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Abstract

This article presents an optimization methodology to schedule the replacement of power
transformers (PT) into a fleet. The objective is the minimization of the summation of the
risk indices of the PT. Each PT risk index is calculated from the estimation of the life used
and the strategic importance of the unit. The PT life used is estimated as a relationship of
the solid insulation polymerization degree, where aging processes due to oxidation, hydrol-
ysis, and pyrolysis are considered from the calendar date when the unit starts its operation
until different future scenarios. For the calculation of the PT strategic importance, finan-
cial, security, environmental, and network performance aspects are considered. Then, using
the optimization model, together with the CAPEX and the available budget over a plan-
ning time, a strategy for optimally replacing the critical units is determined. The model
was applied for a group of 102 units, demonstrating its applicability and effectiveness. The
developed methodology serves to support the manager of these assets in making decisions
in the long term.

1 INTRODUCTION

Power transformers (PT) are generally considered to be the
most crucial and expensive asset within an electrical transmis-
sion system [1]. As a result of the current worldwide increasing
demand for electricity, the load on transformers is also increas-
ing and yet most transmission systems currently have large fleets
of aged transformers [2]. The failure of a power transformer
can have great technical and economic impact [3]. Therefore, it
is necessary to optimize the transformer replacement strategies,
ensuring maximum utilization of assets and minimizing system
risks [4].

The risk index is a useful indicator for making strategic
decisions regarding the replacement of an asset [5], and it is
determined from the consequence factor and the probability of
failure. The consequence factor is obtained by analysis based
on the assumption that all assets will fail in the future and the
consequences of such a failure can be estimated. These conse-
quences can be approached from different perspectives such as
equipment safety, personnel safety, environmental safety, cor-
porate image, consequences for production, and delays in the
achievement of goals [6]. The probability of failure is a con-
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cept that merges the condition of the particular transformer
unit and the external events that can trigger a final failure.
Such external events can be of different nature, such as atmo-
spheric discharges, sabotage, and other events such as short
circuits or overloads [7]. Once, the transformer risk index is
estimated. the management of the fleet can be performed by
prioritizing the units with high risk index values. This hierar-
chy allows adequate management of resources. Reference [8]
proposes a practical method for risk analysis of the power trans-
former fleets that appropriately considers the best attributes
of the methods reported in the literature to calculate the fail-
ure probability factor and the consequence factor. Moreover,
such a paper contributes to the risk analysis field by including
risk matrices and clustering techniques to support the decision-
making process. Nevertheless, this method fails to determine
when the units must be replaced.

Reference [9] presents a model that supports transformer
fleet management efforts by optimizing the acquisition and
the deployment of high-voltage transformers dynamically
over time. Nevertheless, this dynamic model only considers
the possibility of replacing transformers that have already
failed.
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2 CERÓN PIAMBA ET AL.

Reference [10] describes optimal scheduling that is achieved
through an algorithm that selects high-revenue investments.
Although this solution employs the risk index, it only consid-
ers the age calendar for the health index and facilities located in
a grid area with flexibility for the consequence factor.

Reference [11] proposes a Dempster-Schafer’s theory of
evidence for fault diagnosis to decide on condition-based main-
tenance. Such a method was developed to analyze faults in
individual assets, but not to make decisions over a large power
transformer fleet.

Reference [12] uses the transformer failure rate as a replace-
ment decision criterion. Initially, a first-order model of trans-
former degradation is proposed. Then, the Weibull distribution
is used in a Monte Carlo simulation to generate the variations of
degree of polymerization along with time based on the historical
data, and the transformer failure rate is determined. Never-
theless, the paper degradation model presented in this work
does not consider all degradation processes (oxidation, hydrol-
ysis, and pyrolysis), nor does it consider the influence of the
dynamics on paper moisture.

Reference [13] proposes a hybrid method based on the Pareto
distribution and Monte Carlo search algorithm to estimate the
transformer end of life. In this approach, economic valuation of
the old transformer and new transformer is compared in time,
but as in [12], the paper degradation model used in this work
does not take into account all degradation processes.

