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ABSTRACT Since the emergence of high-risk clones worldwide, constant investiga-
tions have been undertaken to comprehend the molecular basis that led to their
prevalent dissemination in nosocomial settings over time. So far, the complex and
multifactorial genetic traits of this type of epidemic clones have allowed only the
identification of biomarkers with low specificity. A machine learning algorithm was able
to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter
baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support
vector machine model identified the U1 sequence with a length of 367 nucleotides that
matched a fragment of the moaCB gene, which encodes the molybdenum cofactor bio-
synthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and
non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical
settings as a molecular typing method for early diagnosis based on PCR as shown here.
Since the metabolic pathways of Mo enzymes have been recognized as putative thera-
peutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)
pathogens, our findings highlight that machine learning can also be useful in knowl-
edge gaps of high-risk clones and provides noteworthy support to the literature to
identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones.

IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops
extreme drug resistance in the nosocomial niche. Furthermore, several strains have been
identified worldwide in environmental samples, exacerbating the risk of human interac-
tions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate
antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB
gene that is not subjected to lateral genetic transfer or to antibiotic pressures was suc-
cessfully found by a support vector machine model that predicts A. baumannii GC1
strains. At the same time, research on the group of Mo enzymes proposed this metabolic
pathway related to the superbug's metabolism as a potential future drug target site for
ESKAPE pathogens due to its central role in bacterial fitness during infection. These find-
ings confirm that machine learning used for the identification of biomarkers of high-risk
lineages can also serve to identify putative novel therapeutic target sites.

KEYWORDS Acinetobacter baumannii, ESKAPE pathogens, GC1, machine learning, PCR,
biomarkers, high-risk clones, metabolic fitness

A cinetobacter baumannii is an opportunistic and nosocomial Gram-negative patho-
gen that causes a wide range of nosocomial infections. It is included in the group

of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
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baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens (1, 2). Nosocomial
infections by A. baumannii have increased in recent years, adding to its ability to acquire
and spread antibiotic resistance genes to all families of antibiotics, and are considered a seri-
ous global threat worldwide (3, 4). The majority of A. baumannii isolates that are broadly re-
sistant to antibiotics belong to two pandemic clones, known as global clones 1 (GC1) and 2
(GC2) (3, 5, 6). Recent epidemiological studies of carbapenem-resistant A. baumannii (CRAB)
isolates revealed that A. baumannii GC1 is the prevalent CRAB clone in several countries
(7–10). In addition, A. baumannii GC1 strains have been found worldwide in environmental
samples from water, soil, and animals (11) (http://www.acinetobacterbaumannii.no/).

Over time, molecular methods with different degrees of resolution have been used
to type A. baumannii strains, including amplified fragment length polymorphism analy-
sis, ribotyping, macrorestriction analysis by pulsed-field gel electrophoresis, multiplex
PCRs, multilocus sequence typing (MLST), and more recently whole-genome sequencing
(WGS) (12–18). A typing scheme based on two multiplex PCRs targeting three genes
(ompA, csuE, and blaOXA-51-like) has been used for the assignment of A. baumannii isolates to
two major PCR-based groups corresponding to A. baumannii GC1 and GC2 (19). Also, since
correlation between particular blaOXA-51-like alleles and some epidemic lineages has been
detected, sequence analysis of the blaOXA-51-like gene has been proposed as a useful typing
method for A. baumannii isolates (19–21). In agreement with this, a study conducted on 60
A. baumannii isolates collected worldwide demonstrated that isolates belonging to A. bau-
mannii GC1 encoded enzymes from the OXA-69 cluster, which included OXA-69, OXA-92,
OXA-107, OXA-110, and OXA-112 enzymes (20). However, not all the isolates encoding the
OXA-69 cluster belong to A. baumannii GC1, such as A. baumannii strain A92, which
belongs to GC2 (20). An additional typing method of A. baumannii GC1 strains consists of
the detection of a 108-bp deletion in the 59-end-conserved segment (59-CS) of the class 1
integron located in the AbaR3 genomic island (7). Nevertheless, since AbaR3 is not present
in all A. baumannii GC1 strains, this approach serves as a marker for some diverged lineages
within A. baumannii GC1 (7). All the previously described methods based on PCR include
target genes that are subjected to lateral genetic transfer and/or antibiotic pressure, which
represents a limitation for the specificity of the technique.

With the increasing throughput and decreasing cost of DNA sequencing, large num-
bers of bacterial genomes have been submitted to public databases (22, 23). Genome-
wide studies of DNA variation related to antibiotic resistance phenotypes have garnered
high public interest, especially since several multidrug-resistant strains have emerged
worldwide (24). New candidate biomarkers leading to the identification of resistant
pathogens require the study and development of fast, easily applicable, and accurate
tools. Furthermore, with the help of computational algorithms, such studies can be con-
ducted at a much larger scale producing more significant results (25–28). Machine learning
(ML) algorithms and statistics have been used increasingly to build models that correlate
genomic variations with phenotypes that may help to predict bacterial phenotypes and
genotypes (29–35). In supervised ML, each learning sample includes the outcome (class
label) of interest, and it is used to build a prediction model (36). The model takes an out-
come measurement (e.g., a bacterium having a resistant phenotype or genotype) and tries
to learn from the available data (e.g., information on genomic mutations) to predict the
outcome measure. The developed model is then applied to new and unseen data. The
goal of the algorithm is to train a model that accurately foresees the correct outcome for
any input (37).

Support vector machine (SVM) is a supervised learning algorithm formally charac-
terized by a separating hyperplane that divides binary data to solve both classification
and regression problems. The SVM algorithm aims to correctly classify samples based on
examples in the training data set (38–40). On the other hand, the set covering machine
(SCM) is a supervised learning algorithm that uses a greedy approach to produce
uncharacteristically sparse rule-based models from the input data (41). Both algorithms
have been applied to several biological knowledge gaps and proved to be accurate in
predicting novel antibacterial agents (42), antibiotic resistance genes (31, 32, 43–45),
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identification of microorganisms (46–48), and cancer diagnosis (49–52), among
others (29, 46, 53–56).

ML can deal with large and diverse data sets to extract relevant information (57).
Given the wide use of ML in biology, and the absence of accurate identifiers for early
detection of A. baumannii GC1 strains, our study aimed to assess whether ML could be
applied to process thousands of genomes to identify a suitable A. baumannii GC1 bio-
marker. We also wanted to analyze whether ML could be combined with other techni-
ques such as PCR and/or quantitative PCR with high-resolution melting (HRM) assays
to provide a molecular typing method capable of being translated into clinical settings.
For these reasons, we built predictive models for typing A. baumannii GC1 genomes by
training SVM and SCM classifiers. From these classifiers, we identified a new and spe-
cific genomic biomarker for the early detection of A. baumannii GC1 strains by a PCR
technique not subjected to the selective pressure of antibiotics nor to lateral genetic
transfer.

