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Abstract: The power transformer is one of the most critical assets in power systems; therefore, plan-
ning and optimizing the economic investment for its replacement is crucial for the financial efficiency
of the utility. A compilation of the main approaches reported in the literature for the replacement
of oil-immersed power transformers is presented in this article. A chronological description of
procedures presented in the literature for the determination of risk index, useful life evaluation, and
transformer replacements is provided. Methodologies that use the theoretical basis of the degree of
polymerization of the solid insulation of the units through the oxidation aging process to estimate
their condition bring together the best tools currently available to achieve this objective. However,
it is important and pertinent to complement these methodologies by considering the aging pro-
cesses by pyrolysis and hydrolysis together and by incorporating economic analyses for appropriate
replacement and management of these aged units.

Keywords: asset management; optimization; power transformer; risk index; useful life

1. Introduction

The power system infrastructure consists of critical and capital-intensive electrical
assets, among which the power transformer (PT) is one of the costliest for power generation
and transmission. These assets increase the voltage level at generation centers, allowing the
transportation of energy over long distances, thus reducing Joule effect losses. Furthermore,
PTs located in substations reduce the voltage to levels suitable for distribution in both
industrial and residential areas.

An important and costly decision to be made during the PT lifecycle is its replacement
to avoid a final failure and resulting consequences related to unacceptable economic,
environmental, and social losses. Therefore, replacement must be optimally planned in
order to avoid a hasty decision.

The international standard ISO 55000 [1] recommends that such decisions be made
on the basis of risk assessments. The risk index for power transformers is performed
through the evaluation of technical aspects that include both the probability of occurrence
of a failure that compromises the availability of the unit, and the consequences caused by
unavailability [2]. In effect, the final disposition of a PT can be decided based on a risk
index that provides a broad overview of the transformer’s condition and the consequences
of its failure.

Transmission and sub-transmission transformers have nominal ratings ranging from
tens to hundreds of MVA [3] and operate in medium and high voltage networks. Distri-
bution and transmission companies manage PT fleets that can include hundreds of units,
each of which costs about 60% of a transformation bay price [4].

Although the average PT service life is approximately 40 years under normal operating
conditions [5], it is critical to know its health status.
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This is because if the PT needs to be replaced, the production, installation, and commis-
sioning time can range from one to two years, depending on the manufacturer’s availability,
time, and production capacity.

Long production and installation times, high acquisition costs, the strategic importance
of the transformers within the fleet, maintenance schedules, and the overload of risks PTs
can be exposed to mean it is essential to count on these methodologies for asset management.
To develop such methodologies, the information available of each unit must be integrated
to estimate its current and future condition within certain scenarios. In addition, such an
analysis is useful to prevent major system failures or outages by detecting risky situations
in timely manner, thereby reducing the likelihood of impacts on services, people, and
nearby equipment.

In this context, this article presents a literature review of useful methods for planning
PT replacement where the parameters and tests used to determine the PT health index,
the risk index, the different methods used over the years to assess the condition of these
important assets, and the replacement investments made are known. Figure 1 illustrates
how the literature review was approached to understand how the replacement of aging
equipment has occurred over the past decade. The remainder of this paper is organized as
follows. Section 2 presents the adopted approach to structure the literature review. The
methods for determining risk factors are described in Section 3. In Section 4, methods
for calculating a transformer’s useful life are outlined, and Section 5 describes the index
to schedule the PT replacement. Finally, conclusions and a synthesis are presented in
Section 6.
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2. Method to Structure the Literature Review

Within the first phase of elaboration of the state of art, the issues necessary to develop
a long-term transformer replacement and management scheme were identified: (1) PT
risk index, (2) PT status prediction or life index, and (3) investment scenarios in a PT fleet.
These are related, as shown in Figure 2, according to their hierarchy. All areas are working
in synergy to reach the desired objective, which is an investment scenario, including both
the risk and the status of each area related to the PTs fleet.



Energies 2023, 16, 4448 3 of 16

Energies 2023, 16, x FOR PEER REVIEW 3 of 15 
 

 

in synergy to reach the desired objective, which is an investment scenario, including both 
the risk and the status of each area related to the PTs fleet. 

 
Figure 2. Topics to carry out a long-term transformer management scheme. 

