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Probing many-body effects in harmonic traps with twisted light
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We explore the potential of twisted light, a structured beam carrying orbital angular momentum, as a tool to
unveil many-body effects in parabolically confined systems. According to the generalized Kohn theorem, the
dipole response of such a multiparticle system to a spatially homogeneous probe is indistinguishable from the
response of a system of noninteracting particles. Twisted light however can excite internal degrees of freedom,
resulting in the appearance of new peaks in the multipole spectrum which are not present when the probe is
a plane wave. We also demonstrate the ability of the proposed twisted light probe to capture the transition
of interacting fermions into a strongly correlated regime in a one-dimensional harmonic trap. We report that,
by suitable choice of the probe’s parameters, the transition into a strongly correlated phase manifests itself as
an approaching and ultimate superposition of peaks in the second-order quadrupole response. These features
are observed in exact calculations for two electrons and well reproduced in adiabatic time-dependent density-

functional theory simulations.
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I. INTRODUCTION

Twisted light (TL), also known as optical vortices, des-
ignates a family of highly nonhomogeneous optical beams
which have single or multiple phase singularities and carry
orbital angular momentum (OAM), among other interesting
features [1-3]. Promising applications of TL have been iden-
tified in areas such as telecommunications [4,5], quantum
computing [6], nanotechnology [7-9], and enhanced resolu-
tion imaging [10,11], to name just a few [12-14]. From a
fundamental point of view, researchers seek to understand the
generation, detection, and interaction of TL with matter. The
latter is strongly affected by the spatial structure of the light
field, and the peculiar features of TL have been shown to pro-
duce novel optical effects [14]. For example, rare transitions
in atoms and nanostructures resulting from new selection rules
[15-17], distinct time scales and lifetimes [18], and degree of
spin polarization for OAM exchange in GaAs [19], as well
as coherent photon-exciton dynamics in GaN [20] have been
observed. Based on this recent progress, a variety of new
phenomena undetectable by plane waves are expected to be
revealed with TL. Until now there has been an emphasis on
studies of the interaction of TL with single particles, to the
detriment of research contemplating the role of interactions
[21-24]. Here we investigate the response of multiparticle
parabolically confined systems, notorious for their many-body
effects going undetected when the probe is spatially homo-
geneous [25]. We show theoretically key ways in which the
many-body physics can be unveiled by TL.

Near the ground state, electrons and holes in quantum
wires and dots, ions in Paul traps, and Rydberg atoms in
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optical lattices are all well described as systems of interacting
particles trapped in parabolic potentials [26—29]. For atoms,
the interaction is modeled as a contact potential [30], whereas
for electrons and ions the interaction is via a Coulomb poten-
tial [25,31]. The correlation regime in harmonic traps can be
controlled by varying the particle-particle interaction strength
or the confinement wy, and it also depends on the number of
trapped particles.

By virtue of the high tunability and the availability of an-
alytic (weak and strong interaction limits) [30,32,33] or very
accurate one-dimensional numerical solutions [34,35], these
systems provide a good testbed for many-body physics. More-
over, harmonic traps can be realized experimentally and can
be used as quantum simulators to study emergent many-body
phenomena such as superconductivity, superfluidity, quantum
phase transitions, and topological order [36,37].

The Letter is organized as follows. In Sec. II we describe
the Hamiltonian of harmonic traps containing several interact-
ing particles and briefly review the generalized Kohn theorem.
In Sec. IIT we present the mathematical description of twisted
light and its interaction with charged particles. In Secs. IV
and V we provide details on the physical system and on the
computational methods, respectively. In Sec. VI we present
and discuss the main results of our study and in Sec. VII we
give a summary and the conclusions.

II. HARMONIC TRAP

The Hamiltonian of N particles of mass m in a
harmonic trap is separable into a center of mass (c.m.)
part and another part that depends on the internal degrees
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of freedom, H()(I'] .., P PN) = I‘I(‘):m(R, PR) +
H{(qi...qn-1,Pg, ---Pgy_,); the transformation is given
by the Jacobi matrix [27]. The c.m. system is equivalent to a
single particle with mass M = Nm,

o 2M 2
where R = (va r;)/N and Pz = va p:. For N = 2 and tak-
ing q=(r; — rz)/ﬁ and p, = (p; — pz)/ﬁ, the internal
Hamiltonian reads
P, 1
HY = 3% + Smajq’ + Vin (@), )

with Vi (q) being the interaction between particles. Other
definitions are valid as long as [R, Pr] = if and [q;, p,;] =
ifi hold.

