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Abstract. We propose an expectation-maximization (EM) method to estimate customer
preferences for a category of products using only sales transaction and product avail-
ability data. The demand model combines a general, rank-based discrete choice model of
preferences with a Bernoulli process of customer arrivals over time. The discrete choice
model is defined by a probability mass function (pmf) on a given set of preference rank-
ings of alternatives, including the no-purchase alternative. Each customer is represented
by a preference list, and when faced with a given choice set is assumed to either purchase
the available option that ranks highest in her preference list, or not purchase at all if no
available product ranks higher than the no-purchase alternative.

We apply the EM method to jointly estimate the arrival rate of customers and the pmf
of the rank-based choice model, and show that it leads to a remarkably simple and highly
efficient estimation procedure. All limit points of the procedure are provably stationary
points of the associated incomplete data log-likelihood function, and the output produced
are maximum likelihood estimates (MLEs). Our numerical experiments confirm the prac-
tical potential of the proposal.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2016.1559.

Keywords: demand estimation • demand untruncation • choice behavior • EM method

1. Introduction
Demand estimation is a fundamental task in retail
operations and revenue management, providing the
necessary input data for inventory control and price
optimization models. The task is particularly difficult
when product availability varies over time and cus-
tomers may substitute.
In this paper, we propose a remarkably simple esti-

mation algorithm for a nonparametric model of choice-
based demand that has been introduced in the oper-
ations management related literature by Mahajan and
vanRyzin (2001b, a). Therein, consumers are character-
ized by a rank ordering of all alternatives of a given
product category (along with the no-purchase option).
When faced with a choice, a consumer is assumed
to either purchase the available product that ranks
highest in her preference list, or not purchase at all
if the no-purchase alternative ranks higher than any
available product. In this way, the market can be seg-
mented into a finite number of customer types defined
by their corresponding rank orders. The preferences
of a random customer drawn from a given popula-
tion are then described by a discrete probability mass
function (pmf) on the set of customer types. Sev-
eral common demand processes studied in the mar-
keting, economics, and operations literature can be
modeled as special cases of this rank-based choice

model (e.g., independent demand, multinomial logit
(MNL), nested logit, Markovian second choice, uni-
versal backup, and Lancaster demand). To complete
the demand model, we assume customers arrive over
time according to a Bernoulli process with constant
rate, which must be estimated along with the customer
type pmf.

Rank-based choice models of demand have received
increasing attention in the retail operations and (airline)
revenue management literature, focusing largely on
optimization rather than estimation problems. Exam-
ples of the former (in addition to the two afore-
mentioned papers) are Smith et al. (2009); Honhon
et al. (2010, 2015); Jagabathula and Rusmevichien-
tong (2014); Jagabathula (2014), and Bertsimas and
Mis̆ić (2015). In the context of airline revenue man-
agement, Zhang and Cooper (2006), van Ryzin and
Vulcano (2008), Chen and de Mello (2010), Chane-
ton and Vulcano (2011), and Kunnumkal (2014) also
use this rank-based choice model. With the increasing
trend towards nonparametric, data-driven approaches,
we believe rank-based models of choice will continue
their expansion in the academic literature and industry
practice.1

However, with few exceptions, relatively little work
has been done on estimation methods for rank-based
choice models. The main challenge on the estimation
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side is derived from a major drawback of this choice
model: The potential number of customer types is fac-
torial in the number of alternatives. Farias et al. (2013)
propose a constraint sampling procedure to implement
a robust estimation approach, finding the distribution
over customer types that produces the worst-case rev-
enue for a given fixed assortment, compatible with the
observed data. Then they show that the demandmodel
constructed by the robust approach is approximately
the sparsest-choice model, where sparsity is measured by
the number of customer types that occur with positive
probability in the population. By contrast, we findmax-
imum likelihood estimates (MLEs) of such proportions
in the confines of a pre-specified set of customer types.
The only required inputs (in addition to the set of cus-
tomer types) are observed historical sales and product
availability data. While the maximum likelihood (ML)
estimation problem can be solved via standard non-
linear optimization techniques, doing so is computa-
tionally intensive, especially when a large number of
customer types is considered. The objective of this tech-
nical note is to develop a problem-specific and greatly
simplified alternative to general nonlinear optimiza-
tion techniques.
Our paper van Ryzin and Vulcano (2015) addresses

the dimensionality challenge using an iterative, col-
umn-generation-based procedure to enrich an initial,
parsimonious set of customer types (e.g., preference
lists with one element followed by the no-purchase
option, describing the independent demand model).
Yet even in each iteration of that procedure, for a lim-
ited set of customer types, onemust still solve the prob-
lem of efficiently estimating the pmf and arrival rate
via ML estimation.

Using a different alternative to the uninformed mar-
ket structure assumed by Farias et al. (2013) and our
previous paper van Ryzin and Vulcano (2015), one can
attempt to limit the set of customer types based on
a preliminary market description. For instance, Yunes
et al. (2007, Section 4) describe how they use conjoint
survey results at John Deere & Co. to identify con-
sumer types and their ranking lists based on the part-
worth utilities calculated from the survey for two of its
product lines. In the context of assortment planning,
Honhon et al. (2012) show that when all the products
can be mapped onto a hierarchical ordering system
such as a branched (outtree), vertical (one-way substi-
tution), and horizontal (locational) order, the assort-
ment optimization methods run in polynomial time
and consist of simple algorithms based on dynamic
programming or the solution to a shortest path prob-
lem on a properly defined directed graph. Nonetheless,
the number of types for the three hierarchical ordering
systems is O(n2), where n is the number of products in
the category, which leads to a number of types in the

order of hundreds, confirming the need for an efficient
estimation procedure.2

We explore two alternative formulations of the rank-
based estimation problem. In the first, we assume
that the modeler can distinguish a period with no
arrival from a period where an arrival ended in a no-
purchase, e.g., as in online retailing where customer
visits, purchases, and no-purchases are tracked. The
unobservable data are only the type of an arrival in a
given period. The second variant is aimed at brick-and-
mortar retailers, where customer visits are not tracked
and therefore arriving customerswho did not purchase
are not recorded. (The same problem arises in online
retailers that record transactions rather than visits.) In
this case, our procedure corrects for both sources of
incompleteness in the data: (a) the arrival (or not) of a
customer, and (b) if an arrival occurs, the type of the
customer.

