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differential expression

− d2

dx2
+ x+ q(x), x ∈ [0,∞), q ∈ L1(0,∞),

and boundary condition φ′(0)− bφ(0) = 0, b ∈ R.
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1 INTRODUCTION

This paper is concerned with the spectral analysis of self-adjoint operators associated with a differential
expression of the form

τq = −
d2

dx2
+ x+ q(x), x ∈ [0,∞),

where q is a real-valued function that lies in L1(R+).
By standard theory (see e.g. [7, Ch. 6]), τq is in the limit-circle case at 0 and in the limit-point case at∞.

Hence (the closure of) the minimal operator H ′
q defined by τq is symmetric and has deficiency indices (1, 1).

The self-adjoint extensions of H ′
q are defined by imposing the usual boundary condition at x = 0. Namely,

given b ∈ R ∪ {∞},

D(Hq,b) =

{
φ ∈ L2(R+) : φ,φ

′ ∈ ACloc([0,∞)), τqφ ∈ L2(R+),

φ′(0)− bφ(0) = 0 if b ∈ R, φ(0) = 0 if b =∞

}
, Hq,bφ = τqφ. (1)

Moreover, Hq,b has only simple, discrete spectrum, with a finite number of negative eigenvalues (if any)
because it is semi-bounded from below. Let ψ(q, z, x) be the unique (up to a constant multiple) square-
integrable solution to the eigenvalue problem τqφ = zφ, z ∈ C. According to the Borg–Marchenko
uniqueness theorem [3], Hq,b is uniquely determined by the spectral data consisting of the set of eigenvalues

{λn(q, b)}∞n=1 = {λ ∈ R : w(q, b, λ) = 0} , w(q, b, z) :=

{
ψ′(q, z, x)− bψ(q, z, x), b ∈ R,
ψ(q, z, x), b =∞,

along with the set of (logarithmic) norming constants1

{κn(q, b)}∞n=1 , κn(q, b) =





log

(
ψ(q, λn(q), 0)

ẇ(q, b, λn(q))

)
, b ∈ R,

log

(
−ψ

′(q, λn(q), 0)

ψ̇(q, λn(q), 0)

)
, b =∞.

(2)

1The norming constants are given by (minus) the residues of the Weyl function m(z) —which in this case is a meromorphic
Herglotz function— at the eigenvalues. That is,

eκn(q,b) := − lim
ϵ→0

iϵm(q, b, λn(q, b) + iϵ) = ∥ϕ(q, b, λn(q), ·)∥2 ,

where ϕ(q, b, z, x) is the solution to τqφ = zφ that obeys either ϕ(q, b, z, 0) = 1 and ϕ′(q, b, z, 0) = b if b ∈ R or else
ϕ(q,∞, z, 0) = 0. The expression (2) follows after applying the identity ∂x(ψ ψ̇′ − ψ′ψ̇) = −ψ2. The notation φ′ := ∂xφ and
φ̇ := ∂zφ is used throughout this work.
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A main task of the (inverse) spectral analysis of this kind of operators is to obtain a precise, i.e. sharp,
characterization of the spectral data. This usually can be accomplished when q lies in certain subspaces that
are themselves Hilbert spaces (for instance, see [1, 5]). For the problem in hand we consider real-valued
perturbations q that belong to the Hilbert space

Ar :=
{
q ∈ Ar ∩ AC[0,∞) : q′ ∈ Ar

}
, ∥q∥2Ar

:= ∥q∥2Ar
+
∥∥q′
∥∥2
Ar
,

where
Ar := L2

R(R+, (1 + x)rdx), ∥q∥Ar
:= ∥q∥L2(R+,(1+x)rdx)

,

and r > 1 is arbitrary but fixed. It is easy to verify that Ar ⊂ L1(R+) (as long as r > 1). The following
characterization of the spectral data for the Dirichlet problem is shown in [6]; here λn(q) := λn(q,∞) and
κn(q) := κn(q,∞):

Theorem 1 For every n ∈ N, λn : Ar → R and κn : Ar → R are real analytic maps.2 Moreover, in terms
of

ωr(n) :=

{
n−1/3 log1/2 n if r ∈ (1, 2),

n−1/3 if r ∈ [2,∞),
(3)

one has the following asymptotics:3

λn(q) = −an + π

∫∞
0 Ai2(x+ an)q(x)dx

(−an)1/2
+O

(
n−1/3ω2

r (n)
)

and

κn(q) = −2π
∫∞
0 Ai(x+ an)Ai

′(x+ an)q(x)dx

(−an)1/2
+O

(
ω3
r (n)

)
,

uniformly on bounded subsets of Ar.

