
Cooling to absolute zero: The unattainability principle

Nahuel Freitas,1 Rodrigo Gallego,2 Lluı́s Masanes,3 and Juan Pablo Paz4, 5

1Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

3Department of Physics & Astronomy, University College London, WC1E 6BT London, U.K.
4Departamento de Fı́sica, FCEyN, UBA, Pabellón 1,
Ciudad Universitaria, 1428 Buenos Aires, Argentina

5Instituto de Fı́sica de Buenos Aires, UBA CONICET,
Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina

The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating
the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations
of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which
the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the
set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature,
which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite
amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states
among others—which can in turn be argued to imply that an infinite amount of time is required to access those
resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad
class of currently available experimental settings. In particular, the UP is here derived within a model of linear
and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs
at different temperatures.

I. INTRODUCTION

The necessity of the third law of thermodynamics and its physical content were heatedly debated
by Nernst, Planck and Einstein at the beginning of the 20th century. Several inequivalent formula-
tions of the law [1–4] were proposed, but the one that has been mostly considered by subsequent
authors is the

Unattainability principle: It is impossible by any procedure, no matter how idealized,
to reduce any assembly to absolute zero temperature in a finite number of operations
(Nernst [5]).

The above statement makes use of ambiguous concepts such as “procedure” and “operation” which
are concomitant to formulations of thermodynamics present at the time. Within the contemporary
formulation of thermodynamics, by “any procedure” it is meant any process whose underlying dy-
namics is unitary, and hence, it does not include measurements or preparations (unless the measure-
ment apparatus is included in the “assembly”). Note that, otherwise, we could violate the unattain-
ability principle (UP) simply by measuring the energy of a two level system and conditionally driving
it to its ground state.

Another ambiguity is the notion of “operation”, on which, supposedly, any procedure can be
decomposed. A finite number of operations translates simply in that the duration of the overall
procedure is finite. This relation between finiteness of time and number of operations is reminiscent
of the very specific type of thermodynamic operations (isothermal, adiabatic, etc.) considered at
the time. At present, however, we would like a formulation of the UP that applies to the widest
range of physical procedures —not necessarily decomposable into specific types of operations—
hence, we need to generalize the constraint that the time duration of the procedure is finite in a
setup-independent fashion. This can be done with the following

Finiteness assumption: Within a finite time, a system can only interact with finitely-
many other systems, each having effectively finite size. Also, within a finite time, only a
finite amount of work can be injected into a system.

The notion of “finite size” that appears in the above assumption is formalized in different ways: fi-
nite heat capacity, finite volume (Sec. IV), finite Hilbert space dimension (Sec. III) and finite largest
eigenvalue of the Hamiltonian (Sec. V). The finiteness of the volume can be justified by, for example,
invoking the finite speed of information propagation from Special Relativity or the Lieb-Robinson
bound [6]. The finiteness of the Hilbert space dimension is more appropriate in the context of quan-
tum computers and artificial systems. This is particularly relevant because quantum computation
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requires initial pure states, and as we see below, the task of distilling pure states is essentially equiv-
alent, in relation to the UP, to that of cooling to absolute zero.

The Finiteness Assumption also puts limits on the amount of thermodynamic resources (Sec. III)
and work (Secs. IV and V) that can be consumed in a cooling process. The translation of “time” to all
these mentioned physical parameters allows to go beyond the original UP, and provide quantitative
versions of it. That is, relationships between the lowest achievable temperature and the value of the
physical parameters associated to time.

This chapter is organized as follows: In Sec. II we lay out and discuss the assumptions and
features of a general cooling protocol. In Sec. III we show recent bounds on cooling protocols with
infinite heat baths and catalysts using states out of equilibrium as a resource for cooling [7]. In Sec.
IV we consider the case of work as a resource for cooling in the presence of a finite heat bath [8].
In Sec. V we present formulations of the UP in terms of the dimension of the heat bath. Lastly,
in Sec.VI we consider a less general scenario of more practical relevance by studying the cooling
bounds and the UP for networks of harmonic oscillators [9].

II. GENERAL SETUP FOR COOLING PROCESSES

In the following we lay out a general framework that includes as particular cases the different
types of cooling protocols. This general cooling process consists of a joint transformation of the
following subsystems:

• The system S is what we want to cool down to the lowest possible temperature. The system
has Hilbert space dimension dS, and its initial and final states are denoted by ρS and ρ′S re-
spectively. The Hamiltonian HS has ground-space projector Pgr with degeneracy g, and the
energy gap above the ground state is ∆. Most of the following results apply to the case where
the system is initially in thermal equilibrium ρS = ωβ(HS), at the same temperature than the
bath T = 1/β, where we define the equilibrium state

ωβ(H) :=
e−βH

Tr(e−βH)
. (1)

The quality of the cooling procedure is quantified by the cooling error

ε = 1− Tr(ρ′SPgr) , (2)

or the final temperature-like quantity

T ′ ≥ ∆

ln(dS/gε)
. (3)

The unattainability results that are presented in what follows, constitute lower bounds for the
quantities ε and T ′, which prevent them to be zero.

• The bath B can be seen as the environment of the system, and as such, it is in thermal
equilibrium ρB = ωβ(HB) at temperature T = 1/β. The role of the Bath is to absorb
entropy from the system S contributing to its temperature reduction. The Hilbert-space di-
mension of the bath can be finite dB or infinite. Its Hamiltonian HB has energy range
JB = λmax(HB)−λmin(HB), where λmax/min(HB) are its largest/lowest eigenvalue. The energy
range JB can also be finite or infinite.

• The catalyst C represents the machine that we use for cooling. As a tool, its initial and final
states must be equal ρ′C = ρC, such that, at the end of the protocol it can be re-used in the next
repetition of the process (Sec. III).

• The resource R is the fuel that will be consumed in the cooling transformation. As such,
there are no constraints on the final state of the resource ρ′R. The initial state of the resource
must necessarily be not in equilibrium ρR 6= ωβ(HR), and its utility increases when increasing
its energy and/or decreasing its entropy. Thermodynamic work can also be seen as a type of
resource with conditions on its final state, so that, dumping entropy in ρ′R is not allowed.
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Once the subsystems of the cooling protocol have been presented we state now formally some fun-
damental assumptions that are used in the rest of the chapter.

• Independence Assumption. All subsystems are initially in a product state ρS⊗ρB⊗ρC⊗ρR,
and the total Hamiltonian is initially non-interacting H = HS +HB +HC +HR.

• Unitarity Assumption. The joint transformation of all subsystems is unitary:

ρ′S = TrBCR
[
U (ρS ⊗ ρB ⊗ ρC ⊗ ρR)U†

]
(4)

where U is a unitary operator.

