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1 Introduction

1.1 The context

Let k be an algebraically closed field of characteristic zero. The problem of classifying Hopf
algebras with finite Gelfand—Kirillov dimension, abbreviated GK-dim henceforth, is an active
area of research. See [6, 9, 11, 14] and references therein. Crucial for this problem and attractive
in itself is the question of classifying Nichols algebras over abelian groups with finite GK-dim;
see [2] for its role in the study of pointed Hopf algebras over nilpotent groups. Let I" be an
abelian group and let kI' be its group algebra. The braided tensor category %y@ of Yetter—
Drinfeld modules over kI' consists of I'-graded I'-modules, i.e., vector spaces V = ®gyerV, with
a linear action of I' such that h -V, =V, for all g,h € I', with usual tensor product of modules
and gradings. The braiding cyw: VW — WV, for V,IW € ﬁgyp, is given by

cyw(v®@w) =g -wuv, veVy,, gel, weW. (1.1)
Given V = @yerVy € ‘LYD, its support is supp V = {g € T': V, # 0}. Since the Nichols algebra
(V') depends only on the braiding, the question of classifying those V' with GK-dim (V) < oo

was approached via Nichols algebras of suitable classes of braided vector spaces. Concretely, we
mention:

(a) Braided vector spaces of diagonal type (see Section 3.2.2 for details).
Nichols algebras arising from this class satisfy the following;:

Theorem 1.1 ([13]). The root system of a Nichols algebra of diagonal type with finite GK-
dimension is finite.
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This result was conjectured in [6, Conjecture 1.3.3], with supporting evidence from [3, 5,
12, 20]. By Theorem 1.1, the classification of Nichols algebras of diagonal type with finite
GK-dimension follows from [16].

(b) Blocks.

These are the braided vector spaces V(e,¢), where € € k* and £ € N>o, with a basis (z;);e1,
such that for 4,5 € Iy, 1 < j:

c(z; @ 1) = ex1 ® x;, c(z; @ xj) = (ex; + xj—1) ® ;.

Theorem 1.2 ([6, Theorem 1.2.2]). GK-dim Z(V(e,¥)) < oo if and only if { =2 and € € {£1},
in which case GK-dim B(V(e, l)) = 2.

Here #(V(1,2)) is the well-known Jordan plane while (V(—1,2)) is called the super Jordan
plane; the adjective super is justified in [8].

(¢) Direct sums of blocks and points.

Here a point is a braided vector space of dimension 1 and the blocks are of the form V(e, 2),
e € {£1}. We require at least two blocks, or one block and at least one point (to avoid overlaps
with the previous classes), and specific types of braidings between blocks and points, or between
blocks (from realizations in categories of Yetter—Drinfeld modules over groups). The precise
definition is in [6, Section 1.3.1]. The classification of the Nichols algebras with finite GK-dim
of such braided vector spaces is [6, Theorem 1.3.8].

(d) Sums of one pale block and one point.

Any finite-dimensional Yetter—Drinfeld module is a direct sum of indecomposable subobjects
in ﬁg)ﬂ?. If the underlying braided vector space of U € ﬂi;y@ is a block, then U is indecompos-
able in EIE:)/D but the converse is not true. An indecomposable U € HEFJ)D which is not a block,
i.e., is not an indecomposable braided vector space, is called a pale block. These appear already
in dimension 3. Thus a braided vector space V, dim V' = 3, is a direct sum of of one pale block
and one point if V' = V7 @ V5 where V; is a pale block and V5 is a point. This turns out to mean
that there exist

e a basis (x;)1<i<3 such that V; is generated by z; and 2 and Vo = kzs and
e a matrix (¢;;)1<i,j<2 of non-zero scalars
such that the braiding is given by
q1171 ® 71 q11T2 ® T1 q1273 ® T1

(c(xi ® 5))1<ij<3 = | @1T1 @ X2 q1172 ® T2 q1273 @ T2 |. (1.2)
0171 @ T3 g (T2 +71) ® T3 gar3 @ T3
Indeed, it can be shown that such V has a braiding like this [6, Sections 4.1 and 8.1] and
conversely we realize a braided vector space V with braiding (1.2) in fLYD, where I' = 72
with a basis g1, g2, by Vi = Vg, Vo = Vi, g1 - 71 = quiz1, g2 - T1 = q171, g1 - T2 = qu1T2,
92 - Ta = q1(72 + X1), Gi - T3 = GiaT3.
The underlying braided vector space of any Yetter—Drinfeld module of dimension 3 over an
abelian group belongs to one of the classes (a), (b), (¢) or (d), see [6, Sections 4.1 and 8.1].
Below we shall use the notation qi2 := ¢12¢21.

Theorem 1.3 ([6, Theorem 8.1.3]). Let V' be a braided vector space of dimension 3 with braid-
ing (1.2). Then GK-dim B(V) < oo if and only if ¢11 = —1 and either of the following holds:

(1) q12 =1 and g2 = £1; in this case GK-dim #(V) = 1.
(19) goo = —1 = qua; in this case GK-dim B(V) = 2.

The Nichols algebras in the theorem are described in Proposition 3.10.
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1.2 The main theorem

Because of these antecedents, we consider the class ¥ of finite-dimensional braided vector
spaces V' with pale braiding [6], i.e., such that

e V can be realized as Yetter—Drinfeld module over an abelian group,

e 1 does not belong to classes (a), (b), nor (c).

The problem is to determine when GK-dim #(V') < oo for V' € B. Without loss of generality,
we restrict ourselves to the following setting.

Hypothesis 1.4. T' is an abelian group and V &€ Hﬁ:yl) satisfies
D V ey,
(IT) supV generates T,

(III) V is connected, see Definition 3.2.

Indeed, if (IT) does not hold, then we replace I' by the subgroup generated by the support.
Also (III) is controlled by Remark 3.3.

Let T and V be as in Hypothesis 1.4. To deal with our problem, we consider the possible
decompositions of V' in indecomposable Yetter—Drinfeld submodules. Some cases are ruled out
by our assumptions:

e If V is indecomposable, then by (II) V =V, for some g € I' and g generates I'. Thus ¢
must act as a Jordan block of some eigenvalue ¢; i.e., V is either a point or a block, so it
is not in P since it belongs to class (a) or (b).

e If V is a direct sum of Yetter—Drinfeld submodules of dimension 1, then it is of diagonal
type, again out of 3.

Suppose further that dim V' = 4. There are three cases of decompositions V = V& Vo®- - -PVy
where dim V7 > dim Vo > -+ > dim Vj and the V; € i;yp are indecomposable to be considered,
namely

(1) #=2,dimV; =3 and dim V5 =1,
(2) 6 =3,dimV; =2 and dim V5 = dim V5 = 1,
(3) 6 =2, dimV; = dim V3 = 2.

The classification of the possible V' with GK-dim #(V) < oo is carried out in each case in
Sections 4, 5 and 6, respectively, using Theorem 1.1. Putting together the corresponding results,
see Theorems 4.1, 5.1 and 6.1, we get our main theorem:

Theorem 1.5. Let V' be a braided vector space of dimension 4 satisfying Hypothesis 1.4. Then
GK-dim ZA(V) < oo if and only if V is in Table 1.

For the meaning of the graphical description in the last column in Table 1, we refer to
Section 3.2.5.

Theorem 1.5 is the crucial recursive step towards the classification of the Nichols algebras
satisfying Hypothesis 1.4 and having finite Gelfand—Kirillov dimension, that is presently work
in progress. Indeed, we can show that the members of the list in Table 1 either belong to
natural families of braided vector spaces giving rise to Nichols algebras with finite Gelfand—
Kirillov dimension or else could not be extended to such a family. Now the technical difficulties
presented by the working Hypothesis 1.4 prevent us from arguing inductively in a naive way, and
in fact there are new families beyond such a recursion, but the constraints given by Theorem 1.5
would make this question tractable.
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Table 1. Pale braidings of rank 4 with finite GK.

Shape Name GK-dim | Theorem Diagram
1 pale block ¢3_(q) 2 4.4 [‘? _;1
& 1 point €54 (q) 4 45 ? é
v i Iz
1 pale block | €, (q",a) 2 5.2 o .
. -1 0 5 1
& 2 points €00 (qT) 4 5.5 s 5 .
2 pale blocks S20(q) 2 6.3 [1] (10 [27
1 pale block | &3 +(q —l) 2 6.6 il G2 H
A2 1 2
& 1block | &1 (q,—1) 4 6.6 - R i
- - 1,1
S1,-(q) 4 6.7 N D =

2 Preliminaries

2.1 Conventions

Forus N={1,2,...} and Ng = NU{0}. If £ < 0 € Ny, then [y g := {{,+1,...,0}, Iy := T .
The cardinal of a set I is denoted by |I|. The antipode of a Hopf algebra is denoted by S.
Given a vector space V', (v1,...,v,) denotes the subspace spanned by vi,...,v, € V. Given an
algebra A, k(z1,...,x,) denotes the subalgebra generated by x1,...,z, € A.

2.2 Nichols algebras

Let I' be an abelian group. The category EFJHD of Yetter—Drinfeld modules over kI' was already
defined; we refer to the literature for that of ZJ}D, H ageneral Hopf algebra. See, e.g., Section 3.1
for the concept of braided vector space and [1] for the notions of braided Hopf algebras and Hopf
algebras in braided tensor categories. Fix R a Hopf algebra in gyD. The braided commutator
of z,y € R is [z,y]. = xy — multiplication o ¢(z ® y). Let ad. denote the braided adjoint action
of R, see, e.g., [1, p. 165]; if € R is primitive, then ad. z(y) = [z, y]. for all y € R.

Remark 2.1. Let Z be an algebra in ﬂﬁ:y@ and u, v, w € # homogeneous of degrees g, h, k € I'.
Then

[uv, w]. = uv, w]. + [u, h - wlev, (2.1)
[u, vwle = [u, v]cw + ¢ - v[u, W],

([, vle, wle = [u, [v, w]c]e — (g - v)[u, w]e + [u, (h - w)]cv.
These identities will be used frequently, sometimes implicitly, in what follows.

Given V € BYD, the tensor algebra T(V) is naturally a Hopf algebra in £)D. The Nichols
algebra A(V) is a quotient of T'(V') by a suitable homogeneous Hopf ideal; see [1] for details.
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Let V € ﬁ:)ﬂ) with a basis (v;)ic1, such that v; is homogeneous of degree g; for all i. Then
there are skew-derivations 0;, i € Iy, of T'(V') such that

0i(vj) = by, di(wy) = 0i(z)(gi - y) + 20(y), z,y e T(V), i,j €l

These skew-derivations extend to Z (V). Given z € A(V), if 0;(x) = 0 for all i € Iy, then = = 0.
Given a braided vector space V' with a basis (x;)ic1,, we denote in any intermediate Hopf
algebra between T'(V') and A(V)

Liyoigipr1 — (adc .Til) <o (adc xik)$ik+1, il, ce ,’ik+1 S Hg.

We refer to [19] for the theory of Gelfand—Kirillov dimension. By [22], the Nichols algebras
considered here admit a PBW-basis; we derive the GK-dim, when finite, from the explicit
computation of one such PBW-basis. To decide that the GK-dim is infinite, we use instead
a variety of arguments, mostly reducing to a subalgebra or quotient algebra; in some cases we
use Theorem 1.1: explicitly, in Lemmas 5.4 and 5.7 and in Proposition 5.9.

2.2.1 The splitting technique

Let V = U @®W be a direct sum of Yetter—Drinfeld modules over a Hopf algebra H. Then Z(V)
splits as

BV = KHB(W)

with KK = Z(V)°?W)_ Further, K is isomorphic to the Nichols algebra of K' = ad.(Z(W))(U),
see [17, Proposition 8.6], and also [7, Lemma 3.2]. It is often easier to compute QE(ICl) and then
derive AB(V).