In this paper we discuss some preliminary steps toward generalizing Theorem 1 to the problem with
mixed (including Neumann) boundary condition corresponding to b ∈ R. We will make use of the (minimal)
assumption q ∈ L1(R+) exclusively.

2 THE UNPERTURBED PROBLEM

The eigenvalue problem τ0φ = zφ has the square-integrable solution

ψ0(z, x) =
√
πAi(x− z),

where Ai denotes the Airy function of the first kind;4 a summary of their relevant properties can be found in
[4, Ch. 9]. Thus, the set of eigenvalues and norming constants of Hb := H0,b can be written as
{
λn(b) ∈ R : Ai′(−λn(b))−bAi(−λn(b)) = 0, κn(b) = log

(
Ai(−λn(b))

λn(b)Ai(−λn(b))+bAi′(−λn(b))

)}∞

n=1

.

2Let B be a Hilbert space over K, and let U ⊂ B be open. A map f : U → K is (Fréchet) differentiable at q ∈ U if there exists a
linear functional dqf : B → K such that

lim
v→0

|f(q + v)− f(q)− dqf(v)|
∥v∥B

= 0.

The map f is continuously differentiable on U if it is differentiable at every point in U and the resulting map df : U → L(B,K) is
continuous. If B is a complex Hilbert space, then f is analytic on an open subset U of B if it is continuously differentiable there.
Finally, let BC be the complexification of a real Hilbert space B and let U ⊂ B be open. Then f : U → R is real analytic on U if for
every q ∈ U there exists Vq ⊂ BC open and an analytic map hq : Vq → C such that f(v) = hq(v) for all v ∈ U ∩ Vq (assumed
non-empty).

3In this paper an order relation of the form
f(n) = O(g(n))

implicitly assume n ∈ N and (of course) n→ ∞.
4The factor

√
π does not play any role in this work but we keep it to facilitate comparison with [6].
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Proposition 1 Given b ∈ R, one has

λn(b) = −a′n −
b

a′n
+O(n−4/3) and κn(b) = − log(−a′n) +

b2

a′n
+O(n−4/3),

where a′n denotes the n-th zero of the derivative of the function Ai (see [4, Ch. 9]).

Proof. The first assertion can be shown by using the method of successive resubstitutions like in [2]. A
computation yields

κn(b) = − log λn(b)− log

(
1 + b

Ai′(−λn(b))
λn(b)Ai(−λn(b))

)

= − log λn(b)− b
Ai′(−λn(b))

λn(b)Ai(−λn(b))
+O

((
Ai′(−λn(b))

λn(b)Ai(−λn(b))

)2
)
,

from which the second assertion follows. □

3 MAIN RESULTS (IN A RELATIVE SENSE)
Let us define

ω(q, z) :=

∫ ∞

0

|q(x)|√
1 + |x− z|

dx.

Clearly ω(q, z) is well defined if we only assume q ∈ L1(R+, (1 + x)−1/2dx), although in such a case we
cannot control its behavior when z →∞. Some decaying property is warranted if q belongs to L1(R+); this
is shown next.

Lemma 1 Assume q ∈ L1(R+). Then ω(q, z)→ 0 as z →∞.

Proof. Given ε > 0, choose x∗ > 0 and µ∗ > x∗ such that
∫ ∞

x∗
|q(x)| dx < ε

2
and

1√
µ∗ − x∗

<
ε

2 ∥q∥1
.