RESULTS

To identify new genomic biomarkers that uniquely identify strains belonging to
A. baumannii GC1, we applied the SVM and SCM algorithms to data set 1 (500
genomes) and data set 2 (4,799 genomes) (see Tables S1 and S2 in the supplemental
material). First, we applied both algorithms to data set 1, which was composed of 200
A. baumannii GC1 genomes and 300 A. baumannii non-GC1 genomes. We aimed to
predict whether a particular genome in data set 1 belonged to A. baumannii GC1 or
not by using SVM and SCM algorithms. Data set 1 was used as input for both algorithms
during the training and testing of the models. Once we obtained accurate models that
predicted putative biomarker sequences, we used the second A. baumannii genome col-
lection, data set 2 (Table S2). Data set 2 was composed of 312 A. baumannii GC1
genomes and 4,487 A. baumannii non-GC1 genomes. By using blastn searches, we ana-
lyzed whether the predicted putative biomarker sequences were also found in data set 2
genomes, maintaining the same pattern found in data set 1. This analysis was done to
perform an external validation of the predictions made by both algorithms. The study
workflow is summarized in Fig. 1.

Obtaining unique A. baumannii GC1 predictive sequences with SVM. The
Pasteur scheme for MLST has the potential to identify isolates belonging to A. bauman-
nii GC1, providing a neat demarcation of sequence types (STs) composing A. baumannii
GC1 and non-GC1 clonal complexes (5, 58–61). Considering this fact, we annotated the
ST of each genome in data sets 1 and 2 and categorized them as “GC1” or “non-GC1”
(see “MLST classification” in Materials and Methods). We then ran the DBGWAS pro-
gram using data set 1 genome sequences as input; we obtained a total of 1,622,573
distinct unitigs that represented sequences of diverse length of data set 1, taking into
account the genomic variation (62). The length of the unitigs obtained was between
31 and 32,759 bp. We used the variant matrix built by DBGWAS to create the binary
matrix used as input for the SVM algorithm. Unitigs that were found in fewer than 50
genomes from data set 1 were discarded; we kept only unitigs that were 31 to 385 bp
in size in the input binary matrix.

Parameter tuning and model validations were performed using a 5-fold cross-valida-
tion and a grid search over a range of given values to determine the SVM kernel and
hyperparameters that generated the best area under the curve (AUC). Once we obtained
the SVM model that best fitted the data set 1 genomes, we extracted the first 100 unitigs
that contributed most to A. baumannii GC1 strain prediction (Table 1; Table S3) accord-
ing to the values of the features weight vector. By using blastn, we corroborated if the
unitigs predicted by SVM were specific for A. baumannii GC1 detection. For this purpose,
we searched for the unitig sequences in the genomes of data set 2 to assess which uni-
tigs had the greatest number of matches within each genome class (A. baumannii GC1
or non-GC1) (Table 2; Table S4). We also annotated the genome location and gene prod-
uct related to the 100 unitigs (Tables 1 and 3; Tables S3 and S5).
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Building SCMmodels for A. baumanniiGC1 identification. In an additional approach,
we applied the SCM algorithm implemented in Kover (29). We used as input the k-mers of
the 500 A. baumannii genomes contained in data set 1, considering the class label for each
genome (A. baumannii GC1 or non-GC1). We ran Kover using k-mer sizes ranging from 31
to 127 nucleotides. Although output rules could be conjunctions (logical-AND) or disjunc-
tions (logical-OR), we obtained 49 simple rules without conjunctions or disjunctions in the
models of our study (Table 3; Table S5). Rules depicted the presence (n = 10) or absence
(n = 39) of k-mers in data set 1 genomes. In addition, we registered the number of matches
of the k-mer sequences against A. baumannii GC1 and non-GC1 genomes contained in
data set 1 (Table 4; Table S6); we also annotated the k-mer sequences (Table 4; Table S6).

We observed that the rules obtained by the SCM models selected fragments of dif-
ferent lengths that matched the loci ACICU_02924 (n = 23), ACICU_02095 (n = 5),
ABAYE3455 (n = 5), ACICU_01506 (n = 2), and ABAYE2468 (n = 2) (Table 3; Table S5).
This fact could be caused by point mutations contained in the loci that the SCM mod-
els associated with A. baumannii GC1 prediction as previously reported by Kover devel-
opers (29).

Selection of candidate biomarkers for rapid detection of A. baumannii GC1.We
were interested in obtaining the longest DNA sequences shared by all A. baumannii
GC1 genomes and, at the same time, without matches among A. baumannii non-GC1
genomes. For this purpose, unitigs and k-mer sequences obtained as candidate bio-
markers for A. baumannii GC1 using the SVM and SCM algorithms were sorted in de-
scending order according to sequence length. Then, we considered the number of
A. baumannii GC1 genomes that matched the unitig sequence or the SCM rule and

FIG 1 Diagram of the workflow for A. baumannii GC1 biomarker discovery using machine learning.
The diagram indicates the steps we followed during the present work related to the genome
collections used, data set preparation, ML analysis, and the design of a method for A. baumannii GC1
strain identification.
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sorted the candidate sequences in ascending order according to the number of A. bau-
mannii non-GC1 genome matches.

First, we analyzed the SVM results. Data related to the unitigs obtained are listed in
Tables 1 and 2 and Fig. 2 and also in Tables S3 and S4 in the supplemental material.
We named unitigs from U1 to U100. We observed that the unitigs named U1 to U12
were found in 100% of A. baumannii GC1 genomes while they were not found in
A. baumannii non-GC1 genomes from data set 1. However, U1 was the only unitig
found in 100% of the A. baumannii GC1 genomes within data sets 1 and 2 and absent
in A. baumannii non-GC1 genomes of both data sets, being a specific biomarker for
A. baumannii GC1 identification. Despite the fact that the U8 sequence was found in
100% of A. baumannii GC1 genomes within data sets 1 and 2, it was also found in 1/
4,487 of A. baumannii non-GC1 genomes from data set 2. The U8 sequence matched
the A. baumannii AYE genome in locus tag ABAYE1412 between coordinates 651 and
691 (Table 1; Table S3). The fragment is part of a gene that encodes a putative acyl
coenzyme A (acyl-CoA) dehydrogenase protein (acdB-like). As the U8 sequence was
not found exclusively in A. baumannii GC1 genomes, we discarded it as a possible bio-
marker of A. baumannii GC1. Among these 12 unitigs, the U4 sequence was the one
that had a higher number of matches (43/4,487) with A. baumannii non-GC1 genomes
from data set 2.

The SCM results are shown in Tables 3 and 4 and Fig. 3 as well as in Tables S5 and
S6. We observed that 43/49 rules targeted 100% of A. baumannii GC1 genomes from
data set 1 but also targeted between 1 and 4 A. baumannii non-GC1 genomes from
data set 1. Within these 43 rules, two sets of rules targeted only 1 A. baumannii non-
GC1 genome from data set 1; as an example of this, 26/49 rules targeted a genome
with accession no. (AN) GCF_000248195.1 (ST 69) and 1/49 rules (R49) targeted a ge-
nome with AN GCF_000453745.1 (ST 2) (Fig. 3). Concerning data set 2, 12/49 rules
targeted 100% of A. baumannii GC1 genomes but also targeted several A. baumannii
non-GC1 genomes from data set 2. Since no rule obtained can uniquely identify
A. baumannii GC1 genomes contained in our data sets, we were unable to obtain a
putative biomarker from the results of the SCM models.