3 Indecomposable Yetter—Drinfeld modules

3.1 The category of braided vector spaces

A braided vector space is a pair (V, ¢) where V' is a vector space and ¢ € GL(V ® V) is a solution
of the braid equation (¢®id)(id ®c)(c®id) = (id ®c)(c®id)(id ®c). As customary, the braiding
of any braided vector space is denoted by c. We assume that all braidings are rigid. The class
of braided vector spaces is a category, where a morphism f: (W,c¢) — (W', ¢) is a linear map
f+ W — W’ such that (f ® f)e=c(f ® f). A collection of morphisms of braided vector spaces
is an exact sequence if the underlying collection of linear maps is so.

Definition 3.1. A braided vector space (W, ¢) is simple if W # 0 and for any exact sequence
0— (Uyc) = (W,c) = (V,c) — 0 of braided vector spaces, either U = 0 or else V' = 0.

There is a forgetful functor from HS::VD to the category of braided vector spaces sending
Ve EF)JD to (V, Cv7v), cf. (1.1).
Following [21], a braided subspace (U, ¢) of (W, ¢) is categorical if

c(UW)=WeU and c(WoU)=UeW.

Let (U, c) be a categorical braided subspace of (W, c). By [21, Proposition 6.6], there exists
a Hopf algebra K such that

e We ﬁyD and U is a subobject of W in %yD,
e the braidings of W and U coincide with those in ﬁyu
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Actually, K can be chosen co-quasi-triangular so that W and U are just K-comodules with
braiding arising from the universal R-matrix.
As in [15, Definition 2.1], a decomposition of a braided vector space W is a family of non-zero
subspaces (W;);cr such that
W = @it Wi, C(WZ’(X)Wj):Wj@WZ', 1,7 € 1.

Given such a decomposition, every W; is a categorical subspace. By [21, Proposition 6.6],
there exists a Hopf algebra K such that W = ®W; is a direct sum in %yD with braidings
coming from £YD. We say that a braided vector space (W,c) is decomposable if it admits
a decomposition with |I| > 2; otherwise, it is indecomposable. In this way, if W € ﬁyD is
indecomposable as braided vector space, then it is indecomposable as Yetter—Drinfeld module,
but the converse is not true: there are simple Yetter—Drinfeld modules of dimension 2 over group
algebras that are of diagonal type as braided vector spaces.

Definition 3.2. Let W = ®,;c;W; be a decomposition of a braided vector space W. Set
cij = wiew, s Wi @ W = W @ Wi i ~ j when ¢;jcji # idw,ew;, 1 =% j € I; and let =~ be the
equivalence relation generated by ~. We say that W is connected if i ~ j for all 7, j € .

Remark 3.3. Let W = @®,;c;W; be a decomposition of a braided vector space W such that
dimW < oo and cjicj; = idw,gw, for every pair i,j € I. Then Z(W) ~ ®,%(W;) [15] and
GK-dim Z(W) =Y. GK-dim ZB(W;).

We make precise a notion from [6]. Let K be a Hopf algebra.

Definition 3.4. We say that W € ﬁyD, dim W < o0, is a pale block if it is decomposable as
braided vector space but indecomposable in ﬁy@.

Thus there is a difference between the study of Nichols algebras of simple or indecomposable
braided vector spaces and ditto of simple or indecomposable Yetter—Drinfeld modules.

3.1.1 Indecomposable modules of dimension 2

Let K be a Hopf algebra. As illustration, we describe the indecomposable but not simple objects
in ﬁyD of dimension 2. The one-dimensional objects in ﬁyl) are parametrized by YD-pairs,
that is pairs (g, x) € G(K) x Hom,s (K, k) such that

X(k)g = x(k2)k19S (k3) forall ke K. (3.1)

If (g, x) is a YD-pair, then g € Z(G(K)); also, the vector space ki of dimension 1, with action
and coaction given by y and g, is in gjﬂD.
Let x1,x2 € Hom,g (K, k). The space of (x1, x2)-derivations is

Dery, v, (K) = {n € K*: n(kt) = x1(k)n(t) + n(k)x2(t), k.t € K}.

For example, x1 — x2 € Dery, y,(K). Dually, let g1,92 € G(K). The space of (g2, g1)-skew
primitive elements is

P (K)={ke K: A(k)=gpk+k®g1}.
For example, g1 — g2 € Py, g, (K).
Definition 3.5. A rank 2 YD-block for K is a collection (g1, g2, X1, X2, 7, V), where
(a) (gi,x:), 18 a YD-pair for K, i € I;
(b) n € Dery, v, (K);
(¢) v € Py g (K), and for all k € K

xa(k)v +n(k)gr = x1(k2)kivS(k3) + 1(k2)k192S (k3). (3.2)
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Remark 3.6. The following sets are subalgebras of K:
e given (g,x) € G(K) x Hom,e (K, k), {k € K: (3.1) holds};
e provided that (a), (b) and (c) are valid, {k € K: (3.2) holds}.

Let (g1, 92, X1, X2,7, V) be a YD-block for K. Let Vg ;% (n, ) be the vector space with a basis
(%4)ie1,, with action and coaction of K given by

k-xy=x1(k)x, k- xo = xo(k)xs + k), keK,
z1) = g1 @21, §(x2) =v @21 + g2 ® To.
Proposition 3.7.
(i) V&Lt (n,v) € KYD; it is decomposable in EYD iff
n=a(x1 — x2) and v=a(g1 — g2) for some a € k.
(ii) Let V € BYD not simple with dimV = 2. Then V ~ Vi'X*(n,v) for some YD-block

(917927X17X27 m, I/)'
Proof. Left to the reader. [ |

3.2 Pale blocks over abelian groups

Let I" be an abelian group.

3.2.1 Recollections
Given V = @yerVy € ﬁ:y@, dimV < oo, we set

Vb i=ker(g — Aid)y, € VY = | ker(g = Aid)fy,, A ek*.
neN

Then V = @ ger, Vg()‘) is a direct sum in [LYD, hence
Aek*

c(Vg()‘) ® Vh(”)) = Vh(”) ® Vg()‘)7 g,hel, \puek™.
Lemma 3.8 ([6, Lemma 8.1.1]). Assume that GK-dim #(V;) < co. Then
(a) If A €KX, A ¢ G2 UG, then V) = V™) has dimension < 1.
(b) If X € Gf, then V) = Vg()‘) has dimension < 2.

(c) If Vg1 # 0, then either V, = Vg1 (i.e., g acts trivially on V) or else Vg has dimension 2
and g acts by a Jordan block.

(d) If Vg_1 £ 0, then either Vg(_l) = Vg_1 or else V™V has dimension 2 and g acts by a Jordan
block.

Corollary 3.9. Let V € %ﬁ:yl) be indecomposable, thus V = Vgo‘) for some g € ', X\ € k*.
Then GK-dim (V') < oo iff either of the following holds:

(a) V is simple, i.e., dimV =1, or

(b) dimV =2, g acts by a Jordan block where A = £1, or
(¢) dimV =2, g acts by A\id where X\ € G, or

(d) dimV > 2, g acts by A\id where \ = £1.

Clearly, V is indecomposable as braided vector space only in cases (a) and (b), thus V is
a pale block in cases (¢) and (d).
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3.2.2 Diagonal type

Let V e HEFJ)D be semisimple, dimV = § € N; then V has a basis (x;);c1, such that z; € V,
and g - z; = xi(g)z; for some g; € I' and x; € f, for all 7 € Iy. Hence the braiding is given by
c(x; ® xj) = ¢ijrj @ x4, i,j € Ip. Such braided vector spaces are called of diagonal type and
have been studied intensively, see [1, 4, 10, 16] and their references. The Dynkin diagram of
the braided vector space defined by the matrix (g;;); jer, has 6 vertices, the i-th vertex labeled
by ¢;i; and one edge between i and j # i labeled by gi; = gi;jgj; (the edge is omitted when
Gij = 1)-

3.2.3 Pale braidings of rank 3

Let ¢ € k*. As in [6], we name the braided vector spaces with braiding (1.2) with ¢;; = —1,
cf. Theorem 1.3, as follows:

e €i(q), when g2 =q = q;ll, q22 = £1;

i QS*(Q), when q22 = _17 q12 = 4, 921 = _q_l'

The Nichols algebras Z(€4(q)) and AB(€,.(q)) are called the Endymion algebras of rank 3.
In the next proposition, xs, 1= r3w2 — qi2T27s.
2 2 2

Proposition 3.10 ([6, Propositions 8.1.6, 8.1.7 and 8.1.8]). The Endymion algebras are gener-
ated by x1, x3, xo with defining relations and PBW-basis as follows:
2

(a) The relations of B(€1(q)) are

22 =0, x% =0, T1Ty = —w3l1, (3.3)
T1T2 = q12T2T1, (3.4)
2
r5,=0 LT3 = T35X9.
iy =0, 2739 = 2173972

m3
2 .m2,.n1

A PBW-basis is {x{"x, * z} Ty mi,ms,ny € {0,1}, my € No}.
2

3
2

(b) The relations of B(€_(q)) are (3.3), (3.4) and

2
x5 =0, T2T39 = —q2 L3972 (3.6)

ms
A PBW-basis is {z "z, 21:3”30312: my,ms,my € {0,1}, ny € No}.
2 2

(¢) The relations of B(€.(q)) are (3.3),

m3
. . . 5 n
A PBW-basis consists of monomials 25" x5’ 2’57, [xg% z1o] ) 2 2Pl where ms,n1 € No
2 2 2

and my, mg, ms, mg,m7 € {0,1}.
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3.2.4 Assumptions

We fix for the rest of the paper the following setting.

Hypothesis 3.11. V = ®;¢,V; € ]ﬂEFyD that satisfies

dimV < oo, dimV; > dim Vs > -+ > dim Vp,
Vie ﬁ;EyD 1s indecomposable for i € Iy and
Hypothesis 1.4, i.e.,

() VeB,
(IT) sup V' generates T,

(III) V is connected.

As remarked, 6 > 2. Observe that recursive arguments need care with condition (II). Since V;
is indecomposable, it is homogeneous of degree g; € I', and g; acts on V; with generalized
eigenvalue g;; for any 1, j € Iy.

3.2.5 Terminology and graphical description

We attach a diagram to (some of) those V as in Hypothesis 3.11 extending the graphical de-
scription of [6].

By (I), at least one V; is a pale block; we assume that the pale V;’s are Vi,..., Vs, s € Iy. A
pale block V; C ngfl of dimension 2, respectively n > 3, is depicted by [i], respectively @7
These are the only pale blocks we need to consider, cf. Theorem 1.3.

By assumption there exists ¢ € Iy such that the V;’s of dimension 1 correspond to i € 141 ¢;
these are called points and depicted as qfi.

A block V(e,2) is depicted as B if € = 1, respectively B if ¢ = —1; no other blocks are
considered, cf. Theorem 1.2. They belong to the interval L4 ;.

When ¢ # j € I;416 and ¢;5¢;; # 1, we draw an edge between them decorated by g;; :=
gi;jqji, as in Section 3.2.2.

Let V; be a pale block of dimension 2 and let V; be a point. Then there is a suitable basis
{xi,xw} of V; and a; € k such that for £,/ € {z’, 21;1,j}
2

—T; @ x; —T2i+1 Q X5 Qij T & x4
2
C(xk R xz) = | —x; ® T2i41 —T2it1 ® $2i2+1 Qij T & CCQi;rl

2 2
qji%i Q T qji (l’zi;—l + ajxi) QT q;j;T; & T

If ¢;; = 1 and ¢;; = £1, then a dotted line labeled by a; is drawn between ¢ and j, i.e.,

i “ j;l. Here V; @ V; ~ €1 (q) if a; # 0.

i J
If ¢;j = —1 and ¢;; = —1, then we draw and edge labeled by a; between i and j, i.e.,
[7L ;1. Note that V; @ V; ~ &,(q) if a; # 0.

i J
Let V; be a pale block, dim V; = 3, and let V; be a point. When ¢;; = 1 and ¢;; = +1,
respectively ¢j; = —1 = ¢;; we join ¢ and j by a dotted line, respectively a line; i.e.,
3 o3

Y

% 7 A

b,.L
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The Nichols algebras #(V) when V has just one pale block and points (that is, s =t = 1)
are informally called Endymion algebras; and when V' has only pale blocks and blocks (that is,
t = 0), they are called Selene algebras.