One widely used method to correct for realized
transactions affected by stockouts and substitution
effects is the expectation-maximization (EM) algorithm
(e.g., Anupindi et al. 1998, Kök and Fisher 2007, Con-
lon and Mortimer 2013, Stefanescu 2009). The EM
method was proposed by Dempster et al. (1977). It
is a generic procedure that works using alternating
steps: (1) computing the conditional expected value
of the complete-data log-likelihood based on the cur-
rent parameter estimates and the observable data (the
E-step), and (2) maximizing this function to obtain
improved parameter estimates (the M-step). Its prac-
tical effectiveness depends on the computational effi-
ciency of both steps. Our contribution is to specialize
the EMmethod to our two formulations and show that
it is trivial to implement in any simple procedural lan-
guage or numerical computing environment (e.g., Mat-
lab) via iterations involving closed-form expressions.
Moreover, even though it is well acknowledged that
the convergence of the EM algorithm could be slow,
particularly with large numbers of parameters or high
degrees of censoring, by running an exhaustive set of
numerical experiments, we show that in our case it is
between twice and six times faster than direct MLE
methods, and that the quality of the estimates is essen-
tially equivalent.

Haensel and Koole (2011) also present an EM-based
procedure to estimate a nonparametric choice model
that is quite similar to ours, consisting also of a
set of customer types that are defined by preference
orderings. However, they do not explicitly take into
account the incompleteness of the data with respect to
arrival and no-arrival periods and instead use a heuris-
tic extrapolation to account for the lack of observa-
tions in a given time interval. Also different from our
work, their model allows for multiple sales per period,
which leads to a discrete Poisson model of demand
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that requires an approximate rounding procedure in
the E-step.
In terms of theoretical convergence, our EM proce-

dure benefits from one of the strongest results derived
for EM variants: All limit points of the algorithm are
provably stationary points of the associated incomplete
data log-likelihood function. Since the demand model
under consideration is non identifiable in general (e.g.,
see vanRyzin andVulcano2015, Section 3.3 for adiscus-
sion), alternative solutions could lead to the same log-
likelihood value. However, in cases where the underly-
ing demandmodelwere identifiable in the confines of a
given set of customer types, given that our estimates are
MLEs, they inherit the desirable statistical properties
of maximum likelihood estimators, i.e., they are consis-
tent, asymptotically unbiased, and asymptotically effi-
cient (i.e., their variance tends, asymptotically, to the
Cramer-Rao lower bound).

The remainder of this note is organized as fol-
lows. In Section 2 we introduce the demand model
and the maximum likelihood estimation problem. Sec-
tion 3 presents our EM algorithm for the observed
arrivals case, and Section 4 extends the approach
to the censored demand case. Section 5 shows our
numerical experiments, and we present our conclu-
sions in Section 6.

2. Model
A sequence of offer sets (S1 , . . . , St , . . .ST) is available
over T purchase periods. Each offer set is a subset
of the products in N � {0, 1, . . . , n}, where 0 stands
for the outside or no-purchase option so that 0 ∈ St ,
for all t. We assume customers arrive according to a
discrete-time, homogeneous Bernoulli arrival process,
with rate λ < 1. There is at most one arrival per period,
and the parameter λ must be estimated from data. If
λ� 1, this arrival process can be considered a discrete-
time approximation to a Poisson arrival process. In
cases where the arrival rate may not be homogeneous
throughout the selling horizon, one can partition time
periods into multiple windows in such a way that in
each time window the arrival rate is constant. For ease
of exposition, however, we will consider only the case
where the arrival rate is constant over time periods.
Customers are assumed to have a rank-based pref-

erence for products. That is, each customer has a pref-
erence list (or total ranking), σ, of the products in N.
Each preference list σ defines a customer type. A cus-
tomer of type σ prefers product h to product j if and
only if σ(h)< σ( j). Themarket, in turn, is assumed to be
composed of a fixed, pre-defined set of customer types
σ � {σ(1) , . . . , σ(N)}. This set could be defined based on
judgment and knowledge of the market or on surveys.3
Nevertheless, since the set of types used in the esti-
mation model may differ from the true set of types
present in the market, the set σ is a potential source

of specification error in our model. In van Ryzin and
Vulcano (2015) we develop a procedure to discover
new customer types that improve the likelihood func-
tion, which makes it possible to sequentially augment
an initial candidate set of types σ. Yet, in each iteration
of that procedure, we still have the problem of comput-
ingMLEs for the candidate set, which can be addressed
via our EM.

Note that the meaningful rankings are only those
truncated at the position of product 0. That is, a pref-
erence list σ will have as many elements as σ(0), where
we will assume that σ(0) > 2, since a customer type
whose first preference is not to purchase anything is
irrelevant. Arriving customers are assumed to be of
type σ(i) with probability xi � �(σ(i)), i � 1, . . . ,N . This
pmf for customer types is denoted x��(σ), and it must
be estimated from data. Customer types are assumed
to be independent across periods.

Upon arrival, each customer chooses from a set of
products St , with |St | > 2, so that at least one prod-
uct other than the no-purchase option is available in
each period.4 We assume St is observable. An arriving
customer chooses her most preferred product among
those available in St . In symbols, if there is an arrival
of type σ in period t, that customer chooses jt �

arg min j∈St
σ( j).

Below we consider two variants of this problem. For
both variants, the data needed is minimal, i.e., product
availability information (not even inventory levels, just
binary indicators for availability), and sales transaction
data for each period. The difference between the vari-
ants rests on the observability of the no-arrivals and of
the no-purchase outcome of the arrivals. In the uncen-
sored demand setting (Section 3), we assume that the
arrivals and no-arrivals are observed, and that the no-
purchase outcome of an arrival is also observed. This
corresponds, for example, to the case of online retail-
ers who record shopping data (i.e., customer visits to
the website that may end up in a transaction or a no-
purchase). Next, in Section 4, we consider the effect
of censoring that occurs when no-purchase outcomes
are unobservable, which is typical in brick-and-mortar
retail settings. The extra difficulty here is that the mod-
eler cannot distinguish a period with no arrival from a
period with an arrival that did not end in a transaction.

For each variant, our objective is to compute MLEs
for the parameters θ� (x, λ), where x��(σ) for a given
set of rankings σ. Since customers do not explicitly
reveal their types upon arrival, all we can determine
is that for each period with an observed purchase, the
customer’s choice is consistent with some subset of
the possible types (i.e., those types who rank the pur-
chased product higher than all other available prod-
ucts). In addition, in the censored demand case, for
each period with no observed purchase, wherein we
canonlyclaimthat therewasnoarrivalor if therewasan

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
0.

