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Abstract

The predictive power of molecular dynamic simulations is mainly restricted by

the time scale and model accuracy. Many systems of current relevance are of such

complexity that requires addressing both issues simultaneously. This is the case of

silicon electrodes in Li-ion batteries, where different LixSi alloys are formed during

charge/discharge cycles. While first-principles treatments for this system are seriously

limited by the computational cost of exploring its large conformational space, classical

force-fields are not transferable enough to represent it accurately. Density Functional

Tight-Binding (DFTB) is an intermediate complexity approach capable of capturing

the electronic nature of different environments with a relatively low computational

cost. In this work, we present a new set of DFTB parameters suited to model amor-

phous LixSi alloys. The latter is the usual finding upon cycling the Si electrodes in the

presence of Li-ions. The model parameters are constructed with a particular empha-

sis on their transferability for the entire LixSi composition range. This is achieved by
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introducing a new optimization procedure that weights stoichiometries differently to

improve the prediction of their formation energies. The resultingmodel is shown to be

robust for predicting crystal and amorphous structures for the different compositions,

giving excellent agreement with DFT calculations and outperforming state-of-the-art

ReaxFF potentials.

1 Introduction

Nowadays, the relevance of lithium batteries for renewable energies and multiple other

technological applications is common knowledge and does not need further introduction,

other than stating that their mentors were honoured with the Nobel Prize in Chemistry

2019. Several reviews and perspectives on the the subject can be found in literature else-

where.1–8 Current efforts focus on developing better materials to be used in the different

components of the battery like anodes, electrolytes, separators, and cathodes. The chal-

lenge requires working on the edge where theoretical and experimental researchers from

multiple disciplines come together. In this scenario, computer simulations must be the

nexus between the different scientific approaches. Although several multiscale models

and advanced computational methods have been developed in the last decades, further

work is required to expand their implementations in systems like lithium batteries.9

One of the top promising materials considered for lithium battery anodes is silicon,

mainly due to its large theoretical capacity (3579mAh/g) and natural abundance.10,11 The

main drawback of this electrode is the large volume expansion it suffers during charge,

which provokes fractures and loss of electrical contact with the corresponding hindrance

in performance and useful life. Different strategies have been proposed to cope with this

phenomenon through the use of thin films,12 nanostructures,13,14 carbon composites15,16 or

special binders.17,18 Many of these ideas are based on speculative analysis that addresses

the improvement of the material performance to the nature of the structures prepared,

although a realistic picture based on an atomistic point of view is still missing.
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Computer simulations can shorten the path to the industrial application of silicon an-

ode. However, the disciplinemust face the intrinsic issues of the complexity of the system.

Simulations must be able to follow the drastic changes that occur in the material during

charge/discharge cycles. The silicon electrode passes through several alloys with different

physicochemical properties. After electrode cycling, the Li-Si structures formed are found

to be amorphous, making it difficult to collect structural information from experimental

X-ray measurements. Two main concerns must be addressed: to count with an atomistic

model transferable to the entire loading range (i.e. LixSi / x ∈ [0, 3.75]) and to achieve a

meaningful sampling of that model. During the last decade, progress has been made in

both directions. Fan et al. have developed a ReaxFF parameterization using different LixSi

crystal structures.19 Using this model, we proposed an enhanced sampling method that

allowed us to predict several amorphous structures that probably exists in cycled LixSi

electrode.20 However, improved sampling requires a highly transferable model capable of

accurately representing unknown regions of configurational space, allowing true discov-

ery of electrode structures and avoiding false positives.

When the silicon electrode is repeatedly cycled amorphous structures are produced.

