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bCentre of Biological Studies Chizé (CEBC), Villiers-en-Bois, France

cCONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Ciencias de la Atmósfera y los Océanos, Mepukada, Buenos Aires,
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Abstract1

In recent decades, southern elephant seals (SES) have become a species of2

particular importance in ocean data acquisition. The scientific community has3

taken advantage of technological advances coupled with suitable SES biological4

traits to record numerous variables in challenging environments and to study5

interactions between SES and oceanographic features. In the context of big6

dataset acquisition, there is a growing need for methodological tools to analyze7

and extract key data features while integrating their complexity. Although8

much attention has been paid to study elephant seal foraging strategies, the9

continuity of their surrounding three-dimensional environments is seldom in-10

tegrated. Knowledge gaps persist in understanding habitat use by SES, while11

the representativeness of a predator-based approach to understanding ecosys-12
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tem structuring is still questioned. In this study, we explore SES habitat use13

by using a functional data analysis approach (FDA) to describe the foraging14

environment of five female elephant seals feeding in the Southwestern Atlantic15

Ocean. Functional principal component analysis followed by model-based clus-16

tering were applied to temperature and salinity (TS) profiles from Mercator17

model outputs to discriminate waters sharing similar thermohaline structures.18

Secondly, in situ TS profiles recorded by the SES were employed to deter-19

mine the habitat visited within the range of potential environments identified20

from the model data. Four Functional Oceanographic Domains (FOD) were21

identified in the Brazil-Malvinas Confluence, all visited, in varying proportion,22

by four of the five females studied. We found that the females favored areas23

where all the FODs converge and mix, generating thermal fronts and eddies.24

Prey-capture attempts increased in such areas. Our results are in accordance25

with previous findings, suggesting that (sub-)mesoscale features act as bio-26

logical hotspots. This study highlights the potential of coupling FDA with27

model-based clustering for describing complex environments with minimal loss28

of information. As well as contributing to better understanding of elephant29

seal habitat use and foraging strategies, this approach opens up a wide range30

of applications in oceanography and ecology.31

1 Introduction32

Bio-logging is defined as the use of miniaturized animal-borne devices that provide33

data on animal movement, behavior, physiology or environment. Bio-loggers were34

first developed to investigate the at-sea behavior and distribution of enigmatic ma-35

rine megafauna (Block et al., 2011; Boehme et al., 2012; Hays et al., 2016; Hussey36

et al., 2015; Jonsen et al., 2007; Payne et al., 2018). Nowadays, a wide range of37

small-size instruments is available to sample, at high frequency, fine-scale foraging38

behavior along encountered oceanographic conditions (Block et al., 2016; Evans et39

al., 2013; Fedak et al., 2004; Guinet et al., 2014; Harcourt et al., 2019). Large ma-40

rine mammals, especially pinnipeds, have become species of particular importance in41

marine-environment data acquisition through bio-logging approaches (Bailleul et al.,42

2015; Fedak, 2013; Hindell et al., 2020; March et al., 2020; Roquet et al., 2013). In this43

context, southern elephant seals (Mirounga leonina, Linnaeus 1758, SES hereafter)44
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may currently represent the most significant marine animal contribution towards the45

collection of in situ oceanographic data. For instance, two-thirds of the temperature46

and salinity profiles available for the Southern Ocean are provided by SES equipped47

with Satellite Relay Data Loggers-CTD (SRDL-CTD) as part of the AniBOS network48

within the Global Ocean Observing System (McMahon et al., 2021; Roquet et al.,49

2014).50

The most commonly-monitored environmental variables include physical (temper-51

ature, salinity, light), bio-geochemical (chlorophyll-a, oxygen) as well as biological52

variables such as bioluminescence (Bailleul et al., 2015; Guinet et al., 2014; Jaud et53

al., 2012; Vacquie-Garcia et al., 2012). More recently, the assessment of mid-trophic54

level organisms including SES preys, ranging in size from a few millimeters to a few55

centimeters, was made possible by implementing a miniature echo-sounding device56

(Goulet et al., 2019; Tournier et al., 2021). SES behavior information includes at-sea57

locations, fine-scale three-dimensional (3D) diving behavior, swimming effort, as well58

as prey-capture attempts (PCA, Le Bras et al., 2017; Le Bras et al., 2016). These59

technological advances have led to substantial multivariate environmental and behav-60

ioral datasets used by physicists to investigate fine-scale processes (Aubone et al.,61

2021; Carse et al., 2015; Roquet et al., 2013), and biologists to study the at-sea ecol-62

ogy of these marine predators, thus revealing critical foraging habitats (Labrousse et63

al., 2018) and providing key information on the distribution and accessibility of food64

resources (Goulet et al., 2019; Tournier et al., 2021). Finally, combining SES foraging65

behavior with oceanographic conditions encountered along an animal’s trajectory is66

useful for understanding the trophic web structure and for studying organisms in re-67

lation to key physical processes (Bailleul et al., 2010; Cotté et al., 2015; Della Penna68

et al., 2015; Dragon et al., 2010; Rivière et al., 2019).69

However, such a predator-based approach also has its limitations. The specific behav-70

ior of individual animals may induce selective bias of the sampled in situ environmen-71

tal conditions (Conn et al., 2017; Dinsdale and Salibian-Barrera, 2019). Therefore,72

SES bio-sampling may not be suited for monitoring the full range of oceanographic73

conditions available to these animals. Consequently, it can be critical to consider74

the visited habitats as only part of a realm of possibilities when assessing the forag-75

ing habitat targeted by these predators. Although some species can reasonably be76

assumed to be mainly constrained by surface environmental conditions, like surface-77
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feeding seabirds (Schreer and Kovacs, 1997), diving species evolve in different layers of78

the water column. SES are deep divers (Hindell et al., 2016), and as such, one major79

difficulty when studying their foraging behavior is positioning it within a broader 3D80

oceanographic context. Satellite oceanographic data, while helpful for comparing ma-81

rine predator tracks with sea surface temperature, salinity, sea surface height and/or82

ocean colors, cannot inform on the vertical variations of oceanographic conditions.83

Yet, for an equal distance, vertical gradients of physicochemical variables are much84

more accentuated than oceanographic gradients at the surface (Wunsch and Ferrari,85

2004). Therefore, when investigating the foraging behavior of (deep) diving preda-86

tors, it is crucial to contextualize this behavior in a 3D oceanographic environment.87

In this study, we aim to understand the habitat used by elephant seals by analyzing88

the 3D habitat visited in relation to oceanographic conditions at a regional scale.89

Previous studies using classic oceanographic features tend to summarize the structure90

of the whole water column by a single discrete value like mean temperature or temper-91

ature at a given depth (Guinet et al., 2014; Hindell et al., 2016). However, tempera-92

ture and salinity (hereafter TS) profiles are sampled by SES with SRDL-CTD (0.5 Hz93

frequency) which provide a considerable dataset over an animal’s trip. Reducing these94

high-resolution profiles to single discrete descriptors leads to a substantial loss of in-95

formation. Functional data analysis (FDA), first introduced by Ramsay (1982), allows96

manipulating curves or functions rather than scalars or vectors (discrete measures)97

used in classic data-analysis techniques (Ramsay and Silverman, 2005). Functional98

approaches encompass numerous methods and offer a wide range of applications in99

various fields of sciences (Cuevas, 2014; Ullah and Finch, 2013; Wang et al., 2016).100

This statistical framework has recently been applied in marine science and showed101

strong potential for describing vertical oceanographic features at a global scale (Pau-102

thenet et al., 2017; Pauthenet et al., 2019). It is well suited to modeling TS profiles103

that are continuous variable functions of depth and can be applied to either in situ or104

modeled data without being affected by the sampling grid. Alongside FDA, various105

studies have proposed using profile classification models (PCM, Maze, Mercier, and106