4 A point and a pale block of dimension 3

In this section, we assume Hypothesis 3.11 with § = 2, dim V; = 3 and dim V5 = 1. For simplicity
set U=V, W ="Va, g=g1, h =92, 11 = M1, @2 = A2. By Corollary 3.9, U = UJ*" and
g1 = £1. As U is indecomposable and I' = (g, h), h must act as a Jordan block on U with
eigenvalue go1 € k*; thus g # h and U = V;. Fix a basis {1‘1,1‘2,333} of U such that hy is

g21 q21 O
given in this basis by the block < 8 Q21 q21 > Let {z4} be a basis of W, so that g - x4 = q1224,

0 g21
h - x4 = qaox4 Where qi2,g22 € k*. As usual q12 := q12¢21.
Let ¢ € k™. Let €3 1(q) denote the braided vector space V as above with

qu =—1, q22 = £1, q12=q=q3
In this section, we prove:

Theorem 4.1. The Nichols algebra (V') has finite GK-dim if and only if V ~ &3 (q) or
€3 _(q) for some q € k*.

The proof of the Theorem goes as follows. First, the Nichols algebras (€3 +(q)) have finite
GK-dim by Theorems 4.4 and 4.5. Second, let V' be as above. By Theorem 1.3 applied to the
subspace (x1,x2,z4), we have

Lemma 4.2. If GK-dim Z(V) < oo, then q11 = —1 and either

(1) q12 =1 and g22 € {1, —1}, or else
(i1) qi2 = —1 and g2 = —1.

To conclude the proof, we discard the possibility (ii):
Proposition 4.3. If gio = —1, then GK-dim (V) = oc.

Proof. Let K! = ad.(%(W))(U). We shall prove that GK-dim Z(K') = co. Set ¢ := 0 and
2 = ade(w4)(z;) € K1, that is

Zi = X4 — QQl(.CI}i + .%1;1)1‘4, 1 € 3. (4.1)
Let (9;)icr, be the skew-derivations associated to the basis (x;)er,. Since ga2 = —1, we have
23 = 0. Then
2xy if 5 =1,
BZ(ZJ) =< T4 if j=1+1, 1 € 3.
0 otherwise,

Thus {z1, 22, 23} is linearly independent. Let H = #(V)#kI'. Then
Afg(z) =210 142249 @ x; + x49 @ -1 + gh ® z;, 1 € I3.
Using § = (mgw)xxr @ id)Ay, we see that

0(zi) = 249 ® (225 + xi—1) + gh @ 2, 1€ 3.
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Hence for every y € K! and i € I3
c(zi ®y) = ade(x4)(g - 0) © (2zi + @im1) + (gh - 9) ® 2.
Let Z be the braided subspace of K generated by {21, 22, 23}. Then

—21 ® 21 —(Z2+21)®21 —(Z3+22)®21
(c(zi ®2j))ijer, = | —21 Q22 —(224+21) @22 —(23+ 22) ® 22
—21®23 —(2204+21)®23 —(23+ 22)® 23

Hence Z is isomorphic to V(—1,3) and Theorem 1.2 applies. |

4.1 The algebra #B(€; _(q))

To state our result, we need the elements
zi = x4%; — g1 (% + Ti-1)T4, w = 293 + q21 (73 + T2)22,
recall the notation (4.1). By a direct computation, one has
0i(2j) = —6ji41%4, O (w) = zs, D (w) = —z9, O3(w) = 04(w) = 0.

Theorem 4.4. The algebra H(€3 _(q)) is presented by generators x1, x2, x3, T4 with defining
relations

IL'ZQ =0, Tilj = —TjTq, 1 #] € I, (4.2)

l’i = 0, T1T4 = 127471, (4.3)

23729 — 2923 + %zg =0, (4.4)

zow + garwzg = 0. (4.5)
The monomials

oy wy st wP 2% 25t ) my, pe€{0,1}, n; € Ny, (4.6)

form a PBW-basis of (€3 _(q)). Hence GK-dim #(&3 _(q)) = 2.

Proof. Let & be the algebra with the desired presentation. We claim that there is a surjective
map m: B — (€3 _(q)). Indeed, the relations (4.2) and (4.3) hold in A(€3 _(q)) because
the braiding of (x1,z2,x3) is minus the flip and (x1,z2,z4) ~ €_(g) as braided vector spaces.
We check that (4.4) holds using skew-derivations: indeed d3 and d4 annihilate the left side since
they kill zo and z3, while for 0; and 0y we use (4.7). Similarly, (4.5) holds since 03 and 0y
annihilate zo and w, while for 9; and Jy we use (4.8).

To prove that m is surjective, we observe that if % is an algebra and x1,x9,x3,14 € P
satisfy(4.2) and (4.3), then 21 g-commutes with 29, z3 and w, and the following relations also
hold:

2oy = —q21(x2 + x1)22,
23wy = —w — q21(T2 + 1)23, L4222 = —(q212274, (4.7)
2303 = —qo1(x3 + 2)23, x423 = —qo1(23 + 22)T4, '
wro = q21(fL‘2 + ZL‘1)lU, wWr3 = q21 (1'3 + :L‘z)w.

If in addition, (4.4) holds in t@;, then the following holds:
TaW = —q%lwm + @zg. (4.8)

2
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Finally, if (4.4) and (4.5) hold in 4, then the following also holds:
23W = —@21W23, w? = 0. (4.9)

From the defining relations, the definitions of 23, z3 and w, (4.7), (4.8) and (4.9) we see that
the monomials (4.6) generate Z and a fortiori (€3 _(q)). Next we prove that they are linearly
independent. Suppose on the contrary that there exists a non-trivial linear combination S of
these elements: we may assume that S is homogeneous of minimal degree. As

mi,mo M3, p.nN3 N2 M4\ _ mi,ma M3, p.n3 no
84(:E1 Ty 2xg w2y 2y Ty )—5m471331 xy 2wy twP zs® 257,

all the elements in S with non-zero coefficient have my4 = 0 by the minimality of the degree.
Analogously, ns = ng = p = 0 since

mi, ma,m3, p_n3_n2\ _ _ m1,,ma,_m3, p_n3_nz—l1
0401 (2" ah PP wP 2 25%) = —noz a2 el P wl 233 252,

(8481)”3718482 (x;’lnla:?%gw’wng:*) = (—=1)"nglz" x5 x5 w?,
mi,,m2, . m3, p\ __ mi,.,mz_,ms3
040100 (21" 32w wP) = bp 12 b2l
Hence S is a non-trivial linear combination of z]" x5 x5", m; € {0,1}, and we get a contradic-

tion. Thus the monomials (4.6) are linearly independent in Z(€3 _(q)) so they form a basis of
#(€3,(q)); hence B ~ B(€3_(q)). u

4.2 The algebra #(€3 _(q))
We need the elements
T = (adc 1'4)51:_7', ] = 2a3a
2443 = (ad.z4)%23,
v = 242, T3]c = Ta2x3 + qo1 (23 + T2)T42,

U = [T43, T42]c = Ta3Ta2 + T42T43,

W = [X43, V] = T43V — @21 VT43.

Observe that 93(v) = d3(u) = d3(w) =0,

81(x42) = —XT4, 82(1'43) = —X4, 81(x443) = ngp (4'1())
O1(v) = 43, O1(u) = qiozass + xaora,  O1(w) = 23, (4.11)
0o (V) = —x42, Oa(u) =0, Oa(w) = —2u. (4.12)

and all the other skew-derivations annihilate x40, 43, T443.

Theorem 4.5. The algebra (€3 (q)) is presented by generators x1, x2, x3, xa with defining
relations

Tixj = —xjT;, x? =0, 1#£ j € ls, ( )
TAT] = 217174, TAT42 = G21T4274, T4T443 = (21744374, (4.14)
T443T42 + 212422443 = 0, (4.15)
7443743 + q21(T43 + 242) 443 = 0, (4.16)
TAW — qg’lwx4 + 2q§1x4gu =0, ( )
T43u — u43 + T42u = 0, (4.18)

(4.19)

T42W + qa1wx42 = 0,
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T43W + qo1wzr43 = 0. (4.20)

The monomials

mi,,ms, m p b5 ,.P6 .P7
Tq 1$2 2‘7:3 3vp1x4§Wp3up4x4gx4i3x4 ) mi, P2, P3,P6 € {07 1}7 P1,P4,DP5,P7 € NO; (421)

form a PBW-basis of (€3 (q)). Hence GK-dim #(€;3 1 (q)) = 4.
Proof. As before, let K! = ad.(Z(W))(U). Set

z; ;= (adc z4) 2, 1 €13, j € Np;
clearly, K! is spanned by the z;; with i € I3, j € Np. Observe that
9 Zij = —qlaZij, h-zi; = qo1(zij + zi-1,5)-
Step 1. The set Z :={z;;: i €13, j € ly;_1} is a basis of K.
Proof of Step 1. We prove by induction on j that
O(zig) = iy (1), i kels, jeN,. (4.22)
If j =0, then z; o = x; and the claim follows. Next if (4.22) holds for j, then

Ok(2ij+1) = Ok(xazij — q21(2ij + 2i—1,j)Ta) = 220k(2i ;) — ¢210k(2ij + Zi—1,5)9 - 4.

If k#i—j,i—j—1, then Ok(z;j4+1) = 0 by inductive hypothesis. Also,

0i—j(zij+1) = 240i—j(2i5) — 0i—j(zij)wa = 0,

Oi—j1(ziji1) = —0i—j1(zi—1,5)1s = — (= 1) jzy = (~1)7 2]t

Also, 04(z; ;) = 0 for all i € I3, j € Ny. Therefore, Oy(z;;) = 0 for all k € I4, so z;; = 0. Then
z;j = 0 for all j > i and K! is spanned by Z. It remains to prove that Z is linearly independent.
As z; j has degree j+1 in #(V), it suffices to prove that {z; j: j < i < 3} is linearly independent
for j € Iy . This follows from (4.22) and the fact that x{f # 0 for all k¥ € Ny. [ |

Step 2. The coaction on K! satisfies
J j ‘
8(zig) = (-1 <t>$ihjt9 ® Zi—t,j—t; i€l jelyia.
=0
Proof of Step 2. We proceed inductively. If j = 0, then §(z;0) = 0(z;) = g Q@ z; = g ® z 0.
Assume that (4.22) holds for j. Then
8(zij+1) = (Tpw)gr @ id)Ag (425 — q21(zij + Zio1,5)74)
= (24 @1+ h®4)0(2ij) — q210(2ij +2i-15) (24 @ 1+ h @ x4)

Jj .
=3 "(=1)! <i> e T g @z + AW g @ waz oy
=0

j )
—q21 Z(—l)t (i)xih]_tg:u ® (Zi—t,j—t + Zimt—1,j—t)
t=0

j .
—q2 Z(—l)t (‘z) M g @ (Zitjt + Zict1,j-0)2
t=0
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j .
7 . o
=) (-1 <t> (@ W g @z — W T T g @z )
t=0

j .
; ~ Jj+1 i1
= (—)M g0z a0+ ) (—1)t< . >l’ihﬁ1 9@ 2Zi g1t
t=1

+ g ® 201,
and the inductive step follows. |

Step 3. If%‘7 is an algebra and ; € é, i € Ly, satisfy (4.13) and (4.14), then

24T = —qo1 (T + Tj—1) T4y, (4.23)
T43T2 = —V — q21(T2 + T1)T43, (4.24)
x3, =0, (4.25)
T4V = g5V + gary, (4.26)
va; = go1(z; + xj-1)v, (4.27)
Taa373 = —q51 (T3 + 202 + 21)Taa3 — 2021353 — 2421 T422 43, (4.28)
T1a3T2 = — @5, (T2 + 221)Taa3 — 2g214, (4.29)
L42V = §21VT42, (4.30)
uzry = 51 (29 + 221y, (4.31)
wrs =W+ q1VT42 + g1 (T3 + 232 + 71)4, (4.32)
UZ42 = T4oU. (4.33)
Proof of Step 3. Argue recursively on the degree of the relations. |

Let Z be the algebra with the desired presentation.
Step 4. There is a surjective map w: B — B(€3.1(q)).