The novelty of this paper is to present a useful methodol-
ogy that integrates different pieces of evidence reported in the
literature, which have not been connected up to now, specifi-
cally, a method for the evaluation of the estimated life based
on the aging of solid insulation using the degree of polymer-
ization, a method for calculating the consequences of failure,
the acquisition costs of the equipment, and the budget available
for PT replacement. The core of the proposed methodology is
the formulation of a novel optimization problem that integrates
the above models to determine the replacement priority of risky
assets in a large PT fleet. The proposed methodology is tested in
a case study, and the obtained results are presented and analyzed
in detail.

The rest of the article is organized as follows. Section 2
describes the aging of cellulose and polymerization degree
(DP) useful life (UL). Section 3 describes the research prob-
lem and the proposed methodology. Section 4 presents the
results obtained from 102 units currently in operation. Finally,
conclusions are given in Section 5.

2 THEORICAL FRAMEWORK

The aging of PT is mainly caused by the degradation of insu-
lation materials (mainly mineral oil and insulation paper) that
is due to long-term joint action of multiple stresses includ-
ing electrical, thermal, mechanical, and environmental factors
[14]. Although oil degradation can be managed by treatment
methods such as dehumidification, purification, and filtration,
or even by oil replacement, no paper refurbishment methods
are currently available.

The paper used as solid insulation in transformers is obtained
from vegetable cellulose, that is a polysaccharide, which forms
long chains of linked monomers. The length of these chains is
called the DP, which is an indicator related with the mechanical
strength of the paper and thus with the condition of the power
transformer. At the beginning of its UL the insulating paper has
a DP of around 1000, as it degrades, this value decreases; when
the DP is less than 200 it is considered that the unit has reached
the end of its reliable life.

The DP value can be determined by taking a sample of the
insulating paper directly from inside the unit which is then
subjected to the viscosity method. This test requires a major
maintenance operation which in many cases is impractical and
very risky, since in general the worst condition paper sample is
located in the inaccessible areas of the winding. There are indi-
rect methods to estimate the DP value, the first one consists of
using the concentration of furans in oil. The second alternative
consists of using loading guides, which analyze the depolymer-
ization process as a function of the thermal degradation of the
paper. This second method is the one employed in this arti-
cle, and it is reported in [15]. In addition, it is noted that it is
more feasible to forecast depolymerization through the analysis
of transformer load evolution, than from the analysis of furans
in the oil, due to the availability of historical data. In effect, usu-
ally, there is enough data about supplied load, but few about
the furans in oil evolution. In conclusion, to our knowledge,
the degree of polymerization seems to be the best indicator
for forecasting the aging of the insulating paper in the long
term.

2.1 Hot spot temperature

For PT in use, thermal and electrical phenomena interact with
each other, thermal phenomenon being the result of dynamic
loading and variable environmental conditions [16, 17]. Ther-
mal stress is the main cause of deterioration of the transformer
insulation system, especially solid insulation. However, the dete-
rioration of solid insulation does not occur uniformly in the
windings of PT, but is concentrated in specific areas called ‘Hot
Spot’, where the greatest aging of solid insulation occurs due to
thermal degradation [18]. Therefore, estimating the Hot Spot
Temperature is very useful to estimate the aging of solid insula-
tion due to the thermal effect, given the criticality it has on it.

In the literature, there are different methodologies to obtain
the Hot Spot Temperature, the most recognized being the Susa
thermodynamic model reported in [19–21], the equation model
exponential and differential equations from IEC 60076–7 [22],
and the exponential equation model from IEEE Std. C57.91
[23].

IEC 60076-7 [22] presents the thermodynamic model devel-
oped by Susa in [19–21] as a further development, which
considers the influence of temperature on oil viscosity and
has been physically verified. Additionally, the Susa model
allows estimating the Hot Spot Temperature profile, consid-
ering the dynamics of the insulation system as a function of
time, based on the operating history (attended load, ambient
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CERÓN PIAMBA ET AL. 3

FIGURE 1 Basic diagram of the thermoelectric equivalent [21].

TABLE 1 Equivalent variables of the thermoelectric analogy.

