
NEURAL REGENERATION RESEARCH｜Vol 18｜No. 2｜February 2023｜267

NEURAL REGENERATION RESEARCH
www.nrronline.orgReview

Abstract  
Multiple sclerosis is a chronic central nervous system demyelinating disease whose onset and 
progression are driven by a combination of immune dysregulation, genetic predisposition, and 
environmental factors. The activation of microglia and astrocytes is a key player in multiple sclerosis 
immunopathology, playing specific roles associated with anatomical location and phase of the disease 
and controlling demyelination and neurodegeneration. Even though reactive microglia can damage 
tissue and heighten deleterious effects and neurodegeneration, activated microglia also perform 
neuroprotective functions such as debris phagocytosis and growth factor secretion. Astrocytes can 
be activated into pro-inflammatory phenotype A1 through a mechanism mediated by activated 
neuroinflammatory microglia, which could also mediate neurodegeneration. This A1 phenotype 
inhibits oligodendrocyte proliferation and differentiation and is toxic to both oligodendrocytes 
and neurons. However, astroglial activation into phenotype A2 may also take place in response to 
neurodegeneration and as a protective mechanism. A variety of animal models mimicking specific 
multiple sclerosis features and the associated pathophysiological processes have helped establish the 
cascades of events that lead to the initiation, progression, and resolution of the disease. The colony-
stimulating factor-1 receptor is expressed by myeloid lineage cells such as peripheral monocytes 
and macrophages and central nervous system microglia. Importantly, as microglia development and 
survival critically rely on colony-stimulating factor-1 receptor signaling, colony-stimulating factor-
1 receptor inhibition can almost completely eliminate microglia from the brain. In this context, 
the present review discusses the impact of microglial depletion through colony-stimulating factor-
1 receptor inhibition on demyelination, neurodegeneration, astroglial activation, and behavior in 
different multiple sclerosis models, highlighting the diversity of microglial effects on the progression 
of demyelinating diseases and the strengths and weaknesses of microglial modulation in therapy 
design. 
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Introduction 
Multiple sclerosis (MS) is a chronic central nervous system (CNS) demyelinating 
disease whose onset and clinical progression are driven by a combination of 
genetic factors, dysregulated immunity, and environmental cues (Thompson 
et al., 2018). Late-stage clinical symptoms are a consequence of early 
axonal and neuronal damage induced by an association of inflammatory 
mediators, demyelination, and loss of trophic support, in combination with 
an inflammatory process confined to the CNS and driven by astrocytes and 
microglia (Correale et al., 2017). An estimated 85% of patients are affected 
by relapsing-remitting MS, a disease presentation characterized by recurrent 
symptoms and subsequent total or partial recovery. Later on, up to 50% of 
untreated relapsing-remitting MS patients may present secondary progressive 
MS, which involves relentless clinical deterioration. The remaining 15% of 
patients, however, show primary progressive MS, consisting of progressive 
deterioration from disease onset. Current treatments for relapsing-remitting 
MS and secondary progressive MS target immune system suppression to 
ameliorate the severity and reduce the frequency of new relapses. In contrast, 
therapeutic options for primary progressive MS are still scarce and remain to 
be addressed (Faissner et al., 2019). Given that immune-suppressing drugs 
are only effective in relapsing-remitting MS but not in progressive MS, it is 
plausible that differential pathogenic mechanisms involved in these MS forms 
may guide the development of alternative therapeutic agents. Supporting 
this view, evidence shows that the immune mechanisms of progressive MS 
are predominantly driven by resident CNS cells, whereas those present in 
MS relapses are triggered by transient infiltration of peripheral immune cells 
(Healy et al., 2022).

A wide range of animal models mimicking the specific features and 
pathophysiological processes of MS have helped establish the cascades 
of events that could lead to disease onset, clinical course, and resolution. 
Experimental demyelination models are mediated by immunity, viruses, 
and toxins. For instance, experimental autoimmune encephalomyelitis 