Proof of Step 4. Arguing as in the proof of Theorem 4.4, we see that the relations (4.13) and
(4.14) hold in A(€3 4 (q)). Using (4.10) and (4.14), we compute

31(334433342 + Q21$42$443) = —X443%4 — Q12374219€42 + Q21$42x421 + q12x4%443 = 0,
01 (443743 + q21(T43 + 2T42)Ta43) = —CJ129642;$43 + 212242443 + q21 (a3 + 23:42)33421
= 2044374 — q21(T43 + 2242) 75 + 2744324 + qo1 (w43 + 2242)75 = 0,
02(443%43 + q21(T43 + 2242)Ta43) = —T443%4 — q1224%443 = 0.
Since 0;(z42) = 0i(z443) = 0 for ¢ € I3 4, we conclude that (4.15) holds in #(€;3 4 (¢)). Similarly,

0i(x43) = Oj(x42) = Oi(w443) = 0 for i € I3 4, and (4.16) holds in Z(&3 1 (q)). For the remaining
relations, we first check that

T4u = g3 uxy, (4.34)
5”42143 =0, (4.35)
T443u = 203, UT443. (4.36)

Indeed for (4.35) we use (4.23), (4.14), (4.15) and (4.16):

2 2 2
Tyy3 = 443(T4243 — qo1(243 + 42)24) = —Tiyz — 2(T4Ta2 — @21T4274)Taa3 = —Tiy3,
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SO .75343 = 0. Now, by (4.29), 2u = —q12T443T2 — QQl(Ig + 2x1)x443, hence

2
224430 = —q12T 372 — 210443 (22 + 221 )443 = —q212443(T2 + 221) T 443

= —q21(—2go1u — @31 (v2 + 421)T443)Taa3 = 2051 UT 443,

and (4.36) follows. For (4.34), we use (4.14), (4.25) and (4.15):

au = (X443 + q21(T43 + Ta2)@4)Ta2 + @21T42(T 143 + q21(Ta3 + Ta2)x4)

= 31 (243 + T42)Ta2%4 + G531 a2 (Ta3 + Ta2)T4 = G us.
Next we evaluate appropriately the skew-derivations:

01 (z43u — ury3) = x43(q12%443 + Ta224) + q12(q12%443 + Ta224)T43

= Q127437443 + (U — T42743) T4 — q12(T43 + 2742)Ta43
+ q12742(7443 + @21 (743 + T42)T4) = UT4 — Q12T 42T 443,
O (zaw — g3ywra) = 2(Taas + qo1 (T3 + Ta2)74)Ta3 — 205, q12733T4
= —2q01(243 + 2%42)T4a3 + 2421 (243 + Ta2)Taaz + 2031 (Ta3 + T42) 24
— 203, 1273374 = 2¢5,uT4 — 2021 T 42T 443,
O1(wa2u) = —qioxau + T42(qr22a43 + T42Ta) = —UT4 + q12T42T 443,
Do (z4w — ghywzs) = 2240 — g5y qrours = 0,

O2(xg3u — umys) = —q%2x4u +uzry = 0 = O2(x42u).
Then (4.17) and (4.18) hold since d3 and 04 annihilate both sides. Now

O1(zg2w + qo1way2) = Q%25U4W — q21WT4 + 21‘42%213 - 26121<]12$?;31E42
= ¢io (g31wzs + 2G31y) — qo1wzy + 2349255 — 2243(0 — T42743)
= 2y + 2x492%5 — 2(y + uzy3) + 2(u — T40243) 243 = 0,
O2(w42w + q21Wwr42) = —2242u + 2q12¢21uT42 = 0,
O1 (243w + qo1wzy3) = 2235 — 2q12q21233 = 0,

(
(
Do (243W + q1WT43) = @iaaW — 2243u + 2¢21G12uT43 — go1wry = 0,
o0 (4.19) and (4.20) also hold. |

To prove that 7 is bijective and that (4.21) is a basis we need the following.

Step 5. The following relations hold in %:

Wy = —qgl(azg + 2x1)w, W3 = —q%l(:vg + 229 + x1)W — q21v2,
L443V = qg1V$443 - 2(1%196‘4211, uv = 931\711,
uw = Q§1Wu7 WV = (21VW,
T443W = Gy WT443, w? = 0.
Proof of Step 5. Use Step 3 and proceed recursively on the degree. [ |

We now finish the proof of Theorem 4.5. By the defining relations and those in Steps 3 and 5,
we see that the monomials (4.21) generate & and a fortiori %(€3 4 (q)). Next we prove that
the monomials (4.21) are linearly independent in %(€&3 1 (¢)). By direct computations,

mi,.m2,.Mm3_p1._p2,P3. P4, .P5,.P6 1,.M2,M3_p1_D2,.P3 D4, P5,P6 ,P7—1
64(951 Lo "Tg "VIIW TTy3U $42$443$4)—P7331 Lo "Xy "VW Ty ysUW " Lyolyy3ly
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0701 (z " ah2 s vPrwP? ahiul a3 alSs ) = 2pea™ a2 ol S v w2 ahiuP
0101 (lexTQnQ xgn:”vplwmmigup‘*mg) = —a" 2y vPiwP2 P,

9307 (z " a2 a3 vl uP? ah3ult) = dpga a2 a3 vl P> ohiube
(8431)%3482 (le x;ﬂz mgn:svmwmxilg-&-l) — (—1)’“1{!(1{: + 1)!x§n1 x;ﬂz xgn:svmwpg ’
(0401)*F 10405 (2 2y 2 a8 wP w2 238 = (—1)F (k)22 a2 S vP a2,
03070, (afi”la:;m x5 vplwm) = —8qiapaxytxy Py PP,

040100 (2" 2?2y ?vP) = pra a2zl

The claim is established by a recursive argument as for (€3 _(q)). Thus (4.21) is a basis of
#(€3,4(q)) and B ~ B(€3 1 (q)). u

5 Two points and a pale block of dimension 2

5.1 Notations and the main result

In this section, we assume Hypothesis 3.11 with § = 3, dimV; = 2 and dim Vo = dim V3 = 1.
Let g; € I' be such that V; is homogeneous of degree g;, for i € I3. Let {xl, x;} be a basis of V;
2

and let {z;} be a basis of V;, i = 2,3. Then

If i € I3 and j = 2, 3, then there exists ¢;; € k* such that g; - x; = ¢;;;.

Since V' € B and V; is indecomposable, g1 acts on V7 by ¢11id, ¢11 € k*.

Since V) is indecomposable, there exists j € {2,3} such that g; acts on V; by a Jordan
block. We assume that j = 2 and that go acts in the basis {3:1, IL‘%} by (q(z)l Zi ), go1 € k*.
Set ao := 1.

Since the action of g3 on V; commutes with that of g9, it is given in the basis {1:1, T g} by
2

( 431 g31a

P ), for some ¢31 € k*, a € k. Set a3z := a.

Thus the braiding of V' is determined by the matrix q = (g;;)i jer, with entries in k* and the
scalar a. Explicitly, the braiding is

c(Tr ® T¢) = qrexe @ T,
Q1171 ® T1 qus & x1 Q1kTE © X1
(c(z; ® x‘j))ide{l,%,k} = [mr®zs qrs ®rs NeTe @ T3 |,
qr1T1 ® T le(ﬂﬁg +apr1) @ T QTR @ T

k,¢ = 2,3. We give a notation in some special cases. Fix qf = (q12, ¢13, g23) such that ¢;; € k*
for all © < j and a € k. We have the braided vector spaces

o &, (qT,a), p,v € {+}, where a # 0 and q is determined by
qu=-1, qjgui=1 i<jels,  ga=pl, gz=vrl
o & (qT), where a = 0 and ¢ is determined by

1 —1 1
q11 = q33 = —1, 431 = —q13 » go2 =1, 421 = Q19 » 32 =¢qy3 .  (5.1)
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The diagrams of &, , (qT, a) and €, o (qT) are respectively

v a 177 14 -1 0 [ 1
° i o, ° ! °.
3 1 2 3 1 2

In this section, we prove:

Theorem 5.1. The Nichols algebra B(V) has finite GK-dim if and only if there exists q' =
(q12, 13, q23) € (k*)3 and a € kKX such that V ~ €, (qT,a) or €, o (qT).

Here is the scheme of the proof of Theorem 5.1. We show in Theorems 5.2 and 5.5 that
g%’((’fﬁ,y (qT, a)) and 1@((’3*700 (qT)) have finite GK-dim.

Assume that GK-dim #(V) < oo. By Theorem 1.3 applied to Vi @ V3, g11 = —1 and either
gi2 = 1 and go2 = £1; or go2 = —1 = q12. If a # 0, then by Theorem 1.3 applied to V1 @ V3,
either g13 = 1 and ¢33 = +1; or g33 = —1 = ¢13; but g13 could be # +1 if a = 0. We consider
four cases:

D) q2=q3 =1
(D) q2=1, qu3 # 1
(II) g2 = -1, q13 = 1
V) g2 =—-1L i3 # L.
In case (I), we distinguish two subcases:
(a) g23 =1, dealt with by Theorem 5.2,

(b) g23 # 1; here GK-dim #(V') = oo by Proposition 5.3.

In case (II), by Lemma 5.4 we are reduced to q22 = g3 = 1, g33 = g13 = —1 and either a = 0
or a # 0, dealt with by Theorem 5.5 and Proposition 5.6, respectively.

Finally, in cases (III) and (IV), GK-dim Z(V) = oo, or V belongs to case (II) after reindexing,
by Lemma 5.7 and Propositions 5.8 and 5.9.

5.2 Case (I)

In this subsection, we assume that g2 = g13 = 1.

5.2.1 Case (I)(a): g2s =1

Here a # 0 because of Hypothesis 1.4(I1I), or the vertex 3 would be disconnected. Thus gg2 = +1,
qs3 = £1. All four posibilities give rise to Nichols algebras with finite GK-dim. For convenience
we introduce

Z=T3T2 — (4122273, w = xr3 — Q13503333
2 2

I3
bl
Theorem 5.2. The algebras 95’( ( )) are generated by x1, T3, T2, T3 with defining rela-
2
tions and PBW-basis as follows:

(a) The relations of B(€4 4 (qf,a)) are (3.3), (3.4), (3.5),

T1T3 = q13T3T1, (5.2)

w? =0, T3W = ¢31WT3, (5.3)
¢

T2T3 = (23T3T2, T32 = 32431273, (5.4)

A PBW-basis is formed by the monomials (5.7).
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(b) The relations of (€4 _(q',a)) are (3.3), (3.4), (3.5), (5.2), (5.4) and
1:% =0, T3W = —q31WT3. (5.5)
A PBW-basis is formed by the monomials

m3
lexg fxg”zmx?) 3wPs ; mi,ms, My, p3 {0,1}, nq,ms € No.

(¢) The relations of B(€_ 1 (q,a)) are (3.3), (3.4), (3.6), (5.2), (5.3) and (5.4). A PBW-basis
is formed by the monomials

m3
zy" a:r; Zxy My B whs my,ms,ni,mg € {0,1}, ma,ps € Np.

