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1. Introduction

In a series of papers, Maia and Bakke [1–4] studied several quantum-mechanical models
in which a particle moves in an elastic medium with a spiral dislocation. They considered
a variety of interactions: a harmonic potential [1,4] a nonuniform radial electric field [2], a
uniform axial magnetic field [2], and the effect of rotation [3]. Maia and Bakke also took into
account the effect of a hard wall in the radial part of the Schrödinger equation [1,2]. The
Schrödinger equation for all those models is separable in cylindrical coordinates, and they
arrived at somewhat similar eigenvalue equations in most of those papers that can be solved in
terms of a confluent hypergeometric function. In order to obtain exact analytical eigenvalues,
Maia and Bakke [1–3] resorted to some approximations, but they did not discuss their effect
on the accuracy of the results. Maia and Bakke commonly set h̄ = 1 and c = 1 [1,2,4] (in
some cases they did not even mention this fact [3]), and as a result their analytical expressions
exhibit an obvious inconsistence in their units as discussed elsewhere [5].

The purpose of this paper is the analysis of the results for the harmonic oscillator in
an elastic medium with a spiral dislocation that appeared in this journal [4]. In Section 2,
we outline the approximate analytical results obtained by Maia and Bakke [4]; in Section 3,
we derive exact analytical results in order to test the approximate ones just mentioned; and
in Section 4, we summarize the main results and draw conclusions.

2. Outline of the Model

The model resembles a harmonic oscillator in three dimensions

H = − h̄2

2m
∇2 +

mω2

2
r2, (1)

where m is the mass of the particle, ω the oscillator frequency, and r2 = x2 + y2. The spiral
dislocation is embodied in the line element

ds2 = dr2 + 2βdrdφ +
(

β2 + r2
)

dφ2 + dz2, (2)

where 0 ≤ r < ∞, 0 ≤ φ ≤ 2π, −∞ < z < ∞, which determines the form of the
Laplace–Beltrami operator∇2. It is clear that if s, r, and z have unit of length, then β should
also have this unit.

Upon writing the solution to Hψ = Eψ as ψ(r, θ, φ) = eilφeikz f (r), Maia and Bakke [4]
derived the radial equation(

1 +
β2

r2

)
f ′′(r) +

(
1
r
− β2

r3

)
f ′(r)− l2

r2 + β2 f (r)−m2ω2r2 f (r)

+
(

2mE− k2
)

f (r) = 0, (3)
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where −∞ < k < ∞ and l = 0,±1,±2, . . . is the rotational quantum number. The units in
this equation appear to be inconsistent, but the authors stated that they chose “the units
where h̄ = 1 and c = 1” [4] (although c is not expected to appear anywhere in the present
model equations). Unfortunately, Maia and Bakke never specified the actual units of length,
energy, etc. as one should reasonably do [5] (we have recently carried out a pedagogical
discussion of this issue with some detail [6]). We will discuss this point in more detail in
Section 3.

Maia and Bakke [4] chose an ansatz of the form

f (r) = g(x) = x|l|/2e−x/2u(x), (4)

where x = mω
(
r2 + β2). Obviously, x0 ≤ x < ∞ and g(x0) = 0 at x0 = mωβ2. From

the properties of the confluent hypergeometric function, Maia and Bakke [4] derived the
approximate analytical spectrum

EMB±
n = −ω

(
2n +

1
2
+

mωβ2

2

)
+

4mω2β2

π2

[
1±

√
1− π2(4n + 1)

4mωβ2

]
+

k2

2m
, (5)

where n = 0, 1, . . . is the radial quantum number. This expression suggests that mωβ2 is
dimensionless; consequently, ω and k should also be dimensionless. There are two intrigu-
ing features: first, the fact that the authors did not indulge in explaining the meaning of
the ± sign, and second, the fact that En does not depend on l. However, the most striking
fact about this expression is that the eigenvalues are complex unless mωβ2 ≥ π2(4n + 1)/4,
which is inconsistent with the condition 0 < β < 1 considered in earlier papers by the
same authors who stated that “Since 0 < β < 1, we can consider β2 � 1” [2] or “Note that,
since 0 < β < 1, then, we can assume that β2 � 1” [3]. Here, Maia and Bakke [4] stated
that “In the present work, by contrast, we do not assume that β is very small”. Notice that
they did not explicitly indicate that small values of β are not allowed. However, if we take
the limit β→ 0, then the energies EMB±