When using data set 2 to validate the results obtained by the SVM and SCM models
from data set 1, we observed that in the case of the SVM classifier, there was no statisti-
cally significant difference (P . 0.05) in the number of matches of the unitigs regard-
less of the genome data set (data set 1 or 2) except for unitig U69 (Table 2; Table S4).
In the case of U69, we found a significant difference between the numbers of matches

TABLE 2 Analysis of putative A. baumannii GC1 biomarkers obtained by SVMmatches within data sets 1 and 2a

Unitig
ID

Data set 1 Data set 2

P value for proportion
of GC1 genome
matches in data set 1

P value for proportion of
non-GC1 genome
matches in data set 1

No. of GC1
genomes matching
the unitig/total no.

No. of non-GC1
genomes matching
the unitig/total no.

No. of GC1
genomes matching
the unitig/total no.

No. of non-GC1
genomes matching
the unitig/total no.

not differing from
proportion of GC1
matches in data set 2

not differing from
proportion of non-GC1
matches in data set 2

U1 200/200 0/300 312/312 0/4,487 1 1
U2 200/200 0/300 311/312 0/4,487 1 1
U3 200/200 0/300 311/312 3/4,487 1 1
U4 200/200 0/300 310/312 43/4,487 0.523 0.1106
U5 200/200 0/300 311/312 0/4,487 1 1
U6 200/200 0/300 306/312 1/4,487 0.0862 1
U7 200/200 0/300 309/312 2/4,487 0.2845 1
U8 200/200 0/300 312/312 1/4,487 1 1
U9 200/200 0/300 309/312 5/4,487 0.2845 1
U10 200/200 0/300 311/312 0/4,487 1 1
aThis table details the unitig IDs of the first 10 unitigs that contributed most to A. baumannii GC1 genome prediction according to the values of the features weight vector,
the number of A. baumannii GC1 and non-GC1 genomes typed by MLST that matched the unitig within data sets 1 and 2 using blastn, and the P values of Fisher's exact test
using a significance level of 0.05. Fisher’s exact test was calculated in R by considering the nominal variables “data set source” (data set 1 or 2) and “matched” (yes or no).
The total number of A. baumannii GC1 and non-GC1 genomes that matched/did not match the unitigs in each data set was used for calculation. The total data of the 100
unitigs predicted by SVM are detailed in Table S4 in the supplemental material.
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with A. baumannii non-GC1 genomes from data sets 1 and 2 (P = 0.01077). Concerning
the SCM classifier, we observed that there was no statistically significant difference in
the number of A. baumannii GC1 and non-GC1 genomes from data sets 1 and 2 that
matched the rules (P . 0.05) (Table 4; Table S6). As we mentioned, the SVM model pre-
dicted the U1 sequence as a specific biomarker for A. baumannii GC1 genomes. The U1
sequence had 367 nucleotides and matched the A. baumannii AYE genome in locus
tag ABAYE1552 between coordinates 558 and 924 (Table 1; Table S3). This region cor-
responds to a fragment of the moaCB gene, which encodes a bifunctional protein that
includes molybdenum cofactor biosynthesis protein C and protein B (63). In particular,
the U1 sequence matched the region of the moaCB gene, which encodes MoaB pro-
tein. The molybdenum cofactor (Moco) is an essential component of a large family of
enzymes involved in carbon, nitrogen, and sulfur metabolism whose biosynthetic path-
way is evolutionarily conserved. The MoaC protein, together with the MoaA protein, is

TABLE 3 Rules obtained by the SCMmodelsa

Rule
ID Rule

Length
(nucleotides) Match location

Gene
name Gene product

R127 Presence (AAAAAAGCATGTTTGAAACATGCTTTTTT
ATTTTATGGCGTTAAACCAACAGGATTGCGATAC
CAGCTCTGAATTAGCAAAGCCGCGGCAAAACTA
TCGGCTGACAACTTCTTGGCACGGCCTTGTT)

127 AYE:REGION:
3509175.0.3509301

ND Putative Holliday junction resolvase

R125 Absence (AATGATTAACAGTACAGGGAAACTAGCA
ATGAGAAGTTGCATCAAAATGCCTTGACGTTGTG
GTGCTGTGCCCTCTACAACAACATTTTGCTTGTTT
AAGCTTGGCATAAGTTCAGTGTCTTCAA)

125 ACICU_02924:125.0.249 ND ATP-dependent Zn protease

R123 Absence (AATGATTAACAGTACAGGGAAACTAGCA
ATGAGAAGTTGCATCAAAATGCCTTGACGTTGTG
GTGCTGTGCCCTCTACAACAACATTTTGCTTGTTT
AAGCTTGGCATAAGTTCAGTGTCTTC)

123 ACICU_02924:127.0.249 ND ATP-dependent Zn protease

R121 Absence (AATGATTAACAGTACAGGGAAACTAGCA
ATGAGAAGTTGCATCAAAATGCCTTGACGTTGTG
GTGCTGTGCCCTCTACAACAACATTTTGCTTGTTT
AAGCTTGGCATAAGTTCAGTGTCT)

121 ACICU_02924: 129.0.249 ND ATP-dependent Zn protease

R119 Absence (AATGATTAACAGTACAGGGAAACTAGCA
ATGAGAAGTTGCATCAAAATGCCTTGACGTTGTG
GTGCTGTGCCCTCTACAACAACATTTTGCTTGTTT
AAGCTTGGCATAAGTTCAGTGT)

119 ACICU_02924:131.0.249 ND ATP-dependent Zn protease

R117 Absence (AACAGTACAGGGAAACTAGCAATGAGAA
GTTGCATCAAAATGCCTTGACGTTGTGGTGCTGTG
CCCTCTACAACAACATTTTGCTTGTTTAAGCTTGG
CATAAGTTCAGTGTCTTCA)

117 ACICU_02924:126.0.242 ND ATP-dependent Zn protease

R115 Absence (AACAGTACAGGGAAACTAGCAATGAGAA
GTTGCATCAAAATGCCTTGACGTTGTGGTGCTGT
GCCCTCTACAACAACATTTTGCTTGTTTAAGCTT
GGCATAAGTTCAGTGTCTT)

115 ACICU_02924:128.0.242 ND ATP-dependent Zn protease

R113 Absence (AACAGTACAGGGAAACTAGCAATGAGAA
GTTGCATCAAAATGCCTTGACGTTGTGTGCTGTG
CCCTCTACAACAACATTTTGCTTGTTTAAGCTTG
GCATAAGTTCAGTGTC)

113 ACICU_02924:130.0.242 ND ATP-dependent Zn protease

R111 Absence (AAGACACTGAACTTATGCCAAGCTTAAAC
AAGCAAAATGTTGTTGTAGAGGGCACAGCACCA
CAACGTCAAGGCATTTTGATGCAACTTCTCATTGC
TAGTTTCCCTGTAC)

111 ACICU_02924:128.0.238 ND ATP-dependent Zn protease

R109 Absence (AAGACACTGAACTTATGCCAAGCTTAAAC
AAGCAAAATGTTGTTGTAGAGGGCACAGCACCA
CAACGTCAAGGCATTTTGATGCAACTTCTCATTG
CTAGTTTCCCTGT)