(d) The relations of #(€_ _(q',a)) are (3.3), (3.4), (3.6), (5.2), (5.4) and (5.5). A PBW-
basis is formed by the monomials

m3
zy" $3 Zxy My whe my,ms, ma, my € {0,1}, n1,p3 € No.

Hence GK-dim #(€,,,(q",a)) = 2 for all p,v € {£}.

Proof. We prove the claim for Z(¢, ;) = t%’((&rﬁr (qT,a)); for the other algebras is sim-
ilar. The relations (3.3), (3.4), (3.5) hold in %(€, 1(q',a)) because the braided subspace
<$1,ZE‘%,$2> ~ €, (q12), while (5.2), (5.3) hold because <$1,x%,x3> ~ ¢, (¢q13) and in both cases
Proposition 3.10 applies. The relation (5.4)4 holds because (x1,z3) generates a quantum plane
and o is verified using derivations. Thus we have a surjective map & — Z(€, 1), where & is
the algebra with the claimed presentation.

From the defining relations, we deduce

*

* *
12 = —(Q127221, T3z *q122’$%, T1W = —(q13Wxy,

3
2

(5.6)

* [}

[ ]
3w —Q13w$g, Wz = —Qq324319122W, To2W = (23q21WT2.

3
2
Indeed the verification of x is direct and o follows from them and (5.3). In turn e follows
from (5.4)¢. Using the defining relations, the definitions of z and w and the relations (5.6), we
see that the monomials

m3
2 .M
x]" x3 2z 22 Mt whe My, ms,ni,p3 € {0,1}, ma,m3 € Ny (5.7)

3

generate # and a fortiori (€4 ;). The monomials 2"z, 2 25"
2

2™, respectively x5 wP3, are

linearly independent in (€&, ;) because
#(€1(q12)) ~ k@lam T2) — HB(E1 1) k<$17x3 x3) ~ B(€1(q13))-

The decomposition V' = (V1 & V2) @ V3 induces a linear isomorphism %(€ 1) ~ B(€1(qi12)) ®K
and z3,w € K = B (ad.(B(¢+(q12)))(V3)), hence we conclude that the monomials (5.7) form
a basis of A (€+7+ (qT,a)). Finally, the ordered monomials (5.7) define an ascending algebra
filtration whose associated graded algebra is a (truncated) quantum polynomial algebra. Hence
GK-dim Z(¢, 4 (q,a)) = 2. |
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5.2.2 Case (I)(b): q2s #1

Recall that g10 = 13 = 1.
Proposition 5.3. GK-dim #(V) = cc.
Proof. We check that xg, 73,2 € K! = ad.(%(V1))({x2,73)) are linearly independent using
skew-derivations. We show that they span a braided subspace W of diagonal type. First, we
have

Apg(zj) =2;® 1+ g; ® zj, j=2,3,

Apg(z) =2@1—2192 @22+ 192 @ 2.
Therefore, §(x;) = gj ® xj, j = 2,3, §(2) = —2192 @ 2 + g192 ® 2. Thus

c(z;@y) =gj-y®x;,  j=2,3,

c(z®@y) =—ade(z1)(g2-y) ®22 + 9192 -y @ 2
for every y € K'. Hence W is a braided vector subspace of k! with braiding given in the basis
{y1 = 22,92 = 73,y3 = 2} by

2272 @ T2 q23T3 Q@ T2 219227 © T2
(c(yi ®y;))ijer; = | @272 ® 23 Q333 @ T3 314322 @ X2
41292272 @ 2 1392373 ® 2 —Qq222 @ 2,
which is of diagonal type with diagram gL %2 T8 Since g23 # 1 and g9 € {£1},
GK-dim Z(W) = oo by [6, Lemma 2.3.7]. |

5.3 Case (II)

In this subsection, we assume that gio = 1, q13 # 1. We set v = z1x3 — qi3x3x1 which is # 0 by
hypothesis.
Lemma 5.4. If GK-dim #(V) is finite, then qa2 = Go3 = 1, q33 = q13 = —1.

Proof. Assume that g22 = 1. Then g23 = 1 by [6, Lemma 2.3.7] applied to (z2,z3). If a # 0,
then ¢33 = —1 = @13 by Theorem 1.3. Next we assume a = 0: here, 0 C (x1,x9,23) C V is
a flag of Yetter-Drinfeld submodules such that grV (the associated graded object in ]ﬁig)}D)
is of diagonal type. By [6, Lemma 3.4.2 (b)], gr B(V) (the graded algebra associated to the
filtration induced by the one on V') is a pre-Nichols algebra of gr V.. The class Z of z in gr Z(V)
is primitive in gr (V) since

Alz) =201 -1z +1® 2

and Z is non-zero by [6, Propositions 8.1.6 and 8.1.7]. Let H = gr B(V)#kI: H is a pointed
Hopf algebra and the diagram of H is of diagonal type. Let W be the infinitesimal braiding
of H. In H, Z has degree 2, x1, x 8 and x3 are linearly independent of degree 1 and

AZ)=zZ®1+ 9192 ®Z, A(r) =2, @ 1+ g5 @ 4,
(where [i] is the integral part of i) so Z and the z;’s are linearly independent elements in W.
Computing the actions of the corresponding group-like elements on z and x;, we see that
-1 @3 @3 Q3 -1
@] [©] o
1 3 z

q13

I
mon
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is a subdiagram of the Dynkin diagram of W. By Theorem 1.1, we see that ¢33 = qi3 = —1
by [16].

Assume that go2 = —1. We check that z,v € K! = ad.(%(v))({z2,x3)) are linearly indepen-
dent using skew-derivations. We show that they span a braided subspace W of diagonal type.
First, we have

Ap(z) =201 - 7192 @ 22 + G192 @ 2,
Apg(v) =v®1+ 22193 ® 13 + 9193 @ ;

one therefore has
6(2) = —z192 ® T2 + G192 D 2, d(v) = 27193 @ 23 + 9193 @ V.
Consequently we have for every y € K!

c(z®@y) = —ade(r1)(g2 - ¥) ® T2+ 9192 - Y ® 2,
clv®y)=2adc(x1)(g93-y) ®x3+ 9193 - Yy @ 0.

Hence W is a braided vector subspace of X! with braiding in the basis {2, v} given by

( 2Qz —(q13921G23V ® z>
—q124319322 @ v q33v @ v ’

so is of diagonal type with diagram & 3395 A sume that GK-dim B(W) < oco. Then
Gi3G2s = 1 by [6, Lemma 2.3.7]; thus gog = Z]f; # 1. Again, 0 C (x1,x9,23) C V is a flag of
Yetter—Drinfeld submodules such that gr V' is of diagonal type; its diagram is

w

-1 q13 q3
— 0
3

— O

G23 _
q13

N O
w\wOL

By [6, Lemma 3.4.2 ()], GK-dim Z(gr V) < GK-dim #(V). By Theorem 1.1, the unique open
case is ¢33 = Go3 = q13 = —1, see [16].

Now we fix ¢33 = gas = i3 = —1 and suppose that GK-dim Z(V) < oco. Then grV is
a braided vector space of Cartan type Dy, and the corresponding graded Hopf algebra & :=
gr B(V) is a pre-Nichols algebra of gr V' such that GK-dim % < oo, see [6, Lemma 3.4.2 (b)].
Let y; be the class of x; in 4,

Y33y = adcy3( ad. ys (y2)), u = (ad, xg)(adcx%(xg)).

Notice that its class @ in % is U = y33,. Then w = 0 by [9, Lemma 5.8 (b)]. We claim that there
2
exist a; € k such that

U = a1%132 + 222713 + A3T32%1 + A4T3T13 + A5T13%1 + AT2X32
+ a7x32x3 + agT2T3X] . (5.8)
Indeed, u € (V)3 and the subspace (x1,z2,3) is of Cartan type A3 with parameter —1, so
{1'132, roT13,X322L1,X3L13,L13T1, 232,323, xgxgl'l} is a basis Of ,@(V)g AS 81 (u) = 83 (U) = 0,
we have that
0 = azx3s — 2a5x3x1 + asx13 + agraxs,

0 = 2a1212 + 2a0z271 + a4(2x371 — @31713) + ar(x32 — 2x2x3) + q3108T2%1.
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As {x13, 232, xow3, Tox1, T321 } are linearly independent, we get as = a5 = ag = 0 from the first
equality, and a; = ag = ag = a7 = 0, so (5.8) reduces to u = agrarse. But applying d, we get

(31713 — 22371 = —a6q32T32 + 2067273,

a contradiction. Hence GK-dim (V) = cc. |

In the next subsections, we study two subcases of the situation left open in Lemma 5.4,
namely a = 0 and a # 0.

5.3.1 Case (II), when the ghost is infinite

Here g22 = qo3 = 1, q11 = ¢33 = ¢13 = —1, a = 0. To spell out our next result, we introduce
— A — _
Zpmn 1= T3TgsTygs -T2, Y = [2110, Z0ot]e = 21102001 + Z0012110- (5.9)

2

Theorem 5.5. The algebra t%’((’f*’oo (qT)) is generated by x1, x3, x2, x3 with defining relations
2

2 2 2
r3x1 + r1x3, T3, x3§a wlgéa
2 2 2 2 2 (5 10)
L1933 + 2. xax z2, a2 z? '
13313 q13%3 1335 3 13» 1s

L2X3 — q23T3X2, X1T2 — 4122271, 1’%23«"2 - Q12$2$gg,
Zmns  (fmn) € {(010), (001), (101), (011)},
T3y — Q%QQ%syxg + ¢12913Z0012101,
Z110Y — Y2110 + Z001Y-
A PBW-basis is formed by the monomials

mooo ,M100,M010 ,'M001 (,M M110 101,011,111 .01 .02 ,.G3 a4 a5 .06
Zp00 2100 2010 2001 Y 2110 4101 %011 2111 353 373%5313%953 T13T1 >
a;, M100, Mo10, Moo, M1o01, Mo11 € {0, 1}, Moo, M, M110, M111 € No. (5.15)
Hence GK—dim%’(G*,oo (qT)) =4.
Proof. We proceed by steps.

Step 1. Note that Vi3 & V3 is of Cartan type Az with parameter ¢ = —1. Now the defining
relations of (Vi & V3) are (5.10), see [4]. Thus these relations hold in B (€. (q")). Also the
following set is a PBW-basis of B(V1 & V3):

x" xg%aﬁg%xgx%m{, a,b,c,d,e, f € {0,1}. (5.16)

Nl

Ezxchanging 1 and % we obtain another presentation and PBW-basis of (V1 ®V3). We will use
both presentations and basis in the sequel.

Step 2. The subspace (x2,x3) is a quantum plane, and <$1,.§C%,$2> ~ €, (qu2). Hence the
relations (5.11) hold in % (€. (q")).

Step 3. B = {zpnn|0 < £,m,n < 1} is a basis of K := ad.(%B(V1 @ V3))(Va).
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Proof of Steps 1, 2 and 3. The following formulas are easy to check:

V4
g1 Z¢ymn = (_1) +mq12q%+nzémn7

l 2
93 ' Z¢mn = Q3Tm+ nq32(_1)m+nz€mn7

{qgmﬂnqunzemm ¢mn # 110,
92 * Zgmn =

431q23(z110 + Z001), ¢mn = 110.
Next we claim that the following relations hold:

(ade 21)2emn = 6m10n0(—1) 2001, (ade3)Zemn = Oe.0Z1mn, (5.17)

(ade 23)Zemn = 0,10m,0Z01n-

The verification uses (5.10), (5.11) and the definition (5.9). Summarizing, the adjoint action
of z;, gj can be read in the following graph:

e

3
2

Z000 Z100 3 Z010 Z110
o o o o
1 \
\ ; ) ,
2001 2 Z101 3 Zo11 2 Z111
[¢] ¢} [9) o

The elements (one or two) in the n-th column have degree n.

We draw an arrow from zg,,, to z,q labeled with i € {1, %, 3} if and only if (ad. x;)zpmn €
k*zpqr. Moreover, this non-zero scalar is 1 if ¢ # 1.

