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Chagas disease or American trypanosomiasis is a neglected tropi-
cal disease caused by the protozoan parasite Trypanosoma cruzi 
and has a widespread distribution in Latin America. WHO esti-
mate that near 15 million individuals are infected worldwide and 
50,000 children and adults die annually as a result of clinical 
complications of T. cruzi-induced heart disease and their lack 
of effective treatment.1 The risk of transmission of the disease 
is high because the infection has been detected in non-endemic 
areas of the Americas and Europe due to large scale migrations. 
In light of these problems, it is essential to develop new strate-
gies for the prevention and control of Chagas disease. At present, 
vaccines and immunotherapies targeted at T. cruzi infection are 
practically non-existent. In parallel with the efforts toward the 
identification of vaccine candidates, several adjuvants have been 
assayed to generate protective immunity to T. cruzi, but with lim-
ited success.2,3 In recent years, an increasing body of evidence has 
revealed the strong adjuvant properties of ARC.4-6 These vesicles 
enclosed by one or more bilayers prepared with total polar lipids 
(TPL) extracted from microorganisms belonging to the domain 
Archaea are more avidly internalized, both in vitro and in vivo, 
by macrophages and antigen presenting cells than conventional 
liposomes.7,8 They also differ from liposomes in that the inclu-
sion of immunomodulators is not necessary to improve the adju-
vancy beyond that of a simple depot effect,9 favoring scale up 
production.

Archaeosomes (ARC), vesicles made from lipids extracted from Archaea, display strong adjuvant properties. In this study, 
we evaluated the ability of the highly stable ARC formulated from total polar lipids of a new Halorubrum tebenquichense 
strain found in Argentinean Patagonia, to act as adjuvant for soluble parasite antigens in developing prophylactic 
vaccine against the intracellular protozoan T. cruzi, the etiologic agent of Chagas disease. We demonstrated for the first 
time that C3H/HeN mice subcutaneously immunized with trypanosomal antigens entrapped in these ARC (ARC-TcAg) 
rapidly developed higher levels of circulating T. cruzi antibodies than those measured in the sera from animals receiving 
the antigen alone. Enhanced humoral responses elicited by ARC-TcAg presented a dominant IgG2a antibody isotype, 
usually associated with Th1-type immunity and resistance against T. cruzi. More importantly, ARC-TcAg-vaccinated mice 
displayed reduced parasitemia during early infection and were protected against an otherwise lethal challenge with the 
virulent Tulahuén strain of the parasite. Our findings suggest that, as an adjuvant, H. tebenquichense-derived ARC may 
hold great potential to develop a safe and helpful vaccine against this relevant human pathogen.
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In this regard, in an earlier study we reported the abil-
ity of ARC composed of the TPL of a new H. tebenquichense 
strain found in Argentinean Patagonia to elicit potent antibody 
responses to entrapped bovine serum albumin (BSA) in mice.10

ARC have demonstrated great potential as adjuvant for immu-
nogens aimed at killing intracytoplasmic bacterial pathogens 
such as Listeria monocytogenes.11 However, the ability of ARC-
based vaccines to protect against intracellular protozoan parasites 
has yet to be tested.

The goal of our current study was to evaluate whether H. 
tebenquichense-derived ARC may serve as adjuvant for soluble 
parasite antigens in developing prophylactic T. cruzi vaccine.

T. cruzi protein antigens (TcAg) present in a whole homog-
enate (WH) of parasites were prepared from epimastigote forms 
disrupted by pressure-depressure as previously described.12

ARC containing TcAg (ARC-TcAg) were prepared as state 
in Gonzalez et al.,10 except that TcAg in phosphate buffered 
saline (PBS, 2.5 mg/ml) was used as the aqueous phase for the 
hydration of the thin lipidic film. Proteins were quantified by 
Bradford method,13 and phospholipids quantified by a colorimet-
ric method.14

Female 6–8-week-old C3H/HeN mice obtained from 
University of Buenos Aires, Argentina, were selected for in 
vivo efficacy studies. Research was conducted according to the 
National Research Council’s guide for animal care and was 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

410	 Human Vaccines & Immunotherapeutics	 Volume 9 Issue 2

Detection of IgG subclass responses was performed as 
described above, except that the secondary antibodies were specific 
for mouse IgG1 and IgG 2a (1:1000, Santa Cruz Biotechnology, 
Catalog # sc-2060 and sc-2061 respectively).