As performed in [6], each topic was searched using the following search rules, which 
were applied to titles, abstracts, keywords, and field of academic study as structured in 
the search catalog in Lens [7]: 
1. Power transformers risk index = Risk index AND power transformer; 
2. Power transformers status prediction = Status, power transformer, AND health; 
3. Investment scenarios in power transformer fleets = Investment AND power 

transformer; 
4. Investment scenarios in power transformer fleets considering the risk index = Risk 

index, power transformer, AND investment. 
To apply the aforementioned search rules, each term was defined by a set of 

synonyms and related concepts, as follows: 
(a) Risk index: “risk index” OR “risk assessment”; 
(b) Power transformer: “power transformer” OR “power system” OR “power network”; 
(c) Status: “life assessment” OR “status”; 
(d) Health: “life assessment” OR “health index”; 
(e) Investment: “investment” OR “improvement” OR “replacement” OR “economic 

assessment”. 
After applying the above rules, a “subject matter” filter was used to consider only 

those documents related to the electrical engineering field. The references found are 
reported in Table 1. 

Table 1. References obtained with Lens searching rules. 

Search Rule 
Document Type 

Total 
Book Journal Article Conference Article Other 

PT. Risk Index− 8 178 110 37 333 
PT. State− 12 667 5 0 684 

P T.−Investment 21 321 259 167 768 
PT Risk Index Investment−− 0 3 1 1 5 

Date of survey: 12 March 2021. Other: Indefinite, report, report summary, review, conference 
review. 

The search for risk index in power transformers returned 333 results, which indicates 
that it is a recent issue because there are few articles about it (see Figure 3). Conversely, 
the search rule for investment scenarios in PT fleets based on the risk index only returned 
five results; among them, only three correspond to journal articles. 

1. Risk 
index

2. Status 
prediction

3. 
Investment 
scenarios

Figure 2. Topics to carry out a long-term transformer management scheme.

As performed in [6], each topic was searched using the following search rules, which
were applied to titles, abstracts, keywords, and field of academic study as structured in the
search catalog in Lens [7]:

1. Power transformers risk index = Risk index AND power transformer;
2. Power transformers status prediction = Status, power transformer, AND health;
3. Investment scenarios in power transformer fleets = Investment AND power transformer;
4. Investment scenarios in power transformer fleets considering the risk index = Risk

index, power transformer, AND investment.

To apply the aforementioned search rules, each term was defined by a set of synonyms
and related concepts, as follows:

(a) Risk index: “risk index” OR “risk assessment”;
(b) Power transformer: “power transformer” OR “power system” OR “power network”;
(c) Status: “life assessment” OR “status”;
(d) Health: “life assessment” OR “health index”;
(e) Investment: “investment” OR “improvement” OR “replacement” OR “econo-

mic assessment”.

After applying the above rules, a “subject matter” filter was used to consider only those
documents related to the electrical engineering field. The references found are reported in
Table 1.

Table 1. References obtained with Lens searching rules.

Search Rule
Document Type

Total
Book Journal Article Conference Article Other

PT. Risk Index- 8 178 110 37 333
PT. State- 12 667 5 0 684

P T.-Investment 21 321 259 167 768
PT Risk Index Investment– 0 3 1 1 5

Date of survey: 12 March 2021. Other: Indefinite, report, report summary, review, conference review.

The search for risk index in power transformers returned 333 results, which indicates
that it is a recent issue because there are few articles about it (see Figure 3). Conversely,
the search rule for investment scenarios in PT fleets based on the risk index only returned
five results; among them, only three correspond to journal articles.

For this review, journal articles were prioritized because the peer review process
guarantees the quality of the research. However, some conference articles were considered
because these represent important pieces of information.
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A network was created with the bibliographic information of articles on each topic de-
scribed in the search rules from Lens. The abstracts of the available articles were analyzed,
and those with a strong connection to the topic were identified as the primary articles.
The co-occurrence method (semantic proximity indicator or two terms interdependence)
was used with the WOS viewer [8]. Based on relevance and citation analysis, this method
identifies journal articles with several common themes associated with the search rules.
The relevance represents the number of quotes the author receives from recognized jour-
nals, whereas the citation analysis system provides tools to identify patterns in scientific
literatures based on bibliographic data, allowing us to track the evolution of the research
over time [9]. The number of citations reflects the document’s impact in the scientific field,
while the network of citations reveals the relationships between investigations.

Each network article is discussed in the following sections; their relationships are
analyzed, and their contributions are highlighted.

3. Risk Index Methodologies

Researchers have tried a variety of methods to calculate the risk index for PT. Fuzzy
logic systems, whose input variables and membership functions can be modified according
to the needs of the user, are the most commonly used. Rankings and weights, Markov
chains, cluster analysis (k-means), and risk matrices have also been used.