19
5.

71
.1

89
] 

on
 2

2 
A

pr
il 

20
17

, a
t 0

7:
11

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



van Ryzin and Vulcano: Technical Note—An EM Method to Estimate a Rank-Based Choice Model of Demand
Operations Research, 2017, vol. 65, no. 2, pp. 396–407, ©2017 INFORMS 399

arrival, the customerpreferred theno-purchase alterna-
tive toanyof theproductsoffered.Hence, salesdatapro-
vide only incomplete observations of the choice model
wewish to estimate.
The incompleteness in the data with respect to the

nonobservability of customer types is captured by the
following definition: For jt ∈ St consider the compatible-
type set:

Mt( jt , St)�
{

i: σ(i)( jt) < σ(i)(k),∀ k ∈ St , k , jt

}
.

In words, Mt( jt , St) is the set of customer type indexes
for which the selected product jt is ranked highest
among the available products in St . The definition
also covers the case jt � 0, and the corresponding set
Mt(0, St). That is, Mt( jt , St) represents the customer
types that are consistent with the observed transac-
tion jt and the offer set St . We further assume that
the full set of customer types σ is consistent with
the observed transactions and availability data, in the
sense that all transactions and no-transactions ob-
served could be explained by σ. To guarantee this, it
is enough to include customer types of the form ( j, 0),
spanning all products j ∈ N.

Given a probability distribution x over the set of
types, the probability that a random arrival chooses
product jt given offer set St is given by

�( jt | St)�
∑

i∈Mt ( jt , St )
xi , if jt ∈ St , and

�( jt | St)� 0, if jt < St .
(1)

3. Estimation: Uncensored Demand Case
We start by assuming that the modeler can observe all
arrivals and their purchase incidence: Either the arriv-
ing customer purchased an available product or chose
not to purchase. The only source of incompleteness is
the type of the arrival.

3.1. Problem Formulation
Let P be the set of periods with purchases. Let P̄λ

be the set of periods with arrivals that trigger no
purchases, and let P̄λ̄ be the set of periods with no
arrivals, with T � |P| + |P̄λ | + |P̄λ̄ |. Given a fixed set
of types σ � {σ(1) , . . . , σ(N)}, the incomplete data log-
likelihood function is formulated as:

LI(x, λ) �
∑
t∈P
(logλ+ log�( jt | St))

+
∑
t∈P̄λ

(logλ+ log�(0 | St))+
∑
t∈P̄λ̄

log(1− λ)

�
∑
t∈P

(
logλ+ log

( ∑
i∈Mt ( jt , St )

xi

))
+

∑
t∈P̄λ

(
logλ+ log

( ∑
i∈Mt (0, St )

xi

))
+

∑
t∈P̄λ̄

log(1− λ).

The first term accounts for the likelihood of the ob-
served transactions in the periods with purchases; the
second term accounts for the no-purchase periods,
where an arriving customer preferred not to buy; and
the third term accounts for the periodswith no arrivals.
A more compact representation of the log-likelihood
function follows:

LI(x, λ) �
∑
t∈P

log
( ∑

i∈Mt ( jt , St )
xi

)
+

∑
t∈P̄λ

log
( ∑

i∈Mt (0, St )
xi

)
+ (|P| + |P̄λ |) logλ+ |P̄λ̄ | log(1− λ). (2)

The function is separable in x and λ, and globally con-
cave in (x, λ). Themaximizer λ∗ has a closed form given
by λ∗ � (|P| + |P̄λ |)/T. To simplify notation, we define
T̂ � |P| + |P̄λ |, the number of periods where arrivals
occurred.

Next we assume that the arrival rate λ∗ has already
been established. The ML estimation problem can be
formulated as follows:

max
x>0

LI(x) s.t.
N∑

i�1
xi � 1. (3)

Formulation (3) is a concave, constrained optimization
problem, defined over the open set x > 0, with at least
one global optimum x∗1 , . . . , x

∗
N . One way to solve it

is by using standard nonlinear optimization methods.
However, the challenge is the potentially high dimen-
sionality of the model. To simplify its solution, we use
the EM method of Dempster et al. (1977) as described
below.

3.2. Theoretical Properties of MLEs
Before proceeding with the estimation algorithm, we
derive a few properties of the MLEs of the model
parameters. We introduce new variables y defined as
yt �

∑
i∈Mt ( jt , St ) xi , representing the aggregate likelihood

of the customer types that would pick alternative jt
in period t, i.e., yt � �( jt | St) according to (1). Define
the matrix A ∈ {0, 1}T̂×N , with elements ati � 1 if i ∈
Mt( jt , St) (here, jt could also be zero), and ati � 0 oth-
erwise. The matrix A has one row per period, and one
column per customer type, with ati � 1 when customer
type σ(i) is compatible with the transaction observed in
period t. Problem (3) can be reformulated in terms of
the aggregate likelihoods yt , for LI(y) �

∑
t∈P log(yt)+∑

t∈P̄λ log(yt):

max
x,y>0

LI(y)

s.t.
N∑

i�1
xi − 1 � 0,

Ax−y� 0. (4)

As discussed in van Ryzin and Vulcano (2015, Sec-
tion 3.3), this choice model is nonidentifiable in gen-
eral5 (e.g., whenwe consider the full set of O(n!) types).
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This downside is somewhat mitigated by the next
result, which follows from an adaptation of van Ryzin
and Vulcano (2015, Proposition 2).

Proposition 1. If for each offer set S that appears in the
selling horizon, and for each product j ∈ S, there is at least
one observed transaction ( j, S) in the data set, then there is a
unique vector y∗ that solves problem (4).

Assuming that for the ground-truth choice model,
�( jt | St) > 0 for all jt ∈ St , the condition about the exis-
tence of an observation ( jt , St) for all jt ∈ St is mild
under a large enough sample. In essence, although
there may not be a unique pmf x∗, Proposition 1
states that the likelihood-maximizing probabilities y∗
of observing the sequence {( jt , St): t � 1, . . . ,T} are
unique, implying that the choice model is (at least)
partially identifiable. The proof follows from splitting the
likelihood function in a collection of disjoint, strictly
concave programs with a single linear constraint.
Corollary 1, based on the uniqueness of the solution

of the system Ax� y∗, follows easily.

Corollary 1. If rank(A) � N , then there is a unique solu-
tion x∗ that solves (3) given a unique solution y∗.

Hence, if in addition matrix A is full rank, then
the model would also be identifiable with respect to
the true proportions x. The next result formalizes this
observation.

