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A B S T R A C T

Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task,
and an important aspect of power system operation. In this paper, a complementary use of Deep Learning
(DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation
source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s)
on the branch level in the power system network. The robustness, effectiveness and speed of the proposed
approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system.
Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational
topology variations in the system which correspond to real-world challenges. Timely localization of forced
oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that
without the information of system operational topology, the proposed method can achieve high localization
accuracy in only 0.33 s.
1. Introduction

Forced Oscillations (FOs) have become a major concern that poses
a threat to the security and stability of large-scale interconnected
power systems [1]. They can be caused by grid abnormal conditions
such as periodic disturbances, malfunctioning controllers [2], insuf-
ficient damping of power systems, [3], periodic system disturbances,
equipment failure, inadequate control designs [4], or cyclic loads [5].
Consequently, this phenomenon results in detrimental effects [6], such
as reduction in the power transfer limit, potential equipment dam-
age, power quality issues, system collapse or even large scale power
outages [1,7].

FOs with frequencies higher than 1 Hz tend to be local and may be
seen in a few locations near the FO source. FOs with frequencies less
than 1 Hz may interact with natural oscillatory modes of the power grid
and can cause wide-area oscillations across an interconnected power
system [1]. For example, a 0.25 Hz FO in Alberta, Canada in 2005 led
to 200 MW resonant oscillations on California Oregon Intertie (COI),
1100 miles away from the FO source [1].

Mitigating sustained oscillations starts by locating the source(s) and
then disconnecting it from the network [8]. Therefore, localizing the FO
source(s) is required without delay to support operational decisions to
prevent further damages.
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E-mail address: Safwan.Wshah@uvm.edu (S. Wshah).

FO is still a very challenging task. Fortunately, with the increasing
number of installed Phasor Measurement Units (PMUs), it is feasible
to monitor FOs, particularly with a sampling rate of 30–60 samples/s,
which is sufficient to capture most of FOs characteristics [6]. Advanced
algorithms need to monitor PMU’s data to localize and mitigate the
causes. Wang Kernis et al. provided a survey of the most common
methods and their limitations over the last decade [4]. Current methods
can be classified into six major categories include traveling wave analy-
sis, damping torque-based, mode shape estimation based, energy-based
analysis, machine learning and deep learning.

Traveling wave-based method [9], utilizes the arrival time delay
of the disturbance traveling wave, using the sampled data and the
waveform similarity method to localize the source(s) of FOs associated
with an abnormal wave speed, assuming that wave speeds are nearly
the same throughout the grid network. This method not only requires
the installation of additional equipment at many designed locations,
but it also has the potential to misjudge the source(s) location when
wave speeds vary significantly across the network [4].

Damping torque-based method was proposed for single machine sys-
tem by [10], and multi-machine systems in [11,12]. Damping torque-
based method has a clear physical meaning and could be applied locally
vailable online 24 November 2022
142-0615/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.ijepes.2022.108805
Received 12 July 2022; Received in revised form 3 October 2022; Accepted 13 No
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

vember 2022

https://www.elsevier.com/locate/ijepes
http://www.elsevier.com/locate/ijepes
mailto:Safwan.Wshah@uvm.edu
https://doi.org/10.1016/j.ijepes.2022.108805
https://doi.org/10.1016/j.ijepes.2022.108805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2022.108805&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Electrical Power and Energy Systems 146 (2023) 108805M. Matar et al.
Acronyms

BN Batch Normalization
CNN Convolutional Neural Network
COI California Oregon Intertie
DEF Dissipating Energy Flow
DL Deep Learning
DTL Deep Transfer Learning
FC Fully Connected
FO Forced Oscillation
FSST Fourier Synchrosqueezing Transform
ISO Independent System Operator
ISO-NE Independent System Operator of New Eng-

land
LN Layer Normalization
LSTM Long Short-Term Memory
ML Machine Learning
ODE Ordinary Differential Equation
PMU Phasor Measurement Unit
POI Point of Interconnection
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SST Synchrosqueezing Transform
TF Time-Frequency
WECC Western Electricity Coordinating Council

for each individual generator. However, this method may fail to work
under some FOs cases, and it requires detailed information including
the rotor angle, rotor speed and electrical torque of generators and
estimates the damping torque 𝐾𝑚𝑑 for each single generator, which
are not directly available [13] and difficult to gather from a wide-area
perspective [4]. In addition, this method is only valid when the speed
deviations for all other generators are zeros, while it is not always the
case [14].

In [15] a mode shape-based method presented the relative magni-
tude and phasing of an oscillation through the grid. This method used
PMUs measurements assuming full observability of the system, which
is not practical [16]. In addition, it may fail or produce incorrect results
for weakly damped, or FOs cases.

Among all these methods, the Dissipating Energy Flow (DEF) meth-
ods which utilizes every branch of the power system network where
PMU data is available, has shown a promising performance [17]. As
an example, they have been recently adopted by Independent System
Operator of New England (ISO-NE) [18]. However, these methods are
not able to differentiate between the actual source(s) bus and the one
with a significant negative damping contribution [19]. In addition,
these methods are still subject to performance improvement as they
could not handle all the cases in the 2021 IEEE-NASPI Oscillation
Source Location contest [20] and they need a large time window
interval.

Machine Learning (ML) methods showed very promising perfor-
mance in localizing FOs. For example, Ensemble learning approach
based on data mining [21], and multivariate time series classifica-
tion [19] have been applied on Western Electricity Coordinating Coun-
cil (WECC) 179-bus systems. However, these approaches have many
practical limitations. It requires full observability of the system and
detailed information, i.e., rotor angle and rotor angle speed, which may
not available.

