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Abstract: Ru catalysts supported on activated carbon obtained by hydrothermal treatment of rice husk
were evaluated in the hydrogenation reaction of levulinic acid to γ-valerolactone. The hydrothermally
treated carbon was characterized by nitrogen physisorption, elemental analysis, and thermogravi-
metric analysis, and the catalysts were characterized by FTIR spectroscopy, X-ray photoelectron
spectroscopy, temperature-programmed reduction, and temperature-programmed desorption of
pyridine (acidic properties). Prior to the reaction, the catalysts were reduced at different temperatures
in the range of 100–350 ◦C to evaluate the effect of the reduction temperature on the performance
in the hydrogenation of levulinic acid. The reaction was carried out in a batch reactor at 70 ◦C and
1.5 MPa. The results of conversion and selectivity to γ-valerolactone showed that the catalyst with
the best performance was the sample reduced at 200 ◦C. After 2 h of reaction, a γ-valerolactone yield
of 74% was achieved. This catalyst presented the lowest acidity value, and the ruthenium-containing
phase consisted mainly of RuO2, with a small portion of Ru0. The solid catalyst can be recovered and
successfully reused for three runs with the GVL yield at 56%.

Keywords: Ru catalyst; hydrothermally treated carbon; rice husk; levulinic acid hydrogenation;
γ-valerolactone

1. Introduction

In today’s era, the sustenance of economic growth depends on the availability of
secure resources for industrial production, which must also have long-term availability. Un-
fortunately, fossil resources are not considered sustainable, and their long-term accessibility
is even more uncertain. Given the reliance on finite petroleum resources and the growing
environmental issues worldwide, biomass has become an attractive alternative source
of feedstock for the production of bio-oil and synthesis gas. Despite this, a considerable
amount of waste is produced during the process that can be harnessed as a source of
low-value energy, either through incineration or disposal [1–4].

Activated carbon is a very useful carbonaceous material with a considerable surface
area and a controllable pore structure. For these reasons, it is frequently employed in
industry as an adsorbent to remove a variety of organic and inorganic contaminants
from wastewater [5,6] and also as a catalyst support [7–9]. The preparation of high-yield
activated carbon from biomass residues is promising. There are two preparation routes:
physical and chemical. Among the most notable advantages of the chemical route, the
low carbonization temperature, which would reduce energy consumption compared to a
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physical process (which requires temperatures >900 ◦C), can be mentioned, and on the other
hand, the activated carbon produced from chemical activation has a higher surface area
and a well-developed porosity compared to that produced from physical activation [10].
It should be noted that the chemical route employs various activating agents such as
ZnCl2 [11,12], strong bases (NaOH or KOH) [13,14], and H3PO4 [12,14,15]. H3PO4 has
attracted considerable attention as an activating agent due to its lower environmental
and toxicological impact compared to ZnCl2, as well as its lower operating temperature
compared to KOH or NaOH [14]. In addition to the conventional method of producing
activated carbons from agricultural byproducts, the hydrothermal carbonization process
offers distinct advantages, as it can produce a diverse range of sustainable carbonaceous
materials with desirable nanostructures and functionalization patterns suitable for various
applications [16].

Levulinic acid (LA) is considered a crucial biomass platform molecule, owing to its
ability to undergo chemical conversion into numerous secondary derivatives [17,18]. One of
the most noteworthy uses of LA is its transformation into γ-valerolactone (GVL) through
catalytic hydrogenation. This particular application has garnered significant interest due
to the broad range of uses of GVL in the production of solvents and polymers, as well as,
most notably, as a fuel additive [19–21]. Figure 1 shows a simplified scheme of the levulinic
acid hydrogenation to produce γ-valerolactone.
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According to the literature, the hydrogenation of LA over a catalyst is the most efficient
and economical method to produce GVL reported to date [22]. The first studies of LA
hydrogenation date back to the first decades of the 20th century. Schutte et al. [23] reported
the hydrogenation of LA in different organic solvents using a platinum oxide catalyst to
produce 87% GVL yield after 44 h at a hydrogen pressure of 0.3 MPa. Christian et al. [24]
reported a 94% GVL yield at 220 ◦C and 4.8 MPa using a Raney nickel catalyst in the
liquid phase hydrogenation of LA. In addition, they used a copper chromite catalyst
to hydrogenate LA at 273 ◦C and 10.1 MPa, and the yields of γ-valerolactone and 1,4-
pentanediol were 62 and 21%, respectively.