(EAE), the most widely used animal model of CNS demyelination, is induced 
by immunization with myelin proteins and is particularly useful to study 
the autoimmunity features of MS, while also reproducing some MS motor 
disabilities. Unfortunately, although numerous therapeutic strategies 
demonstrated beneficial effects in the EAE model, they have yielded poor or 
no beneficial results in MS pathology. In contrast, toxin models are especially 
useful in the evaluation of therapeutic agent effects on demyelination and 
remyelination processes. These models comprise (1) focal demyelination 
using, for example, lysolecithin or ethidium bromide, and (2) systemic 
toxin administration. Among the latter, cuprizone (CPZ) administration is an 
increasingly used demyelination model, which lacks the T cell infiltration of 
autoimmune response-mediated models. CPZ demyelination is characterized 
by mature oligodendrocyte loss and demyelination concomitant with 
microglial and astroglial activation (Figure 1A1 and B1). This model has 
been used in two protocols: (i) an acute model of 5 or 6 weeks of CPZ 
administration to adult mice, which produces demyelination followed by 
spontaneous remyelination upon CPZ withdrawal, and (ii) a chronic model of 
12-week CPZ feeding, which fails to induce remyelination after CPZ withdrawal 
and thus leads to neurodegeneration (Figure 1B1). Given that, as mentioned 
above, the mechanisms underlying progressive MS involve resident CNS 
cells –but not peripheral immune cells (Healy et al., 2022)– and lead to 
neurodegeneration, prolonged CPZ administration could be thought to mimic 
progressive forms of MS (Wies Mancini et al., 2019). It is worth highlighting 
that, despite the advantages and disadvantages of widely established animal 
models, they fail to single-handedly replicate MS stages and should actually 
be regarded as complementary.

Search Strategy and Selection Criteria
The literature cited in this review was published between 2006 and 2022 
and searched on the PubMed database (www.pubmed.ncbi.nlm.nih.gov) 
using a combination of the following terms: depletion, activation, microglia, 
astrocytes, neurons, oligodendrocytes, multiple sclerosis, experimental 
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models, cuprizone, demyelination, remyelination, neurodegeneration, 
inflammation, behavior, CSF1-R inhibition, and BLZ945. Search results were 
further filtered by title, abstract, and year.

Microglial Activation in Demyelinating Diseases
Microglia play a key role in the maintenance of CNS homeostasis. Microglia 
communicate with neurons and non-neural cells to regulate some of their 
functions, thus contributing to the healthy development of the neural 
network and synaptogenesis through the release of neurotrophic factors. In 
addition, microglia participate in neuronal repair and brain circuit remodeling 
through their phagocytic capacity. In terms of their well-known immune 
function, microglia constantly survey their microenvironment and are 
activated in response to injury or disease, undergoing profound morphological 
and transcriptional changes to promote repair (Han et al., 2019; Tay et al., 
2017; Figure 1C). In the normal inflammatory response, microglia return to a 
surveillance state after activation (Writght-Jin et al., 2019). In a pathological 
scenario, phagocytic microglia scavenge the CNS for cellular debris and 
pathogens, giving way to repair processes (Galloway et al., 2019). In particular, 
during demyelination, microglia participate in myelin debris clearance 
through phagocytosis, a crucial step for oligodendroglial differentiation 
and remyelination (Kotter et al., 2006; Wies Mancini et al., 2019; Figure 
1B1). However, in the context of chronic and severe damage in neurological 
diseases such as MS, microglia fail to return to a surveillance state and remain 
continuously activated. Sustained and exacerbated microglial activation has 
negative effects on the CNS which lead to neurodegeneration, thus worsening 
long-term clinical neurological symptoms in MS. Specifically, although 
activated microglia attempt to contain the damage by producing anti-
inflammatory factors, they also secrete toxic pro-inflammatory substances 
and induce astrocytes reactivity. These events impair remyelination and 
promote the release of reactive oxygen/nitrogen species which cause 
neuronal oxidative damage and increase neuroinflammation. In addition, this 
activation is maintained by the adenosine triphosphate produced by neuronal 
death and by the inhibition of transforming growth factor beta signaling 
caused by activated microglia themselves (Faissner et al., 2019; Han et al., 
2019). In homeostasis, axons with thinner myelin sheaths have larger axonal 
mitochondria, which reflects their higher metabolic status. This link between 
myelin sheath thickness and mitochondrial size is temporarily lost along with 
demyelination but later reestablished in advanced remyelination (Ineichen et 
al., 2020). Demyelination increases axonal energy demand and interferes with 
axonal transport, especially in mitochondria, which induces axonal dysfunction 
and alterations in metabolism and ion channels (Nasi et al., 2020; Figure 
1B1). Toll-like receptor-activated microglia can promote different degrees of 
neuronal network dysfunction, with severe dysfunction being caused mostly 
by reactive oxygen/nitrogen species rather than proinflammatory cytokines. 
Supporting evidence has shown the prevention of neuronal disturbance 
through either microglial depletion or the pharmacological inhibition of 
oxidant-producing enzymes, inducible nitric oxide synthase, and nicotinamide 
adenine dinucleotide phosphate oxidase (Schilling et al., 2021). 