109 ACICU_02924:128.0.236 ND ATP-dependent Zn protease

aThis table details the rule ID, the rule output from the SCMmodel, the k-mer length (nucleotides), and the location where the rule sequence matched the A. baumannii AYE
genome (AN CU459141.1) or the A. baumannii ACICU genome (AN CP000863.1), and the gene name corresponding to the genome region matched and the gene product
of the 10 larger k-mer sequences targeted by the SCM rules. A. baumannii AYE and ACICU genomes were used as A. baumannii GC1 and non-GC1 references, respectively,
to locate the k-mer sequences. The prefix “REGION” was used when the match occurred either in an intergenic region or in a combination of an intergenic region and a
gene. The complete list of the 49 rules obtained by the SCMmodels is detailed in Table S5 in the supplemental material. ND, no data.
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involved in the first step of Moco biosynthesis (63). Interestingly, various studies have
linked in-host survival of prevalent pathogenic bacteria such asMycobacterium tuberculosis,
Escherichia coli, and Salmonella enterica to the presence of functional molybdoenzymes
(64–67). In our study, we found that the U1 sequence was 100% conserved in A. baumannii
GC1 genomes (no single nucleotide polymorphisms [SNPs]), while it was a variable region
with 1 to 74 SNPs in a total of 4,987 A. baumannii non-GC1 genomes from data sets 1 and
2, rendering 94 allelic variants in A. baumannii non-GC1 genomes. According to these
results, the sequence of the moaCB gene comprising between 558 and 924 nucleotides

TABLE 4 Analysis of the SCM rules matches within data sets 1 and 2a

Rule
ID

Data set 1 Data set 2

P value for proportion
of A. baumannii GC1
genome matches in

P value for proportion
of A. baumannii non-
GC1 genome matches

No. of A. baumannii
GC1 genomes
matching the
rule/total no.

No. of A. baumannii
non-GC1 genomes
matching the
rule/total no.

No. of A. baumannii
GC1 genomes
matching the
rule/total no.

No. of A. baumannii
non-GC1 genomes
matching the
rule/total no.

data set 1 not
differing from
proportion of GC1
matches in data set 2

in data set 1 not
differing from
proportion of non-GC1
matches in data set 2

R127 200/200 4/300 310/312 166/4,487 0.523 0.03405
R125 200/200 1/300 310/312 13/4,487 0.523 0.5964
R123 200/200 1/300 310/312 13/4,487 0.523 0.5964
R121 200/200 1/300 310/312 13/4,487 0.523 0.5964
R119 200/200 1/300 310/312 13/4,487 0.523 0.5964
R117 200/200 1/300 310/312 12/4,487 0.523 0.5693
R115 200/200 1/300 310/312 12/4,487 0.523 0.5693
R113 200/200 1/300 310/312 12/4,487 0.523 0.5693
R111 200/200 1/300 310/312 12/4,487 0.523 0.5693
R109 200/200 1/300 310/312 12/4,487 0.523 0.5693
aThis table details the rule IDs of the 10 larger k-mer sequences targeted by the SCM rules, the number of A. baumannii GC1 and non-GC1 genomes typed by MLST that
matched the rule within data sets 1 and 2 by using blastn, and the P values of Fisher's exact test using a significance level of 0.05. Fisher’s exact test was calculated in R by
considering the nominal variables “data set source” (data set 1 or 2) and “matched” (yes or no). The total number of A. baumannii GC1 and non-GC1 genomes that
matched/did not match the rules in each data set was used for calculation. The total data of the 49 SCM rules are detailed in Table S6 in the supplemental material.

FIG 2 Percentages of genomes in data set 1 and data set 2 matching unitig sequences U1 to U12.
(A) A. baumannii GC1 genomes; (B) A. baumannii non-GC1 genomes.
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allowed accurate discrimination for A. baumannii GC1 and non-GC1 genomes, becoming a
biomarker that differentiates the two groups. Moreover, we observed that the U1 sequence
is conserved in all the A. baumannii GC1 genomes, but this is not the case for A. baumannii
GC2. For this reason, the U1 sequence could not be used as a biomarker for accurate detec-
tion of A. baumannii GC2 strains.

Since 95 variants within 5,299 A. baumannii strains were identified with multiple SNPs
along the entire sequence of U1, we proposed that a strategy based on PCR amplification
would allow us to accurately differentiate A. baumannii GC1 from non-GC1 strains. For this
reason, we designed the primer pair BioM_GC1_ABA F (59-TATTCATAGCCTCCTGGATGC-39)
and BioM_GC1_ABA R (59-CCAGATGAAGCGGATACTTTG-39), with coordinates 559 to 914
from the ABAYE1552 locus tag representing 356 bp of the U1 sequence (positions 2 to
357). By a blastn search, we identified that this primer pair amplified only the U1 sequence
recognized in A. baumannii GC1 strains among all the variants detected so far in non-
GC1 genomes. The closest variants showed a mismatch of 1 nucleotide at the 39 end
of the reverse primer in A. baumannii ST163, ST411, and ST976 (AN GCF_015537765,
GCF_000453725, and GCF_010500415, respectively).

Experimental analysis, with a total of 35 A. baumannii strains, i.e., 10 A. baumannii GC1
strains and 25 A. baumannii non-GC1 strains, including 4 ST2 (GC2), 15 ST79, 5 ST119, and
1 ST404, was performed to test the primer pair BioM_GC1_ABA F and BioM_GC1_ABA F
(Fig. S1). A. baumannii GC1 strains that had been isolated more than 25 years apart, such
as A144 (1997), A155 (1994), and HAX25Aba (2021), were tested (68, 69). The pair of pri-
mers designed in this study amplified by PCR only the A. baumannii GC1 strains, and as

FIG 3 Percentages of genomes in data set 1 and data set 2 matching the SCM rules. (A) A. baumannii GC1 genomes; (B) A. baumannii non-GC1 genomes.
We observed that within the 43 rules which targeted 100% of A. baumannii GC1 genomes from data set 1, two set of rules targeted only one non-GC1
genome from the same data set. Rules R125, R123, R121, R119, R117, R115, R113, R111, R109, R107, R105, R103, R101, R99, R97, R95, R89, R83, R81, R79,
R77, R73, R69, R63, R39 and, R35 targeted the genome with AN GCF_000248195.1 (ST69) and R49 targeted the genome with AN GCF_000453745.1 (ST2).
Regarding data set 2, rules R93, R91, R87, R85, R75, R61, R59, R57, R55, R53, R49, and R31 targeted 100% of A. baumannii GC1 genomes but also targeted
several A. baumannii non-GC1 genomes from data set 2 (66/4,487, 28/4,487, 28/4,487, 28/4,487, 28/4,487, 26/44,87, 26/4,487, 14/4,487, 27/4,487, 26/4,487,
13/4,487, and 42/4,487 genomes, respectively).
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expected, the subsequent DNA sequence analysis of the amplicon showed 100% identity
and query coverage with 356 bp of U1, as confirmed by Clustal alignment (Fig. S2).
Interestingly, A. baumannii Ab103 ST119, which has two mismatches in each primer, i.e.,
at positions 15 and 21 of the 21 nucleotides of BioM_GC1_ABA F and at positions 9 and
21 of the 21 nucleotides of BioM_GC1_ABA R, also rendered a negative result in this PCR’s
conditions (see below). This result confirmed the specificity of this pair of primers.