In order to develop a model transferable to these a prior unknown structures, we have pa-

rameterized aDensity Functional Tight-Binding (DFTB)model for LixSiwhich is themain

goal of the present paper. Although DFTB implies a stronger level of theory than classical

force fields like ReaxFF, it is faster than conventional Density Functional Theory (DFT) cal-

culations, enabling to study the dynamics of thousands of atoms. We also present a new

parameterization approach that allows us to optimize the model by reproducing other ob-

servables beyond absolute energies. We use this idea to focus the model on reproducing

the relative formation energies of the different LixSi structures, a key feature to achieve a

robust and transferable model for the entire composition range. The present new model

shows excellent performances in the prediction of formation energies against DFT for sev-

eral crystalline and amorphous structures.
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2 Computational Methods

2.1 DFTB method

The density functional tight-binding (DFTB) formalism applied in this work has been ex-

tensively described in the literature, for a complete formulation we address to references

21–24. DFTB is based on a second-order expansion of the density functional theory (DFT)

energy with respect to a reference electron density fluctuation.25 The resulting DFTB en-

ergy can be written as

EDFTB =
occ∑
i

⟨Ψi|Ĥ0|Ψi⟩ + 1
2
∑
AB

γAB∆qA∆qB + EAB
rep (1)

where the Ψi are the single-particle Kohn-Sham (KS) orbitals. Within the linear combi-

nation of atomic orbitals formalism, Ψi is expanded into a set of pseudoatomic valence

(Slater-type) orbitals ϕν :

Ψi(r) =
∑

ν

cνiϕν(r − RA) (2)

which are determined by solving the KS secular equation

∑
µ

cµi

(
H0

νµ − ϵiSνµ

)
= 0, ∀ν, i (3)

whereSνµ = ⟨ϕν |ϕµ⟩ and ϵν are the overlapmatrix and the eigenvalues in the isolated atom,

respectively. H0
νµ is the KS effective Hamiltonian generated with the reference electron

density, ρ0, and is defined as:

H0
νµ =



ϵµ if ν = µ

⟨ϕν | − 1
2∇2 + veff [ρ0

A + ρ0
B] |ϕν⟩ if µ ∈ A, ν ∈ B and A ̸= B

0 otherwise

(4)
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where ρ0
A is the reference density of the neutral atom A and veff is the effective Kohn-Sham

potential. In particular, the elements of the Hamiltonian matrix depend only on atoms A

and B, therefore only the two-center elements of the Hamiltonian and overlap matrices

are explicitly calculated as a function of the distance and the orientation, using the Slater-

Koster transformation rules.26

One of the crucial parts of the use of DFTBmethod is to calculate the basis functions ϕ,

and the atomic densities ρ0. The pseudoatomic orbitals and density are obtained by solv-

ing the modified atomic Kohn-Sham (KS) equations in which a confining potential, Vconf,

is added: [
T̂ + Veff + Vconf

]
ϕµ = ϵµϕµ (5)

A common practice in the DFTB community is to choose a confinement potential to be a

parabolic or quadratic function. In thiswork, we have used themethodology implemented

in the Hotcent code27,28 where a power law function with the following form is used:

Vconf(r) =
(

r

r0

)σ

(6)

r0 and σ are real numbers, which can be chosen differently for atomic orbitals ϕ and den-

sities ρ0.

The second term in equation 1 is the energy due to charge fluctuations and is parame-

terized analytically as a function of the orbital charges and γAB, which is a function of the

interatomic separation and Hubbard parameter, U . ∆qA = qA − q0
A is the self-consistent

induced Mulliken charge on atom A; for details see reference 21. The remaining contri-

bution to the total DFTB energy in equation 1 is Erep, which corresponds to the distance-

dependent diatomic repulsive potential and contains the core electron effects, ion–ion re-

pulsion terms, as well as some exchange–correlation effects. This term can be considered

as a practical equivalent to an xc-functional in DFT as it approximates the many-body cor-

relation interactionswith simple functions. The total repulsive energy of a system inDFTB

5



is a sum of contributions of repulsive potentials Vrep(r) from each atom pair:

Erep =
∑
I<J

Vrep(RIJ) (7)

where I and J run over the atom indices in the system, and RIJ is the distance between

pair of atoms. Vrep is generally considered to be an empirical function that is determined

by fitting data from a higher level electronic structure calculations such as DFT. In this

work, the adjustment of this potential was carried out using the TANGO code29,30 where

the repulsive potential is approximated by the following function:

Vrep(R) =



e−a1R+a2 + a3 0 ≤ R < Rmin

m∑
i=2

ci (Rcut − R)i Rmin ≤ R < Rcut

0 Rcut ≤ R

(8)

The values of Rmin and Rcut used for this work are shown in table S1 of the supporting

information. The ai parameters were fitted using the Levenberg-Marquardt algorithm to

reproduce the DFT energies for each crystal system. The degree m of the polynomial was

chosen to be 8 and the ci coefficients were optimized through a least-squares fit.