If there is not an arrow starting in zg,, with label i, then (ad. x;)zgmy, = 0.

The dotted arrow from z119 to zgp1 means go-z119 = q§1q23 (z110+2001). Otherwise, the action
of g; on zg,, is diagonal.

By (5.11) and (5.16), K! is spanned by B. Also, 01(zemn) = 8%(z€mn) = 3(zomn) = 0
for all ¢, m, n since ker 9; is a subalgebra of (V) @ V3) stable by ad.x;. Now we compute
02(z100) = —x1,

02(2zo10) = — 231, 02(zo01) = —2x1231, 02(z110) = —(96%31 + 21231),
O(z101) = 221233,  Do(zonn) = 2x31233;,  Oa(zin) = —2m T3 Ty
Hence B is linearly independent. |

Step 4. The relations (5.12) and (5.13) hold in %(€.(q')).

Proof of Step 4. As 0;(zpm,) = 0 for all ¢ # 2, it is enough to check that d; annihilates each
one of these relations. Using (2.3) and (5.17),

) (2(2)10) = —(¢21423T31Z010 — 2010731 = —Q21Q23[$3172010]c = —QQ1Q23[$3, [xlszIO]c]c
= —@21¢23[x3, Zo01]c = 0,
92 (2801) = —@31a23[v1231, Z001]e = — 3102371 (%31, Zoo1]e — @21031 [¥1, Zoo1]e31 = 0,

2 3 3
D2(zi01) = 2451423 [93190%31, z101], = 23 q2321 [xg, [231,Z101]¢],
2 2
= —4¢5192393121 [CC%,2011$1]C = —4¢392393171211171 = 0,

9 (2511) = 243,433 [317319633172011]c = 243, 453731 [37%’ [z31,2011]c], = 0,
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and (5.12) follows. Next we check that
(y) = —a31¢23 [37%31 + 21231, Z001] , — 203142371731, Z110]c + 2Z00121T31 = 2200121231
Using this equality and (5.17), we see that (5.13) holds because

O (x%y — q%Qq%Syxg + Q12(J132001Z1o1)

2
= Q[iﬁg, Zo0171231] , — 2q13431 423214312101 + 2129132001217 33; = 0. u

Step 5. Let B be an algebra and z; € B such that (5.10), (5.11), (5.12), (5.13) hold. Then the
following relations also hold:

Z100Z000 = q12Z000Z100; 20102100 = —¢3193221002010,

Z0012010 = 1391220102001, Z1102010 = ¢13912Z010Z110;

Z1012001 = —413¢12Z0012101, Z011Z101 = ¢31432Z101Z011, (5.18)
Z111Z011 = 131220112111, YZ001 = Z001Y,

z1012110 = —q12¢13(2110 + 22001)Z110,  Zigo = 0;

[Zo11, Zo01]e = O, [Z111, Zoo1]e = O, (5.19)
[2111, 2001]0 =0, [2011, leo]c = —({1293143220012011- '

In particular, these relations hold in %(6*,00 (qT)).

Proof of Steps 5. The relation z100zgo0 = ¢122000Z100 18 (5.11), and from this relation we
deduce that z2,, = 0. Using (5.13) and (5.17),

—(12413Z0012101 = [ﬂcg,y]c = [ifg, [zo01, Z110]cle = [2101, Z110]c

= z1012110 + ¢12¢13(Z110 + Z001)Z110-

All the other relations involve zgy,, and zg.s such that zy,, = (ad.x;)zq.s for some d,e, f €
{0,1} and i € {1,3,3}, and also 2 ; = 0. If i = 1,3, then

1)d+€

ZimnZdef — (xizdef - (_ q12qg;fzdefxi)zdef

f

d+ e+
teZQ13 ZdefZtmns

= — (=)™ q12¢{37 zgerizaey = —(~1)
If i = 3, then an analogous proof shows that zg,,, and z4.r g-commute. For the last relation,
we use the definition of y and that z2,, = 0.
By (5.18), elements zgy,,, and zg.s joined by an arrow g-commute. The relations (5.19) are
g-commutations between other zy,,,’s. By the defining relations, (2.3) and (5.18) we have

0 = [z3, [2101, Zoo1)c)e = [[*3, Z101]e, Z001]e = [Z011, Z001]e5
0= [IU%, [zo11, z101]c ), = [[1'%72011]072101]6 = (2111, Z0o1]e;
0= [Sﬁg, [Zo11, Zoot]e] , = [Z111, Zoo1]e,
0 = [z3, [2101, Z110)c + q12q13Z001Z101)c = [Z011, Z110)c + G12431G32Z001Z011;
and the step follows. |

Step 6. The relation (5.14) holds in %(€, (q")).
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Proof of Step 6. By the formulas for 0 and the relations in Steps 4 and 5, we have

4 2
02(2110y — y2Z110) = 2211020017131 — (21423 (36331 + @1231)y + y(xggl + 21231)
2
— 2¢51G23Z00171731 (2110 + Z001)

2 4 92
= 2yr1731 — 2431923Z001[T1731, Z110]c — ¢21G33 [56331 + z1231,5],

= 2yx1731,
Da(z001y) = O2(y2001) = —2y21231 + 24514232001 212312001 = —2YL1231 -
Hence (5.14) holds in #(€, o (q')). [ |

Let # be the algebra with the claimed presentation. By the previous steps, there is a sur-
jective map & — %(G*,m (qT)). To prove that this is an isomorphism, we order the set of PBW
generators (S, <) from (5.15) by

Z000 - Z100 > Z010 -~ 2001 -~ Y > 2110 > 2101 > Z011 > Z111
> T3 > Tg3 > Tyz3 > T3 > 13 > X1.
2 2 2

Let Z be the subspace spanned by the set of monomials (5.15). We establish new relations using
(2.3), (5.17), (5.18) and (5.19):

(2010, Z000)c = [Z110, Z100)c = [V, Zo10)c = 0, (5.20)
[Z101, ¥]e = [Z001, Z100)c = [2111, Z101)c = 0. '

The relations (5.20) together with (5.18) and (5.19) say that for every pair s < s’ € S joined by
an arrow or that have only one element in the middle, ss’ is a linear combination of monomials
in Z which are products of elements > s. Recursively we get the same statement for every
pair s < ¢’ € S. Hence the monomials (5.15) generate & and a fortiori %(QE*,OO (qT)). Since
V = (V1@ V3)@® V3, the multiplication gives a linear isomorphism %(Qi*m (qT)) ~ KRAB(VidVs).
Then the problem reduces to prove that the monomials

mooo 100,010 001 ,7 17110 7101 011 , 7111
Zp00 2100 2010 2001 Y 2110 2101 2011 2111 >

m100, M010, Moo1, M1o01, Mo11 € {0,1}, mM000, M, M110, M111 € No,

are linearly independent (so they form a basis of K). Suppose on the contrary that there exists
a non-trivial linear combination S of these elements: we may assume that S is homogeneous of
minimal degree. By (5.17),

931963196%312111 = 21119511?3195%31,
and by direct computations,
8183818%8361 ($1$31x%31) = 818381(43311‘31) = 8.

As 0i(zpmn) = 0if i # 2 and 02(z¢my) has degree < 7 if mn # 111 (so 8183818%8381 annihilates
02(Z¢mn)), we have that

mooo -,M100 010 001 ,M 11107101 7011 111
a183818%‘938182(Zooo Z100 2010 2001 Y 2110 2101 2011 2111 )

_ mM000 7100 7010 7001 ,M ,M110 7101 011 ,M111—1
= —16m1112400" 2100 Z010 Zoo1 Y 2110 Z101 Z011 Z111

Hence all the elements in S with non-zero coefficient have mi1; = 0 by the minimality of the
degree. Analogously, mg11 = mio1 = 0 since

mooo 1100 7010 -, 7001 ,772, 7110 ,7101 -, 7011
638183836132(2000 Z100 2010 2001 Y 2110 2101 2011 )
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J— mooo0 ,"100.,7010 -, 7001 , M 1110 ., 7101
= 160m011,12000 2100 2010 2001 Y Z110 Z10% s

mooo ,M100 7010 7001 ,77 7110 7101
618%838182(2000 Z100 2010 2001 Y 2110 2101 )

— m000 ,7100 {,M 7010 ,7001 , 71110
= 160m,101,12000 2100 Y 2010 Z001 2110
Next we compute
2 2 2
o)) (2110) = —(g21923 [96331 + 9613133172110]C - QQ1QQ3(QU%31 + x1231)Z001

2 2
= —(¢219232111 — 4214239132011 T1 — 421431210131 — 200132(2110)-

By induction on t € N, we obtain that

2
Do (2251) € 230520 (z110) + > KB (Vi @ V3),
7=0
2
92 (z110) € —2zo012505%02(2110) + Z KB (Vi @ V3).
§=0

Using these equalities we obtain the following:

03030105 (2008 2108 Z010 2001y 2110 ) = —4z08 21052015 *Zoo1y " 2115
3% 050102 (26%%00z%boozgri%wzomymz%tw) =0,

@% 6381 0o (286%00 Z%boo Zoml%loymzﬁal) — _4286%00 2717”61000 28”1%10ym2%§627

6% 030102 (Z%%ooz%boozgi%loymzﬁo) —_ 426%%002%1000 281%102001}’7”2%61,
01030104 (286%002%100028}%10zomymz%go) — _426%%002%1000281%103’7%2%0’
01030109 (26%%002%1000285%1020013{”) - _4285%002%60028"1%10ym’

61838182 (2676%00271766002811%103[171) — _4ng(1)%oo271766002671%10200137771717

010501 0n (25 o 215 2t ) = ~ 0 1205 ot 16

Thus we get that all the elements in S with non-zero coefficient have mi1g = m = mgg1 = 0
applying either 03 J3010s or else 01030102. Next,
2

mo00 7100 .,7010 — mM000 7100

838182(2000 2100 2010 )— —20m101,12000 2100+
mooo 7100 — mMooo
8182(2000 Z100 )— —0mi01,12000 s

S0 S = azgy,, a € k™, and we get a contradiction since z{j,; # 0 for all n € Ny. Thus (5.15) is
a basis of 93(@*700 (qT)), and £ = ,%’(Qf*,oo (qT)).

Finally, the ordered monomials (5.15) define an ascending algebra filtration whose associated
graded algebra is a (truncated) quantum polynomial algebra. Hence

GK-dim % (€, (q')) = 4. |

5.3.2 Case (II), finite ghost
Here qop = Go3 = 1, g33 = Q13 = —1. Let q' = (q12, q13, q23) € (k*)?. Define q by (5.1).

Proposition 5.6. Assume that a # 0. Then GK-dim A(V) = co.
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Overview of the proof. By the spliting technique, see Section 2.2.1, it suffices to show that
GK-dimK = oo, where K = £ (K') and K! = ad.(8(V3))(Vi @ Va). Clearly, V5, which is
generated by f3 with f3(z3) = 1, belongs to fLYD with structure

0(fs)=95' @ fs,  gifs=a;5' fs;
particularly, (V5") ~ A(V5"). Thus we may consider Z(V5*)#kI" and use the braided monoidal
isomorphism of [18, Remark 12.3.8]

. V )#kD #kF
(Qw): o0 YD = V*) VD

By [18, Corollary 12.3.9], (Q,w)(K) ~ %(Z), where Z = (Q,w)(K'). Now we introduce W =
Wi @ Vo @ V5", see Step 3, and apply the splitting technique again: let £ = £ (W)CO‘%(V;) ~
95’(&1), where

K' = ad(B(V5) (W1 & Va).

We shall derive from [6, Lemma 5.4.11] that GK-dim %(W) = oo, hence GK-dim % (K') = oo
since B(W) ~ B(K')#%(Vy) and dim B(Vy) = 2.