Deep Learning (DL) has emerged as a powerful tool and achieved
great success in power system applications. Recently, it has been ap-
plied for FOs localization. A two-stage Deep Transfer Learning (DTL)
was proposed by [22] to convert the FOs localization problem into an
2

image recognition problem, which utilizes a VGG16 network trained
first on areas and then fine-tuned on generators. Another DL-based
approach was proposed by [23], which utilizes convolutional Long
Short-Term Memory (LSTM) that input row and pre-processed features
to their model. They interface all possible source data to their model,
resulting in an enormous model that needs to be trained on the given
grid configurations.

The current DL-based approaches suffer from major issues that
prevent them from being scalable or adaptable to grid variations such
as: (1) They are topology dependent and work only on a fixed topology.
In case of minor or major topology variations, they need to be recon-
structed and retrained from scratch, which is not practical. (2) Both are
designed to receive data from all network buses. For large bus systems,
the model needs to handle a very large input data which limits their
scalability to large networks. (3) They need very large simulated data
for training. (4) They assume that every possible source bus should be
equipped with a PMU, and that is not practical. (5) They are designed
as a classification problem with the output represented using one-hot
coding. This will only allow them to localize one source. In reality, FO
could have multiple simultaneous sources.

To overcome the aforementioned issues in DL approaches, this work
proposes a new Transformer-based DL approach which is robust, fast,
work with presence of minor or even major topology variations without
the need for retraining and can localize multiple FOs source(s). Our
proposed methodology works at the branch-level to localize the oscil-
lation source and needs little amount of data for training comparing to
the other methods. It requires raw PMU measurements, and high level
features to trace the FO source(s) back. Our proposed approach is built
on the advantages of DEF methods by using DEF features to train our
models along with the raw data and oscillation flow direction. The main
contributions are summarized as follows:

(1) We propose a new Transformer-based DL approach to accurately
localize FOs source(s) with low computational burden using a relatively
small window of PMU measurements.

(2) The proposed approach has reliable and robust performance in
the presence of real-world scenarios, such as topology variation, load
variations, and partially observable system. Moreover, it also shows
robustness to measurement noise typically observed in PMU data.

(3) The proposed approach is trained one time under several cases
and does not require any re-training or fine-tuning for topology and
load variation, which could happen during the system operation, which
makes it suitable for practical online application.

(4) Comparing to the FOs localization literature, the proposed ap-
proach significantly restricts the required information such as generator
models, rotor angle and rotor angle speed to localize the FO source(s),
resulting in an efficient and easily implementation.

(5) The proposed approach is able to reliably detect multiple oscil-
lation sources simultaneously.

The remainder of this paper is organized as follows. The following
section provides mathematical formulation of the problem. In Section 3,
the steps of the proposed approach are described in detail. A case study
on the WECC 240-bus system are presented in Section 4. Experiments
setup is detailed in Section 5. In Section 6 all experimental results and
findings in are reported. Discussion of the results are drawn presented
in Section 7. In Section 8 the main conclusions are summarized.

2. Mathematical formulation of the problem

The dynamic behavior of a power system can be represented by a
n-sets of first order nonlinear Ordinary Differential Equations (ODEs)
[24]:

�̇�𝑖 = 𝒇 𝑖(𝑥1, 𝑥2..., 𝑥𝑛; 𝑢1, 𝑢2..., 𝑢𝑟; 𝑡); 𝑖 = 1, 2,… 𝑛 (1)

where n is the order of the system, r is the number of inputs. This can
be written in the following form by using vector-matrix notation:

�̇� = 𝐟 (𝑥, 𝑢, 𝑡) (2a)
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𝐲 = 𝐠(𝑥, 𝑢) (2b)

where the state vector x ∈ R𝑛, input vector u ∈ R𝑟, the derivative
of a state vector x with respect to given time t is denoted by �̇�, the
output vector y ∈ R𝑚, m is potential output measurements, and g is the
algebraic equations of the network.

Let 𝑖∗ denote the source of forced oscillation in the system. The input
𝑖∗ varies periodically, i.e., it can be considered as the superposition of ℎ
distinct frequency components. The amplitudes, frequencies and phase
displacements of these frequency components comprise the sets 𝐴 =
{𝑎𝑘}, 𝛺 = {𝜔𝑘} and 𝛷 = {𝜙𝑘}, respectively, for all k ∈ {1, 2 . . .ℎ}.
Therefore, we can write the 𝑖∗ input with periodical injection as:

𝑢∗𝑖 (𝑡) =
ℎ
∑

𝑘=1
𝑎𝑘𝑠𝑖𝑛(𝑤𝑘𝑡 + 𝜙𝑘) (3)

As a result, sustained oscillations will be then triggered over the
grid. We term the generator/load associated with 𝑖∗ as the FO source.
In other words, the FO localization problem is equivalent to pinpointing
the FO source thought power system using available PMU measure-
ments as input to the proposed approach. Due to the complexity of
power system dynamics, the power system model may not have a fixed
topology during system operations. Therefore, we propose a branch-
level approach that is scalable and reliable under different real-world
scenarios, as described in the following sections.

