex II inhibition [233,234]. Importantly, ROS production, the clt-1
gene, and catalase activity are considered excellent biomarkers to assess the environmental
risk of glyphosate use in glyphosate formulation-treated nematodes [235].

3.3.7. Triazines (Atrazine)

Although now banned in the European Union, atrazine is still the most applied
herbicide in the world [236]. Reports on C. elegans indicated that relatively low atrazine
concentrations increased the ROS levels and decreased locomotion behavior. Exposure to
higher concentrations reduced body length, life expectancy, and brood size. In addition to
these alterations, atrazine activates the mitochondrial unfolded protein response, as well as
increases the mitochondrial damage and vacuolar degeneration associated with a decrease
in mitochondrial cristae and volume density [237].

3.3.8. Organochlorines (Lindane)

Lindane (g-hexachlorocyclohexane), is an organochlorine that was widely used be-
tween 1950 and 1980 in medical and agricultural products [238]. Chronic exposure to
lindane significantly influenced the expression of genes related to oxidative stress and
cell apoptosis (isp-1, sod-3, ced-3, and cep-1 genes), indicating that oxidative stress and
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cell apoptosis could play an important role in the toxicity induced by this pesticide in
nematodes [239].

3.3.9. Neonicotinoids

These conform to a class of insecticides structurally similar to nicotine and are the
most widely used insecticides today with reported low toxicity in other organisms. Using
C. elegans as an animal model, it has been shown that exposure to neonicotinoid insecticides
could result in oxidative stress and damage to reproduction, locomotion behaviors, and
growth [240]. Later reports ascribed reduced growth in nematodes, lower fecundity as
measured by increased germline apoptosis, a decrease in egg-laying, and fewer viable
offspring to neonicotinoid formulations [241].

3.3.10. Other Pesticides

Dithianon is a fungicide with thiol-reactivity, that causes concentration-dependent neu-
rotoxicity of dopaminergic neurons and neurobehavioral impairments in C. elegans, as well
as increases in oxidative stress and mitochondrial fragmentation, which are strongly linked
to PD pathology [242]. Fluopyram (N-{2-[3-chloro-5-(trifluoromethyl)-2-pyridyl]ethy-α,α,α-
trifluoro-o-toluamide) is a fungicide member of the pyramid group that at sublethal rates
induced oxidative stress through an increase in ROS production and a decrease in antioxi-
dant enzyme activities and glutathione (GSH) content, leading to an oxidative imbalance
in C. elegans [243].

4. Conclusions

Mitochondria and their role in cellular function have unveiled their significance as the
powerhouses of cells. Their involvement in cellular respiration and the regulation of various
processes highlights their crucial role in maintaining cellular homeostasis. In this context,
C. elegans has emerged as an important model organism in the field of mitochondrial
research. Its genetic similarity to mammals, coupled with its simple and well-characterized
biology, has made it a preferred choice for studying the effects of contaminants and drugs on
mitochondrial function. By utilizing C. elegans, studies have made significant improvements
in elucidating the underlying mechanisms of the mitochondrial dysfunctions observed
in neurodegenerative disorders and behavioral alterations. C. elegans as an experimental
model offers several advantages, such as short lifespan, small size, and ease of cultivation,
all of which allow for rapid experimentation and large-scale screening, facilitating the
identification of potential therapeutic targets and toxicological effects. Additionally, the
transparency of C. elegans embryos enables real-time observation of the mitochondrial
dynamics and responses to various stressors, providing valuable insights into the intricate
effects of contaminants and drugs on mitochondrial function. Table 1 summarizes the
potential mechanism by which each xenobiotic impairs mitochondrial function.