• Energy Conservation is the requirement that the global unitary commutes with the total
Hamiltonian [U,H] = 0. This assumption is considered in Sec. III. On the other hand, in
Secs. IV and V, the unitary operator U is unrestricted. This energetic imbalance is com-
pensated by an expenditure or generation of work. In general, this work fluctuates, taking
different values in different repetitions of the procedure, or adopting coherent super-positions.
It is important to mention that any non-energy-conserving unitary U can be simulated by an
energy-conserving one V acting on a larger compound

UρSU
† = TrR

(
V ρS ⊗ ρRV †

)
, (5)

where [V,HS + HR] = 0. For this to be possible, the Hamiltonian HR and the state of the
extra system ρR have to be of a particular form [10].

Although giving up on the Independence Assumption might be of interest, it is ubiquitously assumed
in the derivation of bounds and laws of thermodynamics and necessary to obtain usual derivations of
the second law of thermodynamics [11]. However, it is important to mention that recent efforts [12]
are going beyond this framework. Regarding the Unitarity Assumption it is mainly motivated by the
formalism of quantum mechanics, which prescribes a unitary evolution for systems evolving under
time-dependent Hamiltonians [13, 14].

The following table includes the classification of all the unattainability results explained in this
chapter (first column). The “limiting factor” (second column) contains the physical parameters that
need to become infinite in order to achieve absolute zero. These can be: the Hilbert-space dimension
of the bath dB, the energy range of its Hamiltonian JB, the heat capacity of the bath CB(E) (defined
in Sec. IV). The smaller the value of these parameters is, the further from absolute zero the final
state of the system becomes. The third column tells us which results assume energy conservation
(“yes”), and which ones require fluctuating work to compensate for the energetic imbalances (“no”).
The fourth column specifies which results assume that the heat bath has finite volume, and which do
not. The fifth column informs us about the thermodynamical resource that fuels the transformation.
This can be work, non-equilibrium resources ρR, or both. The sixth column tells us which setups
include a catalyst and which do not.

limiting factor [U,H] = 0 finite bath resource catalyst

Allahverdyan (2011) [15] finite dB and JB no yes work no
Reeb (2014) [16] finite JB no yes work no

Scharlau (2016) [17] finite dB and JB yes yes work no
Masanes (2017) [8] finite CB(E) and Wwc no yes work no
Wilming (2017) [7] finite resources yes no non-eq. yes
Müller (2017) [18] finite catalyst yes no both yes

III. COOLING WITH FINITE RESOURCES

In this section we will summarize the results of Ref. [7]. There, cooling processes are considered
which involve arbitrary heat bath and catalyst. The only limiting factor is the size of the resource R,
which is assumed to be finite dimensional, and, as we will see, the lowest possible temperature can
be compactly expressed as a function of the initial state of the resource ρR.
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We will use the set-up of catalytic thermal operations [13, 19, 20] applied to the task of cooling.
For this, consider a thermal bath B described by state and Hamiltonian (ωβ(HB), HB), a catalyst
(σC, HC) and a finite-dimensional resource R described by (ρR, HR). We do not impose any restric-
tion on the size or dimensionality of B and the dimension of C and allow for arbitrary HB, σC and
HC. These three systems are brought to interact with a system S which one aims at cooling and is
initially at thermal equilibrium with the thermal bath, that is ρS = ωβ(HS). By imposing the three
assumptions laid out in Sec. II —namely, Independence, Unitarity and Energy Conservation— and
that the catalyst is returned in the same state we obtain transitions of the form

ρ′S ⊗ σC = TrRB
[
UρR ⊗ ρS ⊗ σC ⊗ ωβ(HB)U†

]
. (6)

where U commutes with the total Hamiltonian. Note that we demand that the catalyst is returned
in the same state and uncorrelated with the system S that one aims at cooling, in this way, it can
be re-used for arbitrary future transitions. The allowed transitions of the form form (6) have been
characterized in Ref. [20] for diagonal states, that is, with [ρR, HR] = 0 and [ρ′S, HS] = 0. It is
shown that a transition is possible if and only if

Sα(ρR‖ωβ(HR)) ≥ Sα(ρ′S‖ωβ(HS)) ∀α ≥ 0, (7)

where Sα are so-called Renyi-divergences. Note that it is in principle necessary to check an infinite
number of conditions —one for each real value of α— to certify that the cooling protocol is possible.
In Ref. [7] it is shown that in the limit of very small final temperature T ′ the infinite set of conditions
reduces essentially to the evaluation of a single function, referred to as vacancy, and defined by

Vβ(ρ,H) := S(ωβ(H)‖ρ), (8)

where S is the quantum relative entropy defined as S(ρ‖σ) = Tr(ρ log ρ) − Tr(ρ log σ). The
vacancy becomes a key quantity in relation with the UP, since it is shown that sufficient and necessary
conditions for cooling to sufficiently low T ′ are given respectively by

Vβ(ρR, HR)−K(ρR, HR, ρS , HS , β) ≥ Vβ(ρS , HS), (9)
Vβ(ρR, HR) ≥ Vβ(ρS , HS), (10)

where K(ρR, HR, ρS , HS , β) → 0 as T ′ → 0. (See [7] for a definition of K.) Hence, in the
limit of very cold final states where the UP applies, both inequalities converge to a single one ruled
by the vacancy. These conditions can be also re-expressed for the multi-copy case ρR = ρ⊗n,
where each copy has a local Hamiltonian h, to obtain lower bound for the final temperature T ′ ≥
k(nVβ(ρ, h))−1 where k is a constant.

It is illustrative to compare these bounds with the actual cooling rates achieved by protocols of
Algorithmic Cooling [21–24]. For example, in the seminal work of Ref. [21] it is considered a
cooling protocol like the ones described in Sec. II but without heat bath nor catalyst, and simply a
resource R of the form ρ⊗N with trivial Hamiltonian h = 0. This protocol provides a cooling error
that decreases exponentially with the size of the resource ε ∝ exp (−kn) with k being a constant.
In turn, the inequality (10) implies a bound of the form ε ≥ C exp(−Rn) with C and R being
constants which depend of Vβ(ρ, h). This has as an implication that for the case of i.i.d. resources
the simple protocol of algorithmic cooling from Ref. [21] offers an exponential scaling which is (up
to factors in the exponent) optimal, even within the much larger family of of protocols which employ
an arbitrarily large bath and catalyst as considered here.