PT diagnosis can be a complex task as there are several parameters to be consid-
ered [10,11].

Authors in [12] simulated a series of single-phase and three-phase short circuits to
determine the transformer risk index. As the main source of deterioration of the evaluated
assets, the authors focused on the damage caused to the winding insulating paper, which
is appropriate because this kind of insulation cannot be regenerated. This paper is a pio-
neer for calculating the risk index using neural networks and fuzzy logic combined with
transformed paper condition. The risk index is derived using hierarchical analytical pro-
cesses of fuzzy logic, such as the speed of response and the minimal information required
for operation, in addition to the advantages of neural networks, such as the distributed
information storage, parallel processing, and self-learning [13]. The development of these
models employs several entry criteria. c, resulting in a numerical value indicating the
transformer’s risk. Sun and Wang [14] present a method based on a tree-failure analysis
and an improved fuzzy analytical hierarchy process to convert the fuzzy coherence rating
into optimization problems, adopting a genetic algorithm to calculate the weight of the
failure cause, given as a result of the reliability value of the transformer’s components. The
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methodology used in [15] integrates the calculation of the oil health index, the paper health
index, and the severity and/or type of incipient failure to obtain the total asset health index
using fuzzy logic. As a complement to the abovementioned methods, a neuro fuzzy scheme
based on DGA which mainly evaluates the carbon ratio (CO2/CO) is presented in [16].
Comparing the results, it is determined that the presented scheme has a better response
speed than the fuzzy logic or former propagation of neural network methods.

In [17], the authors suggest adding the prioritization of risk to different modes of
potential failures in the existing methodologies and weighing each factor differently because
faults were given the same importance. Initially, the potential failure modes and damaging
effects were identified, and then the risk value was defined based on operational impact,
environmental, human, and economic losses, and influence in the power system. Finally,
according to the probability of occurrence, identification, and severity, the risk index and
a potential failure sequence are obtained. Later, Suwanasri et al. [18] add the assessment
of the risk index associated with critical loads, its impact on the stability of the system,
possibility and consequence of failure, possible damage to nearby properties, and socio-
environmental impact. An importance matrix is created where it is classified from lowest
to highest risk compared to the actual condition; this is calculated with oil data to decide
which equipment to repair and/or change.

The proposal to separately evaluate the health index and the failure consequence
factor to obtain the risk index from a technical point of view is presented in [19]. A risk
matrix is created whose indices are the consequence versus the probability of occurrence.
The numerical calculation of the risk index is carried out with the product between the
probability of failure (PF) and the consequence factor (CF), or by evaluating the Euclidean
distance between the origin of the risk surface and the point formed by PF and CF in
the matrix. The recommendations according to the index obtained are: acquire a new
asset, use it normally, perform maintenance, relocate, reduce its working regime, refurbish,
repower, or perform the final disposal of the transformer. Lin and Xu [20] propose the
use of the Markov approximation principle with the historical operation and maintenance
data considering a failure’s influence on the network economy and reliability. For high-risk
index transformers, a load reduction is proposed to ensure the safety and availability of
the network. This load reduction is calculated by analyzing the power flow, seeking the
optimal value where the system is not affected, and minimizing the interruption probability.
This is interesting because most companies want to guarantee the quality of the power
supply to the user, which means keeping the most critical assets in the fleet in top condition.

On the other hand, Khuntia and Rueda [21] develop a risk optimization model that
consists of two assessments: the condition of the transformer, and the criticality of the
network to which it belongs. The condition is evaluated with respect to live parts, the oil
insulation, the tap changer condition, the bushings, and the surge arrester. Meanwhile,
the network is evaluated in terms of load factor, load shedding, expert criterial, and
bushings creepage distance. By combining these assessments, a matrix is created where the
transformer located at the furthest point, i.e., the one with the highest index in both criteria,
requires priority maintenance or repair actions.

Up to this point, several methods disagree with each other and do not use the latest
technologies to assess the health of the PT. However, [22] gather the best attributes found
in the literature and use a grouping technique of units with similar characteristics, relying
on the k-means algorithm to decide what to do with the assets. This demonstrates greater
effectiveness compared to a ranking classification.

The authors compare two methodologies to obtain the health index, and large differ-
ences are evident because each one uses different weights for the input factor. Using the
proposed methodology, similar results are obtained, demonstrating its usefulness for PT
fleet management.