The optimum PCR amplification was established in a final volume of 25 mL contain-
ing 0.625 U of GoTaq DNA polymerase (catalog no. M3005; Promega, USA), 5 mL of 5�
Green GoTaq buffer with MgCl2 at a final concentration of 1.5 mM in the 1� reaction
mixture, 0.4 pM each deoxynucleotide triphosphate (dNTP), 1 mM each primer, and
5 mL of DNA from boiling 3 or 4 A. baumannii colonies in 100 mL of sterile H2O. DNA of
A. baumannii GC1 strain A144 and water were used as positive and negative controls,
respectively. The PCR cycling conditions consisted of an initial denaturation at 94°C for
5 min, followed by 30 cycles of denaturation at 94°C for 45 s, annealing at 58°C for
45 s, and extension at 72°C for 30 s, and then a final extension at 72°C for 5 min.
Alternatively to this PCR to identify A. baumannii GC1, TaqMan assays could also pro-
vide a molecular typing method capable of being translated into clinical settings to dif-
ferentiate A. baumannii GC1 and other relevant GCs or STs.

Evaluation of the performance of the SVM and SCMmodels. To avoid overfitting,
a 5-fold cross-validation was performed with the training data sets used as input in
both the SVM and SCM algorithms to select the best hyperparameter values with the
highest AUC. Performance during testing was evaluated using the best hyperpara-
meters obtained in terms of sensitivity, specificity, accuracy, precision, and F1 score
(Tables 5 and 6; Table S7). The sensitivity of the SVM model was 1 6 0.00, indicating
that 100% of A. baumannii GC1 genomes were correctly identified within the testing
data set. Also, the SVM model achieved a high specificity (1 6 0.00) when predicting
A. baumannii non-GC1 genomes from the testing data sets. The precision value was
1 6 0.00 when the model predicted that a genome was within A. baumannii GC1,
being correct 100% of the time. Accuracy was 1 6 0.00, indicating that 100% of A.

TABLE 5 Prediction metrics on test data set partitions from data set 1 using the best-
performing SVMmodela

Metric Value
ACC 1.006 0.00
SENS 1.006 0.00
SPE 1.006 0.00
PRE 1.006 0.00
F1 1.006 0.00
No. of TP 52
No. of TN 48
No. of FP 0
No. of FN 0

No. of isolates typed by MLST
GC1 52
Non-GC1 48

Correlation of MLST typing to the model prediction P, 2.2e216

aThe correlation between MLST typing and model prediction was calculated using Fisher’s exact test in R using a
significance level of 0.05. The nominal variables “MLST typing” and “prediction” were considered during Fisher’s
exact test calculation. The variable “MLST typing” represented the genomes typed as A. baumannii GC1
(positive label) or non-GC1 (negative label) by MLST technique (true class). On the other hand, the variable
“prediction” represented the genomes predicted to be A. baumannii GC1 or non-GC1 by the SVM model
(predicted class). We used the number of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) in a 2� 2 contingency table. The null hypothesis used to evaluate the correlation between MLST
typing and model prediction was as follows: true class (MLST typing) and predicted class are independent,
knowing that the value of one variable does not help to predict the value of the other variable. ACC, accuracy;
SENS, sensitivity; SPE, specificity; PRE, precision; F1, F1 score; TP, true positives; TN, true negatives; FP, false
positives; FN, false negatives.
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baumannii GC1 and non-GC1 genomes were correctly predicted. No false positives and
no false negatives were predicted by the SVM model.

Regarding the SCM models, the mean values of sensitivity, specificity, precision, and
accuracy were 1 6 0.01, 0.98 6 0.01, 0.97 6 0.01, and 0.99 6 0.01, respectively. The
mean rate of false positives was 1.11%, while the mean rate of false negatives was
0.097%. All the rules obtained by the SCM models predicted false positives within the
testing data set (Table 6).

The training and the testing accuracies of the SVM and SCM models were above
0.99 (Fig. 4), indicating that the SVM and SCM models were not overfitted. The F1
score, which is the harmonic mean of precision and recall that is commonly used to
compare different classification algorithms, was similarly high in the SVM and SCM
models (1.00 and 0.99 6 0.01, respectively). We used Fisher's exact test to evaluate the
performance of the SVM and SCM predictions, comparing the actual genome classes
(A. baumannii GC1 and non-GC1) typed by MLST and the predicted classes obtained by
the models. In both cases, we obtained a P of ,2.2e216 (Tables 5 and 6; Table S7), indi-
cating that the SVM and SCM models could significantly classify A. baumannii GC1 and
non-GC1 strains. Despite these results, since the aim of this work was to find a bio-
marker that uniquely identifies A. baumannii GC1 genomes, the SVM model performed
better than the SCM models since it did not predict false positives or false negatives.

DISCUSSION

High-risk clones, also called “superbugs,” are dangerous clonal complexes with epi-
demic behavior equipped with exceptional resources both to infect the host and to
evolve to extreme drug resistance phenotypes over time in the nosocomial niche
(1, 70–76). A molecular understanding of the genetic and/or transcriptomic traits that
lead to these capabilities is still unknown (77, 78). Our study showed that ML applied
to the study of high-risk clones can not only help in the identification of thoroughly
accurate biomarkers but also contribute to disentangling molecular pathways that
lead to epidemic lineages in the nosocomial niche which have not yet been completely
deciphered. Accordingly, these findings could be used as therapeutic targets to reduce
the dissemination of lineages with epidemic behavior. This is the case of the U1 sequence
identified in the present study, which corresponded to 367 bp of the moaCB gene encod-
ing a bifunctional protein that includes molybdenum cofactor biosynthesis protein C and
protein B (63). Mononuclear molybdoenzymes (Mo enzymes) occur in organisms in all
domains of life, where they mediate essential cellular functions such as energy generation

TABLE 6 Prediction metrics on test data set partitions from data set 1 using the best-performing SCMmodelsa

Rule ID SENS SPE PRE ACC F1 No. of TP No. of TN No. of FP No. of FN

No. of isolates
typed by MLST Correlation of MLST

typing to the model
prediction (P value)GC1 non-GC1

R127 1.00 0.96 0.95 0.98 0.97 72 91 4 0 72 95 2.2e216

R125 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R123 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R121 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R119 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R117 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R115 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R113 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R111 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

R109 1.00 0.99 0.99 0.99 0.99 72 94 1 0 72 95 2.2e216

aCorrelation between MLST typing and model prediction was calculated using Fisher’s exact test in R using a significance level of 0.05. The nominal variables “MLST typing”
and “prediction” were considered during Fisher’s exact test calculation. The variable “MLST typing” represented the genomes typed as A. baumannii GC1 (positive label) or
A. baumannii non-GC1 (negative label) by the MLST technique (true class). On the other hand, the variable “prediction” represented the genomes predicted to be
A. baumannii GC1 or non-GC1 by the SCMmodel (predicted class). We used the number of true positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN) in a 2� 2 contingency table. The null hypothesis used to evaluate the correlation between MLST typing and model prediction was as follows: true class (MLST typing)
and predicted class are independent, knowing that the value of one variable does not help to predict the value of the other variable. The total metrics of the 49 rules
obtained by the SCMmodels are detailed in Table S7 in the supplemental material. ACC, accuracy; SENS, sensitivity; SPE, specificity; PRE, precision; F1, F1 score; TP, true
positives, TN, true negatives; FP, false positives; FN, false negatives.
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and detoxification reactions (79). It has been shown that in bacterial pathogens, several
processes such as molybdate uptake, cofactor biosynthesis, and the activities of Mo enzymes
affect fitness in the host as well as virulence (79). In addition to many studies on Mo
enzymes that identified their crucial role in pathogenic species such as E. coli, S. enterica,
Campylobacter jejuni, and Mycobacterium tuberculosis, some reports recently identified that
these enzymes also contribute to the survival of ESKAPE pathogens (65, 80–84). Experimental
studies must be undertaken to investigate the role of the moaCB gene in the virulence and
fitness of A. baumannii, which is also included in the ESKAPE group. Based on our results and
previous experimental data in other pathogenic species (79), we can hypothesize that the U1
fragment of the moaCB gene in A. baumannii GC1 may be related to an essential metabolic
pathway that plays a vital role in the maintenance of epidemic clones in the hospital environ-
ment. Since it has been found that most of the Mo enzymes belong to groups that are
unique to prokaryotes, these have been proposed as promising targets for the development
of new antibiotic agents (79).