Lastly, let us briefly mention on the significance that the vacancy rules low temperature cooling.
For this, it is illustrative to compare to formulations of the second law which bound the extractable
work from a given resource ρR. As it is well-known, the extractable work W satisfies

W ≤ Fβ(ρR, HR)− Fβ(ω(HR), HR) ∝ S(ρR‖ωβ(HR)) (11)

where Fβ(ρ,H) = Tr(ρH) − β−1S(ρ) is simply the free energy [10, 25, 26]. Importantly, note
the similarities between the vacancy (8) and the r.h.s. of (11). This gives a common interpretation
for the second and third laws in terms of a common function, the relative entropy, which can be
regarded as a distance, or a measure of distinguishability between quantum states. The ordering of
the arguments is related with strategies of hypothesis testing to discriminate between both states [27].
In this way one arrives to the general explanation that the value of a given resource is determined
by its distinguishability from its thermal state, this is measured with the free-energy for the task of
work extraction, and measured with the vacancy for the task of cooling.
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A. Work as a resource for cooling

It is also possible to incorporate in the framework of this section models of work as a particular
case of a resource. As already laid out in Sec. II, it is possible to simulate the action of a unitary
evolution which inputs work —that is, with [U,H] 6= 0— by considering an external system, R in
this case, which compensates for the energy imbalance. For this one can follow the approach of
Ref. [13] considering as a resource R a qubit in state ρR = |1 〉〈1 | and with Hamiltonian HR =
W |1 〉〈1 |. One finds that in this case it is possible to cool down to absolute zero, since the transition

ωβ(HS)⊗ |1 〉〈1 | 7→ |0 〉〈0 | ⊗ |0 〉〈0 | (12)

is possible whenever W > logZβ where Zβ is the partition function of S [13]. Although this
seems to be in contradiction with the third law of thermodynamics, we note that this procedure
only works if the initial resource ρR is exactly pure. If instead we consider slightly noisy work
ρR = ε |0 〉〈0 | + (1 − ε) |1 〉〈1 |, then perfect cooling is impossible for any ε > 0, regardless of the
value of W (even if it diverges) [7]. In this sense, perfect cooling is only possible if we have already
as a resource a state which is not full-rank.

B. Cooling by building up correlations

In the description of the catalytic thermal operations of Eq. (6) we impose that the catalyst is re-
turned in the same state and also uncorrelated with the system being cooled S. Possible alternatives
to this scenario have been recently considered [18, 28, 29], where the system S is allowed to build
correlations with the catalyst. In this way, the l.h.s. of (6) is substituted by a possibly correlated state
ρ′SC so that TrS(ρ′SC) = σC. These correlations do not prevent one from re-using the catalyst for
subsequent cooling protocols. In particular, suppose that we have a series of uncorrelated systems
S1, . . . ,SN that we want to cool. One can first apply a cooling protocol using S1 and C, initially
uncorrelated, and produce ρ′S1C

. Afterwards, the catalyst is re-used together with S2 for another rep-
etition of the cooling protocol, which is possible regardless of the correlations that C has established
with S1. Building up correlations in this form is advantageous for implementing cooling processes
as shown in Ref. [18]. There it is shown that, if two diagonal states [ρR, HR] = [ρ′S, HS] = 0 satisfy
Fβ(ρR, HS) ≥ Fβ(ρ′S, HS) then there always exist a catalyst and a thermal bath so that

γSC = TrB(UρR ⊗ ωβ(HS)⊗ σC ⊗ ωβ(HB)U†) (13)

with U commuting with the total Hamiltonian, TrS(γSC) = σC and TrC(γSC) arbitrarily close to
ρ′S. This can be used to cool at arbitrarily low temperatures while employing finite resources. For
instance, take ρR to be a qubit so that F (ρR, HR) > F ( |0 〉〈0 | , HS) where |0 〉〈0 | is the ground
state of HS. One can always find such a state ρR by making it sufficiently energetic. Then Eq. (13)
implies that it is possible to cool as close to zero temperature as desired just with ρR as a resource.
It is natural to ask now if this represents a violation of the UP. It turns out that the dimension of C
and B, at least this is the case in the construction of Ref. [18], diverge as we approximate better the
final zero temperature state. Hence, using the Finiteness Assumption introduced in Sec. I, one would
also require diverging time to implement this protocol. On the other hand it is to date unclear what
is the particular scaling of the dimension of CB in the optimal construction, hence it is open in this
scenario which are the actual bounds relating time and temperature.

IV. COOLING WITH A BATH HAVING FINITE HEAT CAPACITY

The Finiteness Assumption (Sec. I) imposes that, within a process lasting for a finite time, the
volume of the effective heat bath assisting the transformation must be finite. In physical setups
where this volume is not defined, one can impose, alternatively, the finiteness of the heat capacity or
free energy. We stress that the finiteness of these quantities is independent to that of the Hilbert space
dimension. And in particular, a finite region of a typical heat bath (radiation, air, etc) is described by
an infinite-dimensional Hilbert space.

The Finiteness Assumption also imposes that, within a finite time, the amount of work injected
into the system and bath must remain finite. In general, this work expenditure fluctuates, taking
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different values in different repetitions of the procedure, or adopting quantum super-positions. Since
the UP is a bound on the worst-case cooling time (not the average time), the relevant quantity here is
the worst-case work (not the average work). Also, the necessity of considering the worst-case work
follows from the observation that, if the worst-case work is not constrained then perfect cooling is
possible with a heat bath consisting of a single harmonic oscillator (Sec. V in [15]).

The physical setup considered in [8] is the following. The global unitary U characterizing the
transformation

ρ′S = TrB
(
UρS ⊗ ρBU†

)
(14)

is not required to commute with the total Hamiltonian H = HS + HB. This violation of energy
conservation must be compensated by an expenditure or generation of work. That is, energy that is
injected into the system and bath without changing their entropy. There are different ways to define
work in this setup, a standard definition being the average value W̄ = Tr

[
(H − U†HU)ρS ⊗ ρB

]
.

However, as mentioned above, we need to consider the worst-case work

Wwc = max
|φ1 〉, |φ2 〉

{
E2 − E1 : 〈φ2 |U |φ1 〉 6= 0 and H |φ1,2 〉 = E1,2 |φ1,2 〉

}
. (15)

That is, the largest transition between the energy levels of H generated by U . Note that this ex-
pression only makes sense when the initial state ρS ⊗ ρB has full rank, which is our case. Finally,
we remark that this setup does not include a catalyst, and, wether a catalyst would constitute an
advantage is an open problem.

A. Results

For the sake of simplicity, here we consider the case where the Hilbert space of the system has
finite dimension dS and its initial state is thermal at the same temperature than the bath ρS = ωβ(HS).
The general case is analyzed in [8]. Next we see that, in the context of the UP, a central quantity is
the density of states of the bath Ω(E), that is, the number of eigenvalues of HB within an energy
window around E. This allows to write Boltzman’s entropy as ln Ω(E).

The most general result of this section is the following. In any cooling process assisted by a
bath with density of states Ω(E), and using worst-case work Wwc, the “cooling error” ε satisfies, to
leading order,

ε ≥ Ω(E0) e−E0/T

Tr(e−HB/T )
, (16)

where E0 is the solution of equation

∂ ln Ω(E0)

∂E0
=

ln(2dS/3g)

Wwc
. (17)

By “leading order” it is meant that the bound holds for sufficiently large Wwc. Equation (17) always
has a unique solution, provided that the micro-canonical heat capacity of the bath

CB(E) = −
(
∂ ln Ω(E)

∂E

)2(
∂2 ln Ω(E)

∂E2

)−1
(18)

is positive and finite for all E. (An example of system with negative heat capacity is a black hole.)
It is important to mention that bound (16) can be applied to any thermodynamical transformation

ρS → ρ′S that decreases the rank of the state. Where neither the initial nor the final states need to be
thermal. In this more general case we define dS = rank(ρS) and g = rank(ρ′S), and note that nothing
in equations (16) and (17) depends on HS. (This is because we are in the regime Wwc � ‖HS‖∞.)
In particular, setting HS = 0, dS = 2 and g = 1, we arrive at the scenario called Landauer’s
Erasure (see Sec. V A). This shows that the tasks of cooling and erasing information are essentially
equivalent.

