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Abstract Natural membranes are organized structures of
neutral and charged molecules bearing dipole moments
which generate local non-homogeneous electric fields.
When subjected to such fields, the molecules experience
net forces that can modify the lipid and protein organiza-
tion, thus modulating cell activities and influencing (or
even dominating) the biological functions. The energetics
of electrostatic interactions in membranes is a long-range
effect which can vary over distance within r−1 to r−3. In the
case of a dipole interacting with a plane of dipoles, e.g. a
protein interacting with a lipid domain, the interaction is
stronger than two punctual dipoles and depends on the size
of the domain. In this article, we review several contribu-
tions on how electrostatic interactions in the membrane
plane can modulate the phase behavior, surface topography
and mechanical properties in monolayers and bilayers.
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Introduction

Biological membranes are the most important electrified
interfaces in living systems and can support electrical fields
from different origins. Due to the ion concentrations being
different between the inside and outside of the cell, a
diffusion potential gradient normal to the membrane is
generated of about 107 V m−1 (Clarke 2001). Moreover,
when a charged molecule is inserted into the membrane,
it creates an electrical double layer which in some cases
is equivalent to a layer of permanent dipoles. The
intensity of the equivalent dipoles can then be tuned by
varying the Debye–Hückel screening length of the
double layer trough adjustment of the ionic strength in
the aqueous medium. Insertion of a charged protein into
the membrane generates local non-homogeneous electro-
static fields of the order of 107–109 V m−1 (Groves et al.
2000; Clarke 2001; Brockman 1994). In membranes with
phase coexistence, the presence of domains generates in-
homogeneous electrostatic fields both inside and outside
the domain, as well as unequal electrostatic interactions
between the molecules in each phase and along the lateral
interface between the two phases. Furthermore, domains
show electrostatic repulsion to each other that extends to
inter-domain distances of several micrometers, with
electrostatic interactions between macroions and domains
having also been observed.

In this review, we will focus on the electrostatic
interactions in the membrane plane and how these
interactions can modulate the surface topography and phase
coexistence in monolayers and bilayers. In biphasic
systems, the domains generate an electrostatic field with a
geometry that depends on the domain shape and size. The
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effects of such electrostatic fields on the mechanical
properties of the membrane are also discussed.

Phase diagrams of lipid mixtures with a charged
component

The presence of a charged component in a mixture has a
profound influence on lipid mixing. The melting temper-
atures of charged membranes are typically lower than those
of neutral ones, since the charges on the headgroups repel
each other, a fluid state with a larger area per lipid is
favored. In monolayers, the effect of an electrostatic field
on the lipid phase diagram has been clearly shown, and, for
binary mixtures with dihydrocholesterol, the application of
an electrostatic field gradient at pressures below the critical
pressure produces a liquid–liquid phase separation in a
monolayer that is otherwise homogenous. However, at
pressures slightly above the critical pressure, a field
gradient induces a large concentration gradient without
phase separation (Lee et al. 1994; Lee and McConnell
1993). In these experiments, although the electrostatic field
was created using electrodes, similar potential gradients can
be generated when a charged molecule is inserted into the
membrane (Groves et al. 2000).

Mixed monolayers and bilayers composed of lipids with
a charged component have been studied by different
techniques. In general, electrostatic repulsion prevents the
formation of large clusters of charged molecules (Huang
and Feigenson 1993). It is known that the miscibility
depends strongly on pH, and thus on the degree of
ionization of the charged molecule (Garidel et al. 1997;
Garidel and Blume 1998; Vega Mercado et al. 2011)
(Fig. 1). Furthermore, ordered-liquid crystalline phase
transitions in bilayers of charged lipids are accompanied
by a decrease in the electrostatic free energy, mainly as a
result of bilayer expansion. For a uniform charge distribu-

tion, the Gouy–Chapman theory in the electrical double
layer predicts a decrease of the transition temperature with
increasing charge density. For instance, an increase of
charge per polar group from one to two elementary charges
in phosphatidic acid (PA) lowers the transition temperature
by about 20°C, in agreement with this theory. Small
changes in pH are sufficient to induce isothermal phase
transitions (Träuble and Hansjörg 1973). In addition, the
biphasic region of the phase diagram for ternary mixtures
with cholesterol is highly reduced when a neutral lipid is
replaced by a charged one (Vequi-Suplicy et al. 2010;
Shimokawa et al. 2010), with the thermal stability of the
two-phase region of mixtures also decreasing.