Cabanes, 2017) to identify oceanographic regimes (Boehme and Rosso, 2021; Jones107

et al., 2019; Maze, Mercier, Fablet, et al., 2017; Rosso et al., 2020). PCMs take108

advantage of Gaussian mixture modeling (GMM) to find meaningful objective groups109

in data (Bouveyron et al., 2019). Yet, while these studies use temperature and/or110
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salinity profiles, they do not employ functional data methodology.111

In this study, we propose to combine FDA with model-based clustering within a col-112

lection of temperature and salinity profiles. The proposed method shows promising113

results, allowing the identification of spatio-temporal-coherent oceanographic regimes114

sharing similar vertical thermohaline structures, named hereafter Functional Oceano-115

graphic Domains (FOD). Another originality of this paper resides in the coupling116

of TS profiles from Mercator model outputs and from head-mounted SES loggers.117

Profiles from the model are used to describe the vertical thermohaline oceanographic118

environment at a regional scale and identify FODs, while in situ profiles are used to119

determine the actual conditions visited by the SES within the range of possibilities120

provided by the model. This research offers new insights into the bias induced by121

SES choices in the representativeness of sampled environmental conditions. More-122

over, prey-capture rates are analyzed to understand the impacts of oceanographic123

conditions on SES foraging strategies. This study is conducted on the Patagonian124

(Argentina) SES population known to forage within the Brazil-Malvinas Confluence125

(BMC), a region of major importance for that SES population (Campagna et al.,126

2021).127

2 Method128

2.1 Study area129

The study is carried out on recently acquired data collected by SES breeding in130

southern Argentina (Peńınsula Valdés, 42°57’ S, 63°59’ W) and mainly feeding in131

the Southwestern Atlantic Ocean (Campagna et al., 2006; Campagna et al., 2021).132

This region includes the meeting zone between the Brazilian Current (BC) and the133

Malvinas Current (MC). The MC finds its origin in the Antarctic Circumpolar Cur-134

rent (ACC) that flows eastward around Antarctica (Piola and Gordon, 1989). After135

passing the Drake Passage, south of the Patagonian shelf, a portion of the northern136

branch of the ACC is deflected northward, crossing the North Scotia Ridge mainly137

through the eastern and western flanks of the Burdwood Bank and the Shag Rocks138

Passage (Artana et al., 2016) and giving origin to the MC. Rounding east of the139

Falklands (Malvinas) Islands, the MC finds a way northward along the continental140

5
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slope, following isopotential vorticity contours (Saraceno et al., 2004) and carrying141

cold and nutrient-rich subantarctic waters. Contoured by the Subantarctic Front142

(SAF), the MC collides with the BC, flowing southward along the Brazil coast at ∼143

38° S (Gordon, 1981; Saraceno et al., 2004). The collision generates a thermohaline144

front called the Brazil-Malvinas Confluence zone (Deacon, 1937). The BMC creates145

instabilities generating prominent (sub-)mesoscale structures, including eddies, mak-146

ing the Southwestern Atlantic one of the most energetic regions of the world ocean147

(Chelton et al., 1990).148

The focus area is defined by the black rectangle displayed in Figure 1. This area149

covers the SES post-breeding trajectories in 2018 and 2019 and includes the BMC150

region. Land covers 9 % of the area. Within the ocean zone, 30 % is shallower than151

200 meters and corresponds to the Patagonian Continental Shelf (Piola and Falabella,152

2009). The continental slope ends at 6 000 meters depth, marking the beginning of153

the Argentine Abyssal Plain also named the Argentine Basin. The GEBCO14 grid is154

used to define the bathymetry in the area (30 arc second resolution; distributed by155

the British Oceanographic Data Centre; Weatherall et al., 2015).156

2.2 Functional analysis157

A bivariate principal component analysis for functional data (FPCA, functional prin-158

cipal component analysis) is performed on temperature and salinity (TS) profiles from159

Mercator model outputs to describe the vertical structure of the BMC area and ex-160

tract the principal modes of variability at the regional scale. Model-based clustering161

is applied on the first principal components (PC) of the FPCA to define regimes shar-162

ing similar water properties, the Functional Oceanographic Domains (FOD). In situ163

TS profiles recorded by five female southern elephant seals (SES) are then projected164

onto the factorial map of the model-derived FPCA in order to assign each SES dive to165

one FOD. This step gained information on the oceanographic regimes visited by each166

female along her trajectory. Figure 2 summarizes the different steps of the method.167

All analyses are conducted in R (Team, 2021) and with Matlab R2021b.168

2.2.1 Datasets169

Profiles from elephant seal dives170

6
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Nine post-breeding female SES were tagged in october 2018 with different bio-loggers171

at Peńınsula Valdés, following the procedure described in McMahon et al. (2008).172

The females were captured and anesthetized with an intravenous injection of Zo-173

letil®100 (1:1 combination of tiletamine and zolazepam) and tags were glued to the174

pelage using Araldite adhesive. The animal manipulations were in accordance with175

the “Use of Animals for Scientific Reasons (APAFIS)” ethics committee guidelines.176

Among phocids, the elephant seal is a particularly well-suited species for monitoring177

the oceans. It forages over extended distances (thousands of kilometers), diving con-178

tinuously (i.e. 60 times a day) at depths generally ranging between 400 and 1 000179

meters, and exceptionally up to 2 000 meters (Hindell et al., 2016). SES return to180

land to breed and molt at predictable cycles and places, facilitating device recovery181

and high-frequency data acquisition. Their large size allows scientists to equip them182

with several multi-sensor loggers with minimal disturbance (McMahon et al., 2008).183

All individuals were equipped with a SRDL-CTD tag (Sea Mammal Research Unit,184

St Andrews, UK). The depth was logged with a 0.5 Hz frequency and 0.5 m resolu-185

tion. A dive corresponds to a period during which the animal is deeper than 15 m186

continuously for at least 300 s (Le Bras et al., 2016). Each dive is associated with187

one temperature and one salinity profile, sampled and corrected from the ascending188

phase of the dive (Roquet et al., 2011; Siegelman et al., 2019). The CTD tag provides189

discrete TS measurements with a 0.5 Hz frequency and a 0.01 °C and 0.03 psu accu-190

racy. Locations of the dives were recorded using a Global Positioning System (GPS)191

for four individuals equipped with a micro-sonar or a DTAG (Goulet et al., 2020;192

Goulet et al., 2019). The (approximately) 20 m resolution provided by the GPS of-193

fers accurate coordinates but its short battery lifetime led to non-localized TS profiles194

as the CTD continued to record data after the GPS stopped. Argos locations (2-10195

km resolution; Lopez et al., 2015) provided by head-mounted SRDL-CTD or SPOT196

tags (Wildlife Computers, USA) were used to obtain dive coordinates for the other197

five SES. Head-mounted accelerometer sensors included in the SRDL-CTD, sonar and198

DTAGs are used to assess prey-capture attempts (PCA, Gallon et al., 2013; Viviant199

et al., 2010). The prey-capture rate (i.e. PCAs per unit time, referred to as PCR) is200

calculated from the dive duration (Guinet et al., 2014; Jouma’a et al., 2016) and used201

as a proxy of foraging performances. A day-night period is assigned to all localized202

dives based on the sun angle (Guinet et al., 2014). Day periods are defined when the203