In order to understand how this result works, let us apply it to a very general family of baths with
density of states Ω(E, V ) = exp(aV 1−νEν), where ν is a free parameter in the ranger 0 < ν < 1.
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Note that the associated Boltzman entropy is extensive ln Ω(2E, 2V ) = 2 ln Ω(E, V ). Substituting
this in (16) and (17) we obtain the explicit bound

ε ≥ exp

[
−V
T

(
aνWwc

ln(2dS/3g)

) 1
1−ν
]
. (19)

As expected, the larger V and Wwc are, the lower ε can become. An interesting observation is
that, the faster Ω(E) grows (ν closer to 1), the weaker is the bound. Therefore, we can obtain
the most general unattainability result by applying result (16) to the heat bath with fastest growth
of its density of states Ω(E). To our knowledge, the system with fastest Ω(E) growth is electro-
magnetic radiation (or any massless bosonic field), whose density of states is of the form written
above with parameters ν = 3/4 and a = 4

315−1/4
√
π(c~)−3/4. Therefore, at this point, we can

obtain a universal unattainability result if we use inequality (3) and substitute in our bound (19) with
the parameters of electro-magnetic radiation, obtaining

T ′ ≥ 15c3~3

π2
ln4

(
2dS
3g

)
T∆

VW 4
wc
, (20)

in the regime of large V and W 4
wc.

Finally, let us write an UP in terms of time t. From special relativity we have that V ≤ (ct)3, and
considering, for example, the linear relation Wwc ∝ t, we obtain

T ′ ≥ const
1

t7
. (21)

Other setups will have different relations between V ,W 4
wc and t. But one can always substitute those

in (20) and obtain a suitable UP in terms of time.

V. COOLING WITH A FINITE-DIMENSIONAL BATH

A. Landauer’s Erasure

The aim of Landauer’s Erasure is to transform any given state ρS to a fixed pure state |0 〉〈0 |, where
the Hamiltonian of the system is trivial HS = 0. For this to be possible, all the entropy from ρS has
to be transferred to the bath by consuming work. Here we consider erasure protocols where any
unitary acting on SB is allowed, without necessarily commuting with the total Hamiltonian. After
tracing out the bath we obtain the final state

ρ′R = TrB(UρS ⊗ ωβ(HB)U†) . (22)

Limitations on the purity of the final state ρ′S have been investigated in Ref. [16] where it is shown
that

λmin(ρ′S) ≥ e−βJBλmin(ρS) , (23)

where λmin(ρ) is the smallest eigenvalue of ρ and JB = λmax(HB) − λmin(HB) is the energy range
of HB. If one assumes a linear scaling of JB with the size of B, this provides bounds with a similar
scaling of those for algorithmic cooling (see discussion in Sec. III). Note also that the fluctuations of
external work applied in the process can be at most JB. The bound (23) exemplifies that for obtaining
perfectly pure states λmin(ρ′R) = 0 the norm of the bath’s Hamiltonian has to diverge, which will
also affect the worst-case work, again in the spirit of the results laid out in Sec. IV.

B. Other results

The following two results address the problem of cooling a qubit with Hamiltonian HS =
∆ |1 〉〈1 |. In Scharlau’s result [17] the initial state of the qubit is ρS = |1 〉〈1 |. But despite be-
ing pure, it is not trivial to map it to |0 〉〈0 |, because only energy-conserving unitaries are allowed in
that setup. This implies that the final temperature of the system is bounded by

T ′ ≥ T∆

JB + T ln dB
. (24)
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In Allahverdyan’s result [15], the initial state of the qubit is thermal ρS = ωβ(HS) at the same
temperature than the bath. This state has more entropy than the one considered in (24), and hence
cooling requires more effort. On the other hand, arbitrary unitaries are allowed here, giving

T ′ ≥ T∆

JB
. (25)

VI. COOLING WITH LINEAR QUANTUM REFRIGERATORS

In this section we explain a rather independent development with the goal of identifying fundamental
limits for cooling on a specific class of quantum refrigerators. The results presented in the previous
sections are based on the assumption that one has access to arbitrary energy conserving operations
over the compound of subsystems given by the system to be cooled, the thermal bath, catalyst, and
work reservoirs. This is important in order to assess the ultimate limitations for achieving a particular
task, which is cooling in this case. However, the operations that are actually available in practice are
much more restricted. Thus, it is also relevant to study the fundamental limitations for less general
cooling schemes, that however more closely resemble experimental settings.

We consider the following family of linear and driven quantum refrigerators. A central system, an
arbitrary network of harmonic oscillators, is connected to different and independent bosonic thermal
reservoirs at different temperatures (see Figure 1). The central network is thus open and can also be
driven parametrically, by changing in time the frequency of each oscillator in the network and the
interactions between them. The goal is to drive the system in order to cool a given thermal reservoir,
extracting energy out of it. Many experimental cooling techniques can be viewed in this way. For
example, during laser cooling of trapped ions, the internal electronic degrees of freedom are driven
by a laser field and act as a ‘heat pump’ that removes energy from the motional degrees of freedom,
dumping it into the electromagnetic field as emitted photons .

The proposed model has the virtue of being exactly solvable, without invoking common approxi-
mations for the description of open and driven quantum systems. Therefore, it is possible to obtain
and interpret clear mathematical expressions for key thermodynamic quantities, like work and heat
currents. Despite its simplicity, this general model of thermal machines displays interesting features.
We will see that the fundamental limit for cooling in this kind of machines is imposed by a pair cre-
ation mechanism analogous to the Dynamical Casimir Effect (DCE). Also, it will be clear that this
process cannot be captured by standard techniques based on master equations valid up to second
order in the coupling between the central system and the thermal reservoirs.

A. The model

FIG. 1: Scheme of the model

Figure 1 shows a scheme of the considered model. Each black circle represent one of theN quantum
harmonic oscillators composing the network, and links between them represent bilinear interactions.
The natural frequencies of each oscillator and the interactions between them can be changed in time.
Therefore, the harmonic network is described by the following quadratic Hamiltonian:

HS(t) =
1

2
PTM−1P +

1

2
XTV (t)X, (26)



9

whereX and P are vectors whose components are the position and momentum operators of each os-
cillator, which satisfy the usual commutation relations, [Xi, Xj ] = [Pi, Pj ] = 0 and [Xi, Pj ] = iδi,j
(~ = 1). The matrix M has the masses of each oscillator along the diagonal and zeros elsewhere,
while the matrix V (t) encodes the frequencies of each oscillator and the interactions between them.
The variation in time of the matrix V (t) allow us to model an external control that can be performed
on the system.