Several heterogeneous catalysts have been studied during the last decades for this
reaction. Usually, noble metals such as iridium (Ir) [25–27], palladium (Pd) [28–30], plat-
inum (Pt) [31–33], and ruthenium (Ru) [34–48] are the most used catalysts. In particular,
Ru catalysts are taken as reference catalysts for this reaction because high GVL yields
(>97%) can be achieved [36]. It has been shown that supported Ru nanoparticles are active
and selective catalysts due to their ability to activate the C=O bond in the LA and H2
molecule [41–46]. However, the production of GVL might have a negative impact on the
environment when compressed H2 (3–4 MPa) and/or high reaction temperatures (≥140 ◦C)
are used [42–44].

Concerning the supports, a variety of combinations have been used, such as silica,
alumina, oxides, and carbon. Ru catalysts supported on mixed oxides Al2O3–TiO2, Al2O3–
MoO3, and Al2O3–Co3O4 were studied in the conversion of levulinic acid to γ-valerolactone.
NH3-TPD results and catalytic behavior revealed that the Ru metal combined with strong
acidic sites of support could promote the aqueous phase reforming, resulting in the lower
yield of GVL [45]. In another study, a Ru/ZrO2 catalyst could achieve 100% GVL yield at
150 ◦C and 3 MPa in dioxane [42]. Moreover, Cao et al. [44] synthesized a Ru/ZrO2@C
catalyst that could provide a 96.4% GVL yield at 140 ◦C and 1 MPa in water. Although
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carbon has been utilized as a catalyst support for many years, there has been a recent surge
in research regarding the use of Ru supported on carbon for producing GVL. The liquid
phase hydrogenation of LA with 5% Ru/C in a batch reactor was studied and 99% selectivity
to GVL was obtained with 92% LA conversion at 130 ◦C and 1.2 MPa using methanol as
solvent [40]. Liu et al. [47] developed a catalyst with uniform Ru nanoparticles incorporated
into a mesoporous carbon support (Ru-MC). The support was synthesized using a SiO2
template that was completely removed after calcination at 850 ◦C. The Ru-MC catalyst was
used in the GVL production reaction with a constant pressure of 4 MPa. At 70 ◦C, 64%
LA conversion and 63% GVL yield were obtained. Subsequently, the temperature was
increased to 110 ◦C, obtaining 100% LA conversion and 99% GVL yield. Recently, a series
of Ru/carbon nanosphere catalysts with tunable contents of interfacial C=O species were
successfully synthesized, which were demonstrated to be highly efficient in the production
of GVL under mild conditions (40 ◦C and 2 MPa) [48].

In this work, we developed Ru/carbon catalysts for the conversion of LA to GVL.
On one hand, activated carbon was synthesized from biomass (rice husk) by means of
hydrothermal treatment, capable of being used as a catalytic support. On the other hand,
we investigated the optimal reduction temperature for Ru that leads to obtaining high LA
conversion and GVL selectivity.

2. Materials and Methods
2.1. Catalyst Preparation

Rice husk from Oryza sativa L., with particle sizes in the range of 1.7–2.4 mm, was
provided by a local mill from Santa Fe province (Santa Fe, Argentina).