2.2 DFT calculations

DFT calculations of crystalline structures were performed using the GPAW simulation

package31,32 of the Atomic Simulation Environment.33 The GPAW package is a real space

grid algorithm based on the projector-augmented wavefunction method34 that uses the

frozen core approximation. Coordinates of Li, Li15Si4, Li13Si4, Li7Si3, Li12Si7, LiSi and Si

were downloaded from The Materials Project35 (mp codes 135, 569849, 672287, 1201871,

1314, 795 and 149) corresponding to BCC Li, x ≈ 3.75 , 3.25 , 2.33 , 1.71 , 1 and Si di-

amond, respectively. DFT calculations were performed using the PBE (Perdew-Burke-
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Ernzerhof) exchange-correlation functional with a kinetic energy cutoff of 600 eV and the

Brillouin zone integration was done with Monkhorst-Pack grids with a density of 2.5 k

points per Å-1.

Amorphous LixSi structures were also studied by DFT calculations following the pro-

cedure proposed by Chevrier and Dahn.36,37 We used a repeated cell scheme with 12 sil-

icon atoms and N lithium atoms per unit cell, with N ∈ [0, 45] covering the hole range

of x ∈ [0, 3.75]. Each LiN+1Si12 structure was obtained by adding a lithium atom in the

greatest void of the LiNSi12 cell and performing a geometrical optimization of all atomic

positions and cell volume. In this case, the calculations were performed with the QUAN-

TUM ESPRESSO software,38,39 using the PBE xc-functional with a kinetic energy cutoff of

1090 eV and the Brillouin zone integration was done with Monkhorst-Pack grids with a

density of 7 k points per Å-1. The atomic positions and cell volume were optimized em-

ploying the BFGS algorithm until the force was less than 0.08 eV/Å for each structure.

2.3 DFTB parameterization

In this work, all DFTB calculations were carried out using DFTB+,40 and we follow the

training method described in the work of van den Bossche et al.28,30 to obtain two sets of

DFTB parameters, named A and B, that differ from each other in the fitting of the band

energy term. In group A, Li and Si band structures were fitted separately, while in group

B the Li7Si3 band structure was fitted. The choice of this structure for the adjustment of

the band structure was based on the value of its formation energy, which is the lowest

of the 5 main alloys (Li15Si4, Li13Si4, Li12Si7, Li7Si3 and LiSi) as reported in The Materials

Project,35 and reproduced in our calculations. The parameterization of the pseudoatomic

orbitals and electronic density consists in optimizing the values of r0 and s in equation 6

in order to fit the band structure to the reference DFT band structure. Table 1 shows the

obtained confinement parameters.

On the other hand, the training dataset required for fitting the pair repulsion term
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Table 1: Confinement potential parameters r0 (Bohr) and σ, for atomic orbitals ϕ and den-
sities ρ0 of Li and Si.

set A set B
Element r0.ϕ σ.ϕ r0.ρ

0 σ.ρ0 r0.ϕ σ.ϕ r0.ρ
0 σ.ρ0

Li 4.899 1.889 7.233 1.986 4.843 1.927 7.210 1.999
Si 4.558 6.909 6.318 2.188 3.556 2.382 6.292 1.891

was created using the fundamental crystalline structures of the different stoichiometries

considered in this work, S = {Li,Li15Si4,Li13Si4,Li12Si7,Li7Si3,LiSi, Si}. These fundamen-

tal structures were isotropically compressed/expanded using a scaling factor that varied

from 0.4 to 1.45 every 0.05 units, generating 22 structures per stoichiometry. The energy

of each structure was computed using DFT, and those with more than 10 eV above the

corresponding stochiometry minimumwere excluded. This procedure gives a total of 108

structures in the training dataset. We denote with Ns the number of structures associated

with stoichiometry s ∈ S in the dataset. Also, we denote with rs
i the i-th structure of

stoichiometry s and with řs the structure corresponding to the DFT energy minimum for

s. Consistently, we will use the symbol “ ˇ ” to denote the argument of the minimum for

other functions.

