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Abstract

Preterm birth (PTB) is the main condition related to perinatal morbimortality worldwide. The aim of this study was 
to identify gene-environment interactions associated with spontaneous PTB or its predictors. We carried out a 
retrospective case–control study including parental sociodemographic and obstetric data as well as newborn genetic 
variants of 69 preterm and 61 at term newborns born at a maternity hospital from Tucumán, Argentina, between 
2005 and 2010. A data-driven Bayesian network including the main PTB predictors was created where we identified 
gene-environment interactions. We used logistic regressions to calculate the odds ratios and confidence intervals of 
the interactions. From the main PTB predictors (nine exposures and six genetic variants) we identified an interaction 
between low neighbourhood socioeconomic status and rs2074351 (PON1, genotype GG) variant that was associated 
with an increased risk of toxoplasmosis (odds ratio 12.51, confidence interval 95%: 1.71 – 91.36). The results of this 
exploratory study suggest that structural social disparities could influence the PTB risk by increasing the frequency 
of exposures that potentiate the risk associated with individual characteristics such as genetic traits. Future studies 
with larger sample sizes are necessary to confirm these findings.
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Introduction
Preterm birth (PTB) is defined as the birth of a conceptus 

before 37 weeks of gestational age. The estimated global PTB 
rate was 10.6% in 2014, while in Argentina it was 8.7% in 

2020 (Chawanpaiboon et al., 2019; Dirección de Estadísticas 
e Información de Salud, 2022). In 2018, 35% of worldwide 
neonatal deaths were associated with PTB (UNICEF et al., 
2019). PTB is considered a multifactorial aetiology condition 
where several factors such as sociodemographic aspects, 
habits, obstetric history, genetic traits, and health conditions 
are involved (Cobo et al., 2020). 

Bayesian networks (BN) are graphical probabilistic 
models where the nodes represent variables and the edges the 
conditional dependencies among them (Koller and Friedman, 
2009). BN have contributed to epidemiology by facilitating 

https://doi.org/10.1590/1678-4685-GMB-2023-0090
https://orcid.org/0000-0002-6576-8569
https://orcid.org/0000-0001-6156-4801
https://orcid.org/0000-0002-2330-5267
https://orcid.org/0000-0002-6102-8416
https://orcid.org/0000-0001-9180-9398
https://orcid.org/0000-0001-7924-0776
https://orcid.org/0000-0003-2805-4388
https://orcid.org/0000-0002-6708-9658
https://orcid.org/0000-0002-4248-2488
https://orcid.org/0000-0001-8107-7621
https://orcid.org/0000-0001-7888-8327
https://orcid.org/0000-0002-1305-7159
https://orcid.org/0000-0003-2679-4681
https://orcid.org/0000-0002-0840-7548
https://orcid.org/0000-0003-2183-8649
https://orcid.org/0000-0002-3146-5447
https://orcid.org/0000-0001-9991-3843


Elias et al.2

 

visualisation and interpretation of dependencies among 
variables. Several methods have been developed for data-
driven BN constructions; for example, score-based algorithms 
which explore the space of possible networks using a heuristic 
searching algorithm and select the BN with the best goodness 
of fit; constraint-based algorithms, which use conditional 
independence tests to learn the dependency structure of data; 
and hybrid algorithms that combine both approaches (Scutari et 
al., 2019). In addition, previous studies have proposed the use 
of BN for identifying gene environment (GxE) interactions (Su 
et al., 2013). However, to our knowledge, no GxE interaction 
studies have been performed for PTB using BN.

In previous works, we analysed sociodemographic, 
clinical, and genetic factors predisposing to PTB in an 
Argentine population sample (Krupitzki et al., 2013; Gimenez 
et al., 2016; Gimenez et al., 2017; Elias et al., 2021). We also 
used BN to analyse the association of sociodemographic and 
obstetric characteristics with PTB (Elias et al., 2022a). In 
another study, we carried out newborn DNA candidate genes 
sequencing and identified characteristics with the highest PTB 
predictive power; they included maternal sociodemographic 
and biological characteristics, neighbourhood socioeconomic 
status (NSES), and newborn genetic variants in KCNN3, 
COL4A3, PON1, and CRHR1 genes (Elias et al., 2022b). 
In the present study, we created a BN with exposures and 
genetic variants previously related with PTB to identify GxE 
interactions associated with PTB or its predictors.