Some nodes of the network are also connected to independent thermal reservoirs. We will model
the reservoirs as collections of harmonic modes which are initially in a thermal state. Thus, the
reservoir or environment Eα has a Hamiltonian

HEα =

Nα∑
j=1

π2
α,j

2m
+
mω2

α,j

2
q2α,j

where the operator qα,j is the position operator of the j-th oscillator in the α-th environment, and
πα,j its associate momentum. Also, we consider a bilinear interaction between system and reservoirs
through the position coordinates. Thus, for each environment Eα we have an interaction Hamiltonian

HS,Eα =
∑
j,k

Cα,jk Xj qα,k, (27)

where Cα,jk are time-independent interaction constants. Thus, the full Hamiltonian for system and
reservoirs is HT (t) = HS(t) +

∑
αHEα +

∑
αHS,α. In the following we will consider cyclic

thermodynamic processes for which the driving performed on the network is periodic. Thus, the
function V (t) can be decomposed in terms of Fourier components Vk as V (t) =

∑
k Vke

ikωdt,
where ωd is the angular frequency of the driving.

As we explain below, thermodynamic quantities like heat currents can be obtained from the state
of the central system alone. Thus, if ρT (0) = ρS(0)⊗ρE(0) is an initial product state for the system
and the environment, our main objective is to calculate the subsequent reduced state for the system:

ρS(t) = TrE
(
U(t)ρT (0)U†(t)

)
(28)

where the global unitary evolution U(t) corresponds to the Hamiltonian HT (t). We can do that
by solving the equations of motion for the system’s operators in the Heisenberg picture. The lin-
earity of these equations (which follows from the quadratic structure of the total Hamiltonian) can
be exploited to exactly integrate them in terms of the Green’s function of the system. A detailed
explanation of the procedure is given in [30]. Here, it is enough to note that since the Hamilto-
nian is quadratic in the phase space coordinates, if the full initial state is a Gaussian state, it will
remain Gaussian during the time evolution. Therefore, a complete description of the central system
state ρS(t) is given by the first moments 〈Xi〉 and 〈Pi〉, and the second moments σxxi,j = 〈XiXj〉,
σppi,j = 〈PiPj〉, and σxpi,j = 〈XiPj +XjPi〉/2. Even if the initial state of the system is not Gaussian,
in the regime where the interplay between the driving and the dissipation induced by the environ-
ments determines a unique asymptotic steady state, this state will also be Gaussian. Although we
will assume in the following that the system is indeed in such regime, it should be pointed out that
in general this will not be the case, since the driving could give place to parametric resonances, in
which the dynamics is not stable and the memory of the initial state of the central system is never
lost.

As said before, a central object in our treatment is the Green’s function of the harmonic network,
which solves its equations of motion and exactly takes into account the driving and the dissipation
induced by the environment. Explicitly, the Green’s function G(t, t′) is the N ×N matrix which is
the solution to the following integro-differential equation:

M
∂2

∂t2
G(t, t′) + VR(t)G(t, t′) +

∫ t

0

γ(t− τ)
∂

∂τ
G(τ, t′)dτ = 0, (29)

with initial conditions G(t = t′, t′) = 0 and ∂
∂tG(t = t′, t′) = 1N . In the previous equation

the matrix function γ(t), known as the ‘damping kernel’, takes into account the non-Markovian
and dissipative effects induced by the environment on the network, and VR(t) = V (t) − γ(0) is a
renormalized potential energy matrix. Specifically, the coefficient G(t, t′)j,k encodes the response
of the node j at time t, as a result of a delta-like impulse on node k at time t′. Under the assumptions
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that the driving V (t) is periodic and that the dynamics is stable, it can be shown that in the asymptotic
regime this function accepts the following decomposition:

G(t, t′) =
1

2π

∑
k

∫ ∞
−∞

dωAk(ω)eiω(t−t
′) eikωdt, (30)

where the matrix coefficients Ak(ω) can be found by solving a set of linear equations, and can
be explicitly calculated in interesting limits such as the weak driving limit (|Vk| � |V0|). From
Eq. (30), it is possible to show that for long times the system attains an asymptotic state which is
periodic (with the same period as the driving) and is independent of the initial state. Also, the second
moments σxxi,j (t), σxpi,j(t), and σppi,j(t) in the asymptotic state can be explicitly calculated in terms of
Ak(ω) (see Eq. (36) below).

In addition to the Green’s function of the network, that characterizes its dynamics, there are other
important quantities that characterize the reservoirs to which the network is connected. They are
the spectral densities Iα(ω), one for each reservoir Eα, which are N ×N matrices with coefficients
defined as

[Iα(ω)]j,k =

Nα∑
p=1

1

mω
Cα,jp Cα,kp δ(ω − ωα,p), (31)

where Cα,jp are the coupling constants appearing in Eq. (27).

B. Definition of work and heat currents

We must now define the basic notions of work and heat in our setting. For this, we can inspect the
different contributions to the total time variation of the energy of the central system, HS , which
satisfies

d〈HS〉
dt

= 〈∂HS/∂t〉 − i
∑
α

〈[HS , HS,α]〉. (32)

Thus, the variation of the energy induced by the explicit time dependence of the system’s Hamilto-
nian is associated with work (more precisely, with power), as

Ẇ = 〈∂HS/∂t〉. (33)

In turn, the variation of the energy of S arising from the interaction with each reservoir Eα is asso-
ciated with the heat flowing into the system per unit time, which we denote as Q̇α and turns out to
be

Q̇α = −i〈[HS , HS,α]〉. (34)

Therefore, equation (32) is nothing but the first law of thermodynamics, i.e. d〈HS〉/dt = Ẇ +∑
α Q̇α. In what follows we will study the average values of the work and the heat currents over a

driving period (in the asymptotic regime). These quantities will be respectively defined as Ẇ and
Q̇α. Then, the averaged version of the first law is simply the identity 0 = Ẇ +

∑
α Q̇α. It is

interesting to note that an alternative natural definition for the heat currents could have been given
by the energy change of each reservoir, i.e, Q̇α = −〈dHEα/dt〉. As shown in [30], in the asymptotic
regime and averaging over a driving period, these two definitions are equivalent. Thus, the energy
lost by Eα is gained by S over a driving period (equivalently, on average, no energy is stored in the
interaction terms).

Introducing the explicit form of the Hamiltonians into Eq. (34) it is possible to arrive at the
following expression for the average heat current corresponding to reservoir Eα:

Q̇α = Tr
[
PαV (t)σxp(t)M−1

]
, (35)

where X(t) represents the average value of X(t) over a period of the driving in the asymptotic state,
and Pα is a projector over the sites of the network connected to reservoir Eα. In turn, the matrix of
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ω

Iβ(ω)
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ω1

kh̄ωd

kh̄ωd
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(a)

ω

Iα(ω)

ω

Iβ(ω)

kωd

kωd−ω
ω

kh̄ωdkh̄ωd

(b)

FIG. 2: Illustration of the elementary processes contributing to the heat currents. Two reservoirs Eα
and Eβ are represented by their spectral functions. In (a) only the resonant processes are depicted.
They conserve the number of excitations in the environment (but not the energy) and can involve

two environmental modes in different reservoirs (RP) or in the same reservoir (RH). In the last case,
in overall, these processes always produce heating. In (b) the non-resonant processes are shown:

energy extracted from the driving field is used to simultaneously create two excitations in the
environment. Again, this can involve modes of in the same or in different reservoirs.

position-momentum correlations σxp(t) can be expressed as σxp(t) = Re
[∑

j,k S
xp
j,k e

iωd(j−k)t
]

with:

Sxpj,k =
1

2

∑
α

∫ ∞
0

(ω + kωd)Aj(ω, ωd)Iα(ω)A†k(ω, ωd) coth(w/2Tα)dω (36)

where Tα is the temperature of the initial thermal state of reservoir Eα. From these exact results
it is possible to derive a physically appealing expression for Q̇α, which has a simple and clear
interpretation, as discussed in the following.