n yield a negative spectrum instead of the expected
harmonic-oscillator one. It is therefore clear that the spectrum given by Equation (5) cannot
be correct. Maia and Bakke [3] simply stated that “In addition, the radial quantum number
possesses an upper limit given by”

nmax <
mωβ2

π2 − 1
4

. (6)

3. Exact Analytical Solutions

Before solving the eigenvalue equation for the model outlined above, it seems nec-
essary to discuss the units in a reasonable way. In order to obtain a dimensionless equa-
tion, we first choose a unit of length, say L, and define the dimensionless quantities(
s̃, r̃, z̃, β̃

)
= (s/L, r/L, z/L, β/L) that lead to the dimensionless Laplace–Beltrami operator

∇̃2 = L2∇2. In principle, L is arbitrary. In the present case, it is convenient to choose
L = (h̄/mω)1/2 because the Hamiltonian operator takes the simple form

H̃ =
mL2

h̄2 H = −1
2
∇̃2 +

1
2

r̃2, (7)

where h̄2/(mL2) = h̄ω is the unit of energy (see [6] for details). Notice that this choice of
units is equivalent to setting h̄ = 1, m = 1, and ω = 1 [5]. It is also important to take into
account that kz = k̃z̃, where k̃ = kL. When we solve the eigenvalue equation Hψ = Eψ,
we obtain energies of the form E = E(h̄, m, ω, β, k), and when we solve H̃ψ̃ = Ẽψ̃ they are
Ẽ = Ẽ(β̃, k̃). The connection is given by E(h̄, m, ω, β, k) = h̄ωE(1, 1, 1, β̃, k̃) = h̄ωẼ(β̃, k̃).
Since we do not know which are the units of length and energy used by Maia and Bakke [4],
then we simply set m = 1 and ω = 1 in their expressions and remove the tilde on Ẽ, β̃, and
k̃ in order to compare results.
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For example, the differential equation for g(x) is

g′′(x) +
1
x

g′(x) +
[

2E− k2 + β2

4x
− l2

4x2 −
1
4

]
g(x) = 0, (8)

where E, k, and β are assumed to be dimensionless.
It is convenient to consider the following cases:
Case I: 0 ≤ x < ∞, g(x → ∞) = 0⇒ En,l , gn,l(x)
Case II: x0 ≤ x < ∞, g(x0) = 0, g(x → ∞) = 0⇒ EI I

n,l , gI I
n,l(x)

Case III: 0 ≤ x ≤ x0, g(x0) = 0⇒ EI I I
n,l , gI I I

n,l (x)
In order to obtain exact analytical results for Case I, we apply the Frobenius (power-

series) method based on the expansion

u(x) =
∞

∑
j=0

cjxj, (9)

that leads to the recurrence relation

cj+1 = Ajcj, Aj = −
β2 + 2E− k2 − 2(2n + |l|+ 1)

4(n + 1)(n + |l|+ 1)
, j = 0, 1, . . . . (10)

The truncation condition cn 6= 0, cn+1 = 0, n = 0, 1, . . ., leads to cj = cj,n,l = 0 for all
j > n (see [7] for further analysis) and to the exact eigenvalues

En,l = 2n + |l|+ 1− β2

2
+

k2

2
, (11)

that agree with those obtained earlier by Maia and Bakke [1]. When E = En,l , Aj takes the
simpler form

Aj =
j− n

(j + 1)(j + |l|+ 1)
. (12)

It is convenient to define

Wn,l = En,l +
β2

2
− k2

2
= 2n + |l|+ 1. (13)

The exact solutions are thus given by

gn,l(x) = x|l|/2e−x/2
n

∑
j=0

cj,n,l xj. (14)