3. Proposed approach

This paper proposes a new DL-based approach that localizes the
oscillation source by building an oscillation flow map at the branch
level, as shown in Fig. 1. In case of a detected FO, the system reads all
PMU data from each monitored branch to determine the FO direction
at the branch level. It starts by buffering the data for a certain length,
then calculating FO frequency and DEF features. Finally, it uses the pre-
trained DL model to specify the oscillation direction from the calculated
features and the raw data.

The Transformer-based DL model is trained on several features,
including raw PMU measurements, i.e., active power and reactive
power, FO frequency, and flow of the dissipating energy. A fixed-length
sliding window was used to split the data into smaller time periods
with a specific size as discussed in Section 3.3. The inference stage is
applied once the FOs detected in the grid by any detection tools such
as GE PhasorPoint [25], this stage could be done in online fashion.
This stage consists of several components: (i) PMU data gathering
stage, including extraction, curation, and processing. (ii) Characterize
the oscillation by identifying the oscillation frequency. (iii) Calculate
the flow of the dissipating energy for each monitored branch. (iv)
Localize FO by passing buffered data and the calculated features to the
pre-trained Transformer-based DL model to determine FO propagation
at each branch to build a comprehensive visualization map that will
allow network operators to trace the FO source(s), similar to [8,17,26]
methods.

The input features to the proposed Transformer-based DL model
consists of the normalized vector of active power (𝑃𝑀𝑊 ), reactive
power (𝑄𝑀𝑉𝐴𝑅), FO frequency (𝑓𝐻𝑧), and flow of the dissipated energy
(𝑊 𝐷

𝑝𝑢 ). The input window size should preferably include 20–40 periods
of oscillations [8]. Considering that the FO frequencies are less than
1 Hz, the window size is set to be fixed-size of 70 s, even though a
smaller window size can also work as well but with less robustness.
The proposed approach relaxes the assumption of accurate detection of
the beginning of FO, by allowing the use of window that includes mea-
surements collected before the FO occurs. The output of the proposed
approach is a visualization map, which indicates the FO propagation
direction at each branch. The source(s) of oscillations is localized in
system elements producing FO waves in the network.

The observability of the System by PMUs determines the resolution
of localization. The proposed approach is based on tracing the FO flow
3

Fig. 1. Flowchart of the proposed FO localization approach. In case of FO has
been detected, the approach will read all the available PMU data to determine FO
propagation at each branch to build a comprehensive visualization map that will allow
network operators determine the FO source(s). The DL model is used after being trained
offline for one time. ( ) Direction of data flow, ( ) Direction of process flow.

through the power system network. Installing PMUs at power plant
Point of Interconnection (POI) and monitoring each generator enables
source localization up to a specific generator. In other words, when
a power system is fully observable, the approach can point to the
exact source of oscillation. Similarly, when a power system is partially
observable, control room operators need to know whether the source(s)
of oscillation is located inside or outside of control area to take proper
course of actions [8]. The proposed approach allows for accurately
localizing the suspect area containing the FO source(s). Fig. 2 illustrates
these two cases where arrows represent the oscillation flow through the
power system network.

3.1. FO frequency identification

Monitored branches PMU measurements, namely voltages angles
and currents angles, should be unwrapped using a jump threshold of
150◦. Then, any missing PMU data points (NaN) and outliers should
be replaced with interpolated data. Finally, low frequency trends are
extracted by calculating 300 order median filter with 10 s equivalent
window.

Now, to identify the frequency of interest of the forced oscillation
𝑓 , short-time Fourier transform based Synchrosqueezing Transform
𝐻𝑧
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Fig. 2. The oscillation flow pattern interpretation. (a) PMU monitors point of
connection of a power plant. (b) localization of suspect area non-observable by PMUs.

(SST) of active power flow 𝑃 and reactive power flow 𝑄 of each avail-
able branch [27] were calculated. A unique Time-Frequency (TF) rep-
resentation was calculated from individual Fourier Synchrosqueezing
Transform (FSST) coefficients.

𝐌𝐒𝐒𝐓(𝛺) =

√

√

√

√

𝑁
∑

𝑖=1
|𝐒𝐒𝐓𝐏𝐢 (𝛺)|2 + |𝐒𝐒𝐓𝐐𝐢 (𝛺)|2 (4)

where 𝑃 𝑖 and 𝑄𝑖 are the measurements of the active power flows
and the reactive power flows of branches 𝑖 = 1,… , 𝑁 . Application of
identification algorithm on the resulting 𝑇𝐹 representation was used
to identify each signal oscillatory component [28].

3.2. Dissipating energy flow

The concept of DEF [17] is based on the notion that the FO source
is responsible for a dissipation of energy across the grid. DEF calculates
the dissipating energy flow in the network branches, which is equiva-
lent to the energy dissipated by a damping torque. The value and sign of
the rate of change of dissipating energy have a physical interpretation
as the amount and direction of the flow. DEF in-branch ij is expressed
as follows, and the physical meaning of the equation is shown in [26].