Immunized animals were challenged intraperitoneally (ip) 
at 4 weeks postboost with 150 bloodstream trypomastigotes of 
Tulahuén strain of T. cruzi. Parasitemia was monitored by daily 
counting of number of trypomastigotes per 5 μl of fresh blood,16 
and mortality was recorded.

Data were analyzed using GraphPadPrism 5.0 software 
(GraphPad Software Inc.). The Student’s t-test, Mann-Whitney 
and Fisher’s exact tests were conducted to compare the possible 
differences between the mean values of the different groups. P 
values of < 0.05 were considered to be statistically significant.

The ARC preparations were multilamellar, with a mean 
size of 564 ± 22 nm and Z potential of -50 mV. The amount of 
antigen (proteins) and phospholipids contained in ARC was 40 
μg/ml and 20 mg/ml, respectively. The protein/lipid ratio was  
2 μg/mg. Following sc immunization with ARC-TcAg, mice 
exhibited serum specific IgG antibody titers between 3 and 6-fold 
higher (p = 0.007) than those observed in TcAg group (Fig. 1A). 
As expected, immunization with empty ARC failed to evoke any 
anti-T. cruzi IgG response. After vaccination, the analysis of IgG 
isotype profiles revealed that both TcAg-specific IgG1 and IgG2a 
antibodies were induced in the ARC-TcAg and free TcAg groups. 
However, the IgG2a/IgG1 ratio for ARC-TcAg group was signifi-
cantly (p = 0.04) higher than that calculated for TcAg group (2.9 
vs. 0.8, respectively, Fig. 1B).

When mice vaccinated with ARC-TcAg were challenged with 
bloodstream Tulahuén trypomastigotes, we observed a reduction 
(p = 0.03) in bloodstream parasite levels at the peak of parasit-
emia (17–19 dpi) when compared with animals that received free 
TcAg (Fig. 2A). Also, statistical analysis revealed a significant (p 
= 0.04) difference in mortality rates between both groups. While 
all animals vaccinated with ARC-TcAg survived lethal challenge, 
only 20% of TcAg immunized mice remained alive after 31 days 
of infection (Fig. 2B). Another group of naive mice was infected 
with the same number of trypomastigotes and showed 100% of 
mortality at the peak of parasitemia. In addition, all control mice 
vaccinated with empty ARC developed fatal infection within 25 
days post-infection.

Discussion

In recents years, an increasing body of evidence has revealed the 
strong adjuvant properties of archaeosomes prepared from differ-
ent archaeobacteria.5 Particularly, in an earlier study we demon-
strated the adjuvant activity of archaeosomes formulated from total 
polar lipids of a new H. tebenquichense strain found in Argentinean 
Patagonia when they were sc administered along BSA in mice.10

We herein used a murine model of acute chagasic infection to 
assess the potential of these new archaeosomes to act as adjuvant-
ing vesicles with incorporated TcAg for prophylactic vaccination 
against T. cruzi.

We demonstrated that vaccination with ARC-TcAg induces 
enhanced type-1 immunity against parasite infection as 

approved by our internal Ethics Committee. Groups of five mice 
were immunized subcutaneously (sc) in the back on days 0, 14 
and 21 with 12.5 μg of free TcAg in PBS or 12.5 μg of ARC-
TcAg. Control mice were injected with equivalent amount of 
empty ARC. The injection volume was 50 μl.

To evaluate humoral response, blood was collected from the 
tail vein at 21 days after the last immunization and sera were 
analyzed by enzyme-linked immunosorbent assay (ELISA) for 
the presence of anti-T. cruzi antibodies as previously described.15 
Briefly, the antigen added to the plates was T. cruzi proteins pres-
ent in a WH of parasites (200 μg/ml). The secondary antibody 
conjugated with peroxidase was goat anti-mouse IgG (1:5000, 
Pierce, Catalog # 0031430) and the substrate was 2, 2'-azino-bis 
(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS, Sigma-Aldrich 
Co). Each serum was analyzed in 2-fold serial dilutions. The 
optical density (OD) was measured at 405 nm using an ELISA 
reader (Multiskan Ex, Thermo Labsystems). End-point titers 
were defined as the highest serum dilution that resulted in an OD 
value greater than that of the mean + three standard deviations of 
preimmune mouse sera.

Figure 1. Induction of humoral response to T. cruzi in vaccinated C3H/
HeN mice. (A) ELISA analysis of antibody isotypes 3 weeks after the last 
immunization. (B) Ratio of IgG2a to IgG1 antibody titers. Data represent 
mean ± SEM of two independent experiments.
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ARC-TcAg preparation. Next steps should include the explora-
tion of T. cruzi vaccines constituted by more defined parasite 
antigens formulated in ARC.