Inorganic ions and macroions

Even small changes in the ionic environment can induce
gross alterations to the bilayer structure. In both monolayers
and bilayers, the interaction of lipids with different ions
depends on the ion nature, on the lipid headgroups and also
on the degree of unsaturation of the lipid hydrocarbon chain
(Maggio and Lucy 1976; Mattaij et al. 1989). Divalent
cations (Mg2+ and Ca2+) generally increase the transition
temperature of anionic phospholipids and sphingolipids and
condense the membrane by charge neutralization, and thus
they can also be used to induce isothermal transitions
(Maggio et al. 1987a; Shah and Schulman 1965; Maggio
and Lucy 1976). In contrast, monovalent cations (Li+, Na+,
K+) usually lower the transition temperature and expand the
membrane (Träuble and Hansjörg 1973; Lösche et al. 1985;
Sovago et al. 2007; Vega Mercado et al. 2011). This effect
has been ascribed to changes of the degree of ionization
(Lösche et al. 1985; Grigoriev et al. 1999; Miñones et al.
2002; Benedini et al. 2011) and to the disruption of the
hydrogen bonding (Vega Mercado et al. 2011; Wydro 2011),
both caused by the presence of ions.
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Fig. 1 Left Mole fraction of stearic acid at which phase segregation
occurs at 17 mNm−1 and 20°C on subphases at the indicated pHs. Gray
lines The phase transition is driven by pH changes at constant surface
pressure. Symbols The phase transition is driven by compression at

constant pH. Suphase composition: NaCl 0.5 M, EDTA 10 mM and
TRIS 10 mM (circles) or CaCl2 20 mM and TRIS 10 mM (triangles).
Right Representative images at 17 mN m−1 and the indicated conditions.
Reproduced from Vega Mercado et al. (2011), with permission
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Several examples of phase segregation induced by
divalent cations (mainly Ca2+) have been reported (Galla
and Sackman 1975; Hartmann et al. 1977; Haverstick and
Glaser 1987; Gadella et al. 1990; Flanagan et al. 1997;
Rodriguez et al. 2007; Lamberson et al. 2007; Hayden et al.
2009; Vequi-Suplicy et al. 2010; Shimokawa et al. 2010;
Vega Mercado et al. 2011) (Fig. 1). The phase separation
caused by Ca2+ ions is due to the decrease in the
Coulombic repulsion, which can be interpreted as a
cooperative effect of direct Ca2+ binding and an increase
in the screening effect. In PA membranes, even charge
inversion (a total number of bound counterion charges that
exceeds the negative PA charge) may happen at physiological
ion concentrations (Faraudo and Travesset 2007).

In a membrane that segregates into two phases, the
negatively charged domains can act as recognition patches
for positively charged macro-molecules or particles (see
references in Murray et al. 1999). A positively charged
protein may either adhere to the membrane or insert into the
bilayer. In both cases, it may change the phase behavior of
multicomponent membranes (Franzin and MacDonald 2001;
Roux et al. 1988; Carbone and MacDonald 1996; Maggio et
al. 1987b; Gawrisch et al. 1995; Hartmann et al. 1977;
Fidelio et al. 1984; Gambhir et al. 2004; Rauch et al. 2002)

The research group of Sasaki (Zendejas et al. 2011) was
able to monitor qualitatively the charge on the domain and
to analyze the change upon ion and protein binding. These
and other authors noted that lipid lateral redistribution leads
to an increase in the binding constant of the protein to the
membrane and consequently a rise in the affinity (Zendejas
et al. 2011; Heimburg et al. 1999; May et al. 2000; Shi and
Ma 2007).

Although monolayer systems are not a good model for
studying transmembrane proteins, they are able to shed
light on membrane–peripheral protein interactions. For
example, monolayer experiments have demonstrated that
MBP can induce a cholesterol-dependent segregation of
phases that can be further regulated by electrolyte concen-
tration of the subphase and by changes in the composition
of the non-sterol lipids (Rosetti et al. 2010). Interestingly, it
was observed that the presence of low concentrations of
amphipatic probes modifies the phase diagram in a charge-
dependent manner (Fig. 2).

It has been pointed out that a necessary condition for
electrostatically adsorbed proteins to induce lateral phase
separation in the membrane is the occurrence of deviation
from ideality due to nonelectrostatic interactions between
lipids of the same species (May et al. 2000; Rodriguez et al.
2007). Therefore, other effects in addition to those related
to electrostatic interactions should also be considered when
dealing with macroion–membrane interactions (e.g., curva-
ture effects). Related to this, this type of phenomenon has
been reviewed in a very complete work by Marsh (2008).