2.1.1. Hydrothermal Treatment

For the preparation of hydrothermally treated carbon, the procedure described by
Quesada et al. [16] was followed. The biomass (rice husk) was washed with tap water to
remove impurities and then dried at 80 ◦C. Subsequently, 8.5 g of biomass was loaded
into the autoclave reactor (total volume, 100 mL), and then 37 mL of phosphoric acid
solution (23% w/v) was added before closing the reactor. The pressure in the system was
autogenous. The temperature was maintained at 200 ◦C for 24 h. Once the time for the
hydrothermal treatment was elapsed, the reactor was cooled down and opened. Then,
the solid was filtered to separate the supernatant acid and air-dried for 48 h. After that,
the carbonization stage was carried out under N2 flow with a heating rate of 6 ◦C/min
until 750 ◦C, where it was held for 2 h. Finally, the carbon was washed with 300 mL of
distilled water at 65 ◦C in three stages (final pH value of 6.5). The nomenclature used for
the hydrothermally treated carbon was HTC, while the virgin rice husk was called VRH.

2.1.2. Preparation of 2% Ru Supported Catalysts

The preparation of the catalysts with 2% Ru was carried out by the wet impregnation
method, using HTC (hydrothermally treated carbon) as a support. During wet impregna-
tion, the support was added to a Ru solution (RuCl3.3H2O, Sigma Aldrich) under constant
stirring, using a solution volume/support mass ratio of 30 mL/g. The suspension was
stirred for 4 h and finally heated to evaporation at 120 ◦C to ensure complete metal deposi-
tion on the HTC. Subsequently, the reduction of the precursor was carried out in hydrogen
flow at different temperatures for 2 h. The reduction temperatures used were 100, 150, 200,
275, and 350 ◦C. The nomenclature used to designate the different catalysts was as follows:
Ru/C (unreduced sample), and Ru/C-100, Ru/C-150, Ru/C-200, Ru/C-275, and Ru/C-350,
according to the reduction temperature.

2.2. Characterization

The properties of the rice husk and hydrothermally treated carbon were determined
through ASTM D3173 (moisture content), ASTM D3175 (volatile matter), and ASTM D3174
(ash content) standards. Briefly, moisture was determined by establishing the sample loss
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of weight when heated until 104–110 ◦C in a drying oven. Volatile matter was determined
from the loss of weight after heating the sample at 950 ◦C in a platinum crucible closed
with a cover that fits closely enough so that the carbon did not burn. Ash was determined
by weighing the inorganic residue remaining after burning the sample at 750 ◦C in porce-
lain capsules. The fixed carbon content was calculated by difference. The composition
of the ashes was determined by X-ray fluorescence spectrometry (EDX-720 model, Shi-
madzu). The elemental composition (CHON) was determined with the aid of a LECO CHN
628 Series Elemental analyzer [49].

The textural properties of virgin rice husk (VRH) and hydrothermally treated car-
bon (HTC) were determined by N2 physisorption at −196 ◦C in Micromeritics ASAP
2020 equipment. Before the adsorption–desorption analysis, the samples were outgassed
under vacuum (absolute pressure lower than 10−4 torr) at 130 ◦C for 8 h. The Brunauer–
Emmet–Teller (BET) model was used in the 0.01 < P/Po < 0.03 range to calculate the
BET-specific surface area. The total pore volume was calculated from the amount of ni-
trogen adsorbed until P/Po ≈ 0.98. The pore size distribution and the average mesopore
diameter were determined with the aid of the Barrett–Joyner–Halenda (BJH) model, applied
to the adsorption branch of the isotherms.

Thermogravimetric analyses (TGA) were performed in a Mettler Toledo TGA/SDTA851e
thermobalance. Approximately 10 mg of sample was loaded into an alumina crucible and
heated at 12 ◦C/min, from 20 ◦C to 900 ◦C with a N2 flow rate of 50 mL/min.

The acidic properties were determined by means of temperature-programmed desorp-
tion (TPD) of pyridine (>99%, Cicarelli). Twenty milligrams of each solid were pretreated
under N2 flow (60 mL/min) at 500 ◦C for 1 h. After cooling to room temperature, the
saturation with pyridine (Py) was carried out under N2 stream (60 mL/min) with the aid
of a saturator at 80 ◦C. Then, the temperature was increased to 150 ◦C and maintained at
this temperature for 1 h with N2 flow in order to remove the physically adsorbed pyridine.
The TPD experiments were carried out by heating at 12 ◦C/min in the 150 to 700 ◦C range,
the desorbed pyridine being submitted to methanation with a Ni catalyst and quantified
with the aid of a flame ionization detector (FID) in a Shimadzu GC-8A gas chromatograph.