Microglia-astrocyte communication in demyelination and 
neurodegeneration 
Astrocytes are also key to immune surveillance, the maintenance of 
neurotransmitter pools, metabolism, trophic support, myelin sheath 
formation, synaptic formation and plasticity, and injury healing (Manninen 
et al., 2020). Astrocytes take up glutamate at synapses in response to 
neuronal activity, which induces aerobic glycolysis and the secretion of 
lactate to be consumed by neurons (Beard et al., 2022). In particular, 
astrocytes express glutamate transporters to sense variations in neuronal 
activity at the synapse level and express glucose transporter 1 at the 
vasculature level to allow glucose uptake (Patching, 2017). Astrocytes further 
facilitate glucose uptake by releasing vasoactive substrates in response 
to neuronal activity (Beard et al., 2022). Notably, neurons and astrocytes 
show specificity in the predominance of their metabolic pathways, with a 
glycolytic profile in astrocytes and an oxidative profile in neurons (Figure 1D). 
Neurodegenerative diseases associated with aging evidence diminished brain 
energy consumption in specific regions, which leads to cognitive impairment, 
and alterations in neuronal function and excitability (Muddapu et al., 2020). 
Supporting data obtained from both animal and human studies have shown 
that aging is accompanied by a decrease in aerobic glycolysis in astrocytes 
and mitochondrial oxidative phosphorylation in neurons (Goyal et al., 2017). 
Moreover, aging has been linked to the loss of glucose transporters, which 
leads to synaptic dysfunction and susceptibility to neuronal degeneration 
(Beard et al., 2022; Figure 1E).

As in other disorders, astrocytes become reactive after CNS demyelination, 
which entails astroglial hypertrophy and intermediate filament protein 
upregulation such as glial fibrillary acidic protein and vimentin. CPZ-induced 
demyelination and remyelination studies have shown the need for microglia 
in the appearance of reactive astrocytic phenotypes (Marzan et al., 2021). 
Microglia-derived interleukin-1β (IL-1β) can regulate ciliary neurotrophic 
factor and induce astroglial activation, which promotes fiber myelination in 
vitro. IL-1β also stimulates astroglial production of leukemia inhibitory factor, 
thus promoting oligodendrocyte survival and ameliorating EAE (Traiffort et 
al., 2020). Abundant evidence supports the notion that reactive astrocyte 
actions are involved in spontaneous remyelination, which may be remarkably 
efficient both in experimental demyelination models and MS patients (Franklin 
and Ffrench-Constant, 2017). However, remyelination usually fails or takes 
place in the plaque periphery in chronic lesions, where oligodendroglial 
progenitor migration and/or differentiation are probably affected (Franklin 

and Ffrench-Constant, 2017). This unsuccessful remyelination has also 
been associated with deleterious astroglial activity, mostly in terms of more 
severe reactivity and the secretion of harmful molecules. Among these 
molecules, tumor necrosis factor α has been mainly identified in fibrous 
astrocytes in the peripheral region of chronic active MS lesions. In addition, 
the interferon γ (IFN-γ) receptor expressed in astrocytes has been implicated 
in the expression of chemokines and infiltration by inflammatory cells, which 
induce demyelination in both Th1- and Th17-mediated adoptive EAE (Loos 
et al., 2020). Moreover, ectopic astroglial expression of IFN-γ delays recovery 
in EAE mice, while CNS delivery of IFN-γ produces a sharp reduction in 
oligodendroglial repopulation in the CPZ model. Concomitantly, IFN-γ seems 
to play a key role in MS lesion progression. Among molecules highly expressed 
by reactive astrocytes, endothelin-1 is considered a potent inhibitor of 
remyelination (Traiffort et al., 2020).

In addition to growth factors, cytokines, and neuropeptides, reactive 
astrocytes also secrete extra-cellular matrix molecules which significantly 
modify the MS lesion environment and affect oligodendroglial precursor 
behavior (Pu et al., 2018). Both the receptors present on the surface of 
oligodendroglial precursors and the astrocyte-secreted extra-cellular matrix 
molecules can shift the environment from remyelination-permissive to 
-inhibitory. As a matter of fact, except for the interaction between astroglial 
laminin and oligodendroglial α6β1 integrin, which attenuates oligodendrocyte 
death in vitro (Traiffort et al., 2020). Extra-cellular matrix accumulation 
appears to be a key factor explaining the failure of tissue regeneration.