Corollary 2. Suppose the sequence of data grows such
that for each set S observed in the sequence of offer sets,
limT→∞(

∑T
t�1 1{St � S}/T) � qS > 0 (a.s.); that is, each set

observed appears infinitely often, in a positive fraction of the
intervals (a.s.). Then as the sample size T→∞, λ∗(T) sat-
isfies λ∗(T) → λ w.p.1. In addition, for each observed offer
set S, y∗t (T) → �( jt | St) w.p.1, and any optimal solu-
tion x∗(T) to problem (3) satisfies Atx∗(T)→�( jt | St)w.p.1,
where At is the tth row of A. Furthermore, if rank(A) � N ,
then x∗(T)→ x w.p.1.

The identifiability of the choice model with respect
to the arrival rate λ and purchase probabilities �( jt | St)
(and potentially, alsowith respect to the proportions x),
make λ∗ and y∗ (and, if applicable, x∗) inherit the
desirable statistical properties of ML estimators: They
are consistent, asymptotically unbiased, and asymptot-
ically efficient (i.e., they attain the Cramer-Rao lower
bound for the variance, asymptotically).

3.3. EM Method
The building block for our simplified approach to
solve the estimation problem (3) is to consider the
complete data log-likelihood function; that is, the likeli-
hood function we would get if we could directly
observe the precise type of each customer. This results
in a trivial MLE problem. The EM algorithm exploits
this simplification by making use of the complete data

log-likelihood, but replacing the complete data with
beliefs (expectations) about their values conditional on
the observed data and current parameter estimates.

3.3.1. The Complete Data Log-Likelihood Function.
Define σt as the arrival type in period t. The complete
data log-likelihood function associated with prob-
lem (3) is given by:

LC(x) �
∑
t∈P

∑
i∈Mt ( jt , St )

I{σt � σ
(i)} log xi

+
∑
t∈P̄λ

∑
i∈Mt (0, St )

I{σt � σ
(i)} log xi .

�

N∑
i�1

(∑
t∈P

I{σt � σ
(i) , i ∈Mt( jt , St)}

+
∑
t∈P̄λ

I{σt � σ
(i) , i ∈Mt(0, St)}

)
log xi

�

N∑
i�1

mi log xi , (5)

where I{·} is the indicator function,

mi �
∑
t∈P

I{σt � σ
(i) , i ∈Mt( jt , St)}

+
∑
t∈P̄λ

I{σt � σ
(i) , i ∈Mt(0, St)}. (6)

That is, mi counts the number of occurrences of a
type σ(i) arrival, in periods with and without pur-
chases. For mi > 0, i � 1, . . . ,N , the problem of maxi-
mizing LC(x) can be posed as follows:

max
x>0

N∑
i�1

mi log xi , s.t.
N∑

i�1
xi � 1. (7)

This is a concave program for which the Karush-Kuhn-
Tucker (KKT) conditions give unique maximizers x∗i �
mi/

∑N
h�1 mh , i.e., x∗i is simply the number of type σ(i)

customers observed divided by the total number of
customers observed.

3.3.2. The Two Main Steps of the EM Algorithm. The
EM method works by starting with arbitrary initial
estimates x̂ of the parameters. These estimates are
then used to compute the conditional expected value
of LC : E[LC(x) | x̂] (the “E,” expectation, step). Effec-
tively, this replaces the missing data (i.e., the num-
ber of occurrences of each preference list) by their
expected values conditioned on the current estimates.
The resulting expected log-likelihood function is then
maximized to generate new estimates x̂ (the “M,” max-
imization, step), and the procedure is repeated so that
a sequence {x̂(k) , k � 1, 2, . . .} is generated. We next
describe the two steps of each iteration. Section A1.1 in
the online appendix provides the pseudocode.
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The E-step. In the E-step, the unknown data values
are the values of the indicators in (6). However, given
current estimates x̂, we can determine their expected
values. First, we use Bayes’ theorem to update the prob-
ability mass function over the set of rankings:

�(σ(i) | jt , St , x̂) �
�( jt | σ(i) , St , x̂)�(σ(i) | x̂)

�( jt | St , x̂)
(8)

�
I{i ∈Mt( jt , St)}x̂i∑

h∈Mt ( jt , St ) x̂h
,

where �( jt | σ(i) , St , x̂) in the numerator of (8) stands for
the conditional probability of choosing product jt ∈ N.
In particular, the case jt � 0 implements the update for
the no-purchase probability.
From (6) and (8), we obtain the estimates

m̂i � E[mi | x̂]
�

∑
t∈P

�(σ(i) | jt ,St , x̂)+
∑
t∈P̄λ

�(σ(i) | 0,St , x̂). (9)

In words, m̂i represents the conditional expected num-
ber of occurrences of the preference list σ(i). Substitut-
ing m̂i into (5), we obtain the expected, complete data
log-likelihood function

E[LC(x) | x̂]�
N∑

i�1
m̂i log xi . (10)

This is the function to be maximized in the current
iteration.
The M-step. To determine a maximizer x̂∗ of (10), we
use the results from formulation (7). The function
E[LC(x) | x̂] is globally concave with a unique, closed-
form maximizer given by:

x̂∗i �
m̂i∑N

h�1 m̂h

, i � 1, . . . ,N. (11)

The simplicity of this maximization step is the most
appealing feature of the EM algorithm.
3.3.3. Convergence. The concavity of the complete
data log-likelihood function guarantees that our pro-
cedure is an EM algorithm, a special instance of the
so-called Generalized EM algorithm (GEM). In the case
of GEM, the M-step requires only that we generate
an improved set of estimates over the current ones
(i.e., it requires to find improved estimates x such that
E[LC(x) | x̂] > E[LC(x̂) | x̂]), and the conditions for con-
vergence are more stringent (e.g., see McLachlan and
Krishnan 1996, Chapter 3 for further discussion.)
The following result argues that since our EM

method satisfies a mild regularity condition, the se-
quence of likelihoods converges to a stationary value
of the incomplete-data log-likelihood function (2).
Proposition 2. All limit points of any instance {x̂(k), k � 1,
2, . . .} of the EM algorithm are stationary points of the corre-
sponding incomplete-data log-likelihood functionLI(x), and

{LI(x̂(k)), k � 1, 2, . . .} converges monotonically to a value
L∗I �LI(x∗), for some stationary point x∗.