The ruthenium/activated carbon samples, both non-reduced precursor (Ru/C) and
those that were reduced at different temperatures (Ru/C-100, Ru/C-150, Ru/C-200, Ru/C-
275, and Ru/C-350), were subjected to temperature-programmed reduction (TPR). Samples
were reduced by using a reductive mixture (10 mL/min of H2 (5 vol%)-N2) in a flow reactor
by heating at 6 ◦C/min from 25 to 700 ◦C. The reactor outlet was connected to a thermal
conductivity detector (TCD) in order to obtain the TPR signal.

Fourier transform infrared (FTIR) spectroscopy was used to elucidate the functional
groups existing on the surface of ruthenium catalysts. Each sample (sample/KBr mass
relationship 1:100) was grounded in a mortar, and 10 mm diameter wafers were pressed at
7.6 tonnes/cm2. The spectra were obtained with Shimadzu FTIR Prestige-21 equipment,
with a resolution of 4 cm−1 in the 500 to 4000 cm−1 range.

X-ray photoelectron spectroscopy (XPS) analysis was performed on SPECS equipment,
with a dual Ag/Al monochromatic X-ray source and a PHOIBOS 150 hemispherical an-
alyzer. Spectra were obtained with AlKα monochromatic radiation at 300 W. The step
energy was 30 eV, and the fixed analyzer transmission mode (FAT) was used. Samples were
supported on double-sided copper tape and subjected to ultra-high vacuum evacuation for
at least 12 h prior to measurements.

2.3. Reactions

The hydrogenation reactions were carried out in a 100 mL Parr reactor, which was
charged with 100 mg of catalyst, 33 mL of distilled water, and 2.3 g of levulinic acid. The
system was heated to 70 ◦C, with a constant hydrogen pressure of 1.5 MPa and 1500 rpm
stirring. The reaction time was 2 h.

The reactant (levulinic acid) and product (γ-valerolactone) concentration were deter-
mined by gas chromatography (Clarus 590, Perkin Elmer) using a 30 m × 0.32 mm × 0.25 µm
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WaxPlus column and FID detector. Acetic acid was employed as an external standard
(100 µL in 2 mL of reaction sample).

The levulinic acid conversion (XLA), γ-valerolactone selectivity (SGVL), and γ-valerolactone
yield (ηGVL) were calculated using Equations (1)–(3), respectively:

XLA =
Moles o f reacted LA
Moles o f initial LA

×100% (1)

SGVL =
Moles o f produced GVL

Moles o f reacted LA
×100% (2)

ηGVL =
Moles o f produced GVL

Moles o f initial LA
×100% (3)

Separation of the solid catalyst was achieved through filtration. The recovered catalyst
was washed with deionized water and ethanol and dried at 70 ◦C before being reused.

3. Results and Discussion

Table 1 shows the rice husk and hydrothermally activated carbon composition. Biomass
residues are often analyzed for their elemental composition, which includes carbon, hy-
drogen, oxygen, and nitrogen, to evaluate their potential as a carbon precursor. Rice husk,
for example, has a carbon content of nearly 40%, making it a viable option as a carbona-
ceous support [16]. The composition of the biomass reported in Table 1 is consistent with
the TGA tests (see below), where the weight loss registered corresponds mainly to the
thermal decomposition of hemicellulose (200–350 ◦C), cellulose (300–400 ◦C), and lignin
(200–900 ◦C).

Table 1. Proximate and elemental analysis of VRH and HTC samples.