The interesting fact is that the solutions gn,l(x) for Case I enable us to obtain some
particular solutions for Case II and Case III. In what follows, we illustrate the strategy by
means of some simple examples. For simplicity, we arbitrarily set c0,n,l = 1. From

g1,0(x) = e−x/2(1− x), (15)

we realize that gI I
0,0(x) = g1,0(x) for x0 = 1 and W I I

0,0 = 3. Exactly in the same way, we have

gI I
0,1(x) = g1,1(x) =

√
x

2
e−x/2(2− x), x0 = 2, W I I

0,1 = 4, (16)

or

gI I
0,0 = g2,0(x) = e−x/2

(
x2

2
− 2x + 1

)
, x0 = 2 +

√
2, W I I

0,0 = 5

gI I
1,0 = g2,0(x), x0 = 2−

√
2, W I I

1,0 = 5. (17)
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It is clear that, by straightforward generalization of this obvious procedure, we can
obtain other solutions gI I

n′ ,l(x) and W I I
n′ ,l for particular values of x0 given by the zeros of

gn,l(x). Note that we can also derive the solutions gI I I
n′ ,l(x) and W I I I

n′ ,l for Case III (but we
will not discuss them in this comment).

In order to compare the present exact results with the approximate ones derived by
Maia and Bakke [4], we define WMB±

n,l = EMB±
n,l + β2/2− k2/2 for m = 1 and ω = 1 in

Equation (5). As argued above, the analytical expression of those authors is only valid for
x0 = β2 ≥ π2/4 ≈ 2.47 when n = 0. Figure 1 shows that WMB−

0,0 is absurdly small, while,
on the other hand, WMB+

0,0 appears to be somewhat better but cannot be considered to be
a reasonable approximation. Although it increases with x0 as the exact result, the slope
is wrong. It is worth pointing out that Maia and Bakke [4] appeared to believe that both
solutions are suitable because they did not choose one of them.
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0
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0,0

W
MB+

0,0

W
MB-

0,0

Figure 1. Exact eigenvalues W I I
0,0 and those calculated by means of Equation (5).

It is not possible to determine the difference W I I
n,l −W I I

n,l′ directly from our exact
eigenvalues because we have them for different values of x0. However, a reasonable
strategy is to fit each W I I

n,l by means of a suitable curve and compare them. We have found
that a quadratic polynomial yields reasonable results in the interval 0 < x0 < 30, as shown
in Figure 2 for n = 0 and l = 0. Proceeding exactly in this way, we have

W I I
0,0 = 2.500106874 + 0.7124767969x0 − 0.003261278934x2

0,

W I I
0,1 = 2.77275271 + 0.6804213543x0 − 0.002389996785x2

0,

W I I
0,2 = 3.133268997 + 0.6494487589x0 − 0.001678639142x2

0. (18)

It is clear that the exact eigenvalues W I I
n,l appear to be almost independent of the rotational

quantum number only for sufficiently large values of x0 = β2. However, since 0 < β < 1 [1–3],
the independence of EMB±

n with respect to l appears to be just an artifact of the approximation
proposed by Maia and Bakke [4].

In closing, we want to stress the point that the ansatz (4) is unsuitable for obtaining the
solutions of Case II for arbitrary values of x0. To understand it, simply note that the only
solutions to the differential Equation (8) with the behavior at origin and infinity given by
Equation (4) are just the functions (14) with the eigenvalues (13) as shown for another quantum-
mechanical model [7]. Consequently, the ansatz (4) will give solutions for Case II only for the
zeros of the solutions for Case I. In other words, the Expression (5) is utterly wrong.
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Figure 2. Exact eigenvalues W I I
0,0 (points) and polynomial fit (continuous line).

4. Conclusions

In this comment, we have shown that the analytical eigenvalues derived by Maia
and Bakke [4] are unsuitable for any physical application because they exhibit an obvious
inconsistency in their units. The spectrum is real only for sufficiently large values of β2;
this is inconsistent with previous statements that this parameter should be small [1–3].
Apparently, Maia and Bakke [4] forgot this fact in the paper analyzed here. We may
reasonably assume that their arguments about quantum revivals, based on the wrong
eigenvalues EMB±

n , are far from correct.
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