Electrical equivalent Thermal equivalent

Parameters Symbol Unit Parameters Symbol Unit

Current i A Generated heat q W

Voltage u V Temperature θ ◦C

Resistance R Ω Resistance Rth
◦C/W

Capacitance C F Capacitance Cth J/◦C

Reference node Gnd V Room temperature θamb
◦C

temperature), data from the characteristics plate, and few heat
run test protocol parameters [16].

The thermodynamic model is based on the analogy of two
conventional theories: heat transfer through fluids and electri-
cal circuits. In addition, the model establishes that it is possible
to mathematically relate the interaction of thermal and electri-
cal phenomena. In Figure 1 the electrical circuit and its thermal
equivalent of the model are presented in a simplified diagram.
Table 1 lists the symbols used in the diagram of Figure 1.

From Figure 1, the electrical equivalent parameters are: i is
current, C is capacitance, R is resistance, and u is voltage; the
thermal equivalent parameters are: q is the heat generated, Cth is
the thermal capacitance, θ is the temperature, Rth is the thermal
resistance, and θamb is the ambient temperature [21]. Rth and Cth
represent the capacity of the material to resist and store heat,
respectively [21]. The electrical phenomenon is defined mathe-
matically by the theory of RC circuits based on Ohm’s law and
Kirchhoff ’s rules, and the thermal phenomenon, by the energy
balance equation [21].

The estimation of the Hot Spot is achieved by solving the
differential Equations (1) and (2) [15, 19–21, 24]. The first rep-
resents the temperature of the oil at the top of the transformer
θTO and the second, the temperature of the hottest spot θHS.[(

1 + R ⋅ K 2

1 + R

)
⋅ 𝜇n

PU ⋅�`TO,R

]

=

[
𝜇n

PU ⋅ 𝜏TO,R ⋅
d`oil

dt
+

(𝜃TO − 𝜃amb)n+1

�`n
TO,R

]
(1)

[
K 2 ⋅ 𝜇m

PU ⋅�`HS,R
]

=

[
𝜇m

PU ⋅ 𝜏W,R ⋅
d`HS

dt
+

(𝜃HS − 𝜃TO)m+1

�`m
HS,R

]
(2)

where K is the load factor described by the quotient between
load and nominal load, R is the ratio between load and no-load
losses, θamb is the ambient temperature, ∆θTO,R is the tempera-
ture increase of the top oil over θamb, ∆θHS,R is the hottest spot
temperature rise over θamb, τTO-R is the thermodynamic time
constant of the top oil, τW-R is the thermodynamic time con-
stant of the winding, μPU is the viscosity of the oil in per unit, n
is an empirical constant that depends on the type of oil circula-
tion, and m is an empirical constant that models the non-linear
thermal behaviour of the unit windings. For ONAN cooling
mode, constants values are n = 0.25 and m = 0.25. For the
ONAF and OFAF cooling modes, in PT with external cooling
these values are n = 0.5 and m = 0.1 [21].

2.2 Aging of cellulose

The Arrhenius relation in (3) is widely accepted to model the
aging of paper [25].

1
DP (t )

−
1

DP (t0)
= A ⋅ e

Ea
R⋅𝜃HS (t ) ⋅ Δt (3)

where DP(t0) and DP(t) are the DP values at the start time
t0, and at the end time t of the time interval Δt, A is the pre-
exponential factor that depends on the chemical environment,
R = 8.314 (J/mol K) is the gas constant, Ea is the activation
energy of the aging reaction given in J/mol, and θHS is the tem-
perature in K of the paper hot spot where the highest paper
degradation of the windings occurs.

In [26], the general Arrhenius relation was disaggregated to
consider hydrolysis, oxidation, and pyrolysis, as shown in (4) and
(5):

1
DP (t )

−
1

DP (t0)
=

t∑
t0

k(t ) ⋅ Δt (4)

k(t ) = Aoxi (t ) ⋅ e
−Ea,oxi

R⋅(273+𝜃HS (t )) + Ahyd (t ) ⋅ e
−Ea,hyd

R⋅(273+𝜃HS (t ))

+Apyr (t ) ⋅ e
−Ea,pyr

R⋅(273+𝜃HS (t )) (5)

where k(t) is the degradation rate and oxi, hyd, and pyr sub-
scripts correspond to oxidation, hydrolysis, and pyrolysis,
respectively.
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4 CERÓN PIAMBA ET AL.