We proceed to obtain a set of DFTB parameters, p̌ = ({či}, {ǎi}) (see equation 8), that

minimize the residual

ResE(p) =
∑
s∈S

Ns∑
i=1

ωs
i [EDFT(rs

i ) − EDFTB(rs
i ; p) − C]2 (9)

where C is a constant that shift the DFTB energy in order to correct systematic overbind-

ing or underbinding tendencies,28,30 EDFTB(rs
i ; p) is computed using DFTB with a specific

parameter set p and ωs
i allowing to control the relative weight of each rs

i structure in the

fitting procedure. Note that this equation is just particular case of the one presented in ref-

erence,28 with only two minor changes: we explicitly group the structures in subsets (i.e.

stoichiometries) and we exclude the force terms. The first change is found to be conve-

nient for the discussion below and the second one is for simplicity since all the structures
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in the training dataset are in mechanical equilibrium.

In order to minimize equation 9, it is necessary to choose the ωs
i relative weights. In

reference 28, the authors suggest a Boltzmann-like distribution

ω̃s
i = exp

(
−EDFT(rs

i ) − Es

bs
i

)
(10)

where bs
i is taken to be proportional to the number of atoms ns

i in each structure and Es is

an energy reference. As suggested in the documentation of the TANGO code we can fix

bs
i = 0.1ns

i eV and a suitable choice for Es would be the lowest energy of stoichiometry s:

Es = EDFT(řs) and EDFT(řs) ≤ EDFT(rs
i ) ∀i ∈ [1, Ns] (11)

The underlying motivation for this equation is to increase the accuracy of the resulting

DFTB model in predicting low-energy structures, to the detriment of the higher ones

which are less probable to find during a canonical simulation. Note however that this

choice does not weight the different stoichiometries used.

In general, by choosing the weights of the structures in the training dataset in equa-

tion 9, we can tune the scope of application for the resulting DFTB parameterization. In

other words, for each set of weights there is a different set of DFTB parameters p̌ that

minimize equation 9. Inspired by this idea, we choose the weights to be

ωs
i = ξsω̃

s
i = ξs exp

(
−EDFT(rs

i ) − EDFT(řs)
bs

i

)
(12)

retaining the focus in low-energy structures for each stoichiometry but including a new

set of coefficients ξ = (ξLi, · · · , ξSi) that control the relative weights between different sto-

ichiometries. With this definition, the optimal DFTB parameters for equation 9 can be

considered a function p̌(ξ). Next, we will introduce a second optimization procedure to

obtain ξ coefficients.
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The final goal of our work is to parameterize a DFTB model that allows the simulation

of silicon anode lithiation. Note that this is a very complex process that involves different

chemical environments, with a wide range of LixSi compositions. However, it is impor-

tant that the new parameterization maintains its accuracy for the widest possible range

of concentrations, in order to avoid the need to change the model “on-the-fly” during a

simulation. This could be particularly disturbing for approaches like grand-canonical MD

simulations, where the relative composition is constantly changing. Thus, we require the

parameterization to be as transferable as possible between different stoichiometries. In

this sense, to predict relative formation energies, F (řs):

F (řs) = E(řs) − (xE(řLi) + E(řSi))
x + 1 (13)

with x as in LixSi, is the main goal of our parameterization. Therefore, we choose the ξ̌

coefficients to minimize the residual:

ResF (ξ) =
∑
s∈S

[FDFT(řs) − FDFTB(řs; p̌(ξ))]2 (14)

Minimizing this residue leads to a set of DFTB parameters p̌(ξ̌) which gives a minimal

energy residue for a training dataset where stoichiometries are weighted to also give a

minimal residue in their formation energy.