In summary, all current evidence indicates that the
availability of the different species at the membrane in the
presence of charged surfactants can be regulated by local
changes of pH and of the ionic concentration via phase
segregation. In turn, when phase segregation is induced and
domains of charged molecules are generated, the presence
of these charged patches indirectly regulates the affinity of
proteins with the membrane.

Electrostatic fields

The phospholipid polar head group dipole is vectorially
oriented, which enables the molecule to act as a surface
sensor of the interfacial electrostatic field (Seelig et al.
1987; Bechinger and Seelig 1991). The application of
negative potentials to the hydrocarbon side of the interface,
with respect to the aqueous subphase, possibly induces
stretching of the molecule, and the phospholipid polar head
group dipole may bend toward the hydrocarbon phase
(Thuren et al. 1987), while the reverse may occur by the
application of a positive potential difference. In supported
membranes, topological transitions resulting from the
application of an electrostatic field have been reported
(Wilke et al. 2005). On the other hand, electrostatic fields
external and internal to the membrane, have been shown to
modulate the interfacial phosphohydrolytic activity (Thuren
et al. 1987; Maggio 1999). The electrostatic effect on this
activity is inherently coupled to the interactions and
location of Ca+2 at the interface. These electrostatic
perturbations can act as supramolecular transducing factors,
which might even favor a better exposure of the acyl ester
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Fig. 2 Mixing/demixing lateral pressure (πM ) as a function of the MBP
content for monolayers of myelin lipids with negatively charged
(triangles and circles) and positively charged (squares) amphipatic
fluorescent probes at 0.8 mol% (filled symbols), 0.27 mol% (open
squares) and 0.4 mol% (open triangles and circles). The inset shows the
πM values as a function of the proportion of probe for films with
0.2 mol% of MBP, with the symbols representing the same as those in
the main panel. Reproduced from Rosetti et al. (2010), with permission
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bonds to cleavage in the active site of phospholipase A2
(Scott et al. 1990). Furthermore, hyperpolarization or
depolarization of the lipid interface by external or local
electrostatic fields can affect the phospholipid packing and
phase state as well as the effective coordination of Ca+2

(which is required for the nucleophilic attack by the enzyme
on the phospholipid substrate ) (Maggio 1999).

In two-phase monolayers, an applied electrostatic field
changes the distribution of domains (Wilke et al. 2006;
Wilke and Maggio 2006; Miller et al. 1987; Klinger and
McConnell 1993; Mi et al. 1997), with the application of
positive potentials above the monolayer inducing domain
migration generally away from under the air electrode,
while negative potentials cause domain attraction. This can
be explained by considering that the dipole moment density
of the molecules in the domains is generally higher than
that of the molecules in the continuous phase. In addition,
charged domains also respond according to the dipole
moment rather than to the net charge (Miller et al. 1987).
Related to this, the application of electrostatic fields has
been demonstrated to be a very convenient tool for
modifying the local domain distribution (Wilke and Maggio
2009; Wilke et al. 2010) as well as the domain size (Lee
and McConnell 1992), with the variation in the domain
density allowing domain–domain interactions and their
influence on the membrane mechanical properties to be
studied (see below). Moreover, modification of the domain
size permits the verification of the theoretical predictions
for the domain shape (McConnell 1991). However, domain
migration due to the application of an in-homogeneous
electrostatic field occurs only until the repulsive force
generated by the field on the domains is opposed by the
repulsive force exerted by all the domains in the lattice
(Wilke et al. 2006)

In contrast with that which occurs in monolayers, the
anionic molecules in bilayers are attracted by the anode, as
shown in GUVs (Zendejas et al. 2011) and also in
supported bilayers (Groves and Boxer 2002) with charged
lipid domains or with proteins bound to the domains.
However, Groves and Boxer noted that the direction of the
electrophoretic drift does not necessarily indicate the net
charge of a molecule, since the lateral field induces a bulk
electro-osmotic flow which can influence the drift velocity
of the proteins and lipids in the membrane (Groves and
Boxer 1995; Stelzle et al. 1992). In bilayers, on the other
hand, the opposing effect of the dipoles in each hemilayer may
erase the dipolar forces present in the lipid monolayers.