𝑊 𝐷
𝑖𝑗 ≅ ∫ (𝛥𝑃𝑖𝑗𝑑𝛥𝛩𝑖 + 𝛥𝑄𝑖𝑗

𝑑(𝛥𝑉𝑖)
𝑉 ∗
𝑖

) (5)

where 𝑉 ∗
𝑖 = 𝑉𝑖 + 𝛥𝑉𝑖, and 𝑉 ∗

𝑖 is the average voltage in the studied
period, 𝛥𝑃𝑖𝑗 and 𝛥𝑄𝑖𝑗 are deviations from the steady-state values of the
active and reactive power flow in branch ij, 𝛥𝑉𝑖, 𝛥𝛩𝑖 are deviations
from steady-state values of voltage and voltage angle at bus i. Eq. (5)
was proved in [29]. A discrete-time version of Eq. (6) has the following
form:
𝑊 𝐷

𝑖𝑗 [𝑡 + 1] = 𝑊 𝐷
𝑖𝑗 [𝑡] + 𝛥𝑃𝑖𝑗 [𝑡](𝛥𝑓𝑖[𝑡 + 1] − 𝛥𝑓𝑖[𝑡])

+ 𝛥𝑄𝑖𝑗 [𝑡]
𝛥𝑉𝑖[𝑡 + 1] − 𝛥𝑉𝑖[𝑡]

𝑉 ∗
𝑖 [𝑡]

(6)

where 𝑡 represents the time instant. DEF in each branch is either
increasing or decreasing with time, indicating that dissipating energy
flows into the bus from the source or from the bus to a system.

3.3. Transformer-based DL model

DL-based approaches [22,23] are proposed as alternate approach
to localize the FO source(s) through the power system network. The
Transformer model was developed for natural language processing
4

and computer vision applications. It was introduced as a new se-
quence learning architecture with significant improvements in dif-
ferent applications over recurrent neural networks [30]. Transformer
relies completely on attention mechanisms, with no use of Recurrent
Neural Network (RNN) or Convolutional Neural Network (CNN). In
this work, a Transformer-based model has been proposed to localize
the FO source(s), which has shown superior performance compared
with traditional architectures. The proposed Transformer-based model,
Hyper-Parameters optimization, and evaluation metrics are described
below.

The proposed Transformer-based model is shown in Fig. 3, which
comprises of offline training and an online inference phase. The pro-
posed Transformer-based model incorporated skip connections [31]
and residual connections [32] with multi-headed attention module
[30], combined with an encoder portion of transformer-based deep
learning model [30] for forced oscillation localization.

Residual connections and skip connections are used throughout the
network to facilitate the optimization of deep neural networks [33,34]
to work better with multivariate time-series data, to speed up conver-
gence, enable training of much deeper models, and to solve vanishing
gradients issues. The residual connections allow the input to bypass and
expand the path to avoid losing original information. The output of the
transformer block and the data over a residual connection are added
together to form the input to the next transformer block. The output of
each transformer block is added together through skip connections to
form the output of the entire transformer block.

As time series data is continuous, the embedding layer was built by
replacing the standard embedding layer in [30] with a Fully Connected
(FC) layer and Layer Normalization (LN) [35] which normalizes the
activations along the feature direction. This overcomes the cons of
Batch Normalization (BN) by removing the dependency on batches.

Since Transformer encoders is a feed-forward architecture that is
insensitive to the ordering of input, positional encoding was used to
make the model aware of the sequential nature of the time series. In this
work, the positional encoding with the sine and cosine functions [30]
was used.

The multi-head attention layer is the core module of transformer
encoder, this layer allows the model to jointly attend to information
from different representations, and determines how much attention
should be paid to useful inputs when determining an output [30].
The input of the multi-headed attention layer is obtained by applying
independent linear projection functions (LN) on the sequential features:

𝑄 = 𝐿𝑁𝑞(𝑃𝑀𝑊 , 𝑄𝑀𝑉𝐴𝑅,𝑊
𝐷
𝑝𝑢 , 𝑓𝐻𝑧) (7a)

𝐾 = 𝐿𝑁𝑘(𝑃𝑀𝑊 , 𝑄𝑀𝑉𝐴𝑅,𝑊
𝐷
𝑝𝑢 , 𝑓𝐻𝑧) (7b)

𝑉 = 𝐿𝑁𝑣(𝑃𝑀𝑊 , 𝑄𝑀𝑉𝐴𝑅,𝑊
𝐷
𝑝𝑢 , 𝑓𝐻𝑧) (7c)

where 𝐾, 𝑉 , and 𝑄 denotes the key, value, and query features respec-
tively. These three parameters are fed to the first encoder block. The
multi-headed attention layer attempts to map the query to a set key–
value pairs with respect to an output to produce the attention matrix.
The operation consists of a dot product of the query, 𝑄 with all keys
and a division by

√

𝑑𝑘, where and 𝑑𝑘 is the dimension of queries and
keys, and applying a sofmax function over the result as shown in Eq. (8)
to obtain the weights of attention on the values.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (8)

Instead of performing the operation in Eq. (8) once to produce a
single matrix, the operation can be repeated multiple times in parallel
to allow the model to acquire information from several representation
sub-spaces at several positions jointly, and the resulting matrices can
be concatenated into a larger matrix as shown in Eq. (9).

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑 ,…ℎ𝑒𝑎𝑑 )𝑊 𝑜 (9)
1 ℎ
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Fig. 3. The overall architecture of Transformer-based DL model.
where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝑘

𝑖 , 𝑉 𝑊 𝑉
𝑖 ), 𝑊 𝑄

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝐾
𝑖 ∈

R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉 , and 𝑊 𝑂

𝑖 ∈ R𝑛𝑑𝑉 ×𝑑𝑚𝑜𝑑𝑒𝑙 , ℎ is the number of
heads, 𝑑𝑚𝑜𝑑𝑒𝑙 is embedding size, 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙∕ℎ.