Astroglial activation could certainly mediate neurodegeneration; in certain 
scenarios, astrocytes are activated into pro-inflammatory phenotype A1, 
which is induced by classically activated neuroinflammatory microglia, inhibits 
oligodendroglial precursor proliferation and differentiation, and is toxic to 
neurons and oligodendrocytes (Liddelow et al., 2017). However, astrocytes 
may be activated into phenotype A2 as a result of neurodegeneration and 
as a protective mechanism. In MS lesions, A1 astrocytes have been mainly 
detected in the active lesions, whereas A2 astrocytes have been found along 
remyelination (Haindl et al., 2019). Furthermore, the depletion of astrocytes 
through intracallosal injection of L-a-aminoadipate in CPZ mice promotes a 
significant expansion of the myelinated areas, a reduction in Iba-1+ microglial 
staining, and a sharp decrease in the expression of genes associated with 
either microglia recruitment, typically triggered by astrocytes, or the loss of 
oligodendroglial precursor differentiation (Madadi et al., 2019).

Microglial heterogeneity in response to demyelination and 
neurodegeneration
New tools designed to distinguish microglia from other myeloid populations 
have unveiled the diversity of microglial functions and phenotypes (Masuda 
et al., 2019). Microglia possess region-specific transcriptional profiles 
and differential expression of immunoregulatory proteins which highlight 
their heterogeneity. This region-specific diversity allows microglia to fulfill 
specialized homeostatic functions and a variety of responses in different CNS 
pathologies (Plastini et al., 2020). 

Microglial activation is linked to active demyelination and neurodegeneration 
in MS and has therefore been associated with early axonal damage and 
disease progression (Zrzavy et al., 2017). Microglia are grouped in clusters 
or nodules in early lesion formation when demyelination is not yet observed 
(normal-appearing white matter). These pre-active or early active lesions 
containing activated microglia are not accompanied by blood-brain barrier 
alterations or astrogliosis but have shown an association with degenerating 
axons. Later, active white matter (WM) lesions show an increase in microglial 
activation, the loss of their homeostatic signature, and close contact of 
microglial processes with transected axons (Zrzavy et al., 2017). Chronic 
active WM lesions contain a hypocellular demyelinated center surrounded 
by CD68+ microglia/macrophages with residual lipids. In contrast, chronic 
inactive demyelinated WM lesions are hypocellular but rarely exhibit residual 
CD68+ microglia/macrophages (Kuhlmann et al., 2017). In grey matter (GM) 
lesions, microglial activation has been linked with cortical demyelination and 
neurodegeneration (Jafari et al., 2021). In this case, microglia show a gradient 
pattern with higher activation in layers of the meningeal surface vicinity, 
where GM damage is more substantial, and lower activation in the deeper 
cortex (Magliozzi et al., 2013). 

Single-nucleus transcriptomic studies of post-mortem MS tissue have also 
evidenced the functional diversity of microglia, the loss of their homeostatic 
signature, and a wide range of activation phenotypes that dynamically 
change with disease evolution (Schirmer et al., 2019). In particular, microglia 
upregulate glycolysis and iron homeostasis gene expression in GM but 
increase lipid metabolism gene expression in WM. In other words, microglia 
show differences in gene signatures between GM and WM and region-specific 
functions (van der Poel et al., 2019). 

Microglial Depletion as an Experimental 
Strategy
Microglia depletion has been evaluated in different neurodegenerative 
diseases as a strategy to reduce neuroinflammation and design novel 
therapies. Microglia may be depleted by means of genetic strategies, for 
instance, by activating the suicide gene HSVTK under the CD11b promoter 
(Han et al., 2019). Given that chemokine receptor CX3CR1 is primarily 
expressed in microglia in the CNS, genetic modulation of microglia using 
CX3CR1-Cre lines is also a common depletion method. In this case, depletion 
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may involve inducibly expressed diphtheria toxin A (DTA) in CX3CR1CreER/+: 
R26iDTA/+, or iDTA mice, or inducibly knocked out colony-stimulating 
factor-1 receptor (CSF-1R) in CX3CR1CreER/+:Csf1rFlox/Flox mice (Willis and 
Vukovic, 2020; Wu et al., 2020), However, the most widely used strategy is 
the pharmacological inhibition of CSF-1R, a class III tyrosine kinase receptor 
which has two ligands, CSF-1 and IL-34, and is expressed by myeloid lineage 
cells (Chitu et al., 2016). Given their great dependence on CSF-1R signaling for 
development and survival, microglia can be mostly depleted from the brain by 
means of CSF-1R inhibitors (Figure 1A2 and B2). 