Subjects and Methods

Study design

A retrospective unmatched case-control study was 
conducted including women who gave birth at the Instituto de 
Maternidad y Ginecología Nuestra Señora de Las Mercedes, 
a public maternity hospital from Tucumán, Argentina. 
Recruitment was carried out between July 2005 and December 
2010. Women eligible for the study were invited to participate 
after delivery and before hospital discharge. The case group 
comprised preterm infants born to multigravid women. The 
control group included infants born at term to multigravid 
women without a previous history of PTB nor pregnancy 
loss. Exclusion criteria were medically induced PTB, neonates 
with congenital anomalies, multiple gestation, and maternal 
age under 16 years. This study is part of an international 
collaborative project aimed at elucidating factors associated 
with PTB (Krupitzki et al., 2013; Gimenez et al., 2016; 
Gimenez et al., 2017; Elias et al., 2021; Elias et al., 2022a; 
Elias et al., 2022b).

Data collection

Women who agreed to participate in the study were 
interviewed by qualified members of the Estudio Colaborativo 
Latino Americano de Malformaciones Congénitas (ECLAMC) 
(Castilla and Orioli, 2004). Data from clinical records and a 
structured questionnaire designed to collect information on 
sociodemographic aspects, maternal reproductive history, 
obstetric complications, and neonatal outcomes were 
registered in standardised research forms. All collected data 
were reviewed by paediatricians and obstetricians involved 
in the study. 

Ethics approval

Study protocols were approved by the Centro de 
Educación Médica e Investigaciones Clínicas (CEMIC) 
Ethics Committee (IRB 00001745–IORG 0001315) and 
the University of Iowa Institutional Review Board (IRB 
200411759). Parents provided written informed consent for 
themselves and the neonates.

Outcome and exposure variables

The primary outcome variable was PTB, defined as a 
live birth of less than 37 gestational weeks (preterm birth: 1, at 
term birth: 0). The gestational age was estimated from the last 
menstrual period date; if uncertain, an ultrasound examination 
was performed before 22 weeks of estimated gestation (Dietz et 
al., 2007). If the difference between both methods was greater 
than 7 days, gestational age by ultrasound was used. Surveyed 
individual and contextual exposure variables and imputation 
method for missing data are described in Appendix S1. 
Appendix S2 describes the sequencing methodology and variant 
calling of newborns’ candidate genes. Only the exposures 
and newborns’ genetic variants that presented the highest 
PTB predictive power found in a previous study (Elias et al., 
2022b), which was conducted with the same data of the present 
study, were included. The exposures were maternal individual 
characteristics [few prenatal visits (<5), sexual activity during 
the last month of pregnancy, maternal blood ABO group A, 
gestation number, toxoplasmosis [determined from the IgG 
serological test performed during routine screening (Dirección 
Nacional de Maternidad e Infancia, 2010)], body mass index 
(BMI) at the beginning of pregnancy (calculated from height 
and self-reported weight at beginning of pregnancy), maternal 
age and anemia], residential context characteristics [NSES 
estimated on the proportion of neighborhood households 
without Unsatisfied Basic Needs (UBN), described in Appendix 
S1], and newborn genetic variants [rs4845397 (KCNN3), 
rs11680670 (COL4A3), rs12621551 (COL4A3), rs73993878 
(COL4A3), rs2074351 (PON1), rs8073146 (CRHR1)] (Elias 
et al., 2022b). Variables that could have a moderating or 
confounding effect on the analyzed interactions were included 
in a sensitivity analysis (maternal schooling, self-reported 
ancestry, urinary tract infections, vaginal discharge, tobacco 
smoking, newborn sex, living in large urban conglomerate, and 
address accuracy). Continuous and ordinal variables (maternal 
age, gestation number, BMI, and NSES) were stratified using 
the 25th and 75th percentiles. Newborn genetic variants were 
binarized considering the presence (1) or absence (0) of at 
least one copy of the less frequent allele.

Bayesian network

We created a data-driven BN based on PTB and 
exposures which showed the highest PTB predictive power. 
The BN structure was determined by a score based method 
which assigned a score to each candidate BN reflecting its 
goodness of fit and then tried to maximise it with a heuristic 
search algorithm (Scutari et al., 2019). We applied the tabu 
search algorithm that starts from an iterative greedy search 
process in which modifications are made to the BN (e. g., 
remove or add an edge) and the BN score is calculated. 
The tabu search maintains a list of the 10 last built BN and 
continues searching for a better BN that has not yet been 
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considered. Possible edge directions that were not relevant to 
the present study were excluded (e. g., from “Preterm birth” 
to “Few prenatal visits”) (Table S1). Bayesian Dirichlet 
equivalent was used to determine the BN goodness of fit 
(Heckerman et al., 1995). We generated 10,000 BN by 
using a bootstrap method and then selected the edges that 
were present in at least 15% of the BN. The OR of each 
relationship was calculated from the conditional probabilities 
determined with the logic sampling method (Henrion, 1988). 
R packages bnlearn and igraph were used (Scutari, 2010; 
Csardi and Nepusz, 2006).