The generalized Kohn theorem (GKT) [25,26] assumes
a harmonic confinement of a many-electron system and the
applicability of the dipole approximation to the interac-
tion Hamiltonian between (long wavelength) light and the
confined electrons. Under these two assumptions, the GKT
establishes that the response is given by the center-of-mass
degree of freedom or, in other words, that the electron-electron
interaction does not affect the response. The same two hy-
potheses are made in the harmonic potential theorem [38],
closely related to the GKT. The assumption of parabolic
confinement holds for realistic quantum dots [27,28]. For
nonharmonic traps many-body effects can be observed in the
dipole spectrum [39], an effect that has been studied over
the past 30 years [40—42]. Here we explore the consequences
of dropping the second assumption of the GKT by studying
the optical excitation of harmonically confined electrons with
structured light, whose interaction cannot be modeled using
the dipole approximation [43,44].

III. RESPONSE TO TWISTED LIGHT

In TL a phase singularity associated with the topologi-
cal charge [ gives rise to a spatially nonhomogeneous and
hollow intensity distribution with vanishing electromagnetic
fields at the beam center. The TL field carries OAM in the
direction of propagation. We study the head-on excitation of
a matter system placed at the beam center; in this case, the
OAM carried by the beam is intrinsic [3]. In the Coulomb
gauge, V-A(r, t) = 0, and the scalar potential can be chosen
to vanish, ® = 0. We can then write the vector potential of a
monochromatic TL field in cylindrical coordinates as [45]
A(r,1) =" [quz(r)e”“)e(7 — iaﬂl?c]"lJr—"(r)ei(’Jr")“’eZ} +cec.,

q: \/z
3)

with § = ¢,z — ot and frequency given by «® = c*(¢? +
qf), where 1/g, is a measure of the lateral beam size.
The radial profile is described by a Bessel function
F,1(r) = AoJi(gq,r) and the polarization vector is given by
e, = ¢7%(e, +ioe,)/2 = (e, +ioe;)/+/2. To describe the
TL-matter interaction we choose the TL gauge introduced in
Ref. [46]. In the TL gauge the interaction with a small, planar,
and localized structure placed close to the phase singularity

TABLE 1. Selection rules of one-dimensional two-particle
harmonic-trap response to TL probe. Poles in brackets.

Observable D=—-eX 0 =—e(@X?+q?)
A= DY), [(2n + Day] 0%, [2nwy)

A= DP [(2n+ 1) O [2nwo]l + O [, ]
A D2, [(2n+ Dax] 0 1q [2n00;0%511)]

can be written in a gauge invariant form. For a parallel TL
beam, sgn(o) = sgn(l), with circular polarization o = 1, the
interaction becomes H'" = [—e/(I + 1)]ry - 3,A, where e is
the electron charge. We consider a collimated beam (g,/q, <
1), for which the second term in Eq. (3) can be neglected and
the interaction thus simplifies to a scalar potential

o lewFg(r)

_ - Y Hif i) e—if
=TT D [—(x+iy)e” +x—iy)e™], @

where we used that x iy =r, - (x £ iy) and r'e’? = (x +
iy)! . Near r = 0, we have J;(¢q,r) ~ (g,r)' /(2'1!). The inter-
action with an N-particle compact object placed at r = 0 is
then described by

N
_ EOQr
gi= = ¢ x2 —y2) sin(wt) — 2x;y; cos(wt), (5)
I 2\/— ; yz) Vi
_ eEoq?
H=? = x — 3x;y; sm(a)t)
! 12¢2 & Z i
+ (7 — 3vix}) cos(er), (6)

where Ey = wAq. When [ = 0 the field couples to the dipole.
For two particles in one dimension we can rewrite Egs. (5)
and (6) in terms of c.m. and Jacobi coordinates as

eEO‘]r

H=' = > (2X? + ¢*) sin(wt), (7
HI= = eiﬁjﬁ(zﬁ 1 Xg?) sin(wt). 8)