Pharmacological CSF-1R inhibition to deplete microglia: drugs and 
selectivity
Reliable conclusions on the use of CSF-1R inhibitors require a complete 
characterization of inhibitor effects on other CNS cell types. Liu et al. (2019) 
have addressed this point, showing that CSF-1R inhibitors have different 
degrees of specificity and can also bind to other tyrosine kinase receptors like 
platelet-derived growth factor receptor α, highly expressed by oligodendroglial 
progenitors and essential for their survival. PLX5622 and PLX3397 are two 
potent CSF-1R inhibitors with IC50 of 10 and 20 nM, respectively. High doses 
of both PLXs deplete microglia but also affect the number of oligodendroglial 
progenitors, while only low doses of PLX5622 selectively affect microglia. 
In turn, 4-[2((1R,2R)-2-hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-
pyridine-2- carboxylic acid methylamide (BLZ945) has been widely used as 
a therapeutic agent in disorders associated to the monocytic lineage (Webb 
et al., 2018; Lu et al., 2019; Liaw et al., 2020; Crotty et al., 2021; Fang et 
al., 2021; Pfirschke et al., 2022). As different from PLXs, BLZ945 does not 
affect the viability of oligodendroglial progenitors in vitro, which may be due 
to its higher specificity, i.e., an IC50 under 1 nM for CSF-1R and over 1 μM 
for platelet-derived growth factor receptor β. These data may explain the 
contrasting results obtained using different CSF-1R inhibitors, which may be 
a consequence of administration methods, formulation, dosage, duration of 
treatment, and pharmacokinetics affecting cells other than microglia (Han et 
al., 2019).

Beneficial effects of pharmacological microglial removal
Regarding the beneficial effects of microglial depletion, experimental models 
of Alzheimer’s disease have shown a reduction in amyloid deposits, Aβ plaque 
formation (Sosna et al., 2018) and neuronal loss, and an improvement in 
memory functions (Spangenberg et al., 2019; Gratuze et al., 2021). Microglial 
depletion has further been shown to improve neuropathic pain through 
lower pro-inflammatory cytokine expression (Lee et al., 2018; Wang et al., 
2018). In models of demyelinating diseases, therapeutic or prophylactic CSF-
1R inhibition has been found to curb disease severity and enable a more 
permissive environment for remyelination and recovery in a mouse model 
of EAE (Lassmann and Bradl, 2017; Nissen et al., 2018). Likewise, CSF-1R 
inhibitor GW2580 slowed the progression of EAE and decreased clinical 
scores in a rat model (Borjini et al., 2016), while CSF-1R stimulation with its 
ligands CSF-1 or IL-34 increased protective CD11c+ microglia and attenuated 
EAE symptoms (Wlodarczyk et al., 2015). In addition, using PLX3397 in mice 
carrying mutations in the oligodendrocyte PLP1 gene as an MS model, Groh et 
al. (2019) demonstrated that microglial depletion reduces neuroinflammation 
and CNS T cell recruitment, which ameliorates demyelination, axonal 
damage, and neuronal loss. Tahmasebi et al. (2019) used PLX3397 treatment 
in a chronic CPZ-induced demyelination model and observed improved 
remyelination and a reduction in fiber damage and inter-sheath area, 
concomitant with motor recovery. Moreover, Marzan et al. (2021) applied 
PLX3397 treatment in acute CPZ-induced demyelination and found microglial 
depletion to prevent demyelination, oligodendroglial loss, and reactive 
astrocytosis. Ultrastructural studies by electron microscopy initially indicated 
that myelin sheaths remained intact in CPZ-treated mice upon microglial 
depletion. However, these sheaths were vigorously phagocytosed upon 
microglial repopulation, which revealed CPZ-induced myelin damage. These 
results appeared to initially correlate with those obtained by Lampron et al. 
(2015) in CX3CR1–/– mice showing resistance to CPZ-induced demyelination, 
although this observation actually resulted from unsuccessful myelin debris 
phagocytosis leading to aberrant remyelination and the loss of axon integrity.

Detrimental effects of pharmacological microglial removal
On the other hand, evidence has also been documented of the detrimental 
effects of microglial depletion. It has been reported that microglial clearance 
does not affect the number of amyloid plaques in models of Alzheimer’s 
disease but leads to increased plaque size (Zhao et al., 2017). Furthermore, 
microglial clearance has also exacerbated cerebral neurotoxicity in cerebral 
ischemia, Parkinson’s disease, and coronavirus encephalitis (Janda et al., 
2018; Wheeler et al., 2018; Yang et al., 2018; Wen et al., 2020; Jia et al., 
2021). More recently, Tanabe et al. (2019) used EAE in non-obese diabetic 
mice as a model of secondary progressive MS and showed that microglial 
depletion by PLX3397 significantly worsened secondary disease progression, 
increased mortality rates, promoted inflammation, and spurred CD4+T 
cell proliferation, which led to exacerbated demyelination and axonal 
degeneration. Finally, microglial depletion through PLX5622 treatment 
has been shown to exacerbate demyelination and impair remyelination in 
neurotropic coronavirus infection (Sariol et al., 2020).