Reference [15] proposes a holistic methodology for solid
insulation aging assessment based on all thermal degradation
process and the influence of dynamics on paper moisture. Paper
moisture is estimated using as input external variables such as
the load, ambient temperature, transformer technical data, and
measurements for oil moisture.

2.3 DP-based useful life

In [27], Equation (6) is proposed to describe the dependence
of the UL on the degree of polymerization during acceler-
ated degradation experiments for Thermally Upgraded Paper
(TUP).

ULTUP (DP ) =

⎧⎪⎪⎨⎪⎪⎩

1 i f DP ≤ 200

−0.881 ⋅ ln

(
DP
622

)
i f 200 < DP < 622

0 i f DP ≥ 622

(6)

Likewise, (7) is proposed in [28] as an alternative method for
Not Thermally Upgraded Paper (No-TUP).

ULNo−TUP (DP ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 i f DP ≤ 200

log10
(DP ) − 2.903

−0.006021
i f 200 < DP < 800

0 i f DP ≥ 800

(7)

3 PROBLEM DESCRIPTION AND
PROPOSED METHODOLOGY

3.1 Problem description

There is a lack of methodologies to help the asset managers to
decide the best long-term replacement strategy for risky units
belonging to a large power transformer fleet. In particular, the
power transformer risk must be considered in an appropriate
asset management framework.

3.2 Future forecasting risk index values

To make successful future replacement decisions using risk
index values, it is necessary to apply forecasting techniques to
the values of ambient temperature, load, and humidity in the oil.

3.2.1 Load and temperature values

The Non-linear Principal Component Analysis (NLPCA)
enables time dimension data to be converted into a new space
by searching for the linear dependences between the data.
Generally, this space is obtained through the application of the

Extract the main 
frequencies (Fourier 

Bases)

Interpolate (Spline / 
Autoregressive 

model)

Extrapolate 
(NLPCA)

Add main 
frequencies (Fourier 

Bases)

Initial load and

ambient temperature

Final load and 

ambient temperature

FIGURE 2 Block diagram of the method to interpolate and extrapolate
the ambient temperature and load profiles.

correlation matrix to the data, giving rise to linear subspaces
defined by the eigenvectors. NLPCA analysis allows for finding
a better representation of the data by defining the new space
using curved or polynomial subspaces. Works such as [29–32]
have demonstrated the application of NLPCA in the recovery
or estimation of data and its application in predictive models.

The method used to estimate the missing data (interpolation)
and the prediction of future data (extrapolation) for load and
ambient temperature is illustrated in Figure 2.

The initial step is to obtain the load and ambient tempera-
ture profiles from which the outliers, zero data, or erroneous
readings due to failures or sensor malfunctions are filtered out.

Then, the repetitive or harmonic contents of the load and the
ambient temperature are estimated by adjusting the Fourier base
functions [33]. Once the adjustment of the based functions has
been carried out, it is subtracted from the load or temperature
to start the interpolation process.

The next step is to estimate the missing values of the load
or the ambient temperature by interpolation. The duration of
the missing segments is established, and they are divided into
two segments: less than or equal to 2.5 h and greater than 2.5 h.
An interpolation is applied to the first group of segments using
the spline or cubic interpolation method, while an autoregres-
sive model is applied to the second group due to the amount
of missing data. An autoregressive model in (8) uses the linear
combination of its past values and a stochastic term to represent
a certain process [34].

X (n) =
M∑

i=1

amX (n − m) + a0 + 𝜀 (n) (8)

where am is the coefficient that represents the contribution of
the previous data to the new data, a0 is the value of the con-
stant or baseline of the process, and ε(n) is the variability of the
process represented stochastically. Autoregressive models have
been successfully applied in the electricity sector to forecasting
tasks such as wind power generation [35] or the prediction of
energy market load and prices [36].

Once the signal becomes continuous through interpolation,
the future values are estimated by applying the NLPCA. The
load and temperature information were divided into days, that
is segments of 48 data were reduced to 24 by applying a
first encoder. Subsequently, the training of the inverse NLPCA
model reduces the 24 data to 12 and performs the estimation of
the data to be extrapolated, which then are decoded to end the
process.
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CERÓN PIAMBA ET AL. 5

TABLE 2 Characterization of the optimization problem.