Biomass VRH HTC

Moisture content (wt.%) 8.6 5.2

Proximate analysis (wt.%, dry basis)

Volatile matter 60.9 12.7
Ash content 23.1 51.0
Fixed carbon 15.9 36.3

Elemental analysis (wt.%, dry basis)

Carbon 39.2 38.7
Hydrogen 4.4 1.7

Oxygen 32.9 8.1
Nitrogen 0.3 0.5

As can be observed in Figure 2a, the virgin rice husk presented a significant weight
loss of 70% at 900 ◦C (in coincidence with the data reported in Table 1, i.e., 60.9% volatile
and 8.6% moisture). Figure 2b illustrates that the weight reduction of the hydrothermally
treated carbon was 18%. This aligned with the values presented in Table 1, indicating a
volatility of 12.7% and moisture content of 5.2%. Previous studies showed that there are
three main weight loss stages during the TGA analysis of activated carbon [50]. This fact
is consistent with TGA results obtained in our study. The first weight loss stage occurs
between 30 and 165 ◦C, with a 2% weight loss. This was attributed to the evaporation of
water molecules adsorbed on the pore surface of the carbon [51]. The second weight loss
stage occurs between 165 and 700 ◦C with a 3% weight loss, followed by another stage from
700 to 900 ◦C with a weight loss of 13%. The weight loss observed in these two stages can
be attributed to the intensive gasification of the residual volatile organic compounds [52],
as well as the breakdown of lignin-like structures [53].
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Figure 2. TGA/DTA profiles of (a) virgin rice husk (VRH) and (b) hydrothermally treated car-
bon (HTC).

The composition of the ashes was determined using X-ray fluorescence. It was found
that it contained approximately 94.9% SiO2, as well as minor amounts of K2O, SO3, CaO,
MnO, Fe2O3, and ZnO.

Table 2 shows the values of BET-specific surface area (SBET), total pore volume, and
average mesopore diameter calculated by N2 adsorption–desorption isotherms of virgin
rice husk and hydrothermally treated carbon.

Table 2. Textural properties of virgin rice husk (VRH) and hydrothermally treated carbon (HTC).

Sample SBET
(m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (nm)

VRH 6 0.0097 10.2
HTC 158 0.0600 4.1

From the analysis of the adsorption–desorption isotherms of the materials (Figure 3),
it can be seen that both VRH and HTC corresponded to a type II isotherm with a H4-type
hysteresis loop, according to IUPAC, with parallel adsorption and desorption branches
in the range of relative pressures from 0.4 to 1, thus showing that the material presented
micro and mesoporosity. The specific surface area (SBET) of the VRH sample was 6 m2/g,
and after activation with H3PO4, the HTC sample reached an area value of 158 m2/g.

The notable increase in the specific surface area (25 times) was due to the activation
process caused by the hydrothermal treatment using phosphoric acid and temperature.
According to bibliography reports, phosphoric acid changes the structure of the pores in
the samples with the consequent increase in the surface area [54,55]. Similar values of
specific surfaces were reported by Mohammad et al. [56], who attributed the surface area
increase to the impregnation with phosphoric acid and subsequent washing, which leads
to the removal of unorganized carbon or residual tarry material at low temperatures, thus
opening the closed pores [52,57], or to the elimination of soluble phosphates formed by the
reaction of phosphoric acid and the silica present in the raw material [56].
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Figure 3. Nitrogen adsorption–desorption isotherms of (a) virgin rise husk (VRH) and (b) hydrother-
mally treated carbon (HTC).

Typically, during hydrothermal treatment, lignin is considered to be the least reactive
fraction of biomass [58]. However, hydrothermal digestion of cellulose and hemicellulose
produces intermediates (such as furfural) that can undergo further polymerization via
dehydration reactions [58–60]. The presence of concentrated phosphoric acid creates a
low-pH environment that promotes both the dehydration of cellulose and the saccharides
into furfural [61], which is the initial stage in the hydrothermal carbonization of cellulose.
Overall, the utilization of both H3PO4 and hydrothermal conditions is essential to enhance
yield and encourage carbon fixation in biomass [16].