In relation to charged surfactants inserted into mem-
branes, Andelman et al. (1986) pointed out that two
different behaviors can be identify at high and low ionic
strengths. At a high salt concentration, the charged film can
be described by effective dipole moments, with the free
energy of the system being similar to that of neutral dipolar

monolayers. At the other limit, however, the electrostatic
interactions are not screened and the system behaves in a
Coulomb-like rather than in a dipolar-like fashion (Andelman
et al. 1986). Nassoy et al. (1996) treated ionized latex beads
as dipoles by considering the subphase counter-ions, and
found a good agreement between the theoretically predicted
and the experimentally tracked bead motion. The electrostatic
field generated by a charge is different from that generated by
a dipole (e.g., the interaction energy varies as r−1 for charges
and r−3 for dipoles; r being the distance between charges or
dipoles). Also, the effect that an external electrostatic field is
different (e.g., a homogeneous field generates a torque on a
dipole and a force on a charge). Thus, the electrostatic effects
related to a charge are clearly distinguishable from the effects
related to a dipole.

In summary, it is important, but also difficult, to predict
how a charged molecule would behave as a consequence of
its electrostatic properties when inserted into a membrane.
Furthermore, it should be considered that the presence of a
membrane implies a discontinuity in the dielectric constant
and a diffusion barrier for the ionic species.

Effect of electrostatics on membrane rheology

Although not extensively studied, surface electrostatics can
also have profound influences on the membrane structural
dynamics through variations in elasticity and in the
membrane bending rigidity having consequences on the
deformability induced by surfactants and peptides (Rowat
et al. 2004; Böckmann et al. 2003; Kmetto et al. 2001).
Membranes may become unstable from long-wavelength
undulations due to Coulomb repulsion between excess
charges which affect the membrane bending rigidity. This
instability can be suppressed by free ions in solution which
screen Coulomb repulsions. Such phenomena appear to be
involved in spontaneous vesiculation, and its suppression
by added salts was observed in mixtures of ionic amphiphiles
(Kim and Sung 2002; Shoemaker and Vanderlick 2003).

In addition to the intrinsic mechanical properties of
membranes being affected by electrostatic interactions,
apparent diffusional effects related with this type of
interactions appear as emergent properties of biphasic
systems. In two-phase monolayers, ordered domain lattices
due to domain–domain electrostatic repulsion have been
observed (McConnell 1991), with the domain Brownian
motion being affected by the domain density, since the
motion of crowded domains is impaired by their interaction
with the other domains in the lattice, as shown in Fig. 3a
(Wilke and Maggio 2009). The apparent surface shear
viscosity (ηS) can be computed from the domain diffusion
coefficient, and it has been shown that it increases sharply
with the amount of the condensed phase (Fig. 3b; from

Biophys Rev



Wilke et al. 2010). Furthermore, Ding et al. (2002)
determined ηS using a different technique and found that
its variation with the percentage of condensed area was
analogous to that of the three-dimensional dispersion of
spheres in solvent with long-range repulsive interactions.

Nassoy et al. (1996) showed that a partially ionized latex
particle inserted into a surfactant monolayer is attracted to
the border of domains composed of neutral molecules in a
liquid-condensed phase due to dipolar interactions. These
authors determined the existence of an electrostatic field of
−30 V/cm at the border of the domains, which generated an
attractive energy on the bead as high as 300 kT.

In studies of diffusion properties in phase-separated
membranes, it was reported that the diffusion coefficients
tend to zero as the gel-phase area fraction approaches the
percolation threshold (Almeida et al. 1992; Ratto and
Longo 2002). Going further into the diffusion processes in
membranes, Forstner et al. (2008) modeled systems far
from the percolation threshold and found a dramatic
slowing down of diffusive propagation, not caused by
geometric effects but by the presence of interactions
between the domain and the diffusing species. These
authors also employed numerical simulations to carry out
a systematic study of the diffusion processes in monolayers,
and found a sensitive dependence on the interaction
strength, with small differences in the potential resulting
in orders of magnitude changes of the long-term diffusion
coefficient. Related to this, the interaction strength can be
easily altered by changing the domain size independent of
domain composition (Forstner et al. 2008). This research
group also found that there exists an electrostatic potential
strength threshold marking the sharp transition from almost
unaltered free diffusion to a diffusive process with a
drastically reduced diffusion coefficient. In other words,

two diffusing species, with only a small difference in their
interactions with domains, will have significantly different
propagations within the same environment. Thus, the
presence of domains can selectively regulate the diffusion
of a particle according to the electrostatic properties of the
particle and to the size of the domain (Forstner et al. 2008).