Interactions

Based on the observation of the BN, interaction analyses 
were performed using Firth’s penalised logistic regression (Firth, 
1993). Considering that it would be more likely to observe a 
statistical interaction between variables when their independence 
is greater (Su et al., 2013), the interactions to be evaluated were 
selected with the following criteria: given an outcome O and 
exposures A and B with conditional dependencies towards O 
in the BN, the interaction between A and B with O as outcome 
was analysed if there was no conditional dependence in the 
BN between A and B. In particular, we focused on GxE 

interactions of newborn genetic variants. For exposures with 
multiple categories (maternal age, gestation number, BMI, and 
NSES), we included the interaction of genetic variants with all 
non-reference exposure categories in the model. Based on the 
inspection of the BN, in the regressions we used the genotype 
of the genetic variants whose effect on the result would have 
the same direction as the exposures (i. e., both increase the 
probability of the outcome or both decrease it). We analysed the 
sensitivity of the selected interactions including one covariate 
at a time to maintain the relationship between the number of 
events by the number of variables included in the models greater 
than 5 (Vittinghoff and McCulloch, 2007). The covariates were 
considered including their main effects and their interactions 
with the exposures and analysed genetic variants (Keller, 2014). 
R package logistf was used (Heinze et al., 2020).

Results
In this study, data from 130 newborns (61 term and 69 

preterm newborns) were analysed. Table 1 shows the frequency 
of the included variables.

The BN created with the selected predictors presented 
20 nodes and 42 edges (Figure 1). Table 2 shows the possible 
interactions perceived through the BN inspection. Only 

Figure 1 – Bayesian network of preterm birth predictors. The nodes represent the variables and the edges the conditional dependencies between them. In 
dark grey the preterm birth variable and, in light grey, NSES variables. The edge numbers are the estimated odds ratios; dashed and solid edges correspond 
to odds ratios less and greater than 1, respectively. Abbreviations: BMI: body mass index; GT: genotype; NSES: neighbourhood socioeconomic status; 
PTB: preterm birth; UBN: unsatisfied basic needs.
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Table 1 – Frequency of variables in cases and controls. The variables that had the highest predictive power of PTB and variables included for the sensitivity 
analysis are shown. The variables maternal age, gestation number, BMI, and NSES were categorised using the 25th and 75th percentiles. In newborn 
genetic variants, the gene, region of the variant and genotypes of the less frequency allele are shown in parenthesis. Abbreviations: n, total number of 
newborns in the group; N, number of newborns in the category of each variable; BMI, body mass index; NSES, neighbourhood socioeconomic status; 
UBN, unsatisfied basic needs; UTR, untranslated region.

Variable Total
(n=130) N (%)

Case
(n=69) N (%)

Control
(n=61) N (%)

Chi-Squared P 
Value

Imputed data 
(%)

Maternal schooling
Low (< 7 years) 25 (19.23) 12 (17.39) 13 (21.31) 0.7316 0.00

Middle-High (≥ 7 years) 105 (80.77) 57 (82.61) 48 (78.69) 0.7316

Maternal age

Low (< 24 years) 37 (28.46) 25 (36.23) 12 (19.67) 0.0583 0.00

Middle (24 – 31 years) 95 (73.08) 56 (81.16) 39 (63.93) 0.0443

High (> 31 years) 35 (26.92) 13 (18.84) 22 (36.07) 0.0443

BMI at the beginning  
of pregnancy

Low (< 21.0 kg/m2) 33 (25.38) 25 (36.23) 8 (13.11) 0.0048 4.62

Middle (21.0 – 26.6 kg/m2) 64 (49.23) 30 (43.48) 34 (55.74) 0.2226

High (>26.6 kg/m2) 33 (25.38) 14 (20.29) 19 (31.15) 0.2234

Number of gestation

Low (< 4) 50 (38.46) 29 (42.03) 21 (34.43) 0.4786 0.00

Middle (4 – 5) 46 (35.38) 27 (39.13) 19 (31.15) 0.4436

High (> 5) 34 (26.15) 13 (18.84) 21 (34.43) 0.0691

Non-native ancestry 16 (12.31) 9 (13.04) 7 (11.48) 0.9967 0.00

Maternal blood ABO group A 41 (31.54) 28 (40.58) 13 (21.31) 0.0300 2.31

Sexual activity during the last month of pregnancy 36 (27.69) 28 (40.58) 8 (13.11) 0.0010 0.77