The catalysts’ acidity was determined by the temperature-programmed desorption
of pyridine, showing that the reduction process decreased the acidity with respect to
the original sample (Ru/C). From Figure 4, it can be seen that the catalysts, after being
impregnated with the metal precursor (RuCl3) and reduced at 150 and 200 ◦C, had lower
acidity (87.2–87.8 µmol Py/g cat, respectively) when compared to those treated at other
temperatures such as 100, 275, and 350 ◦C, whose acidity values were 111.7, 97.6, and
103.7 µmolPy/g cat, respectively. This would indicate that the acidity depended closely
on the temperature of the reduction treatment. In a recent investigation by Yu et al. [62],
the impact of the acid characteristics of the support on the performance of bifunctional
catalysts for the heterogeneous conversion of LA to GVL was studied. The researchers
found that the acidity of the support is a crucial factor in this transformation, affecting both
the metal dispersion and the catalyst’s stability during mild reaction conditions.

The TPR profiles are shown in Figure 5 and are characteristic of supported ruthenium
catalysts. Two very close peaks can be observed, one at 120 ◦C and the other at 178 ◦C.
According to the literature, the first peak is attributed to the reduction of chlorinated
species, while the second one corresponds to the reduction of ruthenium oxychloride [63,64].
Furthermore, the hydrogen consumption displayed between 300 and 400 ◦C corresponds
to the methanation of carbon [65,66]. It was observed that as the reduction temperature
increased, H2 consumption decreased. The chlorinated species were easily reducible, and
no signs of them were observed in the reduced catalysts at the temperatures used in
this study.
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Figure 4. Total acidity measured by pyridine TPD of ruthenium supported on hydrothermally treated
carbon (Ru/C) and the catalysts reduced at different temperatures (Ru/C-temp).

RuO2 reduction by H2 was initiated at temperatures between 50 to 200 ◦C due to the
hydrogenation of surface oxygen atoms. The creation of oxygen vacancies, by desorbing
water vapor, accelerated the reduction process by exchanging bulk oxygen atoms with the
vacancies. In the range of 200 to 300 ◦C, the reduction was slow. Even though the creation
of oxygen vacancies at bulk sites accelerates the reduction, the rate was slower than that
in the 100 to 200 ◦C range. At temperatures between 300 and 400 ◦C, RuO2 reduction
began immediately upon exposure to H2, and oxygen vacancies were created directly. The
reduction rate increased with temperature, but not as fast as in the low-temperature range
of 100 to 200 ◦C [67].

Figure 6 shows the FTIR spectra of the ruthenium catalysts supported on activated
carbon after reduction at different temperatures. IR spectroscopy is a valuable tool for
identifying the types of functional groups present on the catalyst surface. However, carbon-
supported metal catalysts have been relatively underexplored due to the challenges of
obtaining IR spectra from these opaque materials. Fortunately, the application of the carbon
film technique has significantly improved the feasibility of experimental spectroscopic
investigations of surface phenomena on carbons [68].

Surface functional groups can be observed (references to the different functional
groups are identified by capital letters in Figure 6). The band at 3743 cm−1 (A), which is
only present in the reduced catalysts, was due to ν(OH) vibrations of hydroxyl groups on
the surface [69] and, probably, of water. The ν3 absorption band of carbon dioxide (CO2)
can be observed at 2370–2378 cm−1 (B), and the band at 2312–2318 cm−1 (C) was assigned
to the ν3(OCO) [70]. Two bands with lower definition were observed at 1700 cm−1 (D) and
1650 cm−1 (E). The first one can be attributed to the stretch vibration of ν(RHC=O) [71],
while the second was assigned to carbonate ν(CO) [72] and the stretch vibration of ν(C=C).
A broad band in the range of 1510–1560 cm−1 was observed in the reduced catalysts,
which can be assigned to the CO stretching vibrations of formate species on the reduced
Ru [72]. This band was not significant in the unreduced sample (Ru/C). An intense band at
1182–1186 cm−1 (F) can be assigned to the stretch vibration of ν(–C–OH) [71]. It has been
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mentioned that –C–OH groups are related to the reduction of ruthenium ions, and those
groups can be adsorbed on the surface of Ru particles, avoiding their agglomeration [73].
Finally, the band at 1046 cm−1 (G) can be attributed to the stretching vibration of ν(–C–
OH) [71,73–75]. Moreover, according to Wisniewski et al. [76], the signals in the 900–1300
cm−1 range can be attributed to ashes and phosphate species from the H3PO4 used during
the hydrothermal process. Bourbigot et al. [77] identified species of the type νas(-P-O),
νsym(-PO2 and PO3), and νsym(-P-O); stretching mode of P-O-C; and stretching mode in
P=O in the same region.
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Figure 5. TPR profile of ruthenium supported on hydrothermally treated carbon (Ru/C) and the
catalysts reduced at different temperatures (Ru/C-temp).