Figure 1 shows a flow chartwith themain steps of the fitting procedure described in the

text above. The minimization of equation 9 is performed using the TANGO code.29 In or-

der to minimize equation 14, we developed a driver program calledMilonga that executes

several TANGO instances, one for each ResF (ξ) evaluation required by the minimization

algorithm.
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rLi
1 rLi

2 · · · rLi
NLi

rLi15Si4
1 rLi15Si4

2 · · · rLi15Si4
NLi15Si4

...

rs
1 rs

2 · · · rs
Ns

D
A

TA
B

A
SE

Boltzmann weighting (ω̃s
i )

Stoichiometry
weighting (ξs)

EDFT(r
s
i )

FDFT(r
s
i )

Initial ξ guess Initial p guess

Compute
EDFTB(r

s
i ;p)

Compute
ResE(p)

improve p

Compute
FDFTB(r

s
i ; p̌(ξ))

optimal p̌(ξ)

Compute
ResF (ξ)

improve ξ

optimal p̌
(
ξ̌
)

Figure 1: Flow chart for the fitting procedure used in this work. Two nested optimization
procedures are performed: the minimization of ResE using TANGO29 code (highlighted
in green) and the minimization of ResF using a new driver code named Milonga (high-
lighted in orange). Note that each improvement of ξ weights requires a full ResE mini-
mization to obtain the optimal DFTB associated parameters p̌(ξ).

Results and discussion

As indicated in the previous section, there are two groups of parameters to be determined,

the electronic ones (pseudoatomic orbitals and electron density) and the repulsive poten-

tials for each pair of chemical elements. These parameters are subject to optimization in

order to reproduce certain desired properties, such as the electronic band structure, and at-

omization energies, among others. Following the work of van den Bossche et al.28 only the

2s valence electron is considered for Li, meanwhile, the 3s and 3p valence electrons were

considered for Si. Figure 2 shows a comparison of DFTB computed band structures using

the set of parameters B with DFT computed band structures for four systems: Li BCC,

Li7Si3, an isolated Li atom in Si diamond (LiSi15), and Si diamond. The same comparison

of DFTB with parameter set A is shown in figure S1 of Supporting Information. Overall,

for Li and Si bulk systems, DFTB calculationsmimic closely theDFT computed band struc-

tures near the Fermi energy level (0 eV). These agreements were not expected since the

11



−4

−2

0

2

4

6

G X M G R X

Li BCC

E
ne

rg
y

(e
V

)

−10

−8

−6

−4

−2

0

2

G M K G A L H A

Li7Si3

E
ne

rg
y

(e
V

)

−12

−10

−8

−6

−4

−2

0

2

4

G X M G Z R A Z

E
ne

rg
y

(e
V

)

Li1Si15
−15

−10

−5

0

5

10

W G K L

E
ne

rg
y

(e
V

)

DFT
DFTB

Si (diamond)

Figure 2: Band structures computed byDFTB using the set of parameters B, in comparison
with the band structures computed by DFT/PBE for Li body-centered cubic (BCC), Li7Si3,
an isolated Li in Si diamond (Li1Si15), and Si diamond. All the electronic bands are shifted
to the respective Fermi levels (0 eV).
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parameters were not fitted to bulk Li or bulk Si (as was for set A) instead, they are fitted

to Li and Si in the Li7Si3 crystal structure. These results are the first test of the accuracy

and transferability of the parameter set B. However, the DFTB computed electronic bands

far away from the Fermi level differ from the DFT predicted values, something which is

expected given the minimal basis used in DFTB. Figure 2 shows a pronounced mismatch

in the conduction band at the Γ point (G in the figure) in the Si structure. This differ-

ence can be attributed to the present simplified basis used in the DFTB model. For the

two LiSi systems, we see a qualitative agreement of the band structures far from the Fermi

level and a small degree of compression when approaching the Fermi level. Given that in

general, the repulsive term is capable of correcting small imperfections in the electronic

part quite effectively, we decided to continue with the parameterization using these con-

finement parameters. This criterion is supported also by the good results that we present

below.