Feature

Qualitative

item Qualitative system

Quantitative

unit

Effective Intervention’s
urgency

Used life and consequence
of failure

Risk index

Efficient Investment
needed

Budget Capex (USD)

The reverse NLPCA model uses an intermediate layer of 20
neurons that provides a good number of degrees of freedom for
the curved surfaces that describe the dynamics of the system.

Finally, the main frequencies of the extracted Fourier func-
tions are added again to obtain the results for the load or
temperature. Since the information is in the form of a func-
tion, it is possible to find its values at the interpolated and
extrapolated points of the signal. Statistical performance met-
rics were implemented to obtain a measure that demonstrates
its effectiveness. These are: mean square error (MSE), roots
mean square error (RMSE), coefficient of determination (R2),
average percentage absolute error (MAPE), and concordance
correlation coefficient (CCC).

3.2.2 Oil moisture values

Oil humidity variations inside PT satisfy the following con-
ditions: stochasticity, continuity, temporal independence,
self-similarity and, is a memoryless process. Therefore, oil
humidity content can be estimated using the generalized
Wiener Process, also known as Arithmetic Brownian Motion
(ABM) as described in [15].

3.3 Optimal risk-based replacement

The method for scheduling PT replacement must be efficient
and effective [10]. Therefore, it must prioritize the replacement
of assets that are a threat to reliability through risk index man-
agement. Additionally, budget limitation must be considered.
Thus, a replacement wave is averted, ensuring future financial
sustainability of the transmission system operators.

To translate the above-described properties into a mathe-
matical formulation, quantitative and qualitative evaluations are
needed. These are shown in Table 2.

The Capex is an investment figure that has a monetary value.
For the complete formulation of the problem, an objective
function must be provided to find a suitable optimization algo-
rithm. Based on this, it is expected that an optimal replacement
calendar can be generated.

3.4 Formulation of the optimization
problem

The first step to define the objective function is to understand
how the objective variable x is represented. In this work, the

objective is to know whether a transformer is replaced, and in
what year. This means that the decision variable is binary. Then,
if T transformers are considered to be replaced during an analy-
sis horizon of P periods, the decision variable becomes a vector
with T⋅(P+1) entries. Here, each of these represents a route or
option, as shown in Figure 3.

In Figure 3, the first option is to replace the transformer
in period 1. The second option is to keep the transformer
in service and then replace it in period 2. The third option
involves keeping the transformer in service until its replacement
in period 3. The fourth option is like the previous one, but its
replacement is carried out in period 4. Finally, the option named
P+1 means that the transformer continued in operation during
the study period and was never replaced. The scheme shown in
Figure 2 must be considered for each one of the T transformers
to be considered for replacement into the analyzed period.

Each option presented in Figure 3 has an associated risk and
an implementation cost, for example, the first option implies a
capital expense in period 1 but is the best option to minimize
the risk index. In contrast, the P+1 option does not generate
capital expenditure but increases the risk index.

The objective of the optimization is to minimize the risk of
the power transformer fleet to be renovated. Therefore, replace-
ment should be assigned as soon as possible. Considering this
description and the indivisibility of the project between years,
it is reasonable to use annual optimization. Mathematically, the
risk-based optimization is expressed by (9).

min
i∈T , j∈P

P+1∑
j=1

T∑
i=1

ULi, j ⋅CoFi ⋅ xi, j (9)

subject to

T∑
i=1

CAPEXi, j ⋅ xi, j ≤ BJ where

BJ = B j +

(
B j−1 −

T∑
i=1

CAPEXi, j−1 ⋅ xi, j−1

)
, ∀ j ∈ P + 1

(10)

P+1∑
j=1

xi, j = 1,∀i∈T (11)

xi, j = {0, 1} ∈ N+ (12)

i = {1, T } ∈ N+

j = {1, P} ∈ N+
(13)

In (9), UL is the Useful Life, CoF is the Consequence of
Failure, x is a decision binary variable, which equals one if the
transformer i must be replaced in the period j and zero, 0, if
not. The restriction (10) limits the investment according to the
total available budget, BJ, which results from the summation
of the budget available for each period j, that is, Bj with the
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6 CERÓN PIAMBA ET AL.