Some of the catalysts were evaluated by X-ray photoelectron spectroscopy. Since the
Ru 3d signal interferes with the C 1s signal, it is very difficult to resolve the oxidation state
of Ru in this region. Therefore, the Ru 3p signal was analyzed in order to differentiate the
oxidation states of Ru in these samples. The obtained XPS spectra (Figure 7) showed that
as the reduction temperature increased, there was a shift of the peaks towards the binding
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energy that corresponded to metallic Ru. The catalyst that was reduced at 150 ◦C showed
a Ru 3p3/2 binding energy of 463.4 eV, which corresponded to RuO2, while the sample
reduced at 200 ◦C presented two peaks: the major peak corresponded to RuO2 specie, at a
binding energy of 463.0 eV, and the lower intensity peak belonged to Ru0 (at 461.3 eV) [78].
When the catalyst was reduced at 350 ◦C, the XPS signal was also able to be deconvoluted
into two peaks, the major one corresponding to metallic Ru (461.4 eV) and the other to
RuO2 (463.1 eV).
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Figure 6. FTIR spectra of ruthenium supported on hydrothermally treated carbon (Ru/C) and
the catalysts reduced at different temperatures (Ru/C-temp). Signals: (A) ν(OH) vibrations of
hydroxyl groups; (B) ν3 absorption band of CO2; (C) ν3(OCO); (D) stretch vibration of ν(RHC=O);
(E) carbonate ν(CO) and stretch vibration of ν(C=C); (F) stretch vibration of ν(–C–OH); (G) stretching
vibration of ν(–C–OH). Regions; 1560–1510 cm−1 range: CO stretching vibrations of formate species,
1300–900 cm−1 range: ashes and phosphate species.

Regarding the C 1s and O 1s signals (282.6 and 532.6 eV, respectively), the results
suggest an O/C relationship of 0.85 for the sample Ru/C-150, a relationship of 0.65 for the
case of Ru/C-200, and 0.41 for the case of Ru/C-350. These results are consistent with what
the decomposition of the ruthenium peak yielded because as the temperature of reduction
increased, the ratio of surface oxygen decreased due to the reducibility of the metal.

In order to determine the optimal reduction temperature of the metal (Ru) supported
on hydrothermally activated carbon for the conversion of levulinic acid to γ-valerolactone,
catalyst samples reduced at different temperatures were employed in the reaction, which
was carried out at 1.5 MPa and 70 ◦C in an aqueous medium. In Figure 8, it can be seen
that the reduction temperature of Ru presented an optimum, which maximized conversion
and selectivity. Comparing the Ru-100, Ru-150, and Ru-200 samples, both conversion
and selectivity increased with rising reduction temperatures. With the Ru-200 catalyst,
the maximum conversion of levulinic acid (82%) and selectivity to the desired product
(90%) were achieved. When the reduction temperature was increased to 275 and 350 ◦C,
the conversion dropped sharply to values below 30%, and the selectivity fell slightly at
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275 ◦C, while at 350 ◦C, it was almost negligible. This decrease in the catalyst performance
could have been due to the formation of coke precursors [62] and the subsequent migration
towards Ru active sites, as well as to a marked sintering of the metal, caused by the
relatively high reduction temperature. It should be noted that the highest yield occurred for
the Ru/C-200 catalyst that presented the lowest acidity value (Figure 4). A study conducted
by Pan et al. [79] investigated the use of supported Ru catalysts for the hydrogenation of
levulinic acid to valerate esters. The researchers found that as the amount of acid sites
increased, the selectivity to GVL decreased.
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Figure 7. XPS spectra of the Ru 3p3/2 for Ru/C-150, Ru/C-200, and Ru/C-350 samples.