Table 2: Optimal weights, ξ̌s, obtained for the different band energy parameterization.

s set A set B
Li 0.23 10−2 0.49
Li15Si4 0.15 0.28 10−21

Li13Si4 0.21 0.17 10−1

Li7Si3 0.21 0.11 10−1

Li12Si7 0.23 0.11 10−2

LiSi 0.21 0.35 10−3

Si 0.83 10−7 0.49

We proceed to parameterize the pair repulsion of the DFTBmodel by using each of the

two energy band terms obtained as starting point. This gives us two different sets of DFTB

parameters, say A and B, obtained by using the weight optimization procedure described

in the method section. The ξ̌s coefficients obtained for each set, A and B, are reported in

table 2. It is interesting that for set A, the algorithm reduces the relative weight of pure Li

and Si crystals, and increases the weights of the different alloys. On the contrary, for set B,

the optimalweights are lower for the alloys and higher for the pure crystals. We rationalize
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this behavior by noticing that the band energy term of set A is built using pure element

structures while the same term for set B uses an alloy. It seems reasonable that the pair

repulsion term, which attempts to compensate for the energy residue given by all the other

energy contributions, will be less important for those structures used for fitting the band

energies andmore important for the others. In this sense, optimal ξ̌s coefficients seem to be

able to sense this situation and try to compensate for it by focusing the parameterization

on the structures that need it most.

Another interesting observation that arises from table 2 is the low weight resulting for

Li15Si4, in comparison with the other alloys of each set. Furthermore, in the case of set

B this weight is practically zero, indicating that the inclusion of these structures in the

training dataset does not contribute to improving the overall prediction of the relative for-

mation energies. This leads us to assume that Li15Si4 structure has a particular nature that

differs from all the other alloys and interferes somehow with the fitting of the model pa-

rameters. For instance, a plausible explanation may be that the chemical environment of

this structure is quite different from the rest of the alloys so the prediction can be globally

improved by focusing the model on all the other alloys but not Li15Si4. In this sense, the

weight optimization procedure proposed in this work may be seen as a tool to detect pe-

culiar information introduced in a training dataset. This should be addressed in further

work.

Figure 3 shows the DFT energies for the 108 structures in the training dataset, together

with the corresponding DFTB predictions with the parameters sets A and B. In general,

we found a good agreement for both parameter sets, although there are slightly larger dif-

ferences in the compression curves for the pure element with the parameter set A. This is

consistent with the low weight obtained for pure elements in this set (see table 2). There-

fore, this greater variation in the energy for the pure elements is mainly a consequence of

our weight optimization procedure. Here we recall that our priority is to achieve trans-

ferability over a wide range of mole fractions by focusing our model on reproducing the
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Figure 3: Energy profiles for the isotropic compression/expansion of the LixSiy crystal
structures, computed using DFT (lines) and DFTB with the parameter sets A (△) and B
(▽).

relative energies rather than their absolute values.

We turn now to inspect the energy of formation as defined in equation 13, althoughwe

present it as a function of the mole fraction of Si (Θ in Li1−ΘSiΘ) instead of x = (1 − Θ)/Θ

because this is more usual in literature. The resulting values are shown in Figure 4 for DFT

and the twoDFTB parameters sets. We also include for comparison the formation energies

obtained with the ReaxFF model parameterized in reference 19, which is a state-of-the-art

reactive potential for these alloys. It is possible to observe a good agreement for the two

DFTB models, where the parameter set B is shown to give the best of all approximations.

The major differences between DFT and our model are for Li13Si4 (Θ ≈ 0.24) and Li15Si4

(Θ ≈ 0.21) alloys, the latter being the worst. Strikingly, this is the only structure that gets

low weights during the optimization procedure. As we mentioned before, this may indi-

cate that Li15Si4 structure has some peculiarity that makes it difficult to fit with the other

alloys in the training dataset. Nevertheless, there is an improvement with respect to the

15



−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0 0.2 0.4 0.6 0.8

Fo
rm

at
io

n
en

er
gy

(e
V

)

Mole fraction of Si

DFT
ReaxFF

DFTB set A
DFTB set B

Figure 4: Formation energy as defined in equation 13 computed using DFT, ReaxFF19 and
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ReaxFF potential for this system, and the differences obtained in the formation energies,

in this case, are smaller.

In order to analyze the benefit of the weighted optimization procedure, we have com-

puted a set of DFTB parameters using fixed equal weights for each alloy. In other words,

we just skip the optimization of the ξ coefficients. Let us call these sets of parameters A0

andB0, which correspond to a band energy termfitted from the pure elements or the Li7Si3

global minimum respectively. Figure 5 shows the formation energy residues for both sets

and compares them with the obtained with A and B sets with optimized ξ weights. Al-

though some particular alloys might increase their formation energy residues after the

weight optimization process, we can confirm a general trend toward relevant improve-

ment of the prediction.