AgingReplace

Period 1 Period 2

Continuous 

operation

Continuous 

operation
Replace

Period 3
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Aging
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operation
Replace
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3

Continuous 

operation

4

P+1

Option

Continuous 

operation

Continuous 

operation

Continuous 

operation

Continuous 

operation

Continuous 

operation

Continuous 

operation

FIGURE 3 Possible replacement options for a power transformer.

remained budget, not executed in previous periods. Restriction
(11) ensures that an option can only be executed once during
the planning period, P+1. Restriction (12) limits the target vari-
able to take binary values. In fact, restriction (13) specifies the
domain for the periods and possible PT replacements in which
this expression is valid.

3.5 Optimization algorithm

Once the problem is defined mathematically, the next step
is to provide an algorithm that offers a solution, achieving
the minimization of the risk while considering the budget
limitations.

Because the problem is combinatorial which means that the
variable x in (9) can only take integer values, to achieve the
desired solution, the problem can be modelled by Mixed Inte-
ger Linear Programming (MILP), so that the Branch and Bound
algorithm is readily applicable. Therefore, an optimization algo-
rithm called intlinprog of the MATLAB optimization toolbox
was used.

3.6 New multi-period replacement
optimization methodology

Figure 4 shows a conceptual methodology to schedule in the
long term the replacement PT into a large fleet. It is important
to highlight that because power transformer fleets typically have
tens or even hundreds of units, it can result necessary to iden-
tify in a cluster those risky transformers, approaching their final
life, to then apply the optimization problem, in Section 3.5, only
over those identified units. For this purpose, steps one to four in
Figure 4 are proposed to obtain an initial risk matrix, and a clus-
ter of aged units. However, because of space limitation, those
four steps are considered out from the scope of this paper, but
it is recommended to apply a methodology like the reported in
[8] or [37], for this former classification in clusters.

In what follows, each numbered step in Figure 4 is briefly
described:

Step 1. Compilation and filtering of test results. At the
same time, the data necessary for the calculation of the
consequence of failure (CoF) is acquired.

Step 2. Power transformer health indices are computed for
each power transformer in the fleet. For this purpose,
a methodology like the one described in [37] can be
used.

Step 3. Consequences of power transformer failure are com-
puted for the whole fleet, according to the methodology
presented in [37] or [38].

Step 4. Critical units into the fleet are selected from the
initial risk matrix. Thus, the analysis is focused on the
highest risk transformers. Such a filtering can be carried
out using a clustering technique (e.g. k-means), like that
proposed in [8] and [37].

Step 5. Acquisition, filtering and organization of the input
data to estimate the UL of the critical units selected in
the previous step.

Step 6. Interpolation and extrapolation of the load and
ambient temperature profiles, completing the informa-
tion for the future analysis period by using NLPCA.

Step 7. Estimation of the hot spot temperature profile from
the profiles obtained in the previous step using the
methodology described in [15, 24] based on (1) and (2).

Step 8. Estimation of the oil moisture profile for the anal-
ysis period defined in step 6. This is achieved using
the Brownian Bridges and the Arithmetic Brownian
Movement defined in [15].

Step 9. Estimation of the paper humidity profile from the
humidity profile in the oil according to [15].

Step 10. Obtaining the degradation profile of the solid
insulation based on (4) and (5).

Step 11. Tabulation of the values of the degree of polymer-
ization obtained in the previous step for each year of the
analysis period.
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FIGURE 4 Multiperiod replacement optimization method in the long term for power transformers considering the risk index.

FIGURE 5 Risk matrix for 110 kV. Selection of the critical units.

FIGURE 6 Load profile for T01.

FIGURE 7 Ambient temperature profile of substation 1.

FIGURE 8 Hot spot temperature profile for T01.

FIGURE 9 Oil moisture values interpolated and extrapolated for T01.

FIGURE 10 Paper moisture profile for T01.
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8 CERÓN PIAMBA ET AL.

FIGURE 11 Arrhenius degradation for T01.

Step 12. Estimation of the UL of each unit under study, and
entering the data obtained in the previous step following
(6) and (7).