It should be noted that the acidity and oxidation state of the catalyst played a funda-
mental role in the levulinic acid hydrogenation reaction. Gundekari et al. [80] found that
the zeolite-supported Ru catalyst was more active in the oxide form than in the metallic
state for the hydrogenation reaction.

The role of the support in ruthenium heterogeneously catalyzed LA hydrogenation
reaction is widely known. The LA carbonyl functionality is activated by the support, while
the metal nanoparticles facilitate hydrogen activation.
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Figure 8. Levulinic acid conversion (full bars) and γ-valerolactone selectivity (dashed bars) of
ruthenium supported on hydrothermally activated carbon catalysts reduced at different temperatures
(Ru/C-temp).

The results of levulinic acid hydrogenation to γ-valerolactone using different sup-
ported Ru catalysts are presented in Table 3. As can be seen, the Ru/C-200 catalyst showed
a similar performance to that of other ruthenium catalysts supported on different materials
that have been reported in the literature for the moderate reaction conditions used in this
work. It should be noted that the Ru/C-200 catalyst has a lower Ru content than the other
catalysts supported on carbon, obtaining a higher yield.

Table 3. Ru-containing catalysts of LA hydrogenation supported on different materials.

Catalyst Time
(min)

Temperature
(◦C)

Pressure
(MPa)

GVL Yield
(%) Ref.

5%Ru/SiO2 160 130 1.2 75 [81]
5%Ru/Al2O3 160 130 1.2 76 [81]

5%Ru/ZSM-5C 240 70 3.0 93 [82]
1%Ru/H-β 120 90 4.5 66 [83]

3%Ru/HPNC 120 75 2.5 55 [84]
5%Ru/C 720 180 3.0 57 [85]

2%Ru/C-200 120 70 1.5 74 This work

The stability of the Ru/C-200 catalyst was investigated by reusing it for three reaction
cycles. After each run, the catalyst was washed with water and ethanol, dried at 80 ◦C, and
loaded to the next reaction cycle.

It was found that the catalyst retained good catalytic activity and selectivity (see
Table 4) after three reaction cycles. LA conversion and selectivity to GVL decreased by
approximately 12% after the third cycle. The decrease in activity could have been due to
blockages of some active metal centers caused by the adsorption of reagents or reaction
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products. Studies on catalyst recycling have demonstrated the robustness of these catalysts,
indicating their potential for use in industrial applications.

Table 4. Levulinic acid conversion (XLA), γ-valerolactone selectivity (SGVL), and γ-valerolactone
yield (ηGVL) of the Ru/C-200 catalyst in the different reuse cycles.

Run XLA (%) SGVL (%) ηGVL (%)

1 82 90 74
2 78 82 64
3 72 78 56

4. Conclusions

Activated carbon was prepared from rice husk by hydrothermal treatment. The
mentioned material was used as a support for ruthenium catalysts that were utilized in the
hydrogenation reaction of levulinic acid to γ-valerolactone. The metal/acid bifunctionality
required for this type of reaction could be achieved satisfactorily. In addition, an optimal
reduction temperature of the Ru metal precursor was found, in order to maximize LA
conversion and selectivity to the desired product (GVL). For the catalyst whose reduction
temperature was 200 ◦C (Ru/C-200), a conversion of 82% with a GVL yield equal to 74%
was obtained.

The operating conditions for the reaction carried out were mild (70 ◦C and 1.5 MPa)
and fell within the range of those reported in the bibliography. It should be noted that
the highest yield occurred for the Ru/C-200 catalyst that presented the lowest acidity and
a high proportion of RuO2. The catalyst showed satisfactory performance when it was
reused in three reaction cycles.
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