Consequences of microglial depletion on neuron-microglia crosstalk
Among other functions, microglia play a fundamental role in the support 
of neuronal functions. In physiological conditions, microglia and neurons 
maintain bidirectional communication from embryonic development 
to adulthood. The CX3CL1-CX3CR1 and CD200-CD200R axes are key in 

maintaining microglia in a resting state through permanent crosstalk with 
neurons and modulating microglia behavior in both physiological and 
pathological scenarios (Pawelec et al., 2020; Manich et al., 2019). In both 
CX3CL1-CX3CR1 and CD200-CD200R, receptors are present in microglia while 
the ligand is secreted by neurons. CSF-1R inhibition interrupts this dialog and 
thus blocks microglial protection of neuronal function, which could lead to 
neurodegeneration.

Analogously, in physiological conditions, neuronal CSF-1 prevents 
inappropriate microglia activation and neurotoxicity. High levels of CSF-1 and 
microgliosis have been observed in numerous CNS disorders promoting either 
neuronal survival or tissue damage (Chitu et al., 2016). Direct injection of CSF-
1 into WM has been shown to produce focal microgliosis and demyelination 
(Marzan et al., 2021), and high levels of CSF-1R and ligand CSF-1 have been 
detected in CNS tissue from MS patients. Furthermore, CSF-1R may be 
regarded as a key node of MS disease progression; indeed, using a potent 
small-molecule CSF-1R inhibitor to block phosphorylation and downstream 
signaling, Hagan et al. (2020) succeeded in ameliorating neuroinflammation 
and curbing microglia proliferation in a murine lipopolysaccharide model, and 
in preventing axonal and neurological damage in EAE. These studies support 
the potentially beneficial effect of downstream CSF-1R signaling modulation 
in the context of CNS injury.

Our group has used orally administered brain-penetrating inhibitor BLZ945 
in the CPZ model to evaluate the in vivo impact of microglia depletion 
on demyelination, remyelination, and neurodegeneration, as well as its 
association with astroglial activation and behavioral changes. Results 
showed that preventive BLZ945 administration ameliorated demyelination 
in the acute CPZ protocol, mostly in the cortex and external capsule, but 
failed to preserve myelin or promote remyelination in myelin-rich areas, 
which reflects the loss of microglia phagocytic capacity and its negative 
consequences in oligodendroglial differentiation. Preventive and therapeutic 
BLZ945 treatment protected myelin and favored remyelination in the chronic 
CPZ protocol (Wies Mancini et al., 2019; Figure 1B2). However, in this case, 
BLZ945 treatment aggravated neurodegeneration, as evidenced by several 
terminal axonal ovoids but no neuronal body loss (Figure 1B2). In addition, 
neurodegeneration closely correlated with increased astroglial activation 
(Wies Mancini et al., 2022), which may be considered an attempt to induce 
microglia migration and recruitment interrupted by BLZ945 (Figure 1B2). 
Previous evidence has demonstrated that astrocytes can release extracellular 
signals, particularly chemokine CXCL10, and recruit microglia to remove 
myelin debris in demyelination processes. CXCL10 is detectable around 
active MS lesions; moreover, CXCL10 production in EAE increases before the 
appearance of symptoms and remains high at the most severe stages of the 
disease, later decreasing along with remission (Traiffort et al., 2020). This 
evidence is in keeping with our findings showing an increase in CXCL10 mRNA 
expression in CPZ-demyelinated, BLZ945-treated animals. 

Behavioral alterations in MS and the CPZ model: effects induced by 
microglial depletion 
Motor and cognitive alterations are present in 80% of MS patients and include 
diminished balance and walking speed, loss of hand and foot dexterity, slower 
information processing, and poorer episodic memory as the most prevalent 
(Pellegrino et al., 2018). Evidence has shown that motor deficits are linked to 
CNS demyelination, mostly in the cerebellum and spinal cord (D’Ambrosio et 
al., 2017; Wilkins, 2017; Parmar et al., 2018). As pain and fatigue, common 
symptoms of MS, are not observed in the CPZ model, motor alterations are 
frequently used in this model to evaluate functional involvement, although 
with sparse results (Sen et al., 2019). While increasing test complexity through 
ladder crossing or wheel running seems to be a promising strategy to detect 
early subtle deficiencies, dissecting motor deficits from cognitive ones may 
prove a challenge. Moreover, CPZ-fed animals exhibit high-stress hormone 
and neurotransmitter levels, which makes them more active and may thus 
lead to behavioral misevaluation. 