Next, the output of the multi-head attention layer is fed into a fully
connected feed-forward network, which consists of two linear trans-
formations with a Rectified Linear Unit (ReLU) activation, and linear
activation respectively. After obtaining the output of each encoding
layer, they are added to each other, then fed it to flatten layer, dense
with ReLU, and dense with sigmoid activation function, turning them
into output probability value.

3.3.1. Hyper-parameters optimization
The selection of appropriate hyper-parameters are often necessary

to maximizes the performance of any deep learning-based model, sev-
eral hyper-parameters were considered to tune. In this work, Random
Search [36] was used to find the network optimal hyper-parameters
combinations. The optimal hyper-parameters for optimizer type, learn-
ing rate, model dimension, number of heads, and number of encoder
blocks are Adam [37], 1 × 10−5, 64, 3, and 3 respectively. All the
experiments proposed Transformer-based model was carried out using
Tensorflow v2.8.0.

3.3.2. Evaluation metrics
Several evaluation metrics are used to comprehensively evaluate the

performance of the proposed approach. Precision, recall, and F1-score
are the most important metrics [38]. The values of these metrics were
calculated during the testing process. The formulas that are used in
these computations are shown in Eq. (10).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(10a)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10b)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(10c)

where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁, 𝐹𝑁 are the true positive, false positive, true nega-
tive, and false negative respectively. In addition, area Under an receiver
operating characteristic (ROC) curve (AUC), which is a collective mea-
sure of sensitivity (𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)) and specificity (𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ))
over a wide range of all possible threshold values.
5

4. Case study on WECC 240-Bus System

The 2021 IEEE-NASPI co-hosted Oscillation Source Location (OSL)
contest [20] aims to help the academia and vendors further develop
and improve the available OSL tools, and help utilities identify and
evaluate OSL tools for online use. The testing power system (WECC
240-Bus System) consists of North, South, California, and Mexico areas.
It all has 243 buses, 146 generating units at 56 power plants (including
109 synchronous machines and 37 renewable generators), 122 power
transformers, 7 switched shunts, 329 transmission lines, and 139 loads.
Each generator is represented by the detailed model and equipped with
an exciter and governor [39]. A short-circuit fault and/or a line tripping
event may happen as an oscillation initiator or as a result of a forced
oscillation. There are 16 cases, which includes single and multiple FO
sources with different frequencies, where each event contains a 30 s
leading window before the FO event and 60 s time window after that,
total 90 s of data.

The cases provided in the 2021 IEEE-NASPI OSL contest [20] were
used in this research work, these cases has been synthetically generated
using a WECC 240-bus test system using Powertech Lab’s transient
security assessment tool (TSAT) software [40], with a 30 Hz sampling
rate which is sufficient to capture electromechanical oscillations. The
topology of this network model shown in [41], developed by Na-
tional Renewable Energy Laboratory (NREL) [42], modified by the OSL
committee [20].

There are several challenges concerning the FO events in real-world,
contest committee taken it into account such as: (1) Synthetic PMU
measurements provide partial observability to the system in all four
areas which includes only 23 out of 56 power plants; (2) Missing
PMU data, packets of one or more sequential samples make up each
missing sample. The size and distribution of missing packets can vary
significantly over time and between utilities. Thus, it is difficult to
model a distribution of missing samples; (3) Simultaneous occurrence
of system disturbances to reflect real-world challenges; (4) Additive
White Gaussian Noise (AWGN) was added to the load during simulation
to mimic random load fluctuations; (5) EPRI’s PMU Emulator was used
to process the synthetic PMU to simulate PMU device performance,
which may have resulted in corrupted or substandard measurements,
a mix of P Class (2-cycle window) and M Class (6-cycle window) PMUs
were used. EPRI’s PMU emulator [43] was used to process the synthetic
PMU data to introduce data quality problems [44].



International Journal of Electrical Power and Energy Systems 146 (2023) 108805M. Matar et al.

c
i
(
d

a
t
v
t
A
p
c
f
o

t
p
i
r
h

w
o

c
c
r
w
p
c

5. Experimental setup

Several test setups have been conducted in this work to evaluate
the scalability, generalization capability and robustness of the proposed
Transformer-Based approach to system variations. In addition, abla-
tion studies have been conducted to evaluate the effectiveness of the
proposed Transformer-Based approach. These experiments have been
applied to the 2021 IEEE-NASPI OSL contest cases and generated cases
from WECC 240-Bus system load and topology variation as described
below.

To efficiently train the proposed Transformer-Based model, we
extracted a large amount of training data by splitting 15 FO cases
from [20] into smaller time periods of a specific size using a fixed-
length sliding window.

5.1. Scalability studies

IEEE-NASPI Case Study Without Variations: In this experiment
we are training and evaluating our proposed Transformer-Based ap-
proach on the cases described in Section 4 without any variations.
Because we only have 16 FO cases in the contest dataset, the leave-
one-out cross-validation technique was used here to decide on the best
model to use in the following experiments and to estimate the model’s
performance on unseen data, where the number of folds is set to be
equal to the number of cases in the dataset. Thus, the learning algo-
rithm is applied once for each case, using all other cases as a training
set and using the selected case as a testing case. This experiment can
be computationally expensive, but it estimates the skill of a DL model
on unseen data and ensures the generalization ability of the model and
its applicability to a variety of scenarios.

Influence of Load and Small Topology Variation: During opera-
tion, topology variation of the power system could happen for several
reasons i.e. faults, scheduled maintenance.

In this experiment, the effectiveness and robustness of the proposed
approach are studied against a topology variation. The scenario of a
small system topology change to create six challenging testing cases is
that transmission lines were set to be outage separately, varying the
load values through the power system network.