Notice that for / =1 the interaction with TL is separable
into c.m. and internal parts; for [ > 2, however, separability
breaks down and the system’s response can no longer
be described as the sum of the responses of c.m. and
internal systems. For a weak applied field, the response
can be expanded in a power series of the strength Ej.
The linear (xEy) and second order (o<E ) responses of an
observable O satisfy (OM)y 2l \IJOIO|‘le)(\IJk|H1|\IJ0) and
(OP) o¢ Y, (WolOWy) (W | Hf[W,,) (W, | Hy [ Wo) — [47-50],
where {|W;)} are the eigenstates of Hy. As a consequence,
only if the interaction and the observable operators have the
same parity will the response be first order in the perturbation;
otherwise, the first nonvanishing response will be of second
order. In Table I we list the dipole D= eZN X))

and quadrupole (Q = (—e Y Y £?)) responses of a small
(compared to the beam S waist) one dimensional harmonic
trap placed at the TL probe’s center (dark for ! > 0), for
three different spatial structures of the probe characterized by
1 =0, 1, 2. The superscript labels the order of the response
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FIG. 1. Density (in cyan) of a two-electron quantum wire with
confinement strength wy = 0.1/u;" placed at the TL beam center. TL
beams with / = 2 and lateral beam waist 1/q, = 34, 7aj, and 11a;
are shown in purple, red, and green, respectively. Near r = 0 we can
approximate J,(g,7)  (g,7)* as long as 1/q, > L*, where L* is a
measure of the system’s size.

and the subscript whether the response is from the c.m.,
internal, or both. The frequencies of the allowed transitions
are indicated in brackets. D{!) [(2n + 1)w] corresponds to
GKT: for an /[ = 0 homogeneous probe the dipole response
is equal to the c.m. response and first order in the field, with
poles at the odd c.m. transitions a)g','(nz'n 41 = @2n+ Doy.
We focus on the quadrupole response where the correlation
effects show up (the dipole response can only reveal the c.m.
spectrum; see the first column of Table I).

In order to evaluate whether a TL probe is able to capture
relevant many-body physics we investigate the transition into
a strongly correlated regime, which for fixed particle-particle
interaction corresponds to the limit wy — 0. As a proof of
concept we perform numerical calculations for a system of
parabolically confined electrons. We expect analogous results
for multiple-ion Paul traps. The interaction between electrons
is modeled with a soft-Coulomb potential [51,52]

&2

Vin(g) = ———r=-
V (V29 + @

We use atomic units (a.u.) for all the calculations, 7 = e =
m, = ag = 1, and choose @ = 1. In the next section we discuss
realistic parameters for quantum wires and TL probes.

€))

IV. PROBE SETUP AND SYSTEM SIZE

To ensure a large beam waist (characterized by 1/g,)
we consider a collimated probe beam, g, = 27 /A > ¢q,. The
spatial structure of the TL beam can be approximated as
Ji(g,r) = (q,r)l/(ZIZ!) near r = 0, which gives us control
over the optical selection rules by varying / [Egs. (5) and (6)
are valid in this region]. The beam waist 1/g, is to be tuned
such that the system fits well within the region of validity of
this approximation. In Fig. 1 we plot the spatial structure of
TL beams with [ = 2 for three different values of the beam

waist. A two-electron quantum wire is placed at the beam
center and characterized by its ground state electronic density
(in cyan in the figure). The maximum amplitude of the TL
probe is weak, but its variation in space is strong due to the
existence of the phase singularity at r = 0.

In order to apply the expressions to a real semiconductor
use effective units of length, energy, and time defined as
a; = (e/m")ag, Ha* = (m*/e*)Ha, and u} = (€*/m*)u,, re-
spectively, where € and m* are the relative permittivity and ef-
fective mass of the material. Taking the FWHM of the ground
state electronic density as a measure of the quantum wire’s
length our numeric calculations for wj = 0.5,0.2,0.1 1/uf
yield approximate sizes of L* =3,7,11 qaj for the wires.
If € =12.4 and m* = 0.067, which gives aj ~ 10 nm, the
lengths correspond to L =~ 30, 70, 110 nm, respectively.