Suppose |Im(z)| > µ∗. Then |x− z| > µ∗ for any x > 0. Hence,

1√
1 + |x− z|

≤ 1√
µ∗

<
ϵ

2 ∥q∥1
for all x ∈ R∗, which in turn implies ω(q, z) < ϵ. A similar reasoning applies when |Im(z)| ≤ µ∗ and
Re(z) < −µ∗. Finally, suppose that |Im(z)| ≤ µ∗ and Re(z) > µ∗. Since ω(q, z) ≤ ω(q,Re(z)), it suffices
to consider z = µ ∈ R with µ > µ∗. Then,

ω(q, µ) <
1√

1 + |x∗ − µ∗|

∫ x∗

0
|q(x)| dx+

∫ ∞

x∗
|q(x)| dx < ε.

Thus, we have shown that ω(q, z) < ε whenever |Re(z)|+ |Im(z)| > µ∗. □

Let us define the contours

Fm :=
{
z ∈ C : |ζ| =

(
m− 5

4

)
π
}
, Fn :=

{
z ∈ C :

∣∣ζ −
(
n− 3

4

)
π
∣∣ = π

2

}
, m, n ∈ N, m ≥ 2.

Clearly Fn encloses exactly one zero of Ai′(−z), namely −a′n, for sufficiently large values of n.

Lemma 2 There exists m0, n0 ∈ N such that, for every m ≥ m0 and n ≥ n0, the following statement holds
true:

σ(z)gA(−z) < 16
√
π
∣∣Ai′(−z)

∣∣ ,
whenever z ∈ Fm or z ∈ Fn.

MACI Vol. 9 (2023) G. Mazzieri, M. P. Saavedra, R. D. Spies, K. Temperini (Eds.)

112



Proof. This inequality follows from argument like in the proof of Lemma A.2 of [6]. □

Proposition 2 Suppose (q, b) ∈ L1(R+)× R. Then the eigenvalues and norming constants of Hq,b satisfy

λn(q, b) = −a′n +O
(
n−1/3

)
and κn(q, b) = − log(−a′n) + o(1).

Proof. Let us abbreviate

w(z) = w(q, b, z), ω(z) = ω(q, z), ψ0(z) = ψ0(z, 0), ψ(z) = ψ(q, z, 0), et cetera.

Resorting to Lemma 3.1 of [6], we obtain
∣∣w(z)− ψ′

0(z)
∣∣ ≤

∣∣ψ′(z)− ψ′
0(z)

∣∣+ |b| |ψ(z)| ≤ CeCω(z)
[
ω(z) +

|b|
(σ(z))2

]
σ(z)gA(−z),

where σ(w) := 1 + |w|1/4 and gA(w) := exp(−2
3 Rew

3/2). According to Lemma 1, there exists n1 ∈ N
such that

eCω(z) ≤ 2 and ω(z) +
|b|

(σ(z))2
≤ 1

32C
,

whenever |z| ≥ (32π(n1 − 5
4))

2/3. Then, by Lemma 2, there exists n2 ≥ n1 such that
∣∣w(z)− ψ′

0(z)
∣∣ <

∣∣ψ′
0(z)

∣∣ (4)

for all z ∈ Fn2 . Moreover, by increasing n2 if necessary, we can assume that Fn2 encloses the (finitely many)
negative zeros of w(z). Finally, increasing n2 one more time if necessary, we can ensure that (4) holds true
for z on every contour Fn whenever n ≥ n2. Now, Rouché’s theorem implies that w(z) has as many zeros as
ψ′
0(z) within Fn2 and exactly one zero λn = λn(q, b) nearby −a′n within each Fn with n ≥ n2. That is, for

sufficiently large n, ∣∣∣23λ3/2n − 2
3(−a′n)3/2

∣∣∣ ≤ π
whence the asymptotics for the eigenvalues follows. Finally, a computation like in the proof of Proposition 1
yields

κn(q, b) = − log λn(q, b) +O(ω(q, λn(q, b))),

which in turn implies the asymptotics for the norming constants. □

Clearly these asymptotic expansions are rather coarse. They cannot be improved because we have
insufficient control on the decay of the function ω(q, z) if we just assume q ∈ L1(R+). However, sharper
results akin to Theorem 1 are expected if q ∈ Ar; this will be the subject of a subsequent paper.
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