Given the variability observed in biomarker U1 between A. baumannii GC1 and the
94 variants in A. baumannii non-GC1 strains, we propose a simple molecular biology
strategy of one-step PCR amplification to accurately differentiate A. baumannii GC1 from
non-GC1 strains without performing MLST, or WGS plus comparative genomics. The
strategy proposed here, which was experimentally tested in this study, is accessible to a
wide range of clinical and/or research laboratories. In addition, as the methodology con-
sists of a single PCR, the detection of A. baumannii GC1 strains can be performed from
the colony or directly from the clinical sample, giving the possibility of an early and sim-
ple diagnosis of this lineage.

Due to the increasing availability of bacterial WGS data, very active research has
emerged on the use of this tool for genotype-phenotype prediction of antibiotic sus-
ceptibility (29, 32, 33, 43, 53, 85–87); however, there are no data available concerning
the identification of high-risk clones based on WGS data excluding MLST. Previous
PCR-based studies used blaOXA-51 as one of the three targeted genes to discriminate
strains of A. baumannii GC1, GC2, and GC3 (18, 19), and the detection of a deletion of
108 bp in the 59 conserved segment (59-CS) of the class 1 integron has also been pro-
posed for identification of A. baumannii GC1 strains (19). Since blaOXA-51 has been found
in other species (88–90) and the deletion of 108 bp as a biomarker partially differenti-
ates two lineages within A. baumannii GC1 (7) and considering that both can be sub-
jected to lateral genetic transfer events, the analysis provided by ML in the present
study supports a more accurate and solid tool to evaluate the presence of A. baumannii
GC1 strains. Accordingly, U1 is part of an essential gene in the A. baumannii GC1 ge-
nome (moaCB). This suggests that the optimization of metabolic genes from the core
genome may be related to the exceptional abilities of high-risk clones. Interestingly,

FIG 4 Mean accuracies of the SVM and SCM models. Blue bars represent the mean accuracy of the models for the training data set. Green bars represent
the accuracy of the models for the test data set. The models were run with the best hyperparameters selected from a 5-fold cross-validation. The error bars
indicate standard deviations. (A) SVM model; (B) SCM models.
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our data suggest that the accessory genome such as genomic islands or transposons
involved in pathogenicity or antibiotic resistance, at least in A. baumannii GC1 strains,
would not have played a causal role in the adaptation of this lineage to the hospital
niche over time (1).

In our work, we applied two ML algorithms that differ substantially in methodology.
The SVM algorithm used the number of unitigs occurring in A. baumannii GC1 and
A. baumannii non-GC1 genomes to learn and predict clonal membership of the strains,
while the SCM algorithm used a greedy approach to construct conjunction or disjunc-
tion rules to find the most concise set of k-mers that allows for accurate A. baumannii
GC1 or A. baumannii non-GC1 genome prediction. Previously, methods that combined
the use of the SVM and SCM algorithms and the representation of genomic data as k-
mers were used to find genomic biomarkers to identify antibiotic resistance (29) or to
predict antibiotic resistance from WGS data (53, 85). We ran the SCM algorithm
through the Kover program with k-mer lengths between 31 and 127 nucleotides to be
able to analyze all the possible rules obtained from these k-mer lengths. Also, we ran
the SVM algorithm using unitigs that usually corresponded to a longer sequence than
that of the individual equivalent k-mers. Unitigs are defined as the longest sequences
that can be obtained when k-mers overlap by exactly k-1 nucleotides (62, 87, 91). In
k-mer-based genome representations, the main downside is that the representation con-
tains a lot of redundancy, since many k-mers are always present or absent simultane-
ously (e.g., gene deletion/insertion). In this sense, it has been proposed that k-mers be
replaced with unitigs (62, 87, 91).

Although the best model that fitted our data was a linear SVM model, we evaluated
linear, polynomial, radial basis function, and sigmoid SVM kernels. Other genome-wide
association studies (GWAS) tools that apply ML techniques to the prediction of pheno-
types from genotype data, such as Pyseer (92) or PhenotypeSeeker (93), use different
approaches to find the best models to solve classification problems. Pyseer uses gener-
alized linear models (GLiM), a linear regression model, and PhenotypeSeeker uses a
logistic regression (LR) model. While GLiM performs a more simplistic linear regression
using a set of observed values to predict its response variable, SVM deploys much
more sophisticated techniques (57, 94, 95). SVM can perform kernel tricks that can han-
dle nonlinear data, thus making the nonlinear data appear to be linear. These tricks
cannot be done by GLiM or LR (39, 48, 96). Moreover, it has been shown that when it is
of interest to predict the group to which a new observation belongs, based on a single
variable, SVM models are a feasible alternative to LR since SVM models require fewer
variables to perform better than or as well as LR (97, 98). In addition, the risk of overfit-
ting is less in SVM, while LR is vulnerable to overfitting (99). In comparison with Pyseer
and PhenotypeSeeker approaches, our methodology considered the testing of differ-
ent SVM kernels and allowed the possibility of using linear or complex nonlinear func-
tions to find the best model. On the other hand, Pyseer and PhenotypeSeeker perform
weighting of strains by using a distance matrix of the strains to account for population
structure (92, 93). Although the implementation of our algorithm did not include prior
knowledge of population structure, we could successfully find a specific biomarker for
A. baumannii GC1 strains.