Proof. The conditional expected value E[LC(x) | x̂]
in (10) is continuous in x > 0 and x̂ > 0. The result
follows from the fact that m̂i in (9) is continuous
in x̂ according to Equation (8). Clearly, E[LC(x) | x̂]
is also continuous in x. Therefore, from Wu (1983,
Theorem 2) (see also McLachlan and Krishnan 1996,
Theorem 3.2) the EM algorithm, given the unique
maximizer found in the M-step, generates an implied
sequence {LI(x̂(k)), k � 1, 2, . . .} whose limit point is a
stationary point. �

As pointed out by Wu (1983, Section 2.2), the con-
vergence of {LI(x̂(k))} to LI(x∗), for some stationary
point x∗, does not automatically imply the convergence
of {x̂(k)} to a point x∗. Convergence of the EM estima-
tor in the later sense usually requires more stringent
regularity conditions. Boyles (1983) further investigates
these requirements. In his Theorem 2, he identifies suf-
ficient conditions under which the sequence of iterates
x̂(k) converges to a compact, connected component of
stationary points of the incomplete data log-likelihood
function with value L∗I . Most of the conditions are
rather mild and are satisfied by our algorithm. The
stringent condition is the one that requires

‖x̂(k+1) − x̂(k)‖ → 0, as k→∞. (12)

As Boyles (1983) comments, it is difficult to verify (12)
in general. Yet under this condition, the sequence {x̂(k)}
will seek an isolated plateau of stationary points, and
for k sufficiently large will not leap over valleys to
neighboring plateaux. See also Wu (1983, Theorem 5).

Nevertheless, as a practical matter, the convergence
of the sequence of points {x̂(k)} can be checked numer-
ically as part of the EM procedure. In our experiments
reported in Section 5, we consistently observed that the
sequence of points visited by EM converges to a limit
point.

4. Estimation: Censored Demand Case
4.1. Problem Formulation
When, in addition to the nonobservability of the cus-
tomer types, we cannot distinguish a period with no
arrival from a period with an arrival who did not pur-
chase, the incomplete data log-likelihood function is
given by:

LI(x, λ) �
∑
t∈P

(
logλ+ log

( ∑
i∈Mt ( jt , St )

xi

))
+

∑
t∈P̄,

Mt (0, St ),�

log
(
λ

∑
i∈Mt (0, St )

xi + (1− λ)
)

+
∑
t∈P̄,

Mt (0, St )��

log(1− λ), (13)
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where P̄ � P̄λ ∪ P̄λ̄. The first term accounts for the
likelihood of the observed transactions in the peri-
ods with purchases. The second term accounts for the
no-purchase periods, where an arriving customer pre-
ferred not to buy (i.e., customer types in Mt(0, St)) or
no customer arrived at all. The third term accounts for
the periods where none of the customer types would
have picked a product from the available assortment,
and hence |Mt(0, St)| � 0. This last case indicates with
certainty that no arrival occurred.
Consider the problem:

max
x>0, λ>0

LI(x, λ) s.t.
N∑

i�1
xi � 1, λ < 1. (14)

The functionLI(x, λ) is known not to be quasi-concave
in general (see van Ryzin and Vulcano 2015, Propo-
sition A1). The model is not even partially identifi-
able with respect to the aggregate probabilities yt �∑

i∈Mt ( jt , St ) xi , and multiple local optima may exist. One
can attempt to solve it using a standard nonlinear opti-
mization package, but the incompleteness in the data
creates a challenging estimation problem that again
can be greatly simplified using a problem-specific EM
method.

4.2. EM Method
As in Section 3, we first introduce the complete data log-
likelihood function and then describe the EM algorithm.

4.2.1. The Complete Data Log-Likelihood Function.
Initially, assume that we can overcome the first source
of incompleteness by distinguishing the periods with
arrivals from the periods with no-arrivals. For the peri-
ods with no observed transactions, let at � 1 if there
is an arrival in the period, and at � 0 otherwise. Note
that at � 1 accounts for an arrival that buys an outside
option or does not buy at all.

Next, suppose we can also distinguish the type of
the arrival (in case there is such an arrival), and denote
σt ∈ {σ(1) , . . . , σ(N)} the arrival type in period t. The
complete data log-likelihood function is

LC(x, λ) �
∑
t∈P

(
logλ+

∑
i∈Mt ( jt , St )

I{σt � σ
(i)} log xi

)
+

∑
t∈P̄

at

(
logλ+

∑
i∈Mt (0, St )

I{σt � σ
(i)} log xi

)
+

∑
t∈P̄
(1− at) log(1− λ). (15)

The first term in (15) accounts for the observed pur-
chases; there is one term for every period in which
there is a sale. The second term accounts for customer
arrivals that do not purchase at all. The third term
accounts for periods with no arrivals. Note that the
functionLC is separable in x and λ, and jointly concave.

Define the function F(λ) as

F(λ) � |P| logλ+ logλ
∑
t∈P̄

at + |P̄| log(1− λ)

−
∑
t∈P̄

at log(1− λ).

This function is globally concave in λ. Taking deriva-
tive and setting it equal to zero, we obtain the unique
maximizer

λ∗ �
|P| +∑

t∈P̄ at

|P| + |P̄|
�
|P| +∑

t∈P̄ at

T
,

which is simply the number of arrivals divided by the
total number of periods. Clearly, λ∗ satisfies 0 < λ∗ < 1.
Now, define

H(x) �
∑
t∈P

∑
i∈Mt ( jt , St )

I{σt � σ
(i)} log xi

+
∑
t∈P̄

at

∑
i∈Mt (0, St )

I{σt � σ
(i)} log xi

�

N∑
i�1

(∑
t∈P

I{σt � σ
(i) , i ∈Mt( jt , St)}

+
∑
t∈P̄

atI{σt � σ
(i) , i ∈Mt(0, St)}

)
log xi

�

N∑
i�1

mi log xi , (16)

where

mi �
∑
t∈P

I{σt � σ
(i) , i ∈Mt( jt , St)}

+
∑
t∈P̄

atI{σt � σ
(i) , i ∈Mt(0, St)}. (17)

That is, mi counts the number of occurrences of a
type σ(i) arrival, in periods with and without pur-
chases. For mi > 0, i � 1, . . . ,N , the problem of maxi-
mizing H(x) can be posed as follows:

max
x>0

N∑
i�1

mi log xi , s.t.
N∑

i�1
xi � 1.