C. Heat currents in terms of elementary processes

It is possible to identify different contributions to the heat current Q̇α, and to interpret them in
terms of elementary processes that transport or create excitations in the reservoirs. In [30] it is shown
that Q̇α can be decomposed as the sum of three terms:

Q̇α = Q̇RP
α + Q̇RH

α + Q̇NRH
α , (37)

which, respectively, are referred as the ‘resonant pumping’ (RP), ‘resonant heating’ (RH), and ‘non-
resonant heating’ (NRH) contributions. We will describe below the explicit form of each of these
contributions and their physical interpretation in terms of elementary processes. The central quantity
appearing in the explicit expressions for Q̇RP

α , Q̇RH
α and Q̇NRH

α is the following ‘transfer’ function:

p
(k)
α,β(ω) =

π

2
Tr
[
Iα(|ω + kωd|)Ak(ω)Iβ(ω)A†k(ω)

]
, (38)

which combines the spectral densities Iα(ω) (characterizing the spectral content and couplings of
each reservoir) and the coefficientsAk(ω) (that determine the Green’s functionG(t, t′) and therefore
characterize the dynamics of the network). As it will be clear from what follows, the quantity
p
(k)
α,β(ω) can be interpreted as the probability per unit time that a quantum of energy ω is removed

from Eβ while an quantum of energy |ω + kωd| is dumped on Eα, via absorption (or emission,
depending on the sign of k) of an amount of energy equal to |kωd| from (or to) the driving field.

The resonant pumping (RP) contribution reads:

Q̇RP
α =

∑
β 6=α

∑
k

∫ ∞
0′

dω
[
ω p

(k)
β,α(ω) Nα(ω)− (ω + kωd) p

(k)
α,β(ω) Nβ(ω)

]
, (39)
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where Nα(ω) = (eω/Tα − 1)−1 is the Planck distribution at the temperature Tα corresponding to
the initial state of reservoir Eα (the Boltzmann constant is kb = 1). The first term in Eq. (39) is
positive and accounts for energy flowing out of Eα: a quantum of energy ω is lost in Eα and excites
a mode of frequency ω + kωd in Eβ after absorbing energy kωd from the driving. The second
term corresponds to the opposite effect: a quantum of energy ω is lost from Eβ and dumped into a
mode of frequency ω + kωd in Eα after absorbing energy kωd from the driving. These processes
are represented in Figure 2-(a). In the same Figure it is shown that the same processes can take
place between two modes of the same reservoir, which, in overall, always results in heating of that
reservoir (since initially low frequency modes are more populated than high frequency modes and
therefore processes that increase the energy of the reservoir are more probable than their inversions).
Thus, they are considered in the resonant heating (RH) contribution, which reads

Q̇RH
α = −

∑
k

∫ ∞
0′

dω kωd p
(k)
α,α(ω) Nα(ω) (40)

The lower limit in the frequency integrals of Eqs. (39) and (40) is 0′ = max{0,−kωd}, since for
k < 0 the mentioned processes can only take place if the frequency of the arrival mode, ω + kωd, is
greater than zero.

Finally, the last contribution to the heat current is given by the non-resonant heating term Q̇NRH,
which for a driving invariant under time reversal (i.e, such that V (−t) = V (t+ t0)), reads:

˙̄QNRH
α =−

∑
k>0

∫ kωd

0

dω kωd p
(−k)
α,α (ω) (Nα(ω) + 1/2)

−
∑
β 6=α

∑
k>0

∫ kωd

0

dω (kωd − ω) p
(−k)
α,β (ω) (Nβ(ω) + 1/2)

−
∑
β 6=α

∑
k>0

∫ kωd

0

dω ω p
(−k)
β,α (ω) (Nα(ω) + 1/2) ,

(41)

The physical meaning of this last expression is different than in the previous contributions. In this
case, excitations are not transported among different modes, but created in pairs from the driving.
For example, the first line of Eq. (41) takes into account processes in which energy kωd from the
driving is used to simultaneously create two excitations in modes of reservoir Eα with frequencies
ω and kωd − ω, in such a way that their sum equals kωd (note that only terms with k > 0 enter
in the previous expression). The second and third lines of Eq. (41) account for processes in which
the excitations are created in modes of different reservoirs, as depicted in Figure 2-(b). Thus, at
variance with the RP and RH processes, the ones giving rise to the NRH contribution do not conserve
the number of excitations in the environment. Consequently, they always produce heating in all
reservoirs (i.e, Q̇NRH

α ≤ 0).
The only contribution to the heat current capable of describing cooling of reservoir Eα is Q̇RP

α .
The other two contributions correspond to processes that end up heating reservoir Eα and are always
negative. Thus, to cool this reservoir it is necessary to engineer the driving V (t) or the spectral
densities in order to satisfy the condition

Q̇RP
α > |Q̇RH

α + Q̇NRH
α |. (42)

Let’s suppose that all the reservoirs are at the same temperature T . As discussed next, there is
always a minimum value of T below which it is impossible to fulfill the previous condition. Thus, it
is impossible to cool reservoir Eα below this minimum temperature.

D. Pairs creation as a limitation for cooling.

There are other important differences between the resonant and non-resonant contributions to the
heat currents. In first place, we see from Eqs. (39) and (40) that Q̇RP

α and Q̇RH
α vanish in the limit of

ultra-low temperatures (Tα → 0 ∀α). In contrast, Q̇NRH
α does not vanish but (for ωd > 0) remains

constant and negative in the same limit. This is natural, since in the ultra-low temperature regime
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there are no excitations to transport around, but they can still be created by the driving. Thus, we
immediately see that for sufficiently low temperatures the pair creation mechanism described above
will dominate over the other contributions and will prevent any cooling.

There is an interesting analogy that might help to understand the appearance of pairs creation in
the environment of an open and driven quantum system. In fact, the integrand in the first line of
Eq. (41) is analogous to the spectrum of created photons in the Dynamical Casimir Effect (DCE).
The typical explanation of this effect involves an electromagnetic cavity with periodic boundary
conditions. For example, in a cavity formed by two opposing mirrors, the oscillation of the mirrors
induces the creation of photon pairs inside the cavity. In our setting, we can see the driven central
system as a periodically changing boundary condition for the environmental modes. Therefore, it
is natural to expect the creation of excitations pairs in the same way as in the DCE. The role of the
DCE as a fundamental limitation for cooling was, to the best of our knowledge, first identified in
[31].