Our studies (Wies Mancini et al., 2022), using mostly the same tests as 
in previous reports (Xiu et al., 2017; Chang et al., 2017), barely showed 
behavioral alterations resulting from axonal degeneration in CPZ or 
CPZ+BLZ945 animals. Indeed, unaltered behavior is in line with the NeuN+ 
cell results, which rendered no differences across experimental groups, 
and with amino-cupric-silver staining results, which only showed axonal 
tract degeneration and almost no apoptotic neuronal bodies. Y-maze test 
results indicate that chronic CPZ administration does not affect locomotion 
or working memory, as arm entries can be regarded as an animal mobility 
indicator. However, at the end of both the acute and the chronic protocols, 
CPZ animals outperformed CPZ+BLZ945 ones (Wies Mancini et al., 2022). 
These results are in agreement with findings reported by Torres et al. (2016), 
who showed poorer performance in animals fed 290 mg/kg PLX3397 for 
21 days than in controls. Moreover, the authors detected no significant 
differences between experimental conditions in the open field test, which 
indicates comparable locomotor activity.

In addition, our results on recognition memory show longer exploration of 
new objects than familiar ones in all experimental conditions. Although CPZ 
animals devoted significantly less time to exploring the new object than 
controls, a recovery toward control values was recorded in the CPZ + BLZ945 
group (Wies Mancini et al., 2022). The administration of CSF-1R inhibitors at 
high doses has been shown to eliminate microglia and affect spatial memory 
in murine models, with unaltered social behavior (Torres et al., 2016). 
Microglia-derived brain-derived neurotrophic factor plays a major role in 
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memory consolidation, and alterations in neuron-microglia communication 
appear to disrupt behavior (Torres et al., 2016). Altogether, these results 
may be thought to unveil compensatory mechanisms which prevent at least 
observable behavioral alterations.

Acute MS lesions entail mild permanent disability, as the CNS compensatory 
capacity helps most axons overcome acute demyelination. However, 
with disease progression, an additional neuronal loss can no longer be 
compensated for, which gives way to progressive MS. For these reasons, 
sectioned axons and axonal ovoids are more frequently observed in chronic 
than in acute lesions (Mahad et al., 2015). In this regard, the mild behavioral 
alterations associated with BLZ945- and CPZ-induced axonal degeneration 
could be associated with both acute MS lesions and the onset of chronic 
ones. However, longer treatments may be necessary to study the loss of CNS 
compensatory capacity against demyelination.

Caveats of MG depletion
It should be pointed out that, despite the large number of studies evaluating 
microglia depletion as a treatment for neurological diseases, many questions 
remain unanswered, especially considering differential microglial activation 
in the different types of disease processes. In addition, studies, where 
microglial depletion was applied in preventive protocols, do not seem to 
be as useful as those where treatment began after the model disease was 
induced. Moreover, current research shows that CSF-1R kinase inhibitors may 
target several cell populations other than microglia, including meningeal, 
perivascular, and choroid plexus macrophages and microglial progenitor 
cells (Yang et al., 2018). Therefore, the notion of pure microglial depletion 
using the systemic delivery of currently available CSF-1R inhibitors should 
be thoroughly examined and cautiously interpreted. Most importantly, the 
possible side effects of microglial depletion should be considered. In non-
sterile conditions, depletion may trigger at least transient immunodeficiency, 
which might expose the CNS to infection and disrupt CNS homeostatic 

function in unaffected brain areas. Microglial depletion followed by microglial 
repopulation thus seems to be a more plausible therapeutic approach, while 
the replacement of dysfunctional or aberrantly activated microglia in the 
areas affected may constitute the most efficient strategy.

Final Considerations
Using mRNA sequencing, in situ hybridization of individual cells, and 
immunohistochemistry, Masuda et al. (2019) have recently characterized 
microglia subtypes in several areas of the CNS in development and disease. 
The authors have shown different disease-related subclasses of microglia 
which coexist in the brain of MS patients and whose gene expression 
profiles are phenotypically similar to mouse microglia subclasses in CPZ-
induced demyelination. Our results further show differential effects of CPZ 
demyelination and microglial depletion through BLZ945 on myelin protection 
and axonal degeneration across different CNS areas, which may reflect 
microglial region-dependent heterogeneity (Wies Mancini et al., 2022). 
Worth pointing out, astrocytes (Liddelow et al., 2017) and oligodendrocytes 
(Foerster et al., 2019) have also shown high regional heterogeneity, which 
may also explain the different responses observed across CNS regions along 
with demyelination and neurodegeneration. 