7
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sun angle is > 12° above the horizon, while night periods are determined as < -12°204

below the horizon. The threshold of 12° is selected to ensure a clear distinction from205

dives occurring during the twilight period.206

Out of the nine SES equipped, only five foraging within the BMC are kept for the207

present study (Figure 1). Among the discarded individuals, one of the nine females208

traveled southward, following the coast of Argentina to Chile, and two others spent209

the whole trip foraging over the Patagonian slope. A fourth female presenting out-of-210

range salinity data was also excluded. Those incorrect data were detected as outliers211

via the FCPA described in Section 2.2.3. To determine oceanographic conditions212

visited by the five selected SES, all localized and non-localized TS profiles deeper213

than 450 m are considered, accounting for a total of 9 537 dives. These recorded214

profiles constitute the in situ dataset used in this work (step 1 Figure 2).215

Profiles from Mercator model outputs216

The general three-dimensional oceanographic temperature and salinity context of217

the study area is obtained by the GLORYS12V1 product provided by the Coper-218

nicus Marine Environment Monitoring Service (CMEMS, https://doi.org/10.48670/219

moi-00021). The dataset used to define the environmental conditions, referred to220

as model-derived profiles, corresponds to daily averaged TS profiles covering the de-221

fined area (Figure 1) from October 21, 2018, to January 23, 2019, spanning a total222

of 95 days. The horizontal resolution of the dataset is 1/12°, which corresponds to223

approximately 8 km. The output products are displayed on a 193 × 133 horizontal224

grid (longitude × latitude) and 50 vertical irregular depth levels extended from 0.5225

m (surface) to 5 728 m (bottom). Considering that the depth reached by the in situ226

profiles depends on the SES behavior, it was decided that statistical analysis would be227

applied on profiles (model and in situ) between 20 m and 450 m. This choice excludes228

profiles sampled on the Patagonian continental shelf (< 200 m) while capturing most229

of the vertical variability in the open ocean and retaining a large proportion of in230

situ profiles. The discrete model-derived profiles are linearly interpolated in order to231

obtain a uniform vertical grid with 44 x 10 m levels from 20 to 450 m. This step al-232

lows avoidance of spurious bumpiness in curve fitting (Pauthenet et al., 2019). Those233

profiles constitute the model-derived dataset used in this work (step 1 Figure 2).234

8
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2.2.2 TS profiles as continuous curves235

Temperature and salinity profiles are continuous functions along depth. These data236

are always available as discrete values, induced by the sampling method. Yet, values237

within a profile x(t) are ordered based on the parameter t. This link between two238

consecutive values implies particular considerations. First developed by Ramsay and239

Silverman (2005), statistical functional methods are explicitly designed to process240

and study data that are functions, considering one curve as a single entity. Each SES241

dive or each pixel (i.e. model-derived data) is described by two profiles (temperature242

and salinity), making the data bivariate functions. Those two profiles are intrinsically243

linked and regarded as a unique observation.244

The first stage of the functional data analysis (step 1 to 2 Figure 2) is to transform245

the discrete TS profiles into functions x(z), with z ∈ [20; 450] being the depth in246

meters (library fda, Ramsay et al., 2009). This step is achieved by decomposing the247

profiles on a cubic B-spline basis (Wahba, 1990). Each profile n is expressed as a248

linear combination of basis functions ϕk(z):249

xi
n(z) =

K∑

k=1

αi
n,kϕk(z), i ∈ {T, S}, n = 1, ..., N, (1)

where the αi
n,k coefficients are estimated by penalized least squares regression (see250

Supplementary Material) and N is the number of profiles. The number K of basis251

functions controls the vertical smoothness. Both model-derived and in situ profiles252

are expressed according to the same basis to facilitate their comparison. As the253

model-derived dataset used in this study is composed of more than 2 × 1.5 million254

profiles (T and S profiles) with 44 values per profile, one goal of the decomposition255

procedure is to reduce the dimension of the data. A basis of K = 15 functions is256

chosen, allowing sufficient vertical complexity to be kept for both kinds of profiles257

while summarizing the data with a small number of coefficients (see Supplementary258

Material). Henceforth, each observation n, consisting of two profiles (xT
n (z), x

S
n(z)),259

can be expressed as a vector αn of dimension 2×K, merging temperature and salinity260

coefficients:261

αn = (αT
n,1, ..., α

T
n,K ; αS

n,1, ..., α
S
n,K)

′. (2)

Model-derived coefficients are stored in a matrix XN of size N × 2K, with N the262
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number of model-derived observations (step 2 Figure 2). The mean model-derived263

observation α = (αT
1 , ..., α

T
K ;α

S
1 , .., α

S
K)

′ is evaluated with αi
k, i ∈ {T, S}, k = 1, ..., K,264

the empirical mean of the N coefficients k.265

2.2.3 Functional Oceanographic Domains (FOD)266

Functional Principal Component Analysis267

Functional principal component analysis (FPCA) is a powerful method to reduce the268

dimension of the data (Wang et al., 2016). It decomposes the thermohaline structure269

into modes of variability, allowing simultaneous analysis of the shape variation of270

temperature and salinity profiles. The search for the main modes of variability is271

achieved by solving the following eigenvalue problem:272

VWMbl = λlbl, (3)

associating bl, the lth eigenvector with the λl eigenvalue. This step allows us to find273

the unique decomposition of the matrix VWM. The block-structured covariance ma-274

trix V is computed from the matrix C of centered coefficients such as V = 1/N×C′C.275

The centered matrix C is obtained by subtracting the coefficients of the average pro-276

file α from each row of XN . Matrix W, of size 2K × 2K, guarantees the metric277

equivalence between the functional problem (working on functions) and its discrete278

version (working on coefficients). M is the weighting matrix used to normalize the co-279

efficients of temperature and salinity (see Supplementary Material). Each eigenvector280

generates two eigenfunctions (ξTl , ξ
S
l ), also called vertical modes (see more details in281

Supplementary Material and Pauthenet et al., 2017). A total of 2K eigenvectors are282

obtained, that can be sorted in ascending order according to their associated eigen-283

values. The eigenvector associated with the largest eigenvalue corresponds to the first284

vertical mode. The main factors of variability can be seen as a perturbation of the285

mean function (xT , xS) by adding or subtracting the eigenfunctions (ξTl , ξ
S
l ):286

xi ±
√

λlξ
i
l , i ∈ {T, S}. (4)

The FPCA is realized with the model-derived TS profiles (step 3 Figure 2). The287

observations can be projected into a 2D map using the first two principal components288
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(PC) computed as: cl = CM−1/2W−1/2bl, l = 1, 2. PCs are the uncorrelated linear289

combinations of the original variables. They capture the variance of the system. For290

more details on the bivariate FPCA procedure, the reader is referred to Nerini et al.291

(2022) and Pauthenet et al. (2017).292

Model-based clustering293

Oceanographic regimes are identified using model-based clustering (library mclust,294

Scrucca et al., 2016). First introduced by Wolfe in 1963, model-based clustering295

is a clustering method based on a probability model defined by a finite mixture of296

multivariate Gaussian distributions, called components. The probability distribution297

of the P -variate observation yn = (cn,1, . . . , cn,P )
′, can be seen as a weighted average298

of G conditional probability functions fg, G being the number of components:299

p(yn) =
G∑

g=1

τgfg(yn|µg,Σg). (5)

The parameter τg is the probability that an observation was generated by the gth300

component while µg and Σg are parameters that control the shape of fg. The method301

allows us to assess uncertainty about the clustering. Each cluster found is modeled302

by its own probability distribution. As commonly used, the function fg is chosen as303

a multivariate normal density ϕg:304

ϕg(yn|µg,Σg) =
exp(−1

2
(yn − µg)

′Σ−1
g (yn − µg))

(2π)P/2|Σg|1/2
, (6)

where P is the size of the vector yn, and the parameters µg and Σg correspond305

respectively to the mean vector and the covariance matrix of the Gaussian density306