In his doctoral thesis, [2] shows a very good approximation of the PT condition
by using tools, such as neural networks, differential equations, probability theories and
stochastic processes, Monte Carlo approximations, and fuzzy logic. The report first presents
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the results from the calculation of the degree of polymerization of four transformers under
sample to obtain the health index of each unit using the fuzzy integration method. As a
second step, it evaluates the consequence factor for the failure of each unit to obtain a risk
index individually. Finally, it integrates the two previous factors (health index and the
consequence factor) to propose a transformer fleet ranking aimed at providing information
for the optimization process of these important assets. These steps are optimized by
Cerón [23] in his doctoral thesis, where, in addition to the factors described in [2], he
evaluates the future state of the units through a load and temperature forecast to analyze
investment alternatives in a transformer fleet. As a result, he presents a methodology for
the replacement of these assets, considering technical, economic, safety, environmental, and
performance parameters. Using a real example of 102 transformer units, he demonstrates a
long-term replacement strategy.

Finally, in [24], the proposed method combines three basic models: the physical
degradation of the winding, the health index model, and the statistical model based on
the end of the useful life of the asset. First, the individual breakage and the condition-
dependent probabilities are obtained to calculate the expected remaining lifetime. As a
result, a key decision is obtained for transformer managers to decide whether to perform
maintenance or to replace the PT. The model is based on a set of 18 transformers only, and
the probability of failure is calculated using active parts that are considered non-repairable,
excluding measurements on bushings or tap changers where important failure frequencies
must be taken into account for this type of study. However, oil segment replacements are
included in the calculations, making the information obtained reliable over time.

Table 2 presents the synthesis of the methodologies described. It presents the input
data found in the literature for the calculation of risk indices most commonly used by
companies that own fleets of power transformers, showing that each author uses those
they consider important or those they have in their test history, confirming that there is no
standard for finding the risk index.

Table 2. Input data to obtain the risk index.

Input Data
Reference

[12] [13] [17] [14] [16] [18] [21] [15] [19] [20] [22] [2] [23] [24]

History of single-phase and three-phase faults
√ √ √

Element failure history
√ √

Mechanical tests
√ √ √

Physicochemical tests
√ √ √ √ √ √ √ √ √ √

Electrical tests
√ √ √ √ √ √ √ √

Visual inspection
√ √ √

Insulation characteristics
√ √ √ √

Maintenance and operation
√ √ √ √

Other components
√ √ √ √ √ √ √ √

Moisture content
√ √ √ √ √ √

External influences
√ √ √ √

DGA analysis
√ √ √ √ √ √ √ √

Asset age
√ √ √ √ √ √

Load history
√ √ √ √ √ √

Power factor
√

Network criticality
√ √ √ √ √

Load Factor
√
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Table 2. Cont.

Input Data
Reference

[12] [13] [17] [14] [16] [18] [21] [15] [19] [20] [22] [2] [23] [24]

Load shedding
√ √ √ √

Furans or degree of polymerization (DP)
√ √ √ √ √ √

Cost and repair time
√ √ √

Environmental impact
√ √ √

Penalty
√ √

Paper degradation (hydrolysis, pyrolysis, and oxidation)
√ √

Oil volume
√

Risk to nearby buildings
√

Source: Authors.

4. Methodologies for Evaluating the Useful Life of Power Transformers

In recent years, the methods for predicting the useful life of PTs have improved as new
technologies have been introduced to monitor these important assets. Initial calculations
were based on temperature, but alternatives, such as fuzzy logic, neural networks, Bayesian
networks, and data mining, have been used to evaluate the parameters derived from
insulating paper and oil measurements. Some of the major methods implemented are
presented below.

In [25], a first approximation of the transformer’s useful life calculation is presented,
mainly using temperature as an indicator of insulation degradation. Guidelines for trans-
formers’ life management are defined, and it is recommended to consider a maintenance
strategy, an aging mechanism (insulation degradation), and the condition assessment by
technical diagnostics during asset monitoring. One year later, Qian and Yan [26] apply
fuzzy logic to a set of oil dissolve gas data to determine whether the transformer is aging
normally or rapidly. As a result, the applied methodology indicates the possible cause of
the failure. In 2006, Pradhan [27] develops prototype transformers to evaluate aging by
increasing the temperature at different scales and performing daily physicochemical tests.
At the end of the studies, it is determined that some furans tests, such as “5-Hydroxymethyl
2 Furfural” and “2-Furfuryl alcohol,” are unstable, while “2-Furaldehyde” behavior cor-
relates with the insulation deterioration and the “2-Acetylfuran” helps to determine the
assets’ aging. Furthermore, the study concludes that the best insulation aging indicator
is the degree of polymerization (DP); however, as it is a destructive test (because samples
must be taken from the insulating paper), it must be correlated with DGA, furans, and
other diagnostic tests. Based on this information, a team of researchers compared paper
degradation tests with the temperature and chargeability data from a decommissioned
transformer from 2001 to 2007 and found that the maximum paper degradation can be
roughly estimated by using the Arrhenius equation [28].