Chagas disease is increasingly understood as a problem of 
parasite persistence within the host, rather than primarily as a 
result of an inappropriate immune response driving pathology,25 
which has generated much interest in anti-T. cruzi vaccine devel-
opment. Nonetheless, the potential harmfulness, complexity, 
expensiveness and difficulties to scale up some promising vaccine 
approaches can spoil further attempts of industrial production 
and acceptation by regulatory organisms. In this regard, ARC 
can be produced by scalable techniques and from sustainable 
sources. Remarkably, these lipid vesicles are derived from LPS-
free archaea and have displayed low toxicity upon parenteral 
administration in rodents.26

In conclusion, this is the first demonstration that T. cruzi 
antigens can be incorporated succesfully into ARC and, upon sc 
inoculation in mice, the resulting immunogen is capable of prim-
ing a protective response against an intracellular parasite infec-
tion. These findings indicate that ARC show promise as safe and 

measured by T. cruzi-specific IgG2a response in C3H/HeN 
mice. In our earlier study, upon sc immunization of this mouse 
strain, BSA entrapped in ARC elicited similar levels of both IgG1 
and IgG2a.10 Thus, we foresaw a balanced antibody isotype dis-
tribution in mice immunized with ARC-TcAg. Unexpectedly, 
the increased level of protection observed in these vaccinated 
animals was reflected by a prevalence of the anti-T. cruzi IgG2a 
fraction. The reason for this discrepancy is likely due to the dif-
ferent nature of the immunizing antigens. Previous studies have 
indicated that a dominant Th1 immune response is essential 
for the early control of Chagas disease.17 It is known that cir-
culating antibodies play a role in parasite killing and antibody 
titer/specificity, or a combination of these factors, are impor-
tant in resistance to T. cruzi infection. Moreover, an efficient 
protective response against T. cruzi requires the induction of 
IgG2a, a Th1-type immunity-associated isotype.18 Therefore, 
we hypothesized that the Th1-biased response elicited by ARC-
TcAg in immunized mice would help confer protection against 
acute chagasic infection. To demonstrate this, vaccinated mice 
were then challenged with one of the most virulent strains 
of T. cruzi.19 Vaccination with ARC-TcAg clearly limited the 
course of T. cruzi infection in mice in terms of parasitemia and 
mortality.

Our study focuses on the early humoral immunity after chal-
lenge that contributes to control acute T. cruzi infection. The 
longer-term persistence of ARC-TcAg-induced specific anti-
body titers is presently unknown. However, based on our pre-
vious findings, it is conceivable that the ARC-TcAg vaccine is 
likely to develop lasting primary IgG2a response and enhanced 
immunological memory.10 Even though antibodies may be seen 
as reliable surrogate predictors of protection by vaccines, it is 
widely accepted that cell-mediated immune functions are criti-
cal for eradicating infections caused by intracellular pathogens, 
including T. cruzi. Both CD4+ and CD8+ T cell subsets appear 
to be important for the generation of effective immunoprotec-
tion against this protozoan infection and it is therefore desir-
able that the ARC-TcAg vaccine be capable of eliciting such 
cellular responses. Nevertheless, the lack of experimental data 
to clarify the ability of ARC-TcAg to raise cell-mediated pro-
tective immunity is a shortcoming of our current study. More 
extensive investigations on the induction of long-term memory 
and cellular responses upon immunization with ARC-Tc Ag, 
including passive transfer of antibodies and/or immune cells, 
will be performed in order to elucidate the protective activity of 
our formulation.

The mechanism responsible for adjuvancy of ARC remains 
elusive. ARC have been characterized as poor inducers of innate 
immunity via toll-like or CD1 receptors.20,21 However, the presence 
of glyco-portions of archaetydil phosphate groups glycosidically 
linked to short oligosaccharides,22,23 seems to be important to the 
adjuvanting process. Particularly for H. tebenquichense-derived 
ARC, their unique content of archaetidyl phosphatidylglycerol, 
phosphatidylglycerophosphate methyl ester and glycosilated sul-
pholipids, added to the presence of mannose-containing archaeo-
lipids,24 enabling interaction with specific receptors on APC, 
probably contributed to the enhanced immunogenicity of the 

Figure 2. The effect of vaccination on the parasitemia (A) and mortality 
(B) of C3H/HeN mice infected with T. cruzi. *p = 0.03; #p = 0.04. Results 
are representative of two independent experiments.
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helpful carrier-adjuvant for the design of future vaccines against 
this human pathogen.
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