The objective function is globally concave, with unique
maximizers x∗i � mi/

∑N
h�1 mh , which is simply the num-

ber of type σ(i) customers observed divided by the total
number of customers observed.
4.2.2. The Two Main Steps of the EM Algorithm. As
before, the EMmethod starts with arbitrary initial esti-
mates of the parameters θ̂� (x̂, λ̂). These estimates are
then used to compute the conditional expected value
of LC : E[LC(θ) | θ̂] (the E-step). The resulting expected
log-likelihood function is then maximized to generate
new estimates θ̂ (the M-step), and the procedure is
repeated until convergence. The two steps of each iter-
ation are described below; the pseudocode is given in
the appendix (Section A1.2).
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The E-step. In the E-step, the unknown data values are
the at for all t ∈ P̄. However, given current estimates
θ̂ � (x̂, λ̂), we can determine the expected values of
these arrival indicators. Again using Bayes’ theorem,
we get the update for ât . As it is implicit in (15), if t ∈P,
then ât � 1. For t ∈ P̄,

ât � E[at | t ∈ P̄, θ̂]� �(at � 1 | t ∈ P̄, θ̂)

�
�(t ∈ P̄ | at � 1, θ̂)�(at � 1 | θ̂)

�(t ∈ P̄ | θ̂)

�
�(0 | t , St , θ̂) λ̂

λ̂�(0 | t , St , θ̂)+ (1− λ̂)
,

(18)

where
�(0 | t , St , θ̂)�

∑
i∈Mt (0, St )

x̂i

represents the conditional probability of no-purchas-
ing. IfMt(0, St)��, then �(0 | t , St , θ̂)� 0, and therefore
ât � 0. This is the case when all products are offered
and no transaction occurs, which reveals that no arrival
occurs.
From (17), we get the estimates

m̂i �E[mi | θ̂]�
∑
t∈P

�(σ(i) | jt ,St , θ̂)+
∑
t∈P̄

ât �(σ(i) | 0,St , θ̂),

where �(σ(i) | jt , St , θ̂) is defined as in (8), potentially
with jt � 0. In words, m̂i represents the conditional
expected number of occurrences of the preference
list σ(i). Note that the following balance equation holds:∑N

i�1 m̂i �
∑T

t�1 ât .
Substituting ât and m̂i into (15), we obtain the

expected, complete data log-likelihood function

E[LC(x, λ) | θ̂] �
N∑

i�1
m̂i log xi +

(
|P| +

∑
t∈P̄

ât

)
logλ

+

(
|P̄| −

∑
t∈P̄

ât

)
log(1− λ). (19)

This is the function to be maximized in the current
iteration.

The M-step. To determine a maximizer θ̂∗ of (19), we
use the results from Equation (15). The function
E[LC(x, λ) | θ̂] is globally concave in (x, λ), separa-
ble in both variables, and has unique, closed-form
maximizers:

λ̂∗�
|P|+∑

t∈P̄ ât

T
, and x̂∗i �

m̂i∑N
k�1 m̂k

, i �1, . . . ,N.

Again, closed form expressions for the maximization
step are a very appealing feature of this EM algorithm.
Following the arguments for the uncensored de-

mand case, the convergence properties of Proposition 2
also hold for the censored demand case.

5. Numerical Examples
Next we present a set of numerical examples based on
synthetic and real-world data sets. All our experiments
were conducted using MATLAB,6 in which our EM
proposal is extremely simple to code. In all the exam-
ples, we set the stopping criteria for EM based on the
difference between the points produced by two consec-
utive iterations, halting the procedures as soon as the
norm of the difference vector was smaller than 1e-5.
In fact, in all the experiments below, we verified the
numerical convergence of the EM iterates to a limit
point, though such convergence in theory is not guar-
anteed a priori. We also set a maximum number of
iterations at 1e7.

5.1. Experiments Based on Synthetic Data
For experiments based on synthetic data, we assume
complete market information in the sense that the
modeler knows the description of the existing cus-
tomer types, but does not know their proportions.
The objective of these experiments is to assess the
performance of our EM method relative to direct max-
imization of the incomplete data log-likelihood func-
tion (labeled Direct Max below) for uncensored and
censored demand scenarios, with respect to computa-
tional speed and quality of the estimates.

We consider two versions of Direct Max, V1 and V2,
based on different implementations of the built-in
MATLAB function “fmincon,” which finds a con-
strained minimum of a function of several variables, in
our case subject to linear constraints and 0–1 bounds
for the decision variables (x, λ) (see (3) and (14)). Direct
MaxV1 uses sequential quadratic programming (SQP),
closely mimicking Newton’s method for constrained
optimization just as is done for unconstrained opti-
mization. At each major iteration, an approximation
is made of the Hessian of the Lagrangian function
using a quasi-Newton updating method. This is then
used to generate a quadratic programming subprob-
lem whose solution is used to form a search direction
for a line search procedure. Direct Max V2 implements
a large-scale, interior point, barrier-type algorithm that
exploits the sparsity structure of the problem. For V1
and V2 we set the same tolerance 1e-5 as for EM; simi-
larly, we establish the iteration and function evaluation
limits at 1e7.

The data generation proceeds as follows: We fixed
the number of products at n � 15. For the uncensored
demand case, we made the simplification λ � 1.7 For
the censored demand case we consider two demand
scenarios, i.e., a low volume scenario (with λ � 0.2)
and a high volume scenario (with λ � 0.8). We simu-
lated 30 instances of transaction data for different com-
binations of length of selling season T ∈ {5,000, 10,000,
50,000, 100,000}, and number of customer types N ∈
{10, 30, 50, 100}. The types themselves were generated
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by sampling random permutations of the n products
along with the no-purchase alternative, and the true
proportions were sampled from the Unif(0,1) distri-
bution. For any instance, in every period, a random
number of available products between 2 and 10 was
generated.
The starting point for EM and Direct Max was the

same, i.e., xi � 1/N (and λ � 0.5 for the censored
demand case). The quality of the estimates is evaluated
on a hold-out data sample of the same size T as the
generated data.
5.1.1. UncensoredDemand. Wenote that starting from
the same initial points, and setting the same tolerance
level, EM and Direct Max (V1 and V2) produce esti-
mates of very similar quality in terms of relative errors
with respect to the true underlying proportions (as
reported in Figure A1 in the appendix) and the log-
likelihood values reached, where we observe differ-
ences of order 1e-4.
The key distinction lies in the computational times.