ϕg. The model potentially owns a large number of parameters, depending on the307

dimension and the number of groups, which may lead to computational issues in308

the estimation process. A common way use to address this problem is to control the309

geometric properties of the mixture components, known as Volume-Shape-Orientation310

decomposition. Details on the principle are found in Bouveyron et al. (2019). In311

order to give as much freedom as possible to the model computation, neither volume,312

shape nor orientation were constrained to be equal across the clusters. The choice313

of this model, identified by the letters VVV (for varying geometry), is in agreement314

with the Bayesian Information Criterion (BIC, Schwarz, 1978) and the Integrated315
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Completed Likelihood (ICL, Biernacki et al., 2000), showing the VVV model as the316

best combination.317

The model-based clustering is applied in the space of the principal components ob-318

tained from the model-derived FPCA developed above (step 3 Figure 2). The expec-319

tation maximization algorithm (Fraley and Raftery, 2002) estimates the parameters320

of the model (Equation 6). The most appropriate number of group G is found using321

the ICL criterion which is recommended when the focus of the mixture analysis is322

clustering instead of density estimation (Biernacki et al., 2000). Initial values of the323

algorithm are selected by running the hierarchical model-based clustering with the324

VVV model (mclust package, Bouveyron et al., 2019). However, since model-based325

clustering can be sensitive to the initialization, we executed the model 100 times to326

choose the optimal pattern and assess the clustering variability.327

2.2.4 FODs visited by the elephant seals328

In order to study FODs visited by the SES, in situ TS profiles are projected as new ob-329

servations onto the factorial plan of the FPCA realized with model-derived data (step330

4 Figure 2). In situ TS profiles are first decomposed into T and S coefficients accord-331

ing to the procedure explained in Section 2.2.2. The ∆ matrix, of size M × 2K stores332

the new coefficients centered with the vector α computed from the model-derived333

coefficients (see Section 2.2.2). Estimated scores ĉl of the l
th principal component for334

the M new observations are computed as follows:335

ĉl = ∆M−1/2W−1/2bl, (7)

with bl as the lth eigenvector. The pair (ĉm,1, ĉm,2) gives the coordinates of the mth
336

in situ TS profile on the 2D map obtained from the model-derived FPCA. This337

step relates the environmental conditions visited by the seals to the actual range of338

possibilities given by the model-derived analysis.339
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3 Results340

3.1 Vertical modes in the Brazil-Malvinas Confluence341

The functional PCA is performed on 1 524 750 model-derived TS profiles covering the342

defined area (Figure 1) over 95 days (21 October 2018 to 23 January 2019 inclusive).343

The time period corresponds to the foraging trips of the studied SES. Only pixels344

where the bathymetry is deeper than 450 m are kept for the analysis, excluding the345

continental shelf area.346

The first three vertical modes of variability resulting from the FPCA represent 98.77347

% of the variance (Table 1). This value is of the same order as those obtained on the348

Kerguelen Plateau (Pauthenet et al., 2018) and in the Southern Ocean (Pauthenet349

et al., 2017). The higher modes capture less than 0.5 % of the variability and are350

not considered in the following analysis. Spatial distributions of the first and second351

principal components are displayed in Figure 3a and 3b for 21 October 2018. The352

maps show that while the FPCA is performed independently of location and day353

information, spatial patterns arise, accounting for temperature and salinity joint fea-354

tures. Ninety-five maps corresponding to each day of the study can be constructed355

similarly. Figure 3c and 3d represent the deformation of the mean profile associated356

with the two first modes.357

The first mode, associated with the highest eigenvalue, alone summarizes as much as358

94.5 % of the variance with an equivalent contribution of temperature and salinity359

variability. It involves a modification of the whole water column, going from cold and360

fresh waters unstratified under 100 m with a noticeable thermocline in the subsurface361

(positive PC1 in pink, Figure 3), to hot and salty waters (negative PC1 in orange,362

Figure 3). This mode marks a contrast between Subtropical waters transported by the363

Brazil Current and Subantarctic waters advected by the Malvinas Current, highlight-364

ing sharp thermohaline vertical gradients at the confluence (Figure 3a). The second365

mode (PC2) describes 3.55 % of the variance. High positive PC2 values (blue, Fig-366

ure 3) present colder and fresher waters between 20 m and 200 m than high negative367

values (green, Figure 3). The trend reverses under 200 m. The spatial distribution of368

PC2 reveals mesoscale structures and a high dynamism produced by the meeting of369

the two currents (Figure 3b). This mode also opposes waters in the heart and at the370
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edges of the BC (dark blue vs green, Figure 3b). From 20 m to 200 m, temperature371

and salinity are greater at the edges than in the center part of the current. The third372

mode (see Supplementary Material) captures the seasonal thermocline development373

in response to surface heating. Figure 4 depicts the daily mean (continuous lines) and374

associated standard deviation (dashed lines) trends of the three first modes. A high375

daily standard deviation time series distinguishes the first mode (see y-axis) marked376

by a decrease between December and January. This decline can be related to the377

increase of the daily mean of the first component (pink line, Figure 4), indicating378

an average drop in temperature and salinity (effect of the first eigenfunction on the379

mean profiles). The daily mean of the second mode shows a decrease in stages over380

time, with a small daily standard deviation sharing a similar trend with the daily381

standard deviation of PC1. Even though the third mode represents less than 1 %382

of the variance (Table 1) its temporal evolution clearly shows a seasonal (spring to383

summer) increase of the subsurface temperature in the whole area.384

In addition, a functional PCA is applied to the in situ TS profiles exclusively. The385

resulting shape decomposition is similar to the modes obtained with profiles from the386

model (see Supplementary Material) with comparable variance associated to the first387

modes (Table 1). This in situ FPCA was conducted independently of the model-388

derived FPCA and serves solely to compare the obtained modes of variability.389

3.2 Functional Oceanographic Domains (FOD)390

In order to cluster profiles sharing similar vertical structures in FODs, a model-based391

clustering is performed using PC1 and PC2 as input variables, outcome of the FPCA392

conducted on the model-derived profiles. PC3 is not included to avoid implying a393

seasonal water warming in the regime discrimination. An optimal number of four394

clusters is given by the ICL criterion. After running the model-based clustering 100395

times, two distinct patterns emerged. We selected the main pattern, occurring in396

68 % of cases and presenting low variability in the cluster composition. The FODs397

are then defined as groups containing profiles with a high probability of belonging398

to a given cluster. The threshold is arbitrarily fixed at 0.75. This step leads to the399

distinction of a fifth group composed of profiles with a probability lower than 0.75400

and referred to as indeterminate profiles. Regimes 1 (purple), 2 (blue), 3 (green), 4401

(yellow) and 5 (indeterminate) contain respectively 5.7 %, 18.4 %, 40.1 %, 24.2 %402

14



Journal Pre-proof

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

and 11.6 % of the profiles considered over the 95 days. The proportions of the five403

regimes vary over time as shown in Figure 5, with a notable gradual disappearance404

of the first FOD (purple). The first FOD corresponds to cold and fresh waters with405

little vertical variability between profiles as seen by the shade around the mean profile406

(purple profiles, Figure 6a). The second FOD shows similar features to the first407

group, with waters warmer above 80 m, slightly colder deeper, and saltier above408

100 m (blue profiles). The FOD numbered 4 corresponds to hot and salty waters409

with a high variability (yellow profiles), matching features of the BC. Finally, the410

third FOD corresponds to intermediate features with high variability decreasing with411

depth (green profiles, Figure 6a). This regime corresponds to waters that are formed412

by the mixture of Subantarctic and Subtropical waters. The spatial distribution of413

the clustering for the first day of the considered period is displayed in Figure 6b.414

Regimes obtained show very consistent spatial and temporal patterns. Hot and salty415

waters (yellow) form a coherent mass in the north part of the map, while the blue416

and purple FODs follow the Patagonian slope. The green regime occupies a vast area417

in the southeast part but with an indefinite shape. For both the yellow and green418

FODs, the daily probability density function of PC1 shifts toward positive values (see419