From Fig. 1 it is evident that to probe a quantum
wire of size L* ~ 1laj, a beam waist of 1/g, > 7aj is
enough to ensure the validity of the approximation J>(g,r) ~
(g,r)*/(2%2!). Within the paraxial approximation 1/q, > 7a;,
implies A < 277a} ~ 4 x 107" m. A safe choice for [ =2
TL probe and two-electron quantum wires would be 1/g, >
L*, with L <« 7 x 107% m. A similar rationale can be ap-
plied to [ = 1 TL beams, but notice that for / = 1 we have
Ji1(g,r) = q,r/2, which has a larger spatial derivative than the
| = 2 case; therefore, the condition on the minimum waist size
is more restrictive for / = 1.

We would like to stress that, since TL can be tuned with
high precision in the laboratory, the requirements for the pro-
posed setup should not be an impediment. Even less so if
the proposed setup is designed as a quantum simulator, since
in that case one can also tune the harmonic trap with high
precision.

V. COMPUTATIONAL DETAILS

Before presenting the results of our study we discuss some
relevant computational details of the calculations. Both the
exact and time-dependent density-functional theory (TDDFT)
dynamics were computed in OCTOPUS version 9.0 [53] using
a 100 a.u. simulation box with 0.1 a.u. spacing. The ex-
act calculations were done using the modelmb functionality
in OCTOPUS [54] and the code was modified to output the
quadrupole moment in one dimension.

The interaction with the TL field is modeled as H} =
Eof(t) Zfl xfl“) in the calculations. The spatial dependence
is dictated by Egs. (5) and (6) and for the time dependence
we choose a step function f(¢) = rect(t — t/2), where 1 is
the duration of the pulse. For the spectra shown in the next
section we used a t equal to the time step, which is 0.005 a.u.
Other choices of 7 as well as a trapezoidal time function lead
to qualitatively identical results in terms of the position of the
peaks, which is the only feature of the spectra we analyze in
this work.

The first-order quadrupole response to the TL probe can be
computed as

0V(w) = FTIQV))/FTIEM)], (10)

where £(t) = Eof(t) is the external perturbation due to the
interaction between the harmonic trap and the TL field. The
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symmetries of the problem under study are such that when-
ever the interaction operator is even (I = 0, 2) the first-order
response Q) vanishes (see Table I). In this work we focus
on the first nonvanishing quadrupole response. Therefore, we
analyze the first-order quadrupole response Q) in the case
where the interaction operator is odd (I = 1) and the second-
order quadrupole response Q® in the cases the interaction
operator is even (I = 0, 2). The time-dependent quadrupole
can be computed from the evolution of the density p(x, ¢) as

N=2
o) = —e<ch,-2> = —e/ p(x, 1)x>dx. (11)

0D () in Eq. (10) is simply the variation of the quadrupole
moment due to the action of a TL probe of odd topologi-
cal charge [, ie., QV(t) =80(t) = O(t) — Q°, with Q° =
—e [ p°(x, t)x*dx being the unperturbed quadrupole moment.
The second-order frequency response is not as straightforward
because the hyperpolarizability is convoluted with the external
field. We take a pragmatic approach in this work and approxi-
mate the second-order frequency quadrupole response as

0P (w) ~ FTIQ®P)1/(FTIE®)]), (12)

where Q@ (¢) = Q(t) — Q° is the variation of the quadrupole
moment due to the action of a TL probe with even topolog-
ical charge [. The independence of the peak positions on the
shape and duration of the pulse gives us confidence that the
approximation in Eq. (12) is justified. The contribution of
FTlrect(t — t/2)] is only significant around w = 0 and will
be ignored here.

In addition to ALDA, we also performed calculations at
the Hartree-Fock (EXX) and self-interaction corrected (SIC)-
LDA level (not shown). Neither the ground state densities nor
the quadrupole spectra computed using these approximations
improved significantly over ALDA.