1. Pairs creation and the weak coupling approximation

Another important difference between the contributions Q̇RP
α or Q̇RH

α on one hand, and Q̇NRH
α on

the other hand, is their scaling with the coupling strength between the central system and the reser-
voirs. This can be understood as follows. First, lets assume that the spectral densities Iα(ω) are
proportional to some frequency γ, which typically fixes the rate of the dissipation that the environ-
ment induces on the central system, and is itself quadratic on the couplings between the system and
reservoirs (see Eq. (31)). Also, for simplicity, lets focus in the weak driving regime (|Vk| � |V0| for
k 6= 0). In this regime, up to second order in Vk, we have that the matrix coefficients Ak(ω) in the
decomposition of the Green’s function (Eq. (30)) are given by Ak(ω) = −ĝ(i(ω+kωd)Vkĝ(iω) for
k 6= 0, where ĝ(iω) is the Laplace transform of the Green’s function of the network without driving.
Therefore, the functions p(k)α,β(ω) are:

p
(k)
α,β(ω) =

π

2
Tr [Iα(|ω + kωd|)ĝ(i(ω + kωd)Vkĝ(iω)Iβ(ω)ĝ(−iω)Vkĝ(−i(ω + kωd)] . (43)

These functions are proportional to γ2. However, when integrated over the full frequency range, as
in Eqs. (39) and (40), the result is proportional to γ. The reason for this is the presence of poles, or
resonance peaks, in the function ĝ(iω), whose contribution depends on the dissipation rate and thus
on γ. Then, the resonant parts of the heat current, Q̇RP

α and Q̇RH
α , are proportional to γ. In contrast,

that is not always the case for Q̇NRH
α , since the integration range in the terms of Eq. (41) is limited to

kωd and might not include any resonance peak of the functions p(−k)α,β (ω). As a simple example, if
we have a purely harmonic driving at frequency ωd (i.e, we only have Fourier coefficients V±1 and
V0, and |V±1| � V0), then Q̇NRH

α ∝ γ2 for ωd < Ω0, where Ω0 is the smallest resonant frequency
in p(−1)α,β (ω). Thus, in this situation, the creation of excitation pairs in the environment is a process
of fourth order in the interaction Hamiltonian between system and reservoirs (recall that γ is second
order in the interaction constants). For this reason, it is not captured by master equations that are
derived under the ‘weak coupling’ approximation and are valid, as is usual, only to second order in
the interaction Hamiltonian.

For high temperatures and in the weak coupling regime, the term Q̇NRH
α can be disregarded in front

of Q̇R
α = Q̇RH

α + Q̇RP
α . However for any fixed value of γ, no matter how small, there exist a minimum

temperature below which Q̇NRH
α will dominate over Q̇R

α. This minimum temperature will depend on
γ, and from other details such as the driving protocol and the spectral densities of the reservoirs.
An analysis of the minimum temperature for an adaptive procedure that was proposed to violate the
unattainability principle[32] was presented in [30]. Also, in [9] it is shown that the standard limits
for Doppler and sideband cooling of a single quantum harmonic oscillator can be derived from this
formalism as an special case. This is reviewed in the next section.

The breakdown of the weak coupling approximation for low temperatures is known and can also
be deduced from the failure of this approximation to capture quantum correlations between system
and environment in that regime [33]. However, our study of this exactly solvable model of driven and
open quantum system allows us to understand what kind of processes are missed by that approxima-
tion. Also, it makes clear that the pair creation process is the one imposing a minimum achievable
temperature for the studied family of driven refrigerators. As a final comment, we note that the if the
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pairs creation process is not taken into account, the validity of the unattainability principle depends
on the properties of the spectral densities[34].

E. Cooling a single harmonic oscillator

In this section we employ the formalism explained above to analyze a simple situation: the cooling
of a single quantum oscillator. Analyzing the cooling limit for a single oscillator is relevant in
several contexts, such as in the case of cold trapped ions[35], trapped atoms[36], or micromechanical
oscillators[37]. For this we will consider that our working medium S is a single parametrically driven
harmonic oscillator that is in simultaneous contact with two reservoirs. One of these reservoirs, EA
has a single harmonic mode that we want to cool. The other reservoir, EB , is where the energy is
dumped (this reservoir typically represents the electromagnetic field). As we will see, this model is
an interesting analogy to other more realistic models for laser cooling. Notably, this simple model is
sufficient to derive the lowest achievable temperatures in the most relevant physical regimes (and to
predict their values in other, still unexplored, regimes).

Thus, we consider the spectral density of EA to be such that

IA(ω) = ĨA δ(ω − ωm). (44)

where ωm is the frequency of the mode to be cooled and ĨA is a constant measuring the strength of
the coupling between EA and S. In this case, the frequency integrals needed to obtain the different
contributions to the heat current Q̇A are trivial. Clearly, the RH contribution is absent since EA
consists only of a single mode. The lowest achievable temperature is defined as the one for which
the heating and cooling terms balance each other. Using Eqs. (39) and (41) it is simple to compute
their ratio as ∣∣∣∣∣ Q̇RP

A

Q̇NRHA

∣∣∣∣∣ =
n̄

1 + n̄

∑
k≥1 IB(kωd + ωm)|Ak(ωm)|2∑

k≥kd IB(kωd − ωm)|A−k(ωm)|2 , (45)

where kd is the smallest integer for which kdωd > ωm and n̄ = NA(ωm) is the average number
of excitations in the motional mode. In order to simplify our analysis, we neglected the heating
term appearing in the resonant pumping current Q̇RP (i.e, the transport of excitations from EB to
EA). By doing this, we study the most favorable condition for cooling, assuming that the pumping
of excitations from EB into EA is negligible. This is equivalent to assuming that the temperature of
EB is TB ' 0. Although this is a reasonable approximation in many cases (such as the cooling of a
single trapped ion) we should have in mind that by doing this, the limiting temperature we will obtain
should be viewed as a lower bound to the actual one. Thus, the condition defining the lowest bound
is that the ratio between the RP and NRH currents is of order unity. Using the previous expressions,
it is simple to show that this implies that

n̄

n̄+ 1
=

∑
k≥kd IB(kωd − ωm)|A−k(ωm)|2∑
k≥1 IB(kωd + ωm)|Ak(ωm)|2 . (46)

To pursue our analysis, we need an expression for the Floquet coefficients Ak(ω). This can be
obtained under some simplifying assumptions. In fact, if the driving is harmonic (i.e. if V (t) =
V0 + V (eiωdt + e−iωdt)) and its amplitude is small (i.e. if V � V0), we can use perturbation theory
to compute the Floquet coefficients to leading order in V . In fact,

A±1(ωm) ≈ −ĝ(i(ωm ± ωd))V ĝ(iωm). (47)