We also proved by using statistical methods that the SVM and SCM models could
significantly classify A. baumannii GC1 isolates (P , 0.05). While the SVM classifier pre-
dicted the U1 sequence as a specific biomarker for A. baumannii GC1 genomes, none
of the rules obtained with the SCM models was able to uniquely identify A. baumannii
GC1 genomes. All the rules obtained by the SCM models matched in A. baumannii GC1
and A. baumannii non-GC1 genomes from both data sets 1 and 2. Due to this result, it
was not possible to obtain a sequence that could be used as a specific biomarker for
A. baumannii GC1 strains from the rules obtained by the SCM models. A key step for
the successful implementation of ML algorithms is the preparation of the input data
sets (57, 100–102). In our study, we faced two issues related to the preparation of data
sets 1 and 2. On the one hand, a limitation in the program DBGWAS during the
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preparation of the matrix used in the SVM algorithm meant that only a total of 500
genomes could be included in the training data set. Since our goal was to use the
same training data set for the SVM and SCM models, the 500 genomes were also used
as input in the SCM algorithm. On the other hand, the scarcity of A. baumannii GC1
genomes available in GenBank in comparison to A. baumannii non-GC1 genomes
caused data set 2 to have visibly more genomes representing the A. baumannii non-
GC1 class. Despite this fact, the results obtained from data sets 1 and 2 remained con-
sistent in 100% (P . 0.05) of the cases for the SVM model and more than 91.83%
(P . 0.05) of the cases for the SCM models. Perhaps the limitation in the number of
genomes in the training data set is one of the reasons why the SCM models did not
have enough samples to learn from A. baumannii GC1 genomes and therefore could not
find a rule that uniquely identifies them. Conversely, the numbers of isolates predicted
to be A. baumannii GC1 or non-GC1 by the SVM model using unitig U1 were the same as
the result obtained by the MLST technique. This fact indicated that the SVM model
obtained was excellent in the classification of A. baumannii GC1 and non-GC1 genomes.
It will be interesting to study in future works how the data set 1 splitting strategy (unitigs
or k-mers), the number of genomes of each class (A. baumannii GC1 and non-GC1) in
data set 1, and the total number of A. baumannii genomes in data set 1 impact the SVM
and SCM model predictions and performances. One possible approach could be using as
input the binary matrix obtained from the unitigs representing data set 1 genomes gen-
erated by the program DBGWAS in the program Kover and then to analyze the SCM
model results. In the same way, we could obtain k-mer profiles (k-mer sizes ranging from
31 to 127 nucleotides) from data set 1 genomes and the k-mer matrixes associated with
each profile using the DSK k-mer counter (103). DSK is used by Kover to internally com-
pute k-mer profiles from the input genomes (104). Then, we could use the k-mer matrixes
as input in the SVM algorithm. As result, we would obtain new putative sequence bio-
markers from both approaches, and we could compare them with the ones obtained in
the current work.

In conclusion, these results suggest that the application of ML to identify biomarkers
for high-risk clones or superbugs can also be used at an exploratory level of great preci-
sion since it can be useful for novel understandings related to bacterial adaptation
within the nosocomial niche. In turn, these data can contribute to experimental work
with the possibility of further translation to clinical settings. The SVM algorithm made
genetic predictions based on the presence or absence of short genomic sequences in
both A. baumannii GC1 and non-GC1 genomes. It detected a biomarker, U1, which is
unrelated to lateral genetic transfer, accessory genome, or antibiotic pressures, and can
uniquely identify the CG1 strains. The identification of this biomarker by the SVM algo-
rithm, in agreement with previous experimental works on the group of Mo enzymes,
showed that the application of ML could be a powerful tool to discover new therapeutic
targets for the development of new antibiotic agents.

MATERIALS ANDMETHODS
MLST classification. Multilocus sequence typing (MLST) of all genomes in the data collection was

performed in silico using the mlst software developed by T. Seemann (https://github.com/tseemann/
mlst) and Pasteur’s MLST database and schema for A. baumannii (https://pubmlst.org/organisms/
acinetobacter-baumannii). A. baumannii sequence type (ST) numbers ST1, ST19, ST20, ST81, ST94, ST328,
ST460, ST623, ST315, ST717, and ST1106 were classified into A. baumannii GC1 and other STs into A. bau-
mannii non-GC1 genomes (see Tables S1 and S2 in the supplemental material).

Data collection. To perform an accurate ML analysis to identify an A. baumannii GC1 biomarker, we
defined two data sets to do our studies.

Data set 1 was composed of 200 A. baumannii GC1 genomes and 300 A. baumannii non-GC1
genomes obtained from GenBank and typed by MLST as previously described. These genomes were
retrieved from the GenBank assembly database by filtering with “Acinetobacter baumannii” in the
search-by-organism option (https://www.ncbi.nlm.nih.gov/assembly/organism/; last accessed July 2021).
A. baumannii GC1 genomes included 18 genomes used in a previous study (1) and 182 A. baumannii
genomes as scaffolds and contigs (Table S1). A. baumannii non-GC1 genomes included five genomes
belonging to other high-risk epidemic clones such as ACICU (CP031380.1) as representative of GC2,
Naval-13 (AMDR01000001.1) as representative of GC3, AB33405 (NZ_JPXZ00000000.1) as representative
of local epidemic clone CC113, and both ATCC 17978 (CP018664.1) and A118 (AEOW01000000) as
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sporadic clones. We also included 205 A. baumannii non-GC1 genomes as scaffolds and contigs
(Table S1). Data set 2 was composed of 312 A. baumannii GC1 genomes and 4,487 A. baumannii non-
GC1 genomes (Table S2) retrieved from the GenBank assembly database (last accessed July 2021). The
number of genomes in these data sets was limited by the A. baumannii GC1 and non-GC1 genomes
available in the GenBank database at the time of the query. We used data set 2 to validate using blastn
searches the results obtained by the SVM model (Table S2). STs were numbered according to the
Pasteur scheme for MLST (Tables S1 and S2).

Machine learning analyses. The SVM classifier is based on the maximization of the margin around
the hyperplane (wTx1 b) separating samples or instances of the different classes (56, 105). Each instance
i = 1, . . ., m consists of an N-dimensional feature vector xi and a class label, yi 2 11; 21f g. The maximi-
zation of the margin corresponds to the following minimization:

w�; b�; j � ¼ arg min
w;b;j

1
2
kwk2 1C

Xm

i¼1

j i

s:t: yi w
Txi 1 b

� �
$ 12 j i; j i $ 0; i ¼ 1; . . . ;m

In this soft-margin SVM equation, j i is a penalty for misclassification or classification within the margin.
Parameter C sets the weight of this penalty. The resulting weight vector w* encodes the contributions of
all features to the classifier (56). b* refers the resulting bias term. The bias term shifts the hyperplane
away from the origin and allows the SVM to fit a hyperplane that is not necessarily passing through the
origin. j * refers to the resulting slack variable.

We created a Python script using scikit-learn (106) to run the SVM algorithm. The script evaluated
the classifier through a 5-fold cross-validation. In detail, the data were split into five consecutive folds
(without shuffling) using the Python scikit-learn (sklearn) KFold function (https://scikit-learn.org/stable/
modules/cross_validation.html#k-fold), and five models were built. Each fold was used once as a test set,
while the four remaining folds formed the training set. During each of the five iterations, hyperpara-
meter tuning was done using a 5-fold cross-validated grid search using the GridSearchCV function imple-
mented in the sklearn.model_selection package (https://scikit-learn.org/stable/modules/generated/sklearn
.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV) to find the best hyperpara-
meters. We evaluated linear, polynomial (with a default degree of 3), radial basis function (RBF), and sig-
moid kernels. We considered values between 0.01 and 100 for the penalty parameter of the error term (C)
and values between 0.000001 and 10 for the gamma parameter. The predictions of all five iterations were
compared using the AUC score (https://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics).
Finally, we built up the classifier from the entire training set using the best hyperparameters (with the high-
est AUC) identified through cross-validation and applied the best model to the test set. The highest AUC val-
ues were obtained using kernel = linear, gamma = 0.000001, and C = 0.01 (code available on GitHub at
https://github.com/vealvarez/SVM_GC1).