In [29,30], Yang compares different PT aging methods and comes to the following
important conclusions: (i) The carbon ratio analysis CO2/CO considers a transformer to be
aged when the radius of the gas content is greater than seven and, in some cases, greater
than ten. (ii) The thermal method evaluates the hot spots of the transformer to estimate its
aging. (iii) The methodology based on electrical parameters uses tangent delta tests and
defines a maximum value of 0.6% for transformers between 330 kV and 500 kV at 20 ◦C and,
in general, the tangent delta radius and its historical value should not exceed 30% for an
unaged transformer. (iv) The solid insulation degree of polymerization method considers
a transformer to be aged when it has the value of 150 to 200 ppm. (v) The methodology
based on the furan content in transformer oil has a correlation coefficient of 0.9657 with the
DP test value.
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Knowing all these data, it is not appropriate to calculate the aging of PTs based only
on the temperature. The main criteria for determining this parameter is a fusion between
the DP, the results of electrical and physicochemical tests, and the asset’s operating history.
Lastly, the author recommends taking the first insulation paper sample after 15 years of
operation and then at 5-year intervals. However, [31] propose a transformer thermal model
in a fault-free operating environment based on a fuzzy neural network, which gives an
early indication of any deviation of the transformer from normal operating conditions. The
model considers internal measurements at different locations to predict future temperature
hot spots. Meanwhile, in [32], the authors perform a method to find a PT’s life index using
DGA and temperature data. It is proposed to use DGA instead of furans because the
data of the latter are scarce and have a higher probability of sampling errors. The method
is divided into three parts: calculation of the reliability of the transformer’s oil–paper
insulation during normal operation, calculation while updating during the fault events,
and calculation after reparation. Compared with a practical case, the asset’s remaining life
increases after proper maintenance is carried out. The “gray target” theory is used for data
fitting and calculation of main function parameters.

Li et al. [33] present a self-learning method to estimate the DP value of the transformer
insulation using oil parameters. Fuzzy clustering and linear regression are used. The
calculations are then compared with actual values obtained from laboratory tests performed
every 24 days on paper samples placed in glass bottles filled with different types of oil and
exposed to different temperatures for 240 days. The proposed equation is compared with
different authors’ calculations and shows a better prediction of the real Partial Discharge
(PD) value measured in the laboratory. Hence, this proposal can be used to automate
monitoring equipment that shows the PTs’ real-time solid insulation condition. Continuing
this research topic, [34] present a Bayesian statistical learning-based methodology that
calculates the health index to determine the PTs’ status. This index is compared with a
company’s maintenance budget to predict the feasibility of performing maintenance or,
conversely, waiting for a signal alarm to intervene in the asset.

Because not all utilities have a complete history of transformer tests, or some of these
tests are missing, in [35], a time-updated health index is proposed, which performs the
calculation of an asset’s initial state through Markov chains, thereby estimating certain
parameters and obtaining acceptable results.

Finally, [36] analyze a PT’s life from an economic point of view, considering mainte-
nance costs and failure penalties. It is concluded that the economic asset life is shorter than
the operational life because, after a certain time, the maintenance and failure costs are so
expensive that it would be feasible to opt for the transformer’s replacement.

A summary of the methods found in this section is presented in Table 3. Both the input
data and the calculation method used to estimate transformer health vary from author to
author. Therefore, it is advisable to treat these methods as estimates because there is no
standard that defines their general calculation.

Table 3. Methods used to calculate the useful life of PTs.

Method Used
Reference

[25] [26] [27] [28] [29] [31] [32] [33] [35] [34] [36]

Thermal aging
√ √ √

Fuzzy logic
√ √ √

Lab tests
√

Carbon analysis (CO2/CO)
√

Empirical formulas
√ √ √

Neural networks
√
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Table 3. Cont.