The findings obtained from studying mitochondrial function in C. elegans has not only
enhanced our understanding of the underlying molecular mechanisms, but they may also
contribute to the development of novel therapeutic strategies to mitigate mitochondrial
dysfunction-related diseases. Furthermore, the use of C. elegans as a model system pro-
vides a bridge between basic research and translational medicine, allowing for the rapid
translation of experimental findings into potential clinical applications. It represents a
powerful platform for investigating the complex interplay between heavy metals, drugs,
pesticides and mitochondrial processes, ultimately contributing to the development of
effective interventions to combat mitochondrial-related disorders and improve human
health. Further, future studies should explore the full spectrum of interactions between
various stressors and mitochondrial processes, leading to a better understanding of how
these factors impact cellular health. Additionally, this research might aid in developing
innovative strategies to counteract the adverse effects of these stressors on mitochondria.
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Table 1. Potential mechanism by which each xenobiotic impairs mitochondrial function.

Xenobiotic Potential Mechanism of Impairment of Mitochondrial Function Reference

As Low-dose arsenite increases ROS formation, promoting upregulation of mitochondrial
proteins, increasing the lifespan while higher concentrations reduce longevity. [86]

As Reduced ATP-like respiration, spare respiratory capacity and augmented proton leak [87]

As Disrupted mitochondrial function in fusion-deficient worms, suggesting that disruption
of pyruvate metabolism and Krebs cycle activity trigger the mitochondrial deficits [66]

Cd pink-1 strain showed higher levels of mtDNA damage [103]

Cd Reduced OCR in a dose-dependent manner; Cd exposure is positively associated with
worm growth inhibition [108]

Cd Transcriptional alterations in several genes related to ATP turnover and mitochondrial
biogenesis and functioning [109]

Mn Dysfunctions of mitochondrial genes (e.g., PINK1) [116]

Hg Loss of dopaminergic neurons, observed in Parkinson’s later in life, following early-life
(L1) exposure [122]

Fe Mitoferrin-1 led to a decrease in mitochondrial Fe content and a reduction in
mitochondrial ROS [126]

Fe Impaired mitochondrial energy production and protein balance [15]
Ethanol Fragmented mitochondria, probably because of fission from the internal membrane [169]

Ethanol Dauer larvae survive much longer because during energy depletion EtOH prevents or
delays mitochondrial fragmentation and deterioration [170]

Paraquat Structural damage in mitochondria, ATP depletion, and increased autophagy [191]

Paraquat Increased number of fragmented mitochondria and reduced membrane potential,
Complexes I–IV activity, and pyruvate and lactate levels [192]

Paraquat Elevated ROS production that leads to oxidative damage to the DNA [193]

Rotenone Loss of Complex I function including upregulation of mitochondrial Complexes II and V,
activation of the glyoxylate pathway, glycolysis, and fatty acid oxidation [197]

Rotenone Mitochondrial DNA replication is suppressed, pointing out the role of mtDNA biogenesis
and mitochondrial content in the process of dopaminergic neuron damage [198]

Thiocarbamates Mitochondrial Complex I inhibition and increased ROS [208]
Thiocarbamates Mitochondrial dysfunction and increased ROS production [209]

chlorpyrifos mtDNA damage after exposure to chlorpyrifos [227]
Organophosphates

and carbamates Oxidative stress altered the antioxidant enzyme activities and their gene expressions [228]

Pyrethrins and
Pyrethroids

Oxidative stress by increasing free radicals, decreasing GSH levels, increasing protein
carbonyl levels and altering the activities of antioxidant enzymes [230]

Glyphosate Reduced oxygen consumption, proton gradient, and ATP production [233]
Glyphosate Inhibition of Complex II and increased hydrogen peroxide levels [234]

Triazines (atrazine) Mitochondrial unfolded protein response, increased mitochondrial damage and vacuolar
degeneration, associated with a decrease in mitochondrial cristae and volume density [237]

Organochlorines
(lindane)

Expression of genes related to oxidative stress and cell apoptosis (isp-1, sod-3, ced-3, and
cep-1 genes) [239]

Dithianon Increases in oxidative stress and mitochondrial fragmentation [242]

Fluopyram Increase in ROS production and decrease in antioxidant enzymes activities, and
GSH content [243]
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