The proposed Transformer-Based approach has been trained one
time under several FO cases from the contest dataset, and the testing
performed on several load and topology variation cases in this and
following experiment. In other words, the proposed Transformer-Based
approach does not require any re-training or fine-tuning for topology
and load variation.

Influence of Major Topology Variation: In addition for the men-
tioned reasons in previous experiment, generators model topologies
might not be known beforehand, owing to the unpredictable switching
of power system stabilizers. Thus, it is highly recommended to have a
FO localization method that does not heavily rely on the availability of
the first-principle model and topology information of the power system
network [16].

In this experiment, the effectiveness and robustness of the proposed
approach are studied against major variation of the topology. Two
scenario of major system topology change to create four challeng-
ing testing cases are considered, one is removing whole area from
the service which make the problem of localization FO significantly
challenging since a set of generators out of operation, and another is
disconnecting Bus with all the branches connected to them.

5.2. Ablation studies

The purpose of this experiment is to measure the effectiveness and
the contribution of the proposed model modifications to the overall ap-
proach and features importance. Two kinds of ablation studies, namely,
model ablation studies and feature ablation studies were conducted.
Each ablation study involves training and evaluating a model with one
6

or more of its components removed. Similarly, a feature ablation study
involves training and evaluating the model using a different subset of
features in the dataset as described below.

Transformer Model Ablation: This ablation study was conducted
to provide insights into the relative contribution of each modification
on the original Transformer architectural to the performance of pro-
posed Transformer-Based model by removing the modified components
from the model (e.g., skip connection and/or residual connections).

Feature Ablation: In order to verify the choice of features to the
proposed Transformer-Based model and understand the influence of
omitting specific features on the model performance, a feature ablation
study was conducted by calculating AUC when leaving each feature
group out. The difference between the performance of the model with
all of the features and the performance with those features excluded is
an indicator of how impactful the features are. Four kinds of features
are considered, including active power, reactive power, frequency, and
dissipated energy. The model’s performance evaluated on the branch
level using three testing cases: a case from the testing data set, a case
with small topology variation (Branch# 6301-6103-2 was set to be
outage and the load at bus# 4203 decreased by 10%), and a case with
major topology variation (Colorado zone was removed) were used in
this experiment.

5.3. Comparison of DL models

In this study a comparison of DL models in the context of FO
localization is presented. The proposed Transformer-based model per-
formance is compared with well-known traditional CNNs, LSTM archi-
tectures in [45] after modifying them to fit the problem as described
below. The training data, and testing cases are the same for all the
evaluated architectures, to make the comparison fair. The performance
metrics for comparison of DL models are AUC and F1 scores.

CNN: CNNs architecture is adapted from [45]. This architecture
onsist of two convolutional layers interleaved with maximum pool-
ng operations followed by two fully connected layers. The last layer
output layer) was replaced with layer with size of one which gives the
irection of FO.

Random search [36] was applied to find the best performing CNN
rchitecture hyper-parameters which is as follows: The two convolu-
ional layers consist of 256 and 512 filters, respectively. These con-
olutional layers employ a one-dimensional convolutional kernel with
he size of input samples and half of the input samples, respectively.

down sampling process by a factor of two is applied using a max-
ooling layer to compress the features. The two fully connected layers
onsist of 1024 and 256 hidden neurons, respectively. Each layer is
ollowed by a dropout layer with a drop rate set to 0.25 to prevent
verfitting.

The vanishing gradient issue is raised in this architecture with long
emporal data. In which the gradient faded out as the model got deeper
revents these from capturing the long temporal relationships in the
nput data. Due to the long input measurement of 70 s at a sampling
ate of 30 samples per second, making their models’ parameters very
ard to optimize.
LSTM: LSTM architecture is adapted from [45]. This architecture

as first presented to prevent backpropagated errors from vanishing
r exploding, but they fail to remove it completely.

This architecture consists of a single-layer LSTM. An LSTM unit is
omposed of a cell, an input gate, an output gate and a forget gate. The
ell remembers values over arbitrary time intervals and the three gates
egulate the flow of information into and out of the cell. Forget gates
ere introduced to avoid long-term dependency. However, LSTMs are
rone to overfitting and it is difficult to apply the dropout algorithm to
urb this issue.
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Table 1
Leave-one-out cross-validation results.

Fold# Testing case Actual oscillation source(s) Identified oscillation source(s)

Area Source(s) Avg. FO Freq (Hz) F1 AUC Area Source(s)

1 Case 1 South 1431 0.821 0.991 1.000 South 1431
2 Case 2 California 2634 1.194 0.978 0.998 California 2634
3 Case 3∗ South 1131 0.379 0.996 1.000 South 1131, 1032
4 Case 4∗ California 3831 0.379 0.987 0.998 California 3831, 3836, 3835, 2434, 3433
5 Case 5∗ North 4231 0.723 0.996 0.997 North 4231
6 Case 6 North 7031 1.267 0.897 0.982 North 7031
7 Case 7 California 2634 0.379 0.996 1.000 California 2634
8 Case 8 North 6333 0.614 0.979 1.000 North 6333
9 Case 9 North 6533, 4131 0.762 0.991 0.999 North 6533, 4131

10 Case 10∗ California 3931 1.218 0.979 0.999 California 3931
North 6335 0.614 0.990 1.000 North 6335

11 Case 11 North 4009 0.614 0.996 1.000 North 4009
12 Case 12 North 6335 0.920 0.996 1.000 North 6335
13 Case 13 North, California 4010, 2619 0.614 0.991 1.000 North, California 4010, 2619
14 A1 North 6333 0.572 0.996 1.000 North 6333
15 A2′ North 6333 0.572 0.991 1.000 North 6333
16 A3′′ North 6333 0.572 1.000 1.000 North 6333
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Table 2
Model ablation results.