The SCM (41) is a learning algorithm that produces models that are conjunctions (logical-AND) or dis-
junctions (logical-OR) of boolean-valued rules r: Rd ! {0,1}. Let us use h(x) to denote the output of model
h on genome x. When h consists of a conjunction (i.e., a logical-AND) of a set R� of rules r� , we have

h xð Þ ¼
^

r�2R�
r� ðxÞ

whereas, for a disjunction (i.e., a logical-OR) of rules, we have:

h xð Þ ¼
_

r�2R�
r� ðxÞ

given a set R of candidate rules, the SCM algorithm attempts to find a model that minimizes the empiri-
cal error rate

RS ¼def 1
m

Xm

i¼1

I hðxiÞ 6¼ yi
� �

The function I is defined as I condition½ � ¼ 1, if the condition is true; I[condition] = 0, if the condition is
false, when using the smallest number of rules in R (29).

We used the program Kover, which implements the SCM algorithm (29, 104). Kover combines the
SCM algorithm with the k-mer representation of genomes, which reveals uncharacteristically sparse
models that explicitly highlight the relationship between genomic variations and the phenotype of in-
terest (29). We ran the program using data set 1 (see “Input data set preparation for ML models” below)
for k-mer sizes from 31 to 127 nucleotides (taking only the odd numbers between them). The smallest
value of k was set to 31 since extensive testing has shown that this size is optimal for bacterial genome
assembly and has been employed for studies based on reference-free bacterial genome comparisons
(87, 107). The greatest k-mer size was set to 127 since it is the maximum value accepted as a parameter
in Kover. We chose only odd values of k to avoid the formation of palindromes (108). For each k-mer
size, we split data set 1 into a training data set (two-thirds of the genomes) and a testing data set (one-
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third of the genomes). Then, we trained the 49 models corresponding to each k-mer by using a conjunc-
tion/disjunction model type. The best conjunctive and/or disjunctive model for each k-mer was selected
using 5-fold cross-validation to determine the optimal rule scoring function with default parameters.

Input data set preparation for ML models. We split the 500 genomes included in data set 1 into
unitigs by using the program DBGWAS (62). Unitigs are stretches of DNA shared by the strains in a data
set. The DBGWAS method proposes connecting the overlaps of k-mers in a compressed de Bruijn graph
(DBG) so that k-mers are extended using the adjacent sequence information in the population, forming
unitigs present in the same set of samples as their constituent k-mers. During the first step of the
DBGWAS process, the program built a variant matrix, where each variant is a pattern of the presence/ab-
sence of unitigs in each genome present in data set 1 (62). We wrote a Python script (code available on
GitHub at https://github.com/vealvarez/SVM_GC1) to format the variant matrix and create a presence/
absence (coded with the values 1 and 0, respectively) binary matrix with unitigs as columns (features)
and the accession numbers of the genomes as rows (instances). We used the binary matrix as input for
the SVM algorithm. In this matrix, we discarded the data about low-frequency unitigs (unitigs found in
fewer than 50 A. baumannii GC1 and non-GC1 genomes). We also integrated the MLST data correspond-
ing to data set 1 genomes and created a two-column matrix used as input for the SVM algorithm. The
first column of the matrix contained the accession number of the genomes, and the second column con-
tained a binary variable that indicated whether each genome was typed or not typed as A. baumannii
GC1 (21 = A. baumannii non-GC1 genome and 1 = A. baumannii GC1 genome) according to MLST
typing.

For the SCM approach, we first packaged data set 1 sequences stored in FASTA files into a Kover
data set using the create from contigs command. This command also received a tab-separated value
(TSV) with the data set 1 genome classification according to MLST typing (A. baumannii GC1 or non-
GC1). The first column of the TSV file described the genome accession number, and the second column
had the value 1 to indicate that the genome belonged to A. baumannii GC1 or the value 0 to indicate
otherwise. We ran Kover for k-mer sizes from 31 to 127 nucleotides. For each k-mer size, Kover con-
structed a reference-free input matrix based on k-mer profiles generated with the DSK k-mer counting
software. A k-mer presence/absence binary matrix based on data set 1 genomes was then created and
used as input for the SCM models of each k-mer size.

Unitig selection using SVM for putative biomarker analysis. After obtaining the SVM model with
the best hyperparameters, the values of the features weight vector (referred to as the hyperplane nor-
mal vector w� in the first equation in “Machine learning analyses” above) were accessed through the at-
tribute sklearn.model_selection.GridSearchCV.best_estimator.coef_. The values were sorted from highest
to lowest and used to decide the relevance of each unitig sequence (associated with each weight value)
during the model prediction (109, 110). It is worth mentioning that in our study, sequence unitigs were
used as features in the models. The positive sign of a feature weight value indicates that the feature con-
tributes to A. baumannii GC1 class prediction (represented by the value 1) and the negative sign indicates
that the feature contributes to A. baumannii non-GC1 class prediction (represented by the value21) (111).
Considering the above-mentioned, 100 unitig sequences with the highest weight values were selected to
be analyzed as putative biomarkers of A. baumannii GC1 genomes.

Machine learning performance metrics. The performances of the SVM and SCM models were eval-
uated in terms of sensitivity, specificity, accuracy, precision, and F1 score. They were defined as follows: sen-
sitivity = TP/(TP 1 FN), specificity = TN/(TN 1 FP), accuracy = (TP 1 TN)/(TP 1 FP 1 TN 1 FN), precision =
TP/(TP1 FP), and F1 score = 2� ((precision� sensitivity)/(precision1 sensitivity)), where TP (true positives)
was the number of A. baumannii GC1 strains predicted to be A. baumannii GC1, TN (true negatives) was the
number of A. baumannii non-GC1 strains predicted to be A. baumannii non-GC1, FP (false positives) was the
number of A. baumannii non-GC1 strains predicted to be A. baumannii GC1, and FN (false negatives) was
the number of A. baumannii GC1 strains predicted to be A. baumannii non-GC1.

BLASTN searches. BLASTN searches (112) were done using data set 1 and data set 2 as subjects,
and the unitigs/k-mers that contributed most to A. baumannii GC1 genome prediction according to the
SVM/SCM models were used as queries. We identified whether unitigs/k-mers matched known genes or
intergenic regions and provide their putative function when possible. AYE (AN CU459141.1) and ACICU
(AN CP000863.1) genomes were used as references to annotate the genome location and gene product
related to A. baumannii GC1 and non-GC1 genomes, respectively. In cases where the unitig was not
found in the AYE genome, the AB0057 (CP001182.2) genome was used instead. Also, we counted the
number of A. baumannii GC1 and non-GC1 genomes matched by each unitig. We considered a cutoff E
value of E210, 100% of identity, and 100% of query cover. To analyze the target of the primers designed
below, BLASTN searches (112) were done by using the primer sequence as the query and the nucleotide
collection (nr/nt) database of GenBank or data set 1 and data set 2 as the subject. Finally, BLASTN searches
(112) were also done by using the fragment of the U1 genomic biomarker of A. baumannii GC1 amplified
with those primers (excluding the sequence of the primers) as the query and data set 1 and data set 2 as
the subject.

Primer design. The primers to amplify the U1 genomic biomarker of A. baumannii GC1 were designed
by using Oligo Primer Analysis software version 6.22 (113, 114).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.5 MB.
FIG S2, TIF file, 1 MB.
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