Supplementary Material), meaning that inside those regimes, the whole water column420

cools down and gets fresher over time (corroborating the observed drop in the daily421

trends, Figure 4). Gray filaments appear in Figure 6b and contain indeterminate422

profiles. They mainly correspond to spatial transitions between the different regimes423

and are considered as frontal zones.424

3.3 Habitats used and foraging strategies425

In situ profiles reaching 450 m depth account for 45.07 % of the total SES dives. Out426

of this dataset, 4 463 are attributed to the day-time period, while 767 are attributed427

to the night-time period. The remaining profiles occur either during the twilight428

period or are not geolocalized.429

Figure 7 shows the projection of the in situ profiles superimposed onto the 2D mapping430

of the FPCA obtained from model-derived profiles. The marginal distributions reveal431

high-density modes and the high concentration of model-derived observations in the432

top right corner. The distribution of in situ TS profiles is pointed out by the 2D433

density estimation (red to yellow lines). Each in situ profile is assigned to one of434
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the five regimes (considering indeterminate profiles) based on their coordinates on435

the first factorial map (Figure 7). Figure 8 shows the five SES trajectories colored436

according to the FOD and the proportion of regimes visited by the five females. The437

spatial overlap of dives belonging to different FODs is explained by the displacement438

of regimes in space over time. Indeterminate profiles occupy a notable part of the439

trajectories (between 14 % and 25 %). All females except one visited the five regimes440

but at different percentages. The yellow FOD is not always seen on the trajectories441

meaning that this regime was visited by the females after the GPS stopped (i.e. the442

dives are not geolocalized). Since the analyses do not rely on the location and time of443

the profiles, it is indeed possible to assign a oceanographic regime to a non-localized444

SES dive. The female named 2018-46 quickly crosses the purple and blue FODs and445

spends a large part of her journey in the third regime identified (green). The other446

females linger more in the cold waters associated with regimes one and two (purple447

and blue), but are also found in the yellow regime, crossing highly contrasting waters448

along their trips (Figure 6a). The passage between two FODs with opposite features449

is sometimes performed in less than 24 hours (personal observations).450

With the aim of understanding the SES habitat-visited proportions observed in Fig-451

ure 8, the foraging strategy is studied within the scope of the FODs. The female452

identified as 2018-47 can not be included in the foraging analysis as data from the453

accelerometer is unavailable. Surprisingly, the foraging performances assessed by the454

prey-capture rate (PCR) of the seals do not show much variation according to the455

oceanographic regime (see Supplementary Material). At night, only the yellow regime456

shows a slight decrease in PCR. During the day, the PCR is lower in the green regime457

and slightly higher in the blue. The indeterminate group, corresponding to fronts458

between FODs, do not imply significant changes in the PCR in comparison with the459

other regimes. While the SES feed continuously along their pathways, the females460

studied seem to favor the area where the different FODs meet and mix, at around 41° S461

56° W (Figure 8). Dives are gathered in this zone in particular as the speed decreases462

and the curvature increases (personal observations). To validate this assumption, a463

criterion is created to reveal areas of high spatial and temporal oceanographic vari-464

ability (Figure 9). This criterion is determined by calculating, for a given pixel, the465

proportion of days (over the considered time-period) where the oceanographic domain466

changes from a given day to the previous one. The spatial distribution of this criterion467
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is presented in Figure 9. The map highlights one particular area with high probabili-468

ties of having oceanographic conditions changing at day+1. This area corresponds to469

the meeting of the FODs. Yellow filaments are seen along the Patagonian slope and470

correspond to the displacement of the blue FOD over time, gradually substituting the471

purple regime. Other areas of large probabilities are also observed in the northeastern472

and southern parts of the map, and can be associated with frontal regions induced473

by mesoscale features like the displacement of eddies carrying Subtropical waters in474

the area. The probability value is extracted for each SES dive location and related475

to the associated PCR. Figure 10 depicts the relationship between the PCR and the476

probability of changing regimes. The non-parametric regressions on the quantiles (Oh477

et al., 2011; Simonoff, 2012) reveal a positive relation between the two variables even478

if the data variability is high. The capture rate increases sharply to 0.15 with a slight479

acceleration for the high percentiles. A small decrease arises around 0.2, then the480

PCR gently increases with high probabilities. The median capture rate (red line) is481

multiplied by 3.78, going from 3.5 capture per hour to 13.24. This result supports482

the assumption that SES favor areas at the interface between water masses, where483

they increase their foraging success.484

4 Discussion485

In this study, we aim to understand the habitat use of five elephant seals equiped in486

2018 in Argentina, and the influence of oceanographic conditions on their foraging487

strategies using descriptive statistics.488

A functional principal component analysis followed by model-based clustering is used489

to describe the Malvinas-Brazil Confluence at a regional scale. The multivariate490

FPCA is an objective method developed in the oceanographic domain by Pauthenet491

et al. (2017) to identify the thermohaline modes of the Southern Ocean. This ap-492

proach presents strong potential as it not only allows the description of oceanographic493

patterns at a global scale (Pauthenet et al., 2019) but also the definition of water-494

mass boundaries and variability (Pauthenet et al., 2018). The analysis extracts the495

principal modes of variability that describe and summarize the 3D thermohaline envi-496

ronment through joint variations in temperature and salinity. Modes of variability are497

orthogonal, considered as independent from each other. This multivariate technique498
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is extremely efficient in data reduction. The dataset used in this study is composed499

of more than 1.5 million combinations of temperature and salinity profiles, with each500

profile decomposed into 44 discrete values from 20 m to 450 m. We first projected501

the model-derived profiles onto a B-spline basis with a small number K of functions.502

Then, we worked on the two first principal components of the FPCA, which summa-503

rize 98 % of the curve’s shape variability. The B-spline basis used can not capture504

the fine-scale variations of in situ profiles. Yet, since these profiles are projected into505

the first factorial map of the clean and smooth model-derived profiles (Section 2.2.4),506

the variations missed by the curve reconstruction do not impact the results in the507

oceanographic regime attribution. Furthermore, smoothing the profiles with a small508

number of basis functions is useful when data is potentially corrupted by noise, such509

as in the case of in situ profiles (Nerini et al., 2010). The functional approach is510

interesting because it integrates the vertical continuity of the data (considering the511

inherent link between two consecutive values), working on curve shape decomposi-512

tion. Moreover, curve reconstruction allows reducing the dimension of the data while513

preserving the complexity of the curve shape. However, one constraint of the anal-514

ysis is the requirement of equal depth range for each profile. Choice of the 450 m515

threshold was motivated by the desire to take into account a large part of the water516

column used by the SES. This limitation implies the removal of all profiles that do517

not reach that depth, resulting in the elimination of the continental shelf area. As518

females preferentially use the deep ocean basin (Campagna et al., 2021), this loss of519

area has limited consequences. The 450 m threshold also implies the loss of many520

night dives as these mostly do not reach that depth. Results on the foraging behavior521

observed in this study are thus mainly driven by daylight dives and deep night dives,522

necessitating cautious interpretation. One way to resolve this issue could be to recon-523

struct the missing part of shallow profiles by functional methods. This solution would524

allow consideration of a larger portion of night dives and could highlight potential525

nighttime foraging variabilities between FODs that were missed out in this study.526

Results of the FPCA applied to model-derived TS profiles demonstrate the method’s527

high capacity to decompose the BMC’s main modes of variability. The three princi-528

pal modes of vertical variability express the three main drivers of the oceanographic529

conditions in this area at that period, namely: (1) a positional mode (PC1) depict-530

ing the main vertical variability driven by the opposite features of the Brazil (north)531
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and Malvinas (south) Currents; (2) a dynamical mode (PC2) highlighting mesoscale532

structures inherent to the confluence of the two currents; and (3) a seasonal mode533