Method Used
Reference

[25] [26] [27] [28] [29] [31] [32] [33] [35] [34] [36]

Weibull distribution
√

“Gray target” theory
√

Linear regression
√

Greedy algorithm
√

Markov chains
√

Dempster–Shafer Theory
√

Bayesian networks
√

Lambert W function
√

Source: Authors.

5. Assessment Indexes for Power Transformer Replacement

In order to estimate the time when a PT should be replaced, several proposals have
been discussed. In [37], the authors present a model that predicts the PT’s remaining
lifetime based on the paper insulation degradation to know its replacement time. Data
were taken from test equipment at two-hour intervals for two years. Ambient temperature
information was reconstructed according to IEC 60076-6 [38], assuming a load increase
of 2% per year. The results are considered speculative as not all the necessary input
parameters were available. It is noted that redistributing the load in the transformers is
disadvantageous because it reduces their useful lifetime. Meanwhile, [39] recommends
PT replacement using service classes (condition) and risk of disconnection as criteria. Gas
analysis tests are used to determine the asset’s condition through fuzzy logic rules, and
the number of disconnected customers in a blackout is used to determine the equipment
replacement or maintenance sequence. The data were tested in 10 transformers, resulting
in the replacement sequence.

In [40], it was found that PT replacement alternatives could be evaluated using a
probabilistic approach to paper insulation thermal degradation. Two scenarios are com-
pared: one where the units are hypothetically replaced, and a second where input data
are used, including the asset’s loading history. As a result, by equalizing loads in different
transformers, the waiting time for a first failure may be extended, but the unit’s useful
life will be considerably reduced. In addition, monitoring it is ideal to avoid calculation
errors due to input parameters, as happens in the first scenario. After two years, in [41],
gray incidence analysis is used to select a PT replacement based on the lifecycle cost of the
asset. This model is good for dealing with uncertain, scarce, or only few data information
problems. It uses fuzzy logic to adapt qualitative indices into quantitative ones and the
entropy method to determine the weight of each of them. This method is used to select a
transformer between two options, showing the best scheme. However, the authors recom-
mend that further research be conducted to address conflicting evidence problems when
using evidential reasoning.

Trappey et. al. [42] identify the key factors that influence the PT’s normal operation to
predict life expectancy, applying logistic regression based on the Weibull distribution. On
the other hand, [43] presents a methodical decision-making system to determine the optimal
replacement time for a PT. Two studies are performed: the first considers maintenance
effects, and the second does not. Using the bathtub curve as a reference to represent the
transformer’s lifetime, the focus is on the spot where the stable zone ends to decide whether
to replace or maintain the asset. The authors conclude that to extend a transformer’s useful
life, it has been shown to be cost-effective to perform at least one maintenance operation
before replacing. The decision is based on an algorithm rather than on the condition of the
equipment, which ignores several important factors.
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The effect of changing the PT’s oil on the measurement of furan content is evaluated
in [44], because it is one of the most important parameters for determining the asset’s age
and whether it needs to be replaced. The oil change reduced the furan content, causing an
error in the aging assessment. In order to compensate for this effect, the authors introduce a
correction factor. Experimental examples in the laboratory are used to verify the functions
with the correction factor, and the results are corroborated by data collected from 44 in-
service transformers. This is an important milestone to consider when assessing the aging
of insulation paper, as many of the operating transformers have had their oil changed
during service.

In [45], the authors use the Monte Carlo method to predict load profiles in different
scenarios (constant load, load increase, and load reduction). According to the results of
the study, the cost of energy and the regulatory structure are responsible for the decision
to replace a transformer. Using other parameters, such as humidity, temperature, trans-
former capacity, oxygen content, breakdown voltage, and the current age of the asset, a
mathematical model is proposed to estimate the PT’s remaining lifetime because these
data can be easily and cheaply collected [46]. The authors use the de Pablo equation [47]
to calculate DP, replacing the furan content due to its relationship with the above. Linear
regression is used for furan content below 0.6 and non-linear regression is used for furan
levels above 0.6 because the linear regression produces errors exceeding 160 parts per
million (ppm) of DP after this value. The Monte Carlo method is also used in [48] to
calculate the power delivered in case of failure, the penalty costs in case of failure, and to
estimate the retirement year of aging units. This methodology analyzes the cost–benefit of
replacing the PT, considering the system risk under several load steps.