VI. RESULTS

In Fig. 2 we represent the internal potential V(gq) =
1/2mwiq® + Vin(q), the first eight eigenergies €/, and first
three singlet energy spacings wy,, = €, — €, for confinement
strengths wp = 0.5, 0.2, 0.1 a.u. As correlation grows we ob-
serve the emergence of several characteristic features. (i) The
particles localize maximally far from each other. This is evi-
dent from the shape of V (g), which transitions from a single
to a double well. This behavior is also reflected in the shape
of the total density (see inset Fig. 3) and is usually referred
to as low density limit or Wigner crystal in the literature
[55-58]. (ii) Increasing deviation of the ground state wave
function from a single Slater determinant (static correlation),
resulting in an increment of the von Neumann entropy s [59]:
520=05 = 0,07, s2=02 = 0.25, and s=%! = 0.35. (iii) The
symmetric and antisymmetric wave functions become ener-
getically degenerate [60] as in the case of distinguishable
fermions [61,62], which can be seen in the approach of even
and odd internal levels (black and gray in Fig. 2) [63]. (iv) The
internal energy levels become equidistant as in the case of a
single-particle harmonic oscillator, with an effective natural
frequency given by ! | i V3 wy/2 as wy — 0, consistent
with a Taylor expansion of the Coulomb potential around

wo =0.5 wo = 0.2 wo = 0.1
1.8 1
4 L
09 -
35 3 -
2 S 08¢ TE
3 L s L
B 07 e
25 - = B =
- |06 - i
2 « =3 s *
S S 05 Ti
T S -
1.5 = I ‘I:‘
I =2 04 \jg
1 1= L+
0.3 |
05 -
-10 0 10 10 0 10 10 0 10
q q q

FIG. 2. Internal potential V(g), eigenvalues €/, and the singlet
energy spacings w? =€l — e in the low energy region (atomic
units). Energy levels in black (gray) represent singlet (triplet) states.
The solid (dashed) arrows represent the first order Q" (second order

0) quadrupole response to a quadrupole excitation.

the classical equilibrium positions of the particles [32,64].
We show that, of all these features, the equidistance between
quadrupole response frequencies [feature (iv)] can be identi-
fied by means of a TL probe.

The arrows in Fig. 2 represent the quadrupole-allowed
internal transitions in the low-energy region. Solid arrows
connect the ground state with even states and represent the
first-order quadrupole response Q\; these transitions can be
excited with a TL probe of / = 1. Dashed arrows correspond
to lez) which depends on two frequencies (two-photon pro-
cesses). These transitions connect even internal states and can
be excited with an [ = 2 TL probe (see Table I).

We envisage a large waist TL beam impinging head-on at
an object placed near the beam center, such that ¢,r < 1 and
Ji(g,r) =~ (g,r)' /(2'1') (see Fig. 1), which gives us control
over the optical allowed excitations by varying /. The inter-
action with the TL probe is modeled as a weak instant field,
H} = Ey Y " Vrect(r — 0.0025 a.u.).

In Fig. 3 we plot the quadrupole spectra of two-electron
harmonic traps, for different regimes of confinement wy. The
exact response is shown in black and in green we show
the TDDFT response computed using the adiabatic local-
density approximation (ALDA), for TL probes of [ =0, 1, 2.
To analyze the peak positions we plot the absolute value
of the Fourier transform (FT) of the quadrupole, Q(w) =
|FT[—e f p(x, t)&%dx]|, computed from real-time evolution
of the electronic density p(x,t). After the perturbation is
turned off the system evolves freely for a total time of T =
2500 a.u. TL-matter interaction in the problem under study is
modeled as a scalar potential and can therefore be fully char-
acterized by density-density response. The imaginary parts
of 0W(w) and 0P (w) correspond to the quadrupole polar-
izability and first quadrupole hyperpolarizability, respectively
[65,66], which can be measured in an absorption experiment
[67,68].

Interaction with a homogeneous probe / = 0 shown in the
upper panel of Fig. 3 gives the c.m. quadrupole response

LO81111-4
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FIG. 3. Exact (black) and ALDA (green) quadruple spectrum (in log scale) of a two-electron one-dimensional harmonic trap excited with
a homogeneous / = 0 probe (upper panel), a [ = 1 TL probe (middle panel), and a / = 2 TL probe (lower panel). The object is placed at
the beam center (dark for / > 0). The ground state densities are shown in the inset. Numerical values for ¢ in Fig. 2 (atomic units). See

computational details in the text.