These are the dominant terms when ωd > ωm (which implies that kd = 1). For smaller driving
frequencies, which would require longer equilibration times and involve longer temporal scales,
terms of higher order in k (which are higher order in the amplitude V ) should be taken into account.
Using the above results, we find that

n̄

n̄+ 1
=
IB(ωd − ωm)|ĝ(i(ωd − ωm))|2
IB(ωd + ωm)|ĝ(i(ωd + ωm))|2 . (48)
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It is interesting to realize that this last expression can be rewritten as a detailed balance condition.
In fact, this can be done by noticing that the Planck distribution satisfies the identity n̄/(1 + n̄) =
pn+1/pn, where pn is the probability for the n-phonon state. Then, equation (48) can be rewritten as
Pheat = Pcool, i.e. as the condition for the identity between the probability of a heating process and
the one of a cooling process. The cooling probability, Pcool, is proportional to the product of pn+1

(the probability of having n+ 1-phonons in the motional mode), |ĝ(i(ωd + ωm))|2 (the probability
for propagating a perturbation with frequency ωd+ωm through the work medium) and IB(ωd+ωm)
(the density of final states in the reservoir where the energy of the propagating excitation is dumped).
During this process the motional mode necessarily looses energy. This is the case because the energy
propagating through S is larger than the driving quantum. The extra energy propagating through S
is provided by EA, that is therefore cooled. On the other hand, the heating probability, Pheat is the
product of pn (the probability for n-phonons in S), |ĝ(i(ωd−ωm))|2 (the probability for propagating
a perturbation with frequency ωd−ωm through the work medium) and IB(ωd−ωm) (the density of
final states in the reservoir where the energy is dumped). In this case, the motional mode necessarily
gains energy because the energy propagating through S is smaller than ωd (the quantum of energy
provided by the driving). The extra energy is absorbed by EA , which is therefore heated. It is
interesting to note that this detailed balance condition is obtained from our formalism as a simple
limiting case. A more general detailed balance condition can be read from Eq. (46) (which goes
beyond the harmonic, weak driving or adiabatic approximations).

To continue the analysis it is necessary to give an expression for ĝ(s) (the propagator of the
undriven work medium). For this we use a semi phenomenological approach by simply assuming
that, in the absence of driving, the coupling with the reservoirs induces an exponential decay of
the oscillations of S. In this case, we can simply write ĝ(iω) = 1/((ω − iγ)2 − ω2

0), where γ
is the decay rate and ω0 is the renormalized frequency of S. The same expression is obtained if
we assume that S behaves as if it were coupled with a single ohmic environment (this is indeed
a reasonable assumption in many cases, which is equivalent to a Markovian approximation, but it
certainly requires the back action of EA on S to be negligible in the long time limit). Inserting this
expression for ĝ(iω) into Eq. (48), we can ask what is the optimal value of the driving frequency
ωd that minimizes n̄, for given parameters ω0, ωm and γ. As explained in detail in [9], in this way
it is possible to recover the well known limits for the regimes of Doppler and sideband cooling. For
the case of Doppler cooling, in which γ � ωm, we obtain that the optimal driving frequency is
ωd ' ω0 − γ and the corresponding minimum occupation is:

n̄doppler =
γ

2ωm

ω0

ω0 − γ
� 1 (49)

under the additional assumption that ω0 � ωm (that is compatible with optical settings). In the
opposite limit of sideband cooling (γ � ωm) we have that the minimum occupation is achieved for
ωd = ω0 − ωm and is:

n̄sideband '
γ2

4ω2
m

� 1 (50)

under the same assumptions. However, our treatment is not restricted to these regimes and can be
employed to obtain the optimal driving frequency and minimal occupation in the general case.

F. The role of pair creation in laser cooling

According to the previous results, the origin of the lowest achievable temperature for the refrig-
erators we analyzed is imposed by pair creation from the driving. This is certainly not the typical
explanation for the reason why laser cooling stops. However, we will see now that pair creation has
a natural role in laser cooling. The relevant processes that play a role in the resonant pumping and
non resonant heating currents are shown in Fig. 3-(a) (for ωd > ωm). Thus, the resonant pumping
of energy out of EA (blue arrow in Figure 3-(a)) corresponds to a removal of a motional excitation
(a phonon) and its transfer into the photonic environment. A phonon with frequency ωm disap-
pears in EA and a photon with frequency ω0 appears in EB . This is possible by absorbing energy
ωd = ω0−ωm from the driving. This process is usually visualized in a different way in the standard
literature of laser cooling [38–40], as shown in Fig. 3-(b). This Figure shows the energy levels of
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FIG. 3: (a) Relevant processes contributing to the heat current of reservoir EA when ωd > ωm and
TB ' 0. Energy flows out of EA and into EB due to a resonant process. Also energy is dumped into

both EA and EB due to non resonant pair creation. (b) Usual depiction of the staircase of energy
levels and the transitions between them involved in sideband resolved laser cooling (actually, there

are other non resonant processes in play, see [38])

the combined system formed by EA and S. In our case, both systems are oscillators and each one of
them has an infinite number of energy levels. However, we only pay attention to the lowest levels
of S. Thus, the resonant pumping process (RP) takes the system from the lowest energy level of
S with n phonons into the excited level of S with (n − 1) phonons. Then, as S is coupled to the
environment EB , it decays from the excited |e 〉 to the ground state |g 〉 by emitting an excitation (a
photon) in EB , whose frequency is ω0. This is the key process responsible for sideband resolved
laser cooling. The system is cooled because resonant pumping forces the combined EA − S system
to move down in the staircase of energy levels.

However, if resonant pumping were the only relevant process, the above argument would induce
us to conclude that laser cooling could achieve zero temperature: by going down the staircase of
energy levels, S would end up in its ground state and the motional mode would end up with n = 0
phonons. The reason why this does not happen is the existence of non resonant heating. This process
is described as NRH in Fig. 3-(a). It corresponds to the creation of a pair of excitations consisting
of a phonon and a photon. The phonon has frequency ωm while the photon should have frequency
ωd − ωm. We may choose to describe this pair creation process as a sequence of heating transitions
that move the combined S-EA system up along the staircase of energy levels. This can be done as
follows: Suppose that we start from n phonons in the motional state and S in the ground state |g 〉.
Then, S can absorb energy ωd from the driving and jump into a virtual state from which it can decay
back into |g 〉 but with a motional state with n+ 1 phonons. This heating transition has the net effect
of creating a phonon and emitting a photon. As before, laser cooling stops (in this sideband resolved
limit) when the resonant cooling transitions are compensated by non resonant heating transitions
where energy is absorbed from the driving and is split between two excitations: one in the motional
mode (a phonon) and one in the environmental mode (a photon). As a consequence of the non
resonant transitions, the motion heats up. The limiting temperature is achieved when the resonant
(RP) and non resonant (NRH) processes balance each other.

Of course, the way in which we are describing the processes involved in laser cooling (both the
cooling and the heating transitions) is not the standard one, but provides a new perspective that
allows to draw parallels with other refrigeration schemes based on external driving.
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