Architecture Evaluation metric

AUC F1

The proposed approach 0.9953 0.9704
Removing skip connections 0.9814 0.9588
Removing residual connections 0.9839 0.9542
Removing skip and residual connections 0.9784 0.9330

5.4. Influence of non-Gaussian noise

PMU measurements involve noise, which may affect or even disable
certain PMU applications. This noise can change from time to time due
to the aging process, instruments, communication channels, etc.

Recent practical studies [46,47] revealed that the noise in PMU
measurements tend to follow non-Gaussian, thick-tailed distributions
such as student-t and Laplace distributions. Therefore, it would be
valuable in this experiment to investigate and evaluate the performance
of the proposed approach immune to non-Gaussian PMU measurement
noise with Laplace distribution. The index of signal-to-noise ratio (SNR)
is used in this section to describe the ratio between the power of the
desired output signal (meaningful input) and the background noise
(unwanted input), which is defined as follows:

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
(11)

here 𝑃 is average power. Laplace distribution is employed to cor-
upt the original PMU measurements, with typical SNR range 30–
0 dB [48].

.5. Time efficiency

Timely FOs localization at an early stage provides the opportu-
ity for taking remedial reaction. So, this experiment measures the
omputational time of the proposed Transformer-Based approach.

. Results and findings

In this section the results of the five experimental setups are demon-
trated, along with discussion of the results.
7
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.1. Scalability studies

IEEE-NASPI Case Study Without Variations: The proposed ap-
roach was tested on WECC 240-Bus system cases. In order to esti-
ate the skill of the model and generalization ability as discussed in
.1. Table 1 shows Leave-One-Out Cross-Validation results including
requency of each FO, the FO source(s), and the identified source(s).

This experiment shows that the proposed approach could generalize
o unseen scenarios. FO frequency of case A1 is 0.379 Hz before t = 30 s,
.614 Hz from t = 35–60 s, and 0.725 Hz after t = 65 s The network
as a mix of P/M class PMU. Case A2′ is similar to case A1, but with
00% P class PMU. Case A3′′ is similar to Case A1, but with 100% M
lass PMU.

It is important to highlight the power of the proposed approach to
ocalize FO with partially observably system. This is to account for the
act that today’s power systems, and for a long period in the future, will
ave only partial observability by PMUs [44].

The FO in both case 3∗, and case 4∗ resonate with the lowest
requency inter-area mode. The system in case 5 has different modes at:
.614 Hz, 0.708 Hz, 0.741 Hz and 0.78 Hz without creating resonance.
here are two FOs sources in case 10, each resonates with a natural
ode. Case 3, 4, and 5, and one of the two sources in case 10 are not
irectly measured by PMU. These cases can be challenging for methods
equiring direct measurements at the source.

Fig. 4 shows case 3 and 5, noted that all the oscillations flowed
ut of the shaded area in red, as explained in Section 3 the source
ocalized in this area. The identification that the source is localized
utside/inside of Independent System Operator (ISO) control area is
he best possible result using the available PMUs measurements.
Influence of Load and Small Topology Variation: In this exper-

ment, the effectiveness and robustness of the proposed approach are
tudied against topology variation. We tested the proposed
ransformer-Based approach, which trained on several FO cases from
he contest dataset without any topology variation included, on several
ases with load and topology variation. Transmission lines were set to
e outage separately and loads changes were introduced to construct
ix testing cases. One of the testing cases, FO resonates with a regional
nter-area mode at 0.614 Hz. PMU is available where the source is
ocated. Transmission line 4101-4102-2 was set to be outage, and load
t bus 6104 was changed from 1700 MW to 1000 MW. According to
he testing results, F-1 score, and AUC at branch level are 0.953, 0.991
espectively. The FO localization accuracy maintains 100%.
Influence of Major Topology Variation: Two testing cases were

reated by removing whole areas, including all generators in the area,
hich make major changes in the topology, such as removing Colorado
one, Alberta, and British zones, as shown in Fig. 5 where the shaded
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Fig. 4. FO flows in (a) Case 3 (b) Case 5.
Fig. 5. Topology variation cases (a) Removing Colorado zone (b) Removing Alberta and British zones.
area was removed from the system, and two testing cases were created
by disconnecting Bus with all the branches linked to them. According
to the testing results, average F-1 score, and AUC at branch level are
0.95, 0.988 respectively. The FO localization accuracy maintains 100%.
This experiment shows that the proposed approach is robust enough to
handle topology variation of the power system, which make it suitable
for real-world applications.

6.2. Ablation studies

Transformer Model Ablation: A comprehensive study was per-
formed to highlight the importance of each component in the proposed
approach. As shown in Table 2, four different structures were assessed
by removing the components one by one when building the proposed
approach to measure their effects on the model. This experiment shows
that skip connections and residual connections were useful to improve
the model performance.
8

Feature Ablation: were conducted in which the features were
removed one by one when building the proposed approach to measure
their effects on the proposed approach. Case 1, Case 2, and Case 14
were used as testing cases to evaluate the performance, whereas Case
2 and 14 were not included in the training data for this experiment.