Step 13. Risk matrix uses the UL and the consequences
of failure as the axes. The capex of the units and the
budget of the company are also entered for the analysis
period. With this information, the developed optimiza-
tion model (9) is executed with the restrictions (10) to
(13).

Step 14. The output information indicates the optimal long-
term replacement strategy.

4 CASE STUDY

4.1 Case description

The methodology was applied to a power transformer fleet con-
sisting of 102 units, of which 39 units have a nominal primary

voltage of 110 kV and the remaining 63 have a nominal volt-
age of 34.5 kV. The results of the physicochemical tests, and
the data for dissolved gases and furans, were collected from
steps 1 to 4 in Figure 4. Then, the health index was calculated
based on [37]. In parallel, its consequence factor was calcu-
lated and subsequently the risk matrix of the 102 units was
plotted. The obtained values were grouped using MATLAB
k-means, identifying that the group with the highest risk cor-
responds to the equipment with a nominal voltage of 110 kV.
Therefore, k-means was applied again only for the 110-kV
equipment, obtaining a total of 16 transformers with the high-
est risk index as shown in Figure 5. These were named as
T01–T16.

Applying step 5, for each of the 16 critical transformers, the
load and ambient temperature profiles were acquired for the
period from 20 January 2008 to 01 January 2019 (approximately
11 years).

Next, from step 6, the load and ambient temperature profiles
of the 16 transformers were interpolated and extrapolated based
on Figure 2. For extrapolation, a future time of 5 years was con-
sidered, that is, the profiles were extrapolated until 01 January
2024 as it is shown for T01 in Figures 6 and 7.

After applying step 7, the hot spot temperature profile was
estimated for each of the 16 critical transformers, obtaining the
profile shown in Figure 8. In step 8, the moisture values of the
oil were interpolated and extrapolated for each of the 16 units,
obtaining the profile presented in Figure 9. Subsequently, in step
9, the moisture profiles of the paper were estimated, obtaining
the profiles shown in Figure 10.

In step 10, the degradation of the solid insulation was
estimated for each one of the 16 transformers under study
with the information of the initial DP and using (4) and

TABLE 3 Useful life values.

Date

Unit 1 January 2019 1 January 2020 1 January 2021 1 January 2022 1 January 2023 1 January 2024

T01 0.82 0.83 0.85 0.86 0.87 0.88

T02 0.67 0.67 0.68 0.69 0.71 0.72

T03 0.83 0.89 0.91 0.92 0.94 0.95

T04 0.67 0.68 0.69 0.70 0.71 0.72

T05 0.84 0.87 0.89 0.92 0.95 0.97

T06 0.69 0.70 0.71 0.73 0.75 0.78

T07 0.66 0.68 0.70 0.71 0.73 0.75

T08 0.76 0.77 0.78 0.79 0.80 0.82

T09 0.72 0.73 0.74 0.75 0.77 0.78

T10 0.70 0.71 0.72 0.73 0.74 0.75

T11 0.70 0.71 0.72 0.74 0.76 0.77

T12 0.71 0.72 0.73 0.75 0.76 0.77

T13 0.71 0.72 0.73 0.75 0.76 0.78

T14 0.99 1.00 1.00 1.00 1.00 1.00

T15 0.74 0.76 0.77 0.80 0.82 0.84

T16 0.85 0.87 0.89 0.92 0.94 0.96
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CERÓN PIAMBA ET AL. 9

TABLE 4 Budget available for renovation of critical units.

Year Increase (%) Budget (USD)

2020 – 500,000

2021 2 510,000

2022 2 520,200

2023 2 530,604

2024 2 541,216

TABLE 5 Characteristics of critical units, Capex, and consequence of
failure values.