(PC3) revealing the spring to summer surface heating independent of the water’s534

origin. Moreover, as the method is applied over 95 days, it allows us to follow each535

mode of vertical variability in space and time, giving key information about physical536

processes occurring in the area (Figure 4). The trends of the daily mean and associ-537

ated standard deviation of PC1 and PC2 can be associated with seasonal oscillations538

and variability in Subantarctic and Subtropical influxes in the region but may also539

indicate sporadic events that change the average thermohaline features in the region.540

The model-based clustering applied on the first two principal components of the541

FPCA led to the distinction of four FODs, whose thermohaline features share a542

common vertical structure. A FOD can be considered as an assemblage of water543

masses, integrating the vertical structure of the water column. The T-S diagram544

(see Supplementary Material) indicates the water-mass composition of each FOD,545

following definitions given by Gordon (1981), Maamaatuaiahutapu et al. (1994) and546

Piola and Gordon (1989). The spatial coherence of the FODs obtained and their547

consistency over time confirm the robustness of the analysis. The vertical features548

of the fourth group (yellow) correspond to Subtropical waters transported by the549

BC (Piola et al., 2001; Valla et al., 2018). In the upper layer of the yellow FOD,550

we find the warmest and saltiest Tropical Waters (TW) above the South Atlantic551

Central Waters (SACW, σθ < 27 kg m−3) corresponding with the nearly straight line552

in the diagram. The BC has been described as a high variability current (Valla et al.,553

2018), corroborated in this study by a large interquartile vertical domain (Figure 6a).554

This regime varies over time. The entire water column gets colder and fresher during555

the considered period, suggesting a greater influx of Subantarctic waters within the556

study area, while surface heating occurs (shown by the PC3). The third FOD (green)557

corresponds to mixed waters resulting from the confluence of the BC and the MC,558

as seen by the vertical features on the T-S diagram (see Supplementary Material).559

These mixed waters occupy almost half of the considered area. The first and second560

regimes (purple and blue) correspond to the Malvinas Current signatures (Piola et al.,561

2001). The two groups have very similar vertical characteristics. They gather cold562

and fresh profiles with low intra-cluster variability. The upper 100 m are composed of563

Subantarctic Surface Waters (temperature > 5 °C, salinity ∼ 34 psu) while two water564
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masses are found deeper: the Subantarctic Mode Waters (temperature ∼ 5 °C, salinity565

∼ 34.2 psu) and Antarctic Intermediate Waters (temperature < 4 °C, salinity < 34.2566

psu) (see Supplementary Material). The MC is the only current to carry Subantarctic567

waters to Subtropical latitudes (Paniagua et al., 2021). It is generally accepted that568

the MC starts at 55° S, follows the SAF and meets with the BC at approximately 38°569

S (Artana et al., 2016), which corresponds to our observations (Figure 6b). The first570

FOD (purple) corresponds to pure Subantarctic waters transported by the MC while571

the second FOD (blue) may correspond to Subantarctic waters that have undergone572

some mixing with Subtropical waters and are carried southward, up to 49° S, by573

the Malvinas Return Current (MRC) (Saraceno et al., 2004). As the second regime574

substitutes the first FOD over time (Figure 5), it indicates that the waters along575

the Patagonian slope become colder under 100 meters depth, warmer above that576

threshold and saltier above 150 meters depth. This observation is consistent with the577

findings of Aubone et al. (2021) who studied the behavioral response of an elephant578

seal staying over a small portion of the Patagonian slope to vertical thermohaline579

variability of the MC. While the MC and the MRC are not distinguishable by an580

analysis performed on TS surface data (not shown), the functional analysis applied581

in this study succeeded in differentiating subtle patterns. In this way, the FODs582

obtained in this study are slightly different from those obtained by Tournier et al.583

(2021) who also performed a FDA to study the influence of oceanographic features on584

mid-trophic levels through active acoustics, and found three oceanographic regimes585

using SES in situ data. Features of those regimes are similar to the ones found in the586

present study but they did not differentiate the MRC and the MC, probably due to587

the clustering method and the use of selected in situ data to describe the thermohaline588

environment instead of model-derived data as in our case.589

Different approaches have been explored to determine biogeographical regions in the590

BMC area but mostly using ocean surface variables from satellites (Gonzalez-Silvera591

et al., 2004; Saraceno et al., 2006; Saraceno et al., 2005). An extension of our work592

could comprise in integrating biogeochemical data like chlorophyll-a surface concen-593

tration with TS functional data in clustering, and comparing the results with previous594

findings. In other areas, different studies have also experimented with applying the595

model-based clustering framework to temperature and/or salinity profiles to iden-596

tify spatial oceanographic patterns (Maze, Mercier, and Cabanes, 2017). However,597
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most of these studies did not combine a functional approach with a Gaussian mixture598

model (GMM), although this approach was suggested by Jones et al. (2019). The599

GMM was applied in the North Atlantic and the SO using temperature profiles from600

Argo floats (Jones et al., 2019; Maze, Mercier, Fablet, et al., 2017). More recently,601

other studies have used profile classification model (PCM) in the multivariate case602

to define regimes by their thermohaline structure (Boehme and Rosso, 2021; Rosso603

et al., 2020). Although they all reduce the dimensionality of the data using a classical604

principal component analysis, they do not preserve the original nature of the data605

(i.e. the functional properties). The eigenvalue decomposition of a matrix T in a606

classical PCA remains invariant under the permutation of columns or rows. How-607

ever, a permutation of the values in a profile (i.e. the columns of matrix T) changes608

the shape of the profile. Only a few papers leverage the functional properties of TS609

profiles to define oceanographic regions. For instance, Assunção et al. (2020) ap-610

plied two distinct FPCAs to temperature and salinity profiles and used a functional611

hierarchical clustering to characterise the thermohaline structure of the Southwest-612

ern tropical Atlantic. Here, our results demonstrate the potential and effectiveness613

of combining multivariate FPCA and model-based clustering to extract key verti-614

cal thermohaline features and identify oceanographic domains. This functional data615

clustering approach falls under the category of filtering methods described in Jacques616

and Preda (2014a). This category encompasses clustering on either basis coefficients617

(James and Sugar, 2003) or on FPCA scores (Jacques and Preda, 2013, 2014b). Over618

the last decades, a vast amount of literature has been produced on methodological619

aspects and applications of the combination of FDA and clustering (Chamroukhi and620

Nguyen, 2019; Jacques and Preda, 2014a; Wang et al., 2016; Zhang and Parnell,621

2023). Some studies have expanded hierarchical clustering and k-means partitioning622

methods to functional data (Abraham et al., 2003; Tokushige et al., 2007), while oth-623

ers have focused on functional clustering using mixture models (Korte-Stapff et al.,624

2022; Li et al., 2016; Schmutz et al., 2020). In the field of oceanography and lim-625

nology, while the application of functional data clustering may appear limited in the626

literature, functional data analysis has received more attention. Various studies are627

moving toward functional models (FM) to explain or predict biological variables with628

hydrological parameters (Ainsworth et al., 2011; Boudreault et al., 2021; Yen et al.,629

2015). It is possible within the frame of FDA to use functions as responses and/or630
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predictor variables in regression models (Ramsay and Silverman, 2005). Considering631

data as curves prevents information loss, improving models (Boudreault et al., 2021).632