Table 1 shows 95% confidence intervals (CI) of the
mean time for estimating the parameters of a single
instance. When comparing both versions of Direct Max
we observe that V2 is around 20% faster than V1.
Yet EM clearly dominates Direct Max, by factors
between 1.6 and 6.1, with an average factor of 3.8. The
difference is quite significant for practical applications
where the consumer choice estimation must be per-
formed at the consideration set level. For instance, a
major carrier in an airline revenue management setting
must estimate hundreds of thousands of O-D pairs on
a daily or evenmore frequent basis. The computational
advantage is also critical in the context of the market
discovery algorithm that we propose in van Ryzin and
Vulcano (2015), where the MLE procedure is repeat-
edly called as a subroutine.

Table 1. Computational times (seconds) for a single instance of the uncensored demand
case, in a market with n � 15 products: 95% CI for the mean

T N Direct Max V1 Direct Max V2 EM

5,000 10 0.3601± 0.0439 0.3177± 0.0204 0.0708± 0.0179
30 2.4732± 0.0386 2.1081± 0.0894 0.6960± 0.0463
50 7.1881± 0.0992 5.9516± 0.1465 1.6865± 0.0938

100 31.8209± 0.5510 29.5816± 0.7943 5.2106± 0.1295
10,000 10 0.5920± 0.0141 0.4752± 0.0215 0.1264± 0.0216

30 4.4655± 0.0639 3.6583± 0.0948 1.4516± 0.1006
50 13.2047± 0.1623 11.7561± 0.3861 3.2601± 0.1403

100 68.3841± 0.8304 63.6594± 1.4255 12.2334± 0.2886
50,000 10 2.7910± 0.0595 2.0296± 0.0790 0.6485± 0.1135

30 23.7017± 0.3311 18.1254± 0.4670 9.9305± 0.8306
50 69.7365± 0.8066 58.8844± 1.2662 21.8394± 0.9300

100 396.1877± 2.5411 365.2032± 11.8077 68.1128± 1.4271
100,000 10 5.7643± 0.1033 4.0734± 0.3515 1.2615± 0.2525

30 47.2118± 0.8721 36.8851± 1.4604 23.0733± 1.4921
50 141.6512± 1.5072 115.7827± 4.1309 58.4436± 3.6771

100 814.0861± 7.1345 709.8073± 24.7901 199.9066± 4.2604

5.1.2. Censored Demand. Next we consider a simi-
lar data setting for the censored demand case. Since
arrivals that ended in a no-purchase are nonobserv-
able, the modeler now must jointly estimate the arrival
rate λ and the customer type proportions. Figure A2 in
the appendix reports estimation errors (i.e., relative dif-
ferences between true and estimated parameters (x, λ))
for the case where the underlying true model is gener-
ated with λ � 0.2; Figure A3 does it for a ground truth
model with λ � 0.8. Again, we observe a very similar
quality of fit for Direct Max (V1 and V2) and EMmeth-
ods. Compared to the uncensored demand case, for a
given value of T, we see a slightly bigger dispersion
of errors, particularly for the low volume demand case
where more no-arrivals occur and therefore the accu-
racy in distinguishing a no-arrival from a no-purchase
diminishes. In addition, as in the uncensored demand
case, we observe the same log-likelihood values from
both approaches (up to 3 decimals).

Table 2 reports the mean computational times for
both methods, for each of the demand volume cases.
We still observe a significant difference in favor of
EM, by factors up to 3.2 for the low volume demand
case (with an average factor of 1.9), and by factors
between 1.2 and 5.8 for the high volume demand case
(with an average factor of 2.9). Interestingly, when the
demand volume increases from λ � 0.2 to λ � 0.8 and
the other parameters remain constant, the computa-
tional time of DirectMax increases by 22%whereas EM
reduces by around 10%, on average.

5.2. Experiment Based on Real Data
Next we present results applying our EM method to a
publicly-available hotel data set (see Bodea et al. 2009),
also used in our paper van Ryzin and Vulcano (2015).
The booking records correspond to transient customers
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Table 2. Computational times (seconds) for a single instance of the censored demand case, in a market with n � 15 products:
95% CI for the mean

λ � 0.2 λ � 0.8

T N Direct Max V1 Direct Max V2 EM Direct Max V1 Direct Max V2 EM

5,000 10 0.3837± 0.0121 0.4133± 0.0346 0.1868± 0.0522 0.4512± 0.0083 0.3987± 0.0218 0.1427± 0.0204
30 2.1157± 0.0586 2.0468± 0.1181 1.3003± 0.1337 2.8049± 0.0493 2.5299± 0.1186 1.2388± 0.0782
50 4.9033± 0.1144 4.4996± 0.1591 2.5067± 0.1641 7.3641± 0.1264 6.3656± 0.2142 2.5465± 0.1175

100 16.1336± 0.3224 15.1294± 0.3665 5.8789± 0.3568 30.4199± 0.4774 27.9002± 0.5891 6.3916± 0.2917
10,000 10 0.7037± 0.0163 0.6578± 0.0438 0.3172± 0.0736 0.8273± 0.0127 0.6631± 0.0262 0.2261± 0.0320

30 4.0955± 0.1035 3.9321± 0.2440 2.7104± 0.2368 5.3964± 0.0779 4.8466± 0.2211 2.5177± 0.1140
50 10.1392± 0.2600 9.4767± 0.2998 5.7965± 0.3970 14.6129± 0.1806 12.5659± 0.4598 5.2899± 0.2733

100 36.1058± 0.7274 34.5616± 0.8115 14.2153± 0.6690 65.5522± 0.9853 59.4967± 1.2140 13.4244± 0.6002
50,000 10 3.2092± 0.0555 2.8275± 0.1974 1.6003± 0.4094 4.0803± 0.0864 3.1421± 0.2071 1.6240± 0.3513

30 22.3262± 0.4279 21.5134± 1.2864 20.1628± 1.8622 28.6463± 0.4011 23.7095± 1.0711 20.4073± 2.0080
50 58.8535± 1.0970 58.6661± 2.6471 34.9383± 2.9590 79.1596± 1.1829 65.9929± 2.1056 33.1007± 1.6596

100 259.8091± 5.3822 261.5783± 7.4833 82.1049± 4.8107 399.2866± 3.7449 360.0141± 7.2055 68.7775± 2.7535
100,000 10 6.9600± 0.1839 5.8617± 0.4361 3.1176± 0.7368 8.2890± 0.1578 6.0308± 0.2463 2.6801± 0.3904

30 47.7381± 0.9713 48.0468± 3.4149 54.2606± 5.3650 59.1728± 0.6496 48.2268± 2.5505 41.7799± 3.1860
50 124.8093± 1.7413 124.1907± 6.8489 102.3223± 7.5898 161.5316± 1.5883 134.1275± 4.2230 88.1674± 5.5703