Martin et al. [49] obtained failure and retirement data for 98% of the PTs in Australia
in 2016. In this paper, failure cause data for different voltage ranges are presented, and
the authors conclude that windings, on-load tap changers (OLTCs), and bushings are
the main failure causes. In total, 46% of the withdrawals are attributed to changes or
repowering of the network, while only 9% are attributed to insulation problems. It is also
confirmed that utilities remove transformers mainly when the cost of maintenance or repair
exceeds their budget. Data, such as these, are extremely helpful in the development of a
risk-based methodology, such as that presented in [50], which also considers the lifetime of
the ventilation and pumping systems and the risk of failure of the unit. This is important
for equipment operating close to its load limit or in areas with extreme temperatures.

In [51], a methodology for the classification and replacement of PTs in substations
is presented. Furthermore, among the health index classifications widely studied in the
literature, the authors present an Operational Vulnerability Indicator (OVI) supported
by parallelism (units working together or supporting each other), which identifies the
percentage of load insured by the asset in case of a contingency. In this paper, 39 PTs from
seven substations are compared to determine the next transformer to be replaced based
on its health index, and also due to the risk of not having a backup load in the event of a
power outage. The radius of the transformer is another parameter considered by the OVI,
because the greater the difference between the primary and secondary voltages, the longer
it takes to build the asset. It is concluded that it is possible to postpone the replacement of a
transformer if it has a backup transformer prepared for its load.

In the latest development, Cerón [23] provides an optimal methodology for the re-
placement of transformers, which is achieved by using the risk matrix, whose axes consist
of the estimated lifetime and the failure consequences. Key factors, including oil and paper
moisture, hot spot temperature, chargeability, and DP, are considered when estimating the
life used. Furthermore, Non-Linear Principal Component Analysis (NLPCA) is used to
extrapolate the future state of the asset. The consequence of failure is quantified using a
methodology that classifies the costs associated with equipment failure into four categories:
financial, safety, environmental, and network performance. In addition, the optimization
model and risk matrix can be used to determine the order of asset replacement in the future,
taking into account both the annual budget and the assets’ CAPEX amounts. This was one
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of the most complete contributions, although it did not include equipment maintenance in
its methodology.

There are other methodologies, such as those found in [24,52], that use the health
index to predict the need to replace a PT.

Presented in Table 4 are the advantages and disadvantages of the most common
replacement methodologies. The literature indicates that the end of transformer life is
directly related to the end of life of the insulation paper. It is not possible to perform direct
maintenance on this insulation (except in the case of a complete rebuild of the transformer),
so it is considered a primary element in determining the condition of the asset. This is
mainly assessed by the DP and is used in conjunction with the failure consequence factor
to evaluate the risk of the asset and thus plan for replacement.

Table 4. A review of PT replacement methodologies.

Ref. Development Advantage Disadvantage

[37]
A model predicting the remaining life of

an insulating paper based on the
degradation process.

Despite the lack of load data, a good
estimate can still be made.

Because several input parameters are
missing, the results are
considered speculative.

The proposed load redistribution can reduce
asset lifetimes.

[39]
PT replacement model based on the
condition and risk of disconnection

to users.

By using data from samples in the oil,
calculations are based on the actual

condition of the equipment.

Data input is not always complete.
Assets that are in different states of health

can be weighed similarly using fuzzy logic.

[40]
Assessment of substitution alternatives

based on probabilistic analysis of thermal
degradation of paper.

With redistribution, it takes longer for a
failure to occur.

Load balancing affects the remaining life
of assets.

Having a fixed number of assets to replace
each year makes management easier.

Good monitoring is required to avoid errors
in calculations.

Computing is reduced when similar units
are grouped together. PD calculations show a significant deviation.

[41] A model for evaluating investments based
on lifecycle costs.

Based on lifecycle cost, it also considers
reliability and maintenance. Calculations are based purely on economics

and not on asset operation.Deals effectively with scarce
information issues.

[42] Remote assessment of the PT’s service life.
Calculates the transformer lifetime using

data from both real-time and
historical sources.

There are technical evaluations, but no
economic evaluations for unit replacement.

[43]
Methodical decision-making system to

determine the optimal replacement time
for the asset.

An emphasis is placed on the characteristics
of equipment operation at the point

of instability.
All calculations are performed using an

algorithm that ignores several critical
parameters that should be monitored,

including the actual condition of the asset.
The effect of maintenance is considered.
It combines both the economic and the

reliability components.