The results, in terms of F1 score and AUC score at branch level,
which were the chosen evaluation metric for this experiment, shows
that the best performing was when the approach trained on all available
features as shown in Fig. 6. Even though training the approach on all
features excludes dissipating energy achieved good results on the same
topology, it failed in terms of topology variation.

This experiment provide insights into the relative contribution of
each modification on the original Transformer architectural to the
performance of proposed Transformer-Based model. It shown how im-
pactful the features are, and justified the used of it.
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Fig. 6. AUC for different training features at branch level. ( ) active, reactive
power; ( ) active, reactive power, and oscillation frequency; ( ) active, reactive
power, and dissipating energy; ( ) all features.

Table 3
Comparison of performance of different DL models.

DL architecture Training Validation
accuracy (%) accuracy (%)

Transformer-based (Proposed) 99.94 99.37
CNN 92.63 88.31
LSTM 83.42 77.68

6.3. Comparison of DL models

In this study a quantitative comparison of DL models in the context
of FO localization is presented. The well-known CNNs, LSTM in [45]
have also been implemented to compare with the results from the
proposed Transformer-based model.

Table 3 shows the accuracies of the proposed Transformer-based
model and two different DL-based models used for the performance
comparison. There was a significant difference between the proposed
model and CNNs, LSTM in terms of training and validation accuracy.
The comparison results have shown comparable and better perfor-
mance for he proposed Transformer-based approach without topology
variation. In addition, scalability of these models were tested on topol-
ogy variation cases, but it showed that these DL-models are not scalable
nor robust to the topology variations. From this study, we can see that
the proposed Transformer-based model has superiority in performance,
robustness and scalability.

6.4. Influence of non-Gaussian noise

The proposed approach is tested under different non-Gaussian noise
levels with Laplace distribution to the original measurements to ensure
that it could localize FO source(s) accurately in the actual power
system. The proposed approach shows excellent anti-noise performance
due to the contribution of the attention mechanism. This mechanism
emphasizes the features, and reducing the noise interference of PMUs
measurements. The performance of branch-level localization with vary-
ing noise levels is shown in Fig. 7.

6.5. Time efficiency

An essential metric to consider while running deep learning models
for online applications is the computation time. A Windows PC with In-
tel(R) Core(TM) i7-9700 @3.00 GHz, 32 GB memory, NVIDIA GeForce
RTX 2080Ti was used to run the trained models.
9

Fig. 7. Localization performance of the proposed approach with different level of noise.

The identifying frequency and calculation of dissipating energy
features take an average of 32.24 ms for all branches in the system.
For transformer-based deep learning, the total average computing time
is 301.2 ms for all branches to solve one whole case which make the
proposed approach suitable for online applications. Our approach is
fastest compared with ∼1 s in [22], ∼5 s in [8], and ∼4.4 min (without
parallelization) or ∼33 s (if parallelized on 8 multi-core processors)
using DEF-based solution [49].

7. Discussion

Unlike the current deep learning that works on a fixed topology,
we propose a branch-level DL-based approach that builds an oscillation
propagation map to help network operators localize the FO source.
We investigated our approach under different settings to check its
scalability and adaptability to real-time applications.

The proposed Transformer-based Deep learning model shows high
performance in capturing temporal dependencies compared to tradi-
tional DL approaches (CNN and RNN). We refer the high performance
to the attention mechanism, which allows the model to understand
which parts of the input are important and how relevant each part of
the input is to the other parts of the input data [30,50].

As shown in Section 6.1, our approach demonstrates that we can
handle major topology variations without retraining our DL models,
which indicates that our system can be applied to a new topology
settings with minimal supervision. Also, our model showed robustness
in handling minor topology variations, which indicates its applicability
to real-time scenarios.

The proposed approach indicates robustness against non-Gaussian
PMU noise with Laplace distribution, as shown in Section 6.4. Real-
life PMU measurements involve noise [22], which may affect or even
disable certain PMU applications. This noise can change from time to
time due to aging processes, instruments, communication channels, etc.
Recent practical studies [46,47] revealed that the noise in PMU mea-
surements tends to follow non-Gaussian distributions such as student-t
and Laplace distributions.

As shown in the ablation study implemented in Section 6.2, we
find that including FO frequency and DEF in addition to the raw PMU
data results in better performance. This finding is consistent with prior
research showing that more information helps DL models’ scalability.
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Fig. A.8. One-line diagram of 240-bus WECC system.
8. Conclusion

In this paper we proposed a new branch-level Transformer-based
approach inspired by DEF-based methods to localize FO. Our model
handles significant shortcomings of the current DL approaches. Our
approach is scalable and can handle topology variations and PMU
noise. The efficacy of the proposed approach is illustrated in a WECC
240-bus test system, which includes a high renewable integration in the
system.

The proposed approach does not require extensive training data,
information on system models, or grid topology, resulting in an efficient
and easily deployable solution for online operation. Most importantly,
it does not need to be re-trained for any topology variations.

The proposed approach achieved high speed, high localization per-
formance even with the presence of non-Gaussian noise, a partially ob-
servable system, and operational topology variations which reflect real-
world challenges. Future work will focus on identifying the controller
type of oscillation source(s).
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Appendix. Model of the 240-bus WECC test system

A one-line diagram of the 240-bus WECC test system is shown in
Fig. A.8. The 240-bus WECC test system models can be downloaded
from NREL’s test case repository [51].
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