Rated power (MVA)

Unit

Nominal

voltage (kV) ONAN ONAF

Capex

(USD)

CoF
(USD)

T01 110/13.2 10 12.5 342,365 2,014,650

T02 110/34.5/13.8 21 30 708,357 2,003,712

T03 110/34.5 21 30 600,559 1,995,509

T04 110/34.5/13.8 21 30 708,357 2,011,004

T05 110/34.5/5.84 50 60 936,235 2,059,357

T06 110/34.5/5.84 50 60 936,235 2,052,976

T07 110/34.5/13.2 40 50 881,343 1,921,729

T08 110/34.5/13.2 40 58 908,156 1,923,552

T09 110/34.5/13.2 22.5 30 708,357 1,981,837

T10 110/34.5/13.2 22.5 30 708,357 1,985,027

T11 110/34.5 22.5 30 600,559 1,979,558

T12 110/13.2 20 25 511,925 1,883,533

T13 110/13.8 20 26/33 578,356 1,878,064

T14 110/34.5/13.2 20 25 602,299 1,979,103

T15 110/34.5 10 – 315,603 2,307,019

T16 110/34.5/13.8 21 30 708,357 2,191,442

(5). Figure 11 shows an example of the degradation obtained
for T01.

In step 11, the annual values of the degree of DP were tab-
ulated from 01 January 2019 to 01 January 2024, using the
extrapolated values.

In step 12, (6) was applied for TUP or (7) for No-TUP,
obtaining Table 3 that presents the tabulated useful life values
for the extrapolated period.

Step 13 corresponds to the preparation of the input data
required to run the optimization model. Therefore, in addition
to the values of CoF calculated as indicated in [11] and UL per
year (UL), the cost of the units and the budget of the company
are necessary. This information is presented in Tables 4 and 5.
Capex values were obtained based on [39].

CoF, consequence of failure.
Finally, the optimization results obtained in step 14 are pre-

sented in Table 6. It must be considered that the results are
binary, that is, 0 represents that no action is performed and
1 implies performing the action presented by each option,
according to Figure 12.

TABLE 6 Optimization results.

Unit Option 1 Option 2 Option 3 Option 4 Option 5 Option 6

T01 1 0 0 0 0 0

T02 0 0 0 0 0 1

T03 0 0 0 1 0 0

T04 0 0 0 0 0 1

T05 0 0 0 0 0 1

T06 0 0 0 0 0 1

T07 0 0 0 0 0 1

T08 0 0 0 0 0 1

T09 0 0 0 0 0 1

T10 0 0 0 0 0 1

T11 0 0 0 0 0 1

T12 0 0 0 0 0 1

T13 0 0 0 0 0 1

T14 0 1 0 0 0 0

T15 0 0 1 0 0 0

T16 0 0 0 0 1 0

4.2 Results and discussion

Table 7 shows the replacements that should be made and the
evolution of the budget over time for each period.

Examination of the obtained results shows that the opti-
mal replacement scheme is to first replace T01 in 2020. Then,
T14 should be replaced in 2021. Subsequently, T15 should be
replaced in 2022. Then, T03 should be replaced in 2023. Sub-
sequently, the last equipment replacement should be carried out
for T16 in 2024.

Finally, based on the optimization, the units T02, T04, T05,
T06, T07, T08, T09, T10, T11, T12, and T13 shall not be
replaced. This substitution scheme represents the lowest total
risk index of the fleet for the case study with an IR value of
1.012 × 108.

5 CONCLUSIONS

The UL estimation methodology allowed the estimation of the
evolution of the degradation of the solid insulation as a function
of time under the operating conditions of the PT.

Filtering of the load and ambient temperature profiles is a key
step for obtaining an efficient method because the noise and the
abnormal or zero values that are not filtered out decrease the
performance of the proposed extrapolation model.

The NLPCA model can correctly extrapolate the shape of the
signals in the future.

The optimization model allows for a technical and economic
evaluation of the units of a power transformer fleet, supporting
the asset manager in the design of investment strategies for
future replacement through the analysis of the evolution of
aging in long-term scenarios that consider the solid insulation,
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FIGURE 12 Replacement options scheme for each critical unit.

TABLE 7 Budget and execution of replacements for the case study.

Year

Initial budget

(USD)

Replaced

unit

Execution

(USD)

Budget available

after execution

(USD)

2020 500,000 T01 342,365 157,635

2021 510,000 T14 602,299 65,336

2022 520,200 T15 315,603 269,933

2023 530,604 T03 600,559 199,978

2024 541,216 T16 708,357 32,837

the strategic importance of each unit, the cost of replacing
equipment, and the available budget in order to minimize the
total risk of the fleet.
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