[45] An economic study of the replacement of
the PT according to current regulations. Predicts future equipment load scenarios. In addition to power, it does not consider

other parameters that can affect asset life.

[46] A mathematical model for estimating a
PT’s remaining life.

By calculating other parameters, the degree
of polymerization is calculated, thus

avoiding the degradation of insulation
during sampling.

Because it is not possible to make a fully
reliable decision on asset replacement using

linear or non-linear regression, the
uncertainty of the calculated parameter

is high.

[48] A cost–benefit analysis method for
replacing a PT.

It considers the risks associated with each
loading stage, including penalties for not

providing the service.

It focuses primarily on loads and hot spots
while ignoring other important parameters

that determine the condition of assets.

[51]
Methodology for classifying and replacing

PTs in substations.

In addition to the risk index, it also takes
into account whether other equipment is

supporting the transformer load.

When data or measurements are not
available, values are assumed, such as the

level of furans.

Calculates the risk by considering the
manufacturing time of the unit.

Economic factors, such as environmental
damage, corporate budgets, penalties, etc.,

are not considered.
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Table 4. Cont.

Ref. Development Advantage Disadvantage

[50]
Methodology for predicting PT

replacement using risk.

To make more accurate calculations,
separates the detectability from the severity

of a failure. Only equipment parameters are considered,
not economic or external factors.Defining the type of failure that will occur

next helps the operator take corrective action
in a timely manner.

[23] Economic quantifications and risk matrix
applied to transformer substitution.

Considers physical, economic, and
external risks.

The results are not affected by maintenance
events on the asset that add uncertainty to

the results.
Maintenance can extend the life of the unit

or change the inputs used to calculate of the
asset health index.

Predicts future behavior and makes better
long-term decisions.

Optimizes replacement costs according to
the company’s budget.

Source: Authors.

6. Conclusions

The techniques for evaluating PT life have been refined over the past few years. The
process began with estimates of failures, then moved to temperature and hot spot analysis,
and finally arrived at its current stage of evaluating insulation of the paper by taking
measurements in both the oil and in the insulating paper.

According to the literature, the life of a transformer is directly correlated to the lifespan
of the insulating paper. This insulation is extremely difficult to maintain, so it is an essential
element in determining the asset’s condition. It is generally assessed by measuring or
calculating the degree of polymerization.

Each author uses different input data and calculations to estimate transformer health.
The same is true for the probability of failure and the consequence factor. This type of
methodology should be treated as an expert opinion due to the lack of standardization of
the calculation required.

In the absence of clearly defined asset management policies, utilities could not track
the history of tests or data to assess the health of assets. Therefore, it is necessary to develop
methods to estimate missing data.

Statistical models were first used to estimate transformer health, then fuzzy logic, then
Markov chains and Bayesian networks, and then, finally, neural networks. On the other
hand, training neural networks can identify normal operating conditions of transformers
and detect changes in input signals that may indicate an early warning.

To present PT replacement models, recent studies have integrated issues, such as
risk index, consequence factor, and economic impact. However, there is a lack of a more
comprehensive methodology that considers these factors and, at the same time, integrates
the maintenance of these assets, as good and scheduled maintenance can significantly affect
the health of transformers.

In order to make the best decisions about which assets to replace or maintain, it is
necessary to have a methodology for estimating future data. Thus, utility budgets can be
estimated to be consistent with a good asset management system.

Table 5 shows the main aspects considered by each methodology.
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Table 5. Main aspects considered by each methodology.
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[12]
√ √ √ √ √

[15]
√ √

[13]
√ √ √ √

[14]
√ √ √ √ √

[2]
√ √ √ √ √ √

[23]
√ √ √ √ √ √ √ √ √ √

[16]
√ √ √ √ √ √

[17]
√ √ √ √

[18]
√ √ √

[19]
√ √ √

[20]
√ √ √ √ √ √ √

[50]
√ √

[24]
√ √ √ √ √ √ √ √

[26]
√ √ √

[27]
√ √

[28]
√ √ √ √

[31]
√ √ √ √ √ √ √

[32]
√ √ √ √

[33]
√ √ √

[35]
√ √ √ √ √

[34]
√ √ √ √ √ √ √ √

[36]
√ √ √ √

[37]
√ √ √ √

[39]
√ √ √ √

[40]
√ √ √

[41]
√ √ √ √ √ √

[42]
√ √ √ √ √

[43]
√ √ √

[45]
√ √ √

[46]
√ √ √

[48]
√ √ √ √ √ √

Source: Authors.
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