Finally, we show in Step 5 that Z ~ K!'. Since the functor (€2, w) preserves the algebra
structure, GK-dim K = GK-dim K = oo, so GK-dim #(V) = co.

Step 1. The set B = {xl,xg,xgl,xgg,xg} is a basis of KC' and the coaction of the elements
2 2

of B is 0(x;) = g|;| @ xi, where |i] is the integral part of i,

d(x31) = 22391 @ 1 + 9193 ® 31,
5(1‘3%) =1x391 ® (Qm% + a:nl) + 0193 ® 33

Indeed, (ad. z3)z2 = 0 and x% =0, so B spans K'. The computation of the coaction is direct;
it implies in turn that B is linearly independent.

Step 2. Here is the structure of Z € ﬁ%}ﬁ?)}p By definition, Z = K' as vector space, and
the T-action on Z coincides with the one of K'. Next:
(i) The B(V35)-action on Z is given by:

f3 2 =0, f3-x31 = 271, f3'ﬂ?3% 2236%-1-(13?1-

(i7) The coaction §: Z — BV )#KI' ® Z is given by:
d(r1) = f391 @ 231 + g1 ® 71, 0(z3) = fagr ® (2$3% —az31) + g1 ® 3,
5($3j) = 9193 ® T35, Jj= 17 bR 5(902) = g2 ® x2.

This follows from [18, Theorem 12.3.2 and Remark 12.3.8] by Step 1.
Step 3. Let W =W @& Vo @ V5", where Wy € HEFJ)D 1s homogeneous of degree g1g3, has a basis

wy, ws and T-action given by
2

gi - W1 = ¢i14;3W1, g1 -ws = —w% + wq,

[N njw

g2 W3 = QQ1QQ3(U}% + wl)7 g3 w3 = —Q31(w% =+ awl).

As a # 0, Wy is a —1-block and W is a sum of a block with two points, where V5 has mild
interaction and Vo has weak interaction. By [6, Lemma 5.4.11], GK-dim Z(W) = oc.
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Step 4. Let ws; = (adc fg)wi, 1= 1, %

i) The set B = {w1,ws, w31, w3, T2} is a basis of K.
ge 3 A
2 2

ii) The coaction 6: K' — B(V)#KD @ K is given by:
3

d(ws31) = 2f391 ® w1 + g1 ® w31, §(wj) =gigs®@x;, j=1,3,
6(w3%) = f3;1® (Qw% +awi) + g1 @ wys, §(x2) = g2 ® 2.
The proof follows as for K!. Finally we deduce from Step 4:
Step 5. The linear isomorphism Z — K given by
x31 — 2wy, Tg3 — 2ws, T1 > w3, T3 > W3 — QW31, T > T,
2 2 2 2
is B(V5)#KD -linear and B(Vs)#KI -colinear. [
5.4 Case (III)
In this subsection, we assume that g1 = —1, ¢13 = 1. Hence g2 = —1, and V; & V3 is isomorphic

Lemma 5.7. If GK-dim Z(V) is finite, then either of the following holds:
(A) a=0, g33 = g3 = —1,
(B) a#0, q33=qo3 =1,
(C) a#0, q33=q23 = —1.

Proof. Let # = #(V). Then 0 C (x1,z9,73) C V is a flag in K6YD, grV is a braided vector
space of diagonal type, and the corresponding graded Hopf algebra gr & is a pre-Nichols algebra
of grV, see [6, Lemma 3.4.2].

We assume first that a = 0, so g2 # 1. Let u be the class of 22 in gr . Then u is a non-zero
primitive element in gr &, see the proof of [6, Proposition 8.1.8]. Let H = gr B#kI: H is
a pointed Hopf algebra and the diagram of H is of diagonal type. Let W be the infinitesimal
braiding of H. In H, u has degree 4, the x;’s are linearly independent of degree 1 and

Alw)=u®1l+gigg@u, Alr) =201+ g,

so u and the z;’s are linearly independent vectors in W. Computing the actions of gZg5 and g3
on u and x3, we see that

is a subdiagram of the Dynkin diagram of W. Thus g23 = —1 by [6, Lemma 2.3.7], and ¢33 = —1
by Theorem 1.1.
Now we assume a # 0. Hence g33 = +1. Let z be the class of (adcxg)xg in gr#. Then z
2

is a non-zero primitive element in gr & by [6, Propositions 8.1.6 and 8.1.7]. Let H = gr Z#kI:
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‘H is a pointed Hopf algebra and the diagram of H is of diagonal type. Let W be the infinitesimal
braiding of H. In H, z has degree 2, the x;’s are linearly independent of degree 1 and

Az)=2014+q192®2,  Alz) =2; 914 g @ x,

so z and the z;’s are linearly independent elements in W. Computing the actions of the corre-
sponding group-like elements on z and x;, we see that

-1 -1 -1 23 33

O O o

1 2 3
-1 —q33
O o
3 z
2

is a subdiagram of the Dynkin diagram of W, thus g3 = ¢33 by [6, Lemma 2.3.7]. |

Notice that (B) corresponds to Lemma 5.4 up to exchanging xs and x3, so this situation was
treated previously. Also, (C) was discarded in Lemma 5.4, up to exchanging zo and x3. Thus
we only have to deal with (A).

Proposition 5.8. If a = 0 and q33 = q23 = —1, then GK-dim B(V) = co.
Proof. We consider K! = ad.(%(V2))((V1 ® V3)); as 3 = 0, the set
{xl,x%,ajg,yl := (ad, 1'2)131,}7% := (ad, :L‘Q)l‘%,y?, = (ad, $2)$3}
is a basis of K!. The coaction for the y;’s is given by
6(y1) = 22201 @ 1 + 9192 ® y1,

d(y3) = 2wag93 ® 3 + 293 D 3,
5(3’%) = 22901 ® T3 + x2g1 ® 21 + 9192 ®y%.

Then the subspace W spanned by the y;’s is a braided subspace with braiding

—¥1®¥1 (—Yg —y1) ®y1 —(q12413923y2 X ¥1
—y1®ys (=ys —y1)@ys —12013¢23Y2 ® V'3
—q21431G32Y1 @ Y2 —G21431932 (Y% + Yl) ® y2 —y2 @ Yy2

Then the braiding corresponds to a sum of a block, in the basis {—yl, y;}, with e = —1, and
2
a point yo with label —1: the ghost is —1, so by [6, Theorem 4.1.1], GK-dim Z(W') = co. Thus

GK-dim Z(V) = oc. n
5.5 Case (IV)

In this subsection, we suppose that g1 = —1, q13 # 1.
Proposition 5.9. If gio = —1, qi3 # 1, then GK-dim Z(V) = co.
Proof. Here 0 C (z1,z2,23) C V is a flag of YD modules: grV is of diagonal type with diagram

-1 q13 q33
o ——— 0o
1 3
-1 q13

q22 —1 —1
o o.
2 3

2

There are no cycles of length 4 in [16, Table 3], so GK-dim #(V) = oo by Theorem 1.1. |
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6 Two blocks

In this section, we consider V & Hﬁ:yl) satisfying Hypothesis 3.11 with § = 2, dim V; = dim Vo = 2
so that V7 is pale, and V3 is either a pale block or a block. Let g; € I' such that V; C Vg, i € I.
We fix bases {a:i,xH%} of Vi, i € I, such that there exist ¢;; € k™, i,j € I, and a,b € k
satisfying

9i - Tj = qijxj, 1,j €y, 9173 =quas,

g2 T3 = Q21(96% + xl), 9123 = (hz(ﬂig + al’z), g2 Ts = q22 (33E + beQ)-

Thus the braiding of V' is determined by the matrix q = (¢;5); jer, and the scalars a, b. Again
we consider some special cases; for ¢ € k* we set

S20(q) where ¢11 = —1=g¢2, qe2=q=¢;, a=1,b=0,
q,a) where ¢11=—-1=—¢q2, q2=¢q= q;f, b=1,
q) where g1 =-1=g¢un, q2=q¢=gqy3, a=-1,b=1L1 (6.3)

The diagrams of G20(q), 61,+(¢,a) and &1 _(q) are respectively

=l
[\e}
i
[N}

The dotted line means that g2 = 1 and is labeled by the pair (a, b).
Here is the main result of this section.

Theorem 6.1. The algebra B(V) has finite GK-dim if and only if V' is isomorphic either to
S2,0(q), or to &1,1(q,a) with a € {—1,-1}, or to &1,_(q) for some q € k*.

Let us overview the proof. We show that Z(S20(q)), Z(S1,+(q,—3)), Z(S1,+(¢q,—1)) and
#(S1,—(q)) have finite GK-dim in Theorems 6.3, 6.6 and 6.7.

Suppose then that GK-dim Z(V) < oo. Since V) @ kzo is a braided subspace with braid-
ing (1.2) up to reindexing, by Theorem 1.3 we may assume that ¢;; = —1 and that either g2 = 1
(we say that the interaction is weak) and gao = £1 or else g12 = —1 (the interaction is mild)
and gg2o = —1, which is discarded in Proposition 6.2. So we assume that the interaction is weak.

Now V5 is a pale block if and only if b = 0. In this case, we may assume that a = 1 after
normalizing x2. By Theorem 1.3 applied to the braided subspace kz1 @ V2, GK-dim Z(V) = oo
if g22 = 1. Hence we assume gao = —1. That is, we are left with the braided vector space G2(q)
with g = q19.

Next we assume that V5 is a block, that is b # 0; up to normalization, we may assume that
b = g22. As in [6], it is convenient to consider the ghost

) —1
G — a, (422 ) (64)
a, (22 = —1.

The subspace <x1,$2,x§> is of the form one block and one point. Therefore, by [6, Lem-
2

ma 4.2.3], GK-dim#Z(V) = oo if 4 ¢ Ny. Hence we assume that 4 € Ny. Then we discard
¢ = 0 in Proposition 6.5 and ¢ # 1 in Theorems 6.6 and 6.7.
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6.1 Mild interaction

We show that this implies infinite GK-dim.
Proposition 6.2. If gio = —1, then GK-dim Z(V) = co.

Proof. Here, 0 C (z1) C (@1,23) C (@1,x3,22) C V is a flag of Yetter-Drinfeld submodules
2 2
such that grV is of diagonal type; its diagram is

-1 -1 -1
o o
1 2
-1 -1 -1
o o,
5 3
2 2

thus grV is of affine Cartan type, so GK-dim Z(V) = co by [5] and [6, Lemma 3.4.2(c)]. W

6.2 Two pale blocks, weak interaction

Recall the Selene braided vector space G3(q) defined in (6.1).

Theorem 6.3. The algebra B(S2,0(q)) is generated by x1, x3, x2, x5 with defining relations
2 2

2 2 .
T =z =0 T;x, 1 =—%. 1T 1 € Iy; 6.5
i i+% s 7 H—% 2+% ) 2 ( )
ToT1 = (217172, LT3y = —q212 3522, T1T5) = —q1275, 21, (6.6)
Ti5 = T3 6.7
(6.7
T3s5To = —(q12T2T35, (6.8)
22 22
T35L5 = —(q125T35 — (124235, (6-9>
22 2 2 22 22
2
T35L35 = L3,L35 — L3,. 6.10
53752 22753 32 (6.10)

A PBW-basis is formed by the monomials

m m m, m. m, m
x5y xh 3x§243:§5x16, mi,mg, ms, mg € {0,1}, ma,my € Ny. (6.11)
2 22 2 2

Hence GK-dim #(S2,0(q)) = 2.
Proof. We proceed by steps.
Step 1. As Vi @kxy ~ €_(q) and Vo bk, ~ €_(q71), the relations (6.5), (6.6) hold in B(V).
Next we focus on the Nichols algebra I = & (ad.(#(V1))(V2)).
Step 2.
(a) The relation (6.7) holds in B(V).