Few prenatal visits (<5) 62 (47.69) 41 (59.42) 21 (34.43) 0.0076 1.54

Toxoplasmosis 44 (33.85) 30 (43.48) 14 (22.95) 0.0224 16.92

Urinary tract infection 42 (32.31) 22 (31.88) 20 (32.79) 1.0000 2.31

Vaginal discharge 44 (33.85) 27 (39.13) 17 (27.87) 0.2426 0.00

Anaemia 58 (44.62) 36 (52.17) 22 (36.07) 0.0955 16.92

Tobacco smoking
before pregnancy 53 (40.77) 26 (37.68) 27 (44.26) 0.5597 0.00

during pregnancy 34 (26.15) 18 (26.09) 16 (26.23) 1.0000 0.00

Passive smoking 52 (40.00) 24 (34.78) 28 (45.90) 0.2661 0.00

Alcohol intake
before pregnancy 30 (23.08) 19 (27.54) 11 (18.03) 0.2824 0.00

during pregnancy 12 (9.23) 9 (13.04) 3 (4.92) 0.1958 3.85

Male newborn sex 61 (46.92) 30 (43.48) 31 (50.82) 0.5086 0.00

rs4845397 (KCNN3, 5’ UTR, GT: TC or TT) 36 (27.69) 16 (23.19) 20 (32.79) 0.3058 2.31

rs12621551 (COL4A3, intron, GT: TG or TT) 48 (36.92) 23 (33.33) 25 (40.98) 0.4716 0.77

rs73993878 (COL4A3, intron, GT: AG or AA) 22 (16.92) 13 (18.84) 9 (14.75) 0.6997 0.00

rs11680670 (COL4A3, intron, GT: TC or TT) 51 (39.23) 26 (37.68) 25 (40.98) 0.8377 0.77

rs2074351 (PON1, intron, GT: AG or AA) 59 (45.38) 30 (43.48) 29 (47.54) 0.7735 0.77

rs8073146 (CRHR1, intron, GT: GA or GG) 24 (18.46) 9 (13.04) 15 (24.59) 0.1424 0.77

NSES (% of neighbourhood 
households without UBN)

Low (< 79.2%) 33 (25.38) 19 (27.54) 14 (22.95) 0.6909 0.00

Middle (79.2% – 88.0%) 64 (49.23) 37 (53.62) 27 (44.26) 0.3737

High (> 88.0%) 33 (25.38) 13 (18.84) 20 (32.79) 0.1049

Lives in the largest urban conglomerate 79 (60.77) 41 (59.42) 38 (62.30) 0.8768 0.00

Domicile accuracy at the neighbourhood level 66 (50.77) 35 (50.72) 31 (50.82) 1.0000 0.00

the interaction between low NSES and rs2074351 (PON1, 
genotype: GG) variant with toxoplasmosis as outcome 
presented an OR different from 1 with a 95% CI (Table 2 
and 3). The interaction between low NSES and the rs2074351 
variant was greater than one with a 95% CI considering as 

covariates the rest of the exposures and genetic variants listed 
in Table 1 (Table S2). The frequency of toxoplasmosis by 
NSES category was 42.4% (14/33), 34.4% (22/64), and 24.2% 
(8/33) for low, medium, and high categories, respectively; the 
Chi-square P Value was 0.29.
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 Discussion
From the construction of a BN with PTB predictors, 

an interaction between rs2074351 (PON1) and low NSES 
was identified, which was associated with an increased risk 
of toxoplasmosis.