The worsening of myelin debris phagocytosis upon microglial depletion 
reflects the central role of microglia in demyelination. Insufficient 
phagocytosis subsequently hinders remyelination, particularly in myelin-
rich areas, and leads to neurodegeneration. Astrocytes also take part in 
myelin uptake, especially as an early response to damage which ultimately 
triggers immune cell recruitment (Ponath et al., 2017). This early response 
may have positive or negative effects on lesion pathology depending on the 
inflammatory environment, which is itself altered by microglia depletion. 
Strikingly, oligodendroglial populations which express genes involved in 
antigen processing and presentation (major histocompatibility complex-I 

A1 A2 B1 B2

D
C
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Figure 1 ｜ Consequences of CSF-1R-induced-microglial depletion on cuprizone-induced demyelination in central nervous system.
Administration of cuprizone (CPZ) is characterized by severe loss of mature oligodendrocyte and demyelination, accompanied by microglia and astrocyte activation and axonal 
degeneration (A1 vs. B1). Microglia respond to most neurological disorders through activation mediated by profound morphological and transcriptional changes to perform 
neuroprotective functions, such as debris phagocytosis and growth factor secretion (C). However, sustained and exacerbated microglia activation can damage tissue and contribute 
to neurodegeneration (B1). Microglial activation in MS has been linked to early axonal damage and the progression of the disease. These persistent dysregulated microglia can induce 
a pro-inflammatory astrocyte phenotype called A1, which inhibits oligodendroglial precursor proliferation and differentiation and has toxic effects on neurons and oligodendrocytes 
(B1). These effects are mediated by an increase in reactive oxygen/nitrogen species (ROS/RNS), which leads to mitochondrial damage (D vs. E). Astrocytes maintain neurotransmitter 
pools, provide trophic support, and take part in metabolism, synaptic formation and plasticity, myelin sheath formation, injury healing, and immune surveillance (D). Astrocytes 
take up glutamate at synapses in response to neuronal activity, which triggers aerobic glycolysis and lactate secretion to be consumed by neurons (D). Astrocytes express glutamate 
transporters to sense changes in neuronal activity at the synapse level and glucose transporter 1 (GLUT1) at the vasculature level to allow glucose uptake (D). Moreover, astrocytes 
further facilitate glucose uptake by releasing vasoactive substrates in response to neuronal activity (D). Neurodegeneration is associated with decreased aerobic glycolysis in 
astrocytes, mitochondrial oxidative phosphorylation in neurons, and the loss of glucose transporters, which leads to synaptic dysfunction and susceptibility to neuronal degeneration 
(E). Demyelination increases axonal energy demand and causes poor axonal transport, especially in mitochondria, which leads to axonal dysfunction with metabolic alterations and 
ion channel disturbances (E). Microglia can be almost completely depleted from the brain using colony-stimulating factor-1 receptor (CSF-1R) inhibitors such as BLZ945 (BLZ) (A2). 
CSF-1R inhibition through BLZ treatment successfully reduced the microglial population and myelin loss in the chronic CPZ model, but also exacerbated axonal degeneration (B2). This 
axonal degeneration was accompanied by mild behavioral alterations but no neuronal body loss (B2). These results should be taken into account when proposing the modulation of 
microglial activation in the design of therapies relevant for demyelinating diseases.
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and -II) have been recently characterized in the EAE model. Furthermore, 
oligodendroglial precursors have been recently reported to have the 
phagocytic capacity, while those expressing major histocompatibility complex-
II have been shown to activate memory and effector CD4+ T cells (Falcão et 
al., 2018). Overall, microglial depletion may disrupt the inflammatory scenario 
of demyelinating lesions, promoting beneficial or harmful responses by 
astrocytes and oligodendrocytes which impact neurodegeneration. 

In summary, the present review focuses on the role of microglia and 
astrocytes in demyelination, remyelination, and neurodegeneration, and 
discusses the consequences of microglial depletion through CSF-1R inhibition 
on demyelination, neurodegeneration, astrocyte activation and behavior 
in different MS models. The findings reported here highlight the diversity 
of microglial effects on the progression of demyelinating diseases and the 
importance of ongoing research for the development of appropriate therapies 
in neurodegenerative pathologies such as MS.
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