Bayle et al. (2015) demonstrated the ability of FM to predict vertical chlorophyll-a633

from light profiles in the Antarctic region. Godard et al. (2020) have also shown that634

functional analysis helps to deepen the understanding of animal behavior as their635

study of SES dive shape allowed them to determine different dive patterns associated636

with foraging success. The FDA framework was recently extended to the acoustic do-637

main (Ariza et al., 2022), showing promising results for improving our understanding638

of the links between oceanographic conditions and the structuring of sound-scattering639

layers.640

Model-based clustering also offers the advantage of allowing for uncertainty regarding641

clustering (Bouveyron et al., 2019). In this present study, profiles with a probability642

of belonging to a cluster under 0.75 form frontal filaments (gray color, Figure 6b),643

which are in good agreement with intense fronts obtained with other criteria like644

thermal gradients or with the Finite Size Lyapunov Exponents criterion (d’Ovidio et645

al., 2010). The convergence of the MC and the BC with very different thermohaline646

characteristics leads to energetic mixing processes and intrusions of Subantarctic and647

Subtropical waters (Piola et al., 2001). These mesoscale structures are seen with the648

second mode of variability obtained by the FPCA (Figure 3b). The Atlantic portion649

of the Patagonian Shelf is marked by a large continental shelf extending from 34° S to650

55° S and between the coastline and the 200 m isobath, followed by a slope plunging to651

6 000 m depth (Weatherall et al., 2015). Several studies suggest that the interaction652

of the complex ocean topography with the MC flow generates upwellings along the653

shelf-break (Matano and Palma, 2008; Miller et al., 2011) and is also a source of654

mesoscale processes (Fu, 2006; Mason et al., 2017; Saraceno and Provost, 2012). The655

interaction of the shelfbreak, the nutrient-rich Subantarctic waters transported by656

the MC, and the complex physical processes induced by the BMC, contribute to the657

high phytoplankton biomass observed (Acha et al., 2004; Garcia et al., 2008). Indeed,658

this region is known for its high chlorophyll-a concentration during the austral spring659

and summer (Lutz et al., 2010; Romero et al., 2006; Saraceno et al., 2005). These660

conditions support the marine ecosystems in the region and sustain one of the most661

important fisheries in the southern hemisphere (Bogazzi et al., 2005; Martinetto et662

al., 2020; Rey and Huettmann, 2020). The confluence associated with shelf blooms663
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makes the Argentine Basin a particularly interesting area for large pinnipeds like the664

SES, whose females mainly feed there (Campagna et al., 2021).665

The combination of FPCA with model-based clustering allows us to contextualize666

the environment in the foraging area of the elephant seals at the regional scale. The667

oceanographic domains identified are considered as distinct physical habitats and668

used to study conditions visited by the SES and their foraging strategies. By pro-669

jecting in situ profiles on the factorial plan obtained from the FPCA performed with670

model-derived data, we are able to match the conditions visited by the females with671

the range of possibilities revealed by the analysis. We consider this approach to be672

more robust than directly performing clustering on in situ data. In fact, since model-673

based clustering can be sensitive to initialization, clustering the TS profiles from SES674

without taking precautions could result in highly variable groupings. Our results675

demonstrate that clustering over a large dataset (> 1.5 million observations) yields676

to a stable model and provides more objective interpretations of the oceanographic677

regimes visited by the seals. The results show that SES foraging within the BMC678

tend to visit all FODs present in the study area but in unequal proportions (Fig-679

ure 8). The results also show intervariability between the seals, which may indicate680

individual preferences. The percentages of the visited habitats observed (Figure 8)681

do not correspond to the spatial space occupied by the regimes (Figure 5). For ex-682

ample, the third group (green), which represents more than 40 % of the area, is683

proportionally less visited by the elephant seals. One major advantage of studying684

TS profiles through FDA is that it gives information about oceanographic conditions685

encountered with no need for spatial coordinates. The consideration of non-localized686

dives is necessary, first of all, to obtain an objective overview of habitat use, but is687

also useful for accessing information that could otherwise be missed. The results of688

the case presented here indicate that study of SES data allows us to find the four689

FODs observed at the regional scale. In this way, although our vision depends on690

their trajectory choice, the five seals offer a representative picture of the area. The691

decomposition of TS profiles through FPCA was also performed independently on in692

situ profiles from the SES. The results were similar whether using in situ or Mercator693

profiles (Table 1), confirming the representativeness of SES data. Furthermore, the694

similarity of results indicates that while modeled profiles did not capture the thermo-695

haline complexity of the water column (e.g. the profiles are relatively smooth), they696
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were efficient in finding the main oceanographic patterns in the region. The chosen697

CMEMS product is a model derived from the Nucleus for European Modelling of the698

Ocean (NEMO), which assimilates in situ temperature and salinity profiles. There-699

fore, it is expected to be consistent with the recorded SES data. However, on any700

given day, the TS model-derived profiles can be very different from those recorded by701

the animal-borne device at the same geolocation. This phenomenon is particularly702

noticeable in the area where all the regimes meet and mix. This comes as no surprise703

as the model is not a perfect representation of reality and is likely to be less efficient704

for locating water-mass boundaries precisely—information more accurately extracted705

from the geolocalized in situ SES TS profiles.706

The capture rate is used as a proxy of foraging success to investigate if the identified707

FODs have an influence on SES habitat choices. We find that foraging performances708

of the five SES studied are mostly unrelated to the visited regimes. The oligotrophic709

waters advected by the BC leads to a slight decrease in PCR during the night but710

not during the day. This can be explained by prey availability being affected by the711

warm waters of the epipelagic layer. The daily PCR is slightly higher in the blue712

FOD, which may indicate a nutrient input associated with the Malvinas Return Cur-713

rent and impacting higher trophic levels (Aubone et al., 2021). To better understand714

SES foraging strategies, we took advantage of the model-based clustering analysis715

to create a criterion of physical-condition variability by computing the probability716

of changing regimes. Interestingly, we found that foraging performance is associated717

with the probability of changing FODs (Figure 10), regardless of the specific FOD.718

The median prey-catch rate (PCR) is nearly quadrupled when there is a 50 % prob-719

ability of changing FOD the following day. The background gray dots in Figure 10720

illustrate a high variability in PCR, but all quantile regressions exhibit the same in-721

creasing trend. Our study suggests that instead of selecting a particular regime, SES722

may look for areas of high oceanographic variability found at the interface between723

FODs. This result is consistent with previous findings highlighting the importance724

of oceanographic fronts and eddies on movement behavior and foraging performances725

of SES (Bailleul et al., 2010; Cotté et al., 2015; Della Penna et al., 2015; Dragon726

et al., 2010; Rivière et al., 2019). However, the indeterminate group resulting from727

the model-based clustering and corresponding to frontal areas between FODs, do not728

imply a PCR increase although it represents a large part of the group proportion729
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(Figure 8 and Supplementary Material). This may indicate that only some particular730

frontal areas attract and are favored by SES. For more extensive studies, Lagrangian731

approaches may be complementary to comprehensively understand frontal-system im-732

pacts (Baudena et al., 2021; Bon et al., 2015). Finally, drawing general assumptions733

about the habitat use and foraging strategies of elephant seals based on only five734

individuals requires caution. To validate our findings regarding elephant seals’ be-735

havior in the Argentine Basin, it would be beneficial to incorporate a larger number736

of individuals in future studies.737

5 Conclusion738

Technological advances of the last decades have led to massive deployments of ocean-739

observing systems recording environmental variables at a very high frequency and740

accuracy. The huge datasets that result from such sensors need statistical tools to741

extract the main information and analyze the data integrating their complexity. In742

this paper, we explored functional data analysis combining model-derived data and743

in situ data collected from southern elephant seals (SES). Our results confirm the744

adequacy of using functional approaches for computing large and complex datasets.745

This framework followed by model-based clustering was appropriate for describing the746

foraging environment of five SES in 2018 and helpeing to understand their habitat747

use. New loggers, such as a head-mounted microsonar, should provide fine-scale748

insight into variations in the density of midtrophic level (MTL) organisms (i.e. macro-749

zooplankton and micronekton) that could explain variability in elephant seal foraging750

behavior. On the basis of our current findings, we hypothesize that the greatest751

densities of MTL organisms are likely to be found at the interface between Functional752