Toxoplasmosis is an infection caused by an intracellular 
parasite called Toxoplasma gondii (T. gondii). It is one of the 
most prevalent infections and is estimated to affect a third 
of the world population (Ahmed et al., 2020). Infection 
during pregnancy can affect the foetus resulting in congenital 
toxoplasmosis that is associated with PTB and conditions such 
as newborn´s neurological disease and blindness (Ahmed et al., 
2020). Transmission of T. gondii to humans generally occurs 
through ingestion of tissue cysts contained in contaminated 
undercooked meat products. It can also be transmitted by 
consumption of water or vegetables contaminated with 
infected cat or mice faeces. T. gondii infections are largely 
asymptomatic during the acute and chronic phases, with 
the chronic phase persisting during the host’s whole life. T. 
gondii tachyzoites and bradyzoites replicate intracellularly and 
acquire nutrients from their host cells such as lipids and their 
precursors (Blume and Seeber, 2018; Ahmed et al., 2020).

Regarding the prevalence of toxoplasmosis in pregnant 
women in Argentina, Carral et al. (2008) reported a prevalence 
of specific IgG anti-T. gondii antibodies of 49% in pregnant 
women treated in maternity hospitals of Ciudad Autónoma 
de Buenos Aires and of Provincia de Buenos Aires. More 

recently, a prevalence of 18.33% was reported in a hospital of 
the Ciudad Autónoma de Buenos Aires (Carral et al., 2013). 
In addition, a higher prevalence was reported in peri-urban 
areas (36.4%) than in urban areas (26.8%) of Provincia de 
Buenos Aires (Rivera et al., 2019).

Mareze et al. (2019) reported higher risk of toxoplasmosis 
in populations with low socioeconomic level while Ncube et al. 
(2016) informed higher frequencies of adverse birth outcomes 
in low NSES. Women living in low NSES have less access 
to healthy food, health services, leisure activities, and social 
support, while their exposure to poor air and water quality, 
and to societal stressors is greater (Diez Roux and Mair, 
2010). In this work, we used the UBN index to define the 
NSES categories. The UBN is a poverty direct measurement 
method that relates well-being to actual consumption. The 
UBN index defines minimum welfare thresholds and has 
been used in Latin American studies since the 1980s (Feres 
and Mancero, 2001). One of the strengths of this index is 
that it can be calculated from census data, allowing it to take 
advantage of the geographic disaggregation provided by the 
census information. However, the UBN index also has some 
limitations; for example, although it allows distinguishing 
households with and without critical deficiencies, it does 
not allow to identify their magnitude. It neither allows the 
identification of recent poverty situations nor to measure 
current income or expenses, which are usually analysed with 
other methods such as the poverty line. In addition, the UBN 

Table 2 – Gene-environment interactions evaluated from the inspection of the BN. Only the odds ratio of the interaction term is shown. Abbreviations: 
BN, Bayesian network; CI, confidence interval; FDR, false discovery rate; GT: genotype; NSES, neighbourhood socioeconomic status.

Outcome Interaction term Odds ratio (95% CI) P Value FDR

Preterm birth

Few prenatal visits : rs4845397 (KCNN3, GT: CC) 1.65 (0.32, 8.34) 0.5472 0.7296

Maternal blood ABO group A : rs4845397 (KCNN3, GT: CC) 2.38 (0.44, 12.99) 0.3169 0.5070

Low BMI at the beginning of pregnancy : rs4845397 (KCNN3, GT: CC) 1.51 (0.20, 11.53) 0.6913 0.7900

Sexual activity during the last month of pregnancy : rs4845397 
(KCNN3, GT: CC) 0.24 (0.03, 1.73) 0.1567 0.4179

Toxoplasmosis : rs4845397 (KCNN3, GT: CC) 0.23 (0.03, 1.53) 0.1276 0.4179

Toxoplasmosis
Low NSES : rs73993878 (COL4A3, GT: AG or AA) 4.59 (0.36, 58.81) 0.2415 0.4829

Low NSES : rs2074351 (PON1, GT: GG) 12.51 (1.71, 91.36) 0.0127 0.1018

Sexual activity during the 
last month of pregnancy High NSES : rs73993878 (COL4A3, GT: GG) 0.83 (0.07, 9.33) 0.8785 0.8785

Table 3 – Odds ratios of the interaction between NSES and rs2074351 (PON1, GT: GG) for toxoplasmosis. Abbreviations: CI, confidence interval; GT: 
genotype; NSES, neighbourhood socioeconomic status.