We proceed to test the prediction power of our DFTBmodels by computing the forma-

tion energy for different amorphous structures and compare these results with the ReaxFF

and DFT methods. These structures were prepared as described in section 2.2 and the
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new parameter sets before the optimization of ξ weights (A0 and B0) and after it (A and
B). DFT energies are used as a reference. The gain (or loss) of accuracy is indicated by
black (or red) arrows.
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Figure 6: Formation energy of amorphous Li-Si alloys of different compositions. Crys-
talline structures calculated with DFT are included in black squares for comparison.

results are shown in figure 6. In general, it is possible to see that there is a good agree-

ment between DFT and both DFTB parameterizations. Furthermore, a careful inspection

allows concluding that DFTB is able to mimic the trend of the DFT data, following the

occurrence of different maxima and minima. On the other hand, the formation energies

obtained with ReaxFF show a significant deviation from DFT data at high lithium con-

centration (Θ < 0.5), where amorphous structures are erroneously predicted to be even

more stable than crystals. Another interesting observation is that DFTB predictions with

parameter set A are significantly better for alloys at low lithium concentration, while the

opposite is true for set B. Note that the high precision for each set occurs for those alloys

with similar concentrations to the structures used for fitting the band energy term, which

are Li7Si3 (Θ = 0.3) for set B and pure Li and Si elements for set A.

Finally, we repeated the calculations for amorphous structureswithDFTBusing the pa-

rameter sets A0 and B0. A comparison between the resulting formation-energy residues

with the corresponding quantities for A and B sets can be seen in Figure 7. From this data,
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Figure 7: Formation energy residues obtained using DFTB with the new parameter sets
before the optimization of ξ weights (A0 and B0) and after it (A and B). DFT energies are
used as a reference. The gain (or loss) of accuracy is indicated by black (or red) arrows.
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we can conclude that the weight optimization procedure helps to increase the accuracy of

the formation energy. This is especially true for set B, which gives lower residues than

set B0 for all concentrations. In the case of set A, the weight optimization procedure al-

lows a better precision for 0.35 < Θ < 0.9 but not for the extreme Θ values. We remark

that the optimized weights for this set focus the pair-repulsion parameterization in these

intermediate alloys, while the weights for the pure elements are considerably smaller.

The largest discrepancies between the formation energies obtained by DFT and the

new DFTB models correspond to pure Si amorphous structures. Therefore, we have per-

formed additional tests for this case. The radial distribution functions (RDF) are shown in

Figure 8 together with experimental data. To obtain the amorphous structures we started

with crystalline silicon using a super-cell with 64 atoms. Then, simulated annealing was

performed in the NVT ensemble using the Nosé-Hoover thermostat, with a linear heating

from room temperature to 3000 K for 100 ps, a melting at that temperature for 750 ps and

an exponential quenching of 600 ps, always with a time step of 1 fs. An equilibration at

300 K for 100 ps was then run to obtain the production frames. We can highlight that the

DFTB model of set B shows excellent agreement with the experimental data of reference

41, making this parameterization the most adequate for further simulation studies.

Conclusions

We have developed a new DFTB parameterization scheme aiming to optimize other ob-

servables beyond absolute energies. We used this scheme to construct a DFTBmodel with

an optimal prediction of formation energies for several crystallines and amorphous struc-

tures in a wide range of compositions. In the case of pure amorphous silicon, which ex-

hibits the largest associated error in the prediction of formation energies, the experimental

radial distribution function was perfectly reproduced by the model. The excellent perfor-

mance shown by this model in comparison with DFT, in addition to being more than 1000
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Figure 8: Radial distribution function (RDF) of amorphous silicon for the different param-
eterizations of theDFTBmodels developed here, set A and set B, as defined in the text. The
results are compared with experimental values from reference 41, and with the ReaxFF.19
The vertical dashed black lines show where the peaks of crystalline silicon would be at 0
K. An excellent agreement is found with parameterization B.
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times faster, allows us to consider it as the potential of choice for future simulations of

LixSi alloys.
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