0% [2awg]. ALDA reproduces the position of the peak ac-
curately. For the / = 1 TL probe shown in the middle panel
the quadrupole response is Q1) [2wo] + Qél)[a)gz, why, 0l
The four internal transitions and their numerical values are
indicated with solid arrows in Fig. 2. As correlation grows
(wp — 0) the singlet internal transitions become equidis-
tant and independent of the interaction, f, .., —> V3.
ALDA shows one unique peak instead of two for [ = I;
this shortcoming is well understood [69] and can be fixed
ad hoc as shown in Ref. [70], where accurate energies for
the transitions w(, and w§™ were found for the same one-
dimensional Hooke’s atom studied here. For the / =2 TL
probe shown in the lower panel the quadrupole response is
Qgil +q [wgy, 2w0, Wiy, Wk, @34, whe, @315 the transitions are
indicated with dashed arrows in Fig. 2. As we move into the
strongly correlated regime the transition frequencies wy(,, ®3,,
and wj, get closer and so do o}, and wic. For wy = 0.1 a.u.

they overlap at the theoretical value @], ,,, ) —> V3w and

wgn,zm L) 23wy, respectively, as predicted theoretically
for the limit wy — 0 [32,33]. ALDA reproduces the position
of the peaks fairly well in the / = 2 spectra for all wg, cap-
turing the approaching and overlapping of the peaks as the
confinement wy decreases and correlation dominates. Despite
reproducing poorly the ground state density in this limit [57]

(see inset Fig. 3) ALDA’s spectrum seems to get actually more
accurate for small @wy. We may speculate that the equidistant
spacing of the internal energy levels is easier for the TDDFT
approximation to capture because it renders the response ef-
fectively single particle.

For wy = 0.1 and an / = 2 TL probe we observe an addi-
tional peak in the low energy region (x0.15 a.u.) of the ALDA
spectrum (see lowest energy peak in green spectrum in Fig. 3).
The emergence of this spurious peak coincides with the ap-
pearance of a degeneracy between two ALDA frequencies,
namely @@ P* — T APA = IAPA % 0.17 au. We only
observe the spurious peak when such a degeneracy takes place
(both in ALDA and in Hartree-Fock). We hypothesize that this
unphysical peak could be related to the spurious poles plagu-
ing adiabatic TDDFT and Hartree-Fock quadrupole response
in cases of degeneracy between TDDFT frequencies [71], but
further investigation is needed to confirm this hypothesis.

VII. CONCLUSION

We have shown analytically that, unlike plane waves, a
TL field is able to excite internal transitions in harmonically
confined systems of interacting particles. We identify several
features that characterize the transition into a strongly
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correlated regime in a many-particle harmonic trap. Out of
them the degeneracy between symmetric and antisymmetric
wave functions has been experimentally observed in
nanowires and in a one-dimensional atom trap [55,72].
We show that another characteristic feature, namely the
equidistance between internal energy levels, can be revealed
in the quadrupole response after excitation with a TL probe.
We present the numerically exact response of a two-electron
quantum wire perturbed with a TL probe of [ =0, 1,2
and show that the results can be reproduced with an ab initio
method such as adiabatic TDDFT. The validity of our findings
is expected to hold for an arbitrary number of particles, as
supported by our preliminary ALDA simulations for three
electrons (not shown in this Letter). We expect that, in the
case of a two-dimensional harmonic trap, the quadrupole
response contains information on the moment of inertia; this
may prove useful to study angular momentum exchange [73]
or superfluidity [74].

We conclude that a TL probe can be used for noninvasive
internal state detection and to study correlation effects and
novel optical selection rules in harmonic traps like quantum

dots or ion traps. If the TL probe is replaced by a resonant
TL pump it could also be used to control the internal state
of the quantum system. Manipulation and detection of the
internal (motional) modes is key for the implementation of
logical gates in ion-trap quantum computing [29,75,76]. The
proposed setup could serve as an analog quantum simulator
to control and study intermediate correlation regimes where
no analytic or numerically accurate solutions are available.
Alternatively it could also be used to characterize the TL
field. Whether a TL probe can provide additional information
about the degree of correlation in the more general case of
nonharmonic systems for which GKT does not apply remains
as an open question.
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