Term OR (95% CI) P Value

Toxoplasmosis

No (n=86)
N (%)

Yes (n=44)
N (%)

Low NSES 0.31 (0.06, 1.52) 0.1503 13 (15.1) 2 (4.5)

rs2074351 (PON1, GT: GG) 0.83 (0.30, 2.32) 0.7225 23 (26.7) 11 (25.0)

High NSES 0.52 (0.12, 2.18) 0.3690 11 (12.8) 3 (6.8)

Low NSES : rs2074351 (PON1, GT: GG) 12.51 (1.71, 91.36) 0.0127 6 (7.0) 12 (27.3)

High NSES : rs2074351 (PON1, GT: GG) 1.50 (0.22, 10.04) 0.6747 14 (16.3) 5 (11.4)

Reference [middle NSES and rs2074351 (PON1, GT: AG or AA)] - - 19 (22.1) 11 (25.0)
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index has a certain sensitivity to differentiate urban and rural 
populations (Feres and Mancero, 2001).

Human serum paraoxonase-1 (PON1) is a calcium-
dependent hydrolytic enzyme. Paraoxonases are a component 
of the immune system and their response to infections is related 
to the inhibition of plasma lipid oxidation and decreasing 
levels of proteins involved in the HDL-mediated cholesterol 
reverse transport (Camps et al., 2017). Previous studies have 
shown a lower expression of PON1 in pregnant women with 
chorioamnionitis (Soydinç et al., 2012). PON1 also has 
detoxification functions; it acts as an A-esterase capable 
of hydrolyzing the active metabolites (oxons) of various 
organophosphate pesticides (Costa et al., 2013). Several 
studies have identified modulators of PON1 activity and 
PON1 expression such as exposure to carbon monoxide, 
arsenic, lead, and tobacco smoke (Costa et al., 2005; Li et 
al., 2006; Li et al., 2009; Haj Mouhamed et al., 2012; Zengin 
et al., 2014). Likewise, certain genetic variants in PON1 are 
also involved in its expression and in the PON1 activity. 
For example, the Q192R polymorphism is associated with 
a differential catalytic activity on some organophosphate 
substrates while the polymorphism at position -108 (C/T) is 
the main contributor to the differences in PON1 expression 
levels (Costa et al., 2013).

In this study, an interaction between low NSES and the 
rs2074351 (PON1) variant, associated with a higher risk of 
toxoplasmosis was observed. The rs2074351 variant, present 
in an intronic region, could affect the expression of PON1 
possibly decreasing the immune system response (Jo and 
Choi, 2015), which increases susceptibility to infections. 
Such susceptibility would be higher in areas of low NSES 
where a higher frequency of T. gondii in the environment 
can be expected, as well as that of other exposures that affect 
PON1 activity or PON1 expression. In this way, it could be 
understood that the interaction between the PON1 rs2074351 
variant and the low NSES context presented a higher risk of 
toxoplasmosis than their individual effects. It also suggests 
that structural social disparities, in addition to their direct and 
indirect effects on PTB risk (e. g. access to healthcare services) 
(Elias et al., 2022a), might influence PTB risk by increasing 
the frequency of exposures that potentiate the risk associated 
with individual characteristics, such as genetic traits.

Further studies are required to analyse maternal 
genotypes and to identify other exposures linked to NSES 
and the extent to which they may affect PON1 activity or 
PON1 expression. For example, considering the modulators 
of PON1 activity, air pollutants produced by the burning 
of cane fields and the presence of water pollutants such as 
pesticides and arsenic have been reported to exist near the 
study population (Guber et al., 2009; Piriz Carrillo et al., 
2010; Chaile et al., 2011).

The reader of this article should bear in mind the 
following limitations. Although the small sample size allowed 
the exploratory nature of this work, further studies with 
larger sample size are necessary (Vittinghoff and McCulloch, 
2007). The categorization of certain variables (e. g. maternal 
age) was based on the 25th and 75th percentiles of their 
distribution because the sample size did not allow the use of 
usual categories (such as maternal age <20 years); this aspect 
may limit the comparison with other studies. Women were 

recruited from a single maternity hospital; multicenter studies 
including more heterogeneous populations may reveal other 
interactions. Although the diagnosis of toxoplasmosis was 
based on a serological test, the time of exposure could not be 
defined. Finally, 2.02% of the data of this study were imputed.

In conclusion, based on the used methodology, the results 
of this study showed that the interaction between a PON1 
variant and low NSES was associated with an increased risk 
of toxoplasmosis, suggesting that contextual and individual 
characteristics interact to increase the risk of infections which, 
in turn, can increase the chances of PTB. Structural social 
disparities could influence the PTB risk by increasing the 
frequency of exposures that potentiate the risk associated 
with individual characteristics such as genetic traits. Future 
studies with larger sample sizes are necessary to confirm 
these findings and to analyse a greater number of exposures.
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