Oceanographic Domains (FOD) rather than within specific FODs. Functional data753

analyses are promising methods for advancing study of the interaction between SES754

behavior, MTL organisms (including preys of SES) and environmental conditions.755
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Figure 1: Colored trajectories represent the five SES females equipped in October
2018 at Peńınsula Valdés and used for the analysis. The black rectangle defines the
focus area. Black lines delimit the Subtropical Front (STF), the Subantarctic Front
(SAF) and the Polar Front (PF) from Orsi et al. (1995). The blue color gradient
indicates the bathymetry, and the 200 m isobath (blue dashed line) defines the limit
between the continental shelf and the slope.
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Figure 2: Workflow of the functional analysis. (1) Model-derived and in situ TS
profiles are stored in different data frames. (2). TS profiles are approximated with
continuous curves described by the coefficients of the B-spline decomposition. The
coefficients are stored in new matrices. Each row corresponds to one observation.
(3) The model-derived observations are decomposed into modes of variability with
the FPCA and projected onto a space of reduce dimension. Model-based clustering is
performed in the space of the first principal components to identify FODs (i.e. regimes
sharing similar oceanographic structure). Steps (2) and (3) reduce the dimensionality
of the initial data. (4) Finally, in situ observations from elephant seals are projected
onto the factorial map as new statistical observations to associate each dive with one
FOD and determine the habitat visited by the SES.
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Figure 3: (a,b) Spatial distribution of the first and second PCs for 21 October 2018.
Colors indicate the magnitude of the scores and match with color gradients in (c) and
(d). The pink, orange, blue and green areas correspond with temperature and salinity
profiles in pink, orange, blue and green (respectively) seen in (c). PC1 highlights the
contrast between the BC (hot and salty) and the MC (cold and fresh), while PC2
reveals coherent mesoscale patterns. Bathymetry lines at 200, 500, 700, 1 000, 2 000
and 5 000 m define the Patagonian slope. (c,d) Vertical shapes induced by the first
two eigenfunctions (respectively). The color gradients represent the effect of adding
or subtracting (respectively pink or orange in (c), blue or green in (d)) each mode
with a magnitude of two (see Pauthenet et al., 2017, for more details). The black line
indicates the mean profile, and represents the center of gravity of the factorial map
seen in Figure 7.
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Figure 4: Trends of the daily mean (continuous lines) and associated daily standard
deviation (dashed lines) for PC1 (pink), PC2 (blue) and PC3 (gray).

Figure 5: Proportion (%) occupied by the FODs in the considered area over the 95
days (21 October 2018 to 23 January 2019). The colors refer to the 4 FODs with the
gray part corresponding to indeterminate profiles (Int.).
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Figure 6: (a) Mean temperature and salinity profiles (solid lines) associated with
the FODs obtained from the clustering (after removing profiles with a probability <
0.75). Regimes are colored in purple (cluster 1), blue (cluster 2), green (cluster 3)
and yellow (cluster 4). The envelopes contain 50 % of the profiles, delimiting the first
and third quartiles calculated for each cluster. (b) Spatial distribution of the five
regimes on 21 October 2018. The colors match with the profiles in (a). Profiles with
a probability < 0.75 of belonging to a group are colored in gray and form filaments
between the regimes. Bathymetry lines at 200 and 2 000 m are drawn.

Figure 7: First factorial map of the functional PCA performed on model-derived
data (colored dots) and clustering results. Gray dots correspond to observations with
a probability of belonging to a cluster under 0.75. Marginal density probability of
the first and second principal components are drawn (gray densities on the upper and
right sides). They show modes of high density indicating areas of high concentrated
model-derived observations. The 2D kernel density estimation (red to yellow lines)
displays the projection of SES in situ TS profiles. The increasingly lighter successive
lines contain respectively 2.5, 25, 50, 75 and 97.5 % of the dives centered around local
density maximums. Each SES dive is associated to a FOD or to the indeterminate
profiles group (gray).
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Figure 8: Trajectories of the five females colored according to the FODs identified
and proportion of dives belonging to each regime including indeterminate profiles
(gray group). Numbers 2018-43 to 50 correspond to SES identification. Refer to
Figure 6 for FOD features and names. Bathymetry lines at 200 and 2 000 m are
drawn.

Day+1

Figure 9: Probability of changing regimes at day+1. For a given pixel (red square),
the proportion of days where the oceanographic regime change from a day to the next
one is calculated (see the schematic view on the left). High probability values are
colored in red and highlight a high variability area in the center of the map (right
panel).
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Figure 10: Scatter plot of prey-capture rate (captures per hour) against probabil-
ity of changing regimes extracted for each SES dive. The lines indicate the non-
parametric quantile regression at the quantiles of order 0.05, 0.25, 0.5, 0.75 and 0.95
respectively. For example, the red line corresponds to the median prey-capture rate
and shows an increase from 3.5 to 13.24 captures per hour, which corresponds to a
multiplication factor of 3.78, as the probability increases from 0 to 0.5.

Table 1: Variance (%) explained by the first principal components obtained from
the functional PCA performed on model-derived and in situ profiles.

Principal components

PC1 PC2 PC2

ACPF with model-derived TS profiles 94.50 % 3.55 % 0.72 %

ACPF with in situ TS profiles 88.14 % 5.93 % 1.98 %
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scientific knowledge on marine frontal systems with ecosystem services. Ambio,989

49 (2), 541–556.990

Mason, E., Pascual, A., Gaube, P., Ruiz, S., Pelegrı, J. L., & Delepoulle, A. (2017).991

Subregional characterization of mesoscale eddies across the b razil-m alvinas992

c onfluence. Journal of Geophysical Research: Oceans, 122 (4), 3329–3357.993

Matano, R. P., & Palma, E. D. (2008). On the upwelling of downwelling currents.994

Journal of Physical Oceanography, 38 (11), 2482–2500.995

Maze, G., Mercier, H., & Cabanes, C. (2017). Profile classification models. Mercator996

Ocean Journal, (55), 48–56.997

39



Journal Pre-proof

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

Maze, G., Mercier, H., Fablet, R., Tandeo, P., Radcenco, M. L., Lenca, P., Feucher,998

C., & Le Goff, C. (2017). Coherent heat patterns revealed by unsupervised999

classification of argo temperature profiles in the north atlantic ocean. Progress1000

in Oceanography, 151, 275–292.1001

McMahon, C. R., Field, I. C., Bradshaw, C. J., White, G. C., & Hindell, M. A. (2008).1002

Tracking and data–logging devices attached to elephant seals do not affect1003

individual mass gain or survival. Journal of Experimental Marine Biology and1004

Ecology, 360 (2), 71–77.1005

McMahon, C. R., Roquet, F., Baudel, S., Belbeoch, M., Bestley, S., Blight, C.,1006

Boehme, L., Carse, F., Costa, D. P., Fedak, M. A., et al. (2021). Animal borne1007

ocean sensors–anibos–an essential component of the global ocean observing1008

system. Frontiers in Marine Science, 1625.1009

Miller, R. N., Matano, R. P., & Palma, E. D. (2011). Shelfbreak upwelling induced1010

by alongshore currents: Analytical and numerical results. Journal of Fluid1011

Mechanics, 686, 239–249.1012
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Highlights : 

 Functional data analysis coupled with model-based clustering is a 
powerful method to identify oceanographic domains.

 Five functional oceanographic domains sharing similar thermohaline 
features are identifed in the Brazil-Malvinas Confuence.

 Coupling data from model with in situ elephant seal profles allows 
us to characterize habitats use by these predators.

 The studied elephant seals tend to visit all the oceanographic 
domains in varying proportion.

 The studied elephant seals increase their prey capture rate in 
transitions areas, i.e. where the probability of changing functional 
oceanographic domains is high.
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