In bilayers, unlike in monolayers, domains can often be
observed to coalesce over time. However, stable ordered
superstructures of stripes and hexagonally ordered domain
lattices such as those occurring in monolayers can also be
observed (Baumgart et al. 2003; Rozovsky et al. 2005). In
addition, it has been shown that dipole–dipole interactions,
although still present, are attenuated in lipid bilayers (Liu et
al. 2005). Thus, domain–domain repulsion in bilayers
contains other non-electrostatic components (Groves 2007).

Not only does the domain size influence the diffusion of
a dipole close to a domain but also its shape, since it is
known that branched domains generate intense electrostatic

0

2x10-13

4x10-13

6x10-13

D
 / 

m
2  s

-1

distance between domain borders / µm 
0 5 10 15 20 0 25 50 75 100

10-10

10-9

10-8

10-7

10-6

 N
 s

 m
-1

mole% DSPC

a b

Fig. 3 a Domain diffusion coefficients in a lipid monolayer mixture
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Fig. 4 Mixed monolayers composed of stearic acid and dimyristoyl
phosphatidylcholine on subphases at pH 4. Domains were locally
crowded and subsequently compressed. Image sizes: 300 × 300 μm2
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field zones in the more curved regions of the domain
periphery (Hartel et al. 2005). The domain shape in
monolayers has been studied in detail by McConnell
(1991), who theoretically predicted that the equilibrium
shape of a domain is rounded or flower-like depending on
the size of the domain with respect to a critical size, which
in turn depends on the ratio of the line tension and the
difference in the dipole density, as well as on the percentage
of the condensed area.

Although a large number of studies focusing on the
shape of neutral domains have been performed, there are
few studies related to charged domains. The research group
of Janmey formulated a mathematical approach similar to
the one presented by the McConnell group, but by
considering the net charge on each molecule forming the
domain. Compared to a neutral domain, the free energy of
the domain has a fourth term that takes into account the
effect of charge–charge repulsion on the domain shape. As
expected, they found that at a high charge density, a non-
circular shape minimizes the domain energy. Furthermore,
the critical size at which instability occurs increases with
the ionic strength (Foster and Janmey 2001; Cevers and
Janmey 2002). Using another approach, Loverde and Olvera
de la Cruz (2007) explored the asphericity of charged
domains using molecular dynamics simulations, and found
that increasing the electrostatic contribution influences the
shape of the domains and strongly increases the correlation
and ordering between domains. However, no extensive or
systematic experimental study oriented toward the analysis
of the shape of charged domains has yet been performed.

The size of a domain, which in turn defines its
equilibrium shape, is usually distinctive for each given
system with the process of domain nucleation defining the
amount of nuclei, and thereby the domain size in a given
experimental condition. Moreover, the kinetics of phase
separation, in relation to the perturbation velocity, is also a
key factor in the domain size and domain shape in the case
of out-of-equilibrium conditions. The effect of the level of
supersaturation on domain shape has been extensively
studied by the research group of Castillo (see references
in Gutierrez-Campos et al. 2010).

Since the size and shape of the domain determines the
geometry of the electrostatic field generated by the domain,
it is important to know the physicochemical reasons for the
existence and evolution of the composition-dependent
domain shape. Then, by knowing the factors that underlie
the domain shape and distribution, this allows the surface
topography of the system and the electrostatic effect of the
domain on the particles inserted into the membrane to be
controlled. Domain environment, for example, affects the
domain size and shape (Bernchou et al. 2009), which is
illustrated in Fig. 4 (unpublished results). In the region of
high domain density, domains are small and circular (white

arrow), whereas in the regions of low density, flower-like
domains occur (black arrow). The circular and small
domains influence the motion of particles inserted into the
membrane in a different manner than that of the larger and
flower-like domains, as mentioned above. This effect may
also be amplified to a membrane having different effective
mechanical properties due to local electrostatics.

Conclusions

Electrostatic interactions are of paramount importance in
defining the phase diagram of a membrane and they
modulate the affinity of proteins to the biosurface. In
homogeneous membranes, the presence of charges inserted
into the membrane or in solution changes the mechanical
properties. In two-phase monolayers, the electrostatic field
generated by domains greatly influences the motion of the
particles inserted into the monolayer. However, in bilayers,
this issue is still an open question along with the manner in
which a charged surfactant inserted into a membrane will
respond to an electrostatic field. Furthermore, it is intriguing
that monolayers and bilayers appear to behave differently with
respect to these interactions.
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