100 553.3401± 8.7139 541.8066± 27.8692 237.9211± 14.5738 832.2295± 7.4274 718.1243± 21.5686 203.4727± 9.5043

(predominately business travelers) with check-in dates
between March 12, 2007, and April 15, 2007 in one of
five continental U.S. hotels. For every hotel, aminimum
booking horizon of four weeks for each check-in date
was considered. Rate and room type availability infor-
mation present at the time of booking were recorded
for reservations made via the hotel or customer rela-
tionship officers (CROs), the hotels’ web sites, and off-
line travel agencies. The data was preprocessed to com-
ply with the model assumptions (e.g., there is at least
one transaction per product, and observed transactions
must come from available options).
We define a product as a room type (e.g., king non-

smoking, queen smoking, suite type 1, etc.), and a
period as a (booking date, check-in date) pair. The orig-
inal data set corresponds only to booking records, and
therefore we assume an uncensored demand case with
arrival rate λ � 1. Table 3 summarizes further details
and the estimation results of a rank-based model cap-
turing buy-ups relative to the independent demand

Table 3. Estimation results for the hotel example

Feature Hotel 1 Hotel 2 Hotel 3 Hotel 4 Hotel 5

Number of products after preprocessing, n 10 12 8 9 8
Number of periods, T̂ 1,315 211 1,147 288 245
Availability over selling horizon (%) 64 74 88 77 86
Indep. demand

Log-value −2,621 −378 −1,569 −416 −403
RMSE 40.91 6.10 47.90 7.37 7.25
AICc 5,262 782 3,155 851 822

Buy-up
Number of types 10 23 14 15 14
Log-value −2,194 −318 −1,376 −375 −371
RMSE 20.77 3.06 15.21 4.43 4.44
AICc 4,408 687 2,780 782 772

model. The buy-upmodel was built assuming that cus-
tomers are price sensitive, and that for a similar price,
they prefer the following room type order: (1) suite,
(2) king, and (3) queen. If the price is not the same
across product types, we assume that customers tend
to buy-up within the same room type. For each hotel,
we sifted through the data to check the price order
among the different room types, and defined a set
of preference lists capturing this simple behavior. We
provide the transaction and availability data after our
preprocessing, and the defined customer types, as a
supplemental e-companion to this manuscript.

Given the limited amount of data for two of the
hotels, our goodness-of-fit measures are all in-sample.
We report the log-likelihood values (since they both
correspond to the same log-likelihood function given
in (2)) and the root mean square error (RMSE) between
the predicted and the observed bookings aggregated
over the selling horizon. The RMSE is an abso-
lute measure of fit between predicted and observed
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purchases of the n products, defined as RMSE �

(∑n
j�1(

∑T̂
t�1(�( j | St) − I{ jt � j}))2/n)1/2. A zero value

indicates perfect fit. One downside of the RMSE and
the log-likelihood value is that they do not include any
penalty for model complexity, which increases with
more types in the choice model. To account for this, we
also report the corrected Akaike information criterion,
defined as: AICc � 2(N −LI(x)+ N(N + 1)/(T̂ −N − 1)),
where N is the number of parameters (i.e., customer
types) in the model, LI(x) is the maximized value of
the log-likelihood function, and T̂ is the sample size
(i.e., number of periods). The AICc measure rewards
the log-likelihood value but also penalizes model com-
plexity (captured by the number of parameters) to con-
trol for over fitting. Lower values of AICc indicate a
better fit.
In the five cases, the types defined based on the

simple buy-up principle outperform the traditional
independent demand assumption with respect to log-
likelihood values, RMSE, and AICc . In particular, the
latter indicate that the buy-up model provides a good
compromise between explanatory power and complex-
ity. In our previous paper van Ryzin and Vulcano
(2015), we show the performance of a market discovery
procedure that automates the inference of new types
over the same data set. In fact, we used EM in each
estimation step of that procedure. Not surprisingly, the
performance is not better than the rank-based perfor-
mance in van Ryzin and Vulcano (2015) with respect to
log-likelihood and AICc values (see Table 3 therein),8
but the purpose of the experiment is to demonstrate
that even a simple judgmental rule can provide a sig-
nificant improvement over the standard independent
demandmodel, and that our EMmethod is an effective
means to estimate such a model.

6. Conclusions
In this paper, we propose an EM algorithm for esti-
mating rank-based preferences for a given category
of products using only sales transaction and product
availability data. The demand model is quite general
and compatible with any random utility model. The
algorithm we propose is easy to implement in any
procedural language, and its performance in terms of
quality of the derived estimates is comparable to esti-
mates obtained by maximizing the incomplete data
log-likelihood function using standard numerical tech-
niques. However, our EM method is computation-
ally remarkably faster than competitive nonlinear opti-
mization procedures by time factors up to six. The dif-
ference is even more pronounced when the procedures
are executed on censored demand cases, which require
the joint estimation of demand volumes and customer
type proportions. This combination of simplicity and
computational performance makes our EM method

a very appealing procedure for real-world estima-
tion problems under the rank-based choice model of
demand.

Endnotes
1To our knowledge, Celect’s assortment optimization platform
(Celect, Inc. 2014) is one of the first commercial packages to imple-
ment this choice model.
2For instance, for dairy products, n could typically range between
20–60 (e.g., Honhon et al. 2012).
3For instance, in an airline revenuemanagement setting, a type could
be defined by price sensitive customers (e.g., customers who just
prefer the low fare versus others who may be willing to buy-up to a
medium or high fare), other types may be defined by time sensitive
customers (e.g., customers who prefer morning flights to afternoon
flights, and vice versa).
4Otherwise, if St � {0}, then the period is not informative and can be
disregarded.
5We say that the parameters x corresponding to the distribution over
types σ is identified if for any alternative parameters x′, x , x′, for
some data ( jt , St), t � 1, . . . , T̂, we have LI(x),LI(x’).
6We used MATLAB version 8.1 (R2013a) for Mac OS X on a CPU
with Intel Core i7 processor and 8 GB of RAM.
7Recall that for the general case, the estimate for λ∗ can be easily
computed via the formula λ∗ � (|P| + |P̄|)/T.
8The RMSEs are calculated slightly differently in van Ryzin and
Vulcano (2015), since there the no-purchase alternative is consid-
ered an explicit outside option, leading to n + 1 terms in the RMSE
formula.
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