- , 1
(b) The set {wQ,x%Q,w%,x%g} is a basis of K.
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Proof of Step 2. For (a), we compute 0;(z,5) = 0;(w3,) =0, if i € {1, 3},
o (213) = O2(235) = —w1, B3 (213) = 93 (23,) = 0.
For (b), we use (), (6.5) and (6.6) to check that
T12 =213, =

3 =0, Ty

Njot
ot

= T39.
52

As (V1) = AN(V1), K! = ad(B(V1))(V2) is spanned by {xg,x%Q,xg,:c%g}. Also, 0; annihilates
each element of this set if 1 = 1, %, and

62($2):1, 82(563) =0, 82(x%2) = —x, 82($%%) :—(l‘%-f-xl),
(azg)zl, 8g(xf2)20, 0 (x%g):—xl.

Njw

Thus {$2,$§2,l’§,$ } is linearly independent. |
2 2

35
22

We shall need the action of ¢go in ICl: g0 - 29 = —29, g0 - 5 = —

c X3, = —(F21T3 c I35 = — T35 +T35).
92 %39 92123, g2 %35 6]21( 35 52)

Step 3. Let B be an algebra with elements x1, x3, x2, s satisfying (6.5), (6.6) and (6.7).
2 2
Then the following relations also hold in AB:

T1T35 = —Q12(x%g + xgg)wl, T3T39 = —q12T373. (6.12)
In particular, (6.12) holds in B(V'). The verification is straightforward.

Step 4. The relations (6.8), (6.9) and (6.10) hold in B(V).

Proof of Step 4. As 9, and 83 annihilate xo, T, T39, T

, it suffices to check that dy and 0s
2
annihilate each of these relations. For (6.8) and ( )

35
22

32(96§§CB2 + CJ12CL’2$§§) =x3s5 + ($§ + 161)902 - Q12$2(£U§ + 961) - (l“§§ + $§2) =0,
22 22 22 2 2 22 2
05 (z3320 + quazoxss) = w122 — quazexy =0,
2 22 22
Do(z3325 + qrawswas +Q12£U23635)
22 2 22
= (23 +:r1)ac5 — qlg$5($3 +21) — qraza (23 + 21) — (w235 + 235)
2 22 2
=T35 +Xy5 —T3s — T3y =0,
22 2 22 2
0s (w;;x;—k q12T5T35 + 12962:635) Ts+T3s —(:U;;—l— xég) — 122571 — Qw221 = 0.
2 22 2 2 22 2 22 22 2 2

Using (6.5), (6.6), (6.7) and (6.12), we see finally that (6.10) also holds:

Oo(T35T35 — X3,T35 +x2 = — X351 + T3 +X1)T3,+ T3y T3 +
2( 33732 732753 %2) 3371 a21 2 1) 32 52( 3 1)
- Q21$1(x%g + :1:%2) — T3y71 + 92171735 = 0,
2
Bg(m%gx%2—x%2x%g +.’IJ§2) = @ T1%34 + T3521 = 0. [ ]
2 2 2
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Let % be the algebra with the claimed presentation. By the previous steps, there is a surjec-

tive map & — #A(S2,(q)). Now A is spanned by the monomials (6.11) because of the defining
relations, (6.12) and

T35T5 = —qL2T5T 35 — q1272T 39,
that follows from (6.8) and (6.5). To prove that the monomials in (6.11) form a basis of &

and that # ~ %(S2(q)), it suffices to prove that these monomials are linearly independent in
PB(S2p). By direct computations,

mi1_ M2 M3 M4 M5 _me\ __ mi1_mo M3 _ M4, M5

O (25" a3 T3, T3 Ty ) = Ome 12 w5y T3oTs”,
2 22 2 2 2 22 2 2
mi,.m2 M3, ,m4, M5\ __ mi . m2 . m3 M4

8§(x§ L35Lg "L3sL3 )— mg,1L5 " L35Lg "T3g,

2 2 22 2 2 2 272 2

mi1_.mo M3 M4 ms3 ..m1_ma2—1_m3 _my m1 _mo—1—k _ms_ my+k

618§(x§ xy3 T x§2) € ma(—qi2)" a3 2y xh T3, + E ka5 a2 Tyt wy ),
20 32 22 2 2 22 2 2 22 2
E>1

m1,.m3 Mg\ __ mi,_.m3, ma—1
0182(x§ Ty x§2)——m4x§ Ty Pwy

2 2 2 2

The claim is established by a recursive argument as in previous proofs. |

6.3 A pale block and a block, weak interaction

In this subsection we assume that ¢;1 = —1, ¢12 = 1, g2o = £1 = b and ¥ € Ny.

6.3.1 The vanishing ghost

We discard here the possibility a = 0. We start by a lemma that is also useful later when dealing
with a Jordan or a super Jordan plane, i.e., go2 =1 or —1.

Lemma 6.4. Let K = Z(K'), where K' = ad.(%(V1)) (V).

(a) The relations (3.3) and (3.4) hold in B(V).
(b) The following relation holds in B(V):

T3 = arsy. (6.13)

. . 1
(¢c) The set {x27x32,x%,$%g} is a basis of K.
Proof. Item (a) follows since V} @ kxy ~ €. For (b), we compute
81'(331%) = 8,-(35%2) =0, 1€ {1,%,% , 82(36%2) = —r1, 82(x1%) = —ar.

For (c), we use (b), (3.3) and (3.4) to check that z12 = 0, T3y = T35 = 0. Asz(V1) = AN\(W),
Kl = ad.(#(V1)) (V) is spanned by {xg, 39, xg,x%g} Also, 9; annihilates each element of this

set if i =1, %, and

5) = —afzs + 1),

N

= O, 62 (.%%2) = —x, 62(1’
= 1’

83 (ac%Q) =0, 0 (m% ) = —I1.

Njot
VIS

Thus {.fUQ, T39,T5, x%g} is linearly independent. |

Proposition 6.5. If a =0, then GK-dim A(V) = oc.
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Proof. The coaction of X! satisfies
6(z;) = g2 ® xi, 5($gi)=9192®x%2—$192®9€i, ie {22}

Set y1 = 2, Y2 = x5, Y3 = T35. Then {yi,42,y3} is a braided vector subspace of K, and the
2 2
braiding is given by

q22Y1 @ Y1 (g22y2 + 1) ® »1 42192293 @ Y1
(c(yi @yj))ijer, = | a22y1 ® y2 (g222 + 1) @ 2 42192293 @ Y2
q12022Y1 @ Y3 q1222(Y2 + q22y1) ® Y3 —q22y3 @ Y3

This corresponds to one block and one point with negative ghost, so by [6, Theorem 4.1.1], we
have GK-dim K = co. Thus GK-dim #(V) = occ. [

6.3.2 A pale block and a Jordan plane

Here we assume that ¢11 = —1, g2 =1, g2 = ¢ = q2_11, b=1and ¥ = —2a € N, cf. (6.4). When
¢ =1, respectively ¢4 = 2, V is the braided vector space &; 4 (q, —%), respectively &1 4 (¢, —1),
see (6.2). To state our result we need the elements

t =355 + qraTsT3s, W= T35T2+ q1222%35. (6.14)
22 2 2 22 22

35
22
Theorem 6.6. The algebra B(V') has finite GK-dim if and only if 4 < 2.

o If9 =1, then 1%7’(6174_ (q,—%)) is presented by generators i, T3, T2, Ts with defining
relations (3.3), (3.4), (3.5), (6.13) and

T35T2 = q12T2T35, T35T5 = 12 (9% + %302)1‘3&, (6.15)
22 22 22 2 2 22
2 2
T3, =x35 =0 T35T35) = —T35T35 6.16
32 33 ’ 53752 527537 (6.16)
_ 1.2
TsTy = Tals — 5T (6.17)

A PBW-basis is formed by the monomials

m m m. m. m. my
x5t ah Zxéga:é;x;%l 6 ms, mg, ms,mg € {0,1},  mq,ma € Np. (6.18)
2 22 2 2

Hence GK—dim%’(617+ (q, —%)) =2.

o IfY =2, then B(S1,4(q,—1)) is presented by generators x1, xs, T3, T3 with defining
relations (3.3), (3.4), (3.5), (6.13), (6.17) and

T39Ts = q12T5T3, + w, trs = q12($g + ZEz)t, (6.19)
T3yt = —qu2(t — W)z3y, WIs = q12 (ar% + x2)w, (6.20)
x%gt = —qa2(t — W)JE%% (6.21)

A PBW-basis is formed by the monomials

m m ms m m, m
xy P x MO T S

P 52 23 3 (6.22)
m3, My, M5, Mg, Mg € {071}7 mi, M2, Me, M7 € NO'

Hence GK-dim #(61 +(q,—1)) = 4.
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Proof. We start by observing that

g1 w35 = —Q12(37%% + awgg), g2 w35 = QQI(J?% + (a+ 1)3332),

njot

where we used (6.13). From these equalities and Lemma 6.4, we get

3
2! , (6.23)
( )5332) ® L34 4

I
N
[\lfey

Then (z35,23,) is a braided vector subspace of K.
22 2

Step 1. Assume that 4 # 1. Then the Nichols algebra of <x%
. Then

5,739 > 18 isomorphic to the super

Jordan plane. Set x = x35%3, + T3,T35
22 22 22 22

a:% =0, r35X = XI35
2 2 2

+ (4 — Dasyx, (6.24)

5
2

ot

b . .
and {x‘§2x x%% |a€{0,1}, b,c e No} s a basis 0fk<x%2,x%g>.
Step 2. We define w,, € B(V) recursively by wy := x2 and
Wn41 = [x%gawn] :xggwn_ (9192'Wn>$%%7 n € N.

C

We also define scalars a,, b, by a, :=[[_, (% —-1)j— %%), bg =1 and

—3%ap_1 + by, n = 2k,
" b (k@ — 1)+ 19 1)+ 9a,, n=2k+1.

Then we have

[x%2,wn]0 = [z1,Wn]ec = [x,Wn]c = 0, (6.25)
2k k
q123k$32x ) n = 2k,
T3, w = 6.26
[ 3 n]c { q%ﬁ_lakxlﬁ_l, n =2k +1. ( )
g1 Wp = (— 1)nqu2+1Wm 92 - Wp = Q51 Wp. (6.27)
bgkX n = 2]<3
0 = ’ 7 0; :07 .:1a§>§' 6.28
Q(Wn) {b2k+1x32xk, n =2k + 1; z(Wn) 1 59 ( )
2

Proof of Steps 1 and 2. We proceed recursively on n € Ng. When n = 0 (6.27) and (6.28)
are clear. For (6.25) and (6.26) we compute

aQ(X) = 7(g - 1)1‘%21‘1, 87,(X) =0, 1€ {1’ 2 2
Using (3.4) and (3.5), we check that
Do (222 — Glomox) =x — (¥ — 1)1‘%21'1.%2 — x4 q1o (9 — 1)w2x%2x1 =0.

As 9;(x) = O;(x2) = 0, i € {1,3,5}, the relation [x,zs]. = 0 holds in K. Now [z1,72]. =

[T3,,22]c = 0 are (3.4) and (3.5), respectively, and (6.26) follows. Now assume that all equations
2

hold for n. By the inductive hypothesis,

g1 " Wn41 = [—(J12 (a?%g +CL$%2) (— 1)”Q?2+1Wn} = (- 1)n+1q7112+2wn+17
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g2 " VWnt1 = [Q21($gg + (a+ 1)x%2)7qglwn]c = qgfrlwnJrh
where we used (2.3), (6.24). Thus (6.27) is proved. Next we establish (6.25):

[xggawnJrl]c = [x,wn]c + (9192 : x%g) [xggawn]c + q12 [x%QaWn]c$%g =0,

(21, Wny1], = [[wl,xgg}c,wn]c + (g1 - ws5)[z1,wn]e + qrafrr, wnlezss =0,
%, Wnt1]e = (9 — 1) [x32x7wn}c + (9192 : x%g)[x,wn]c + Q12[X7Wn]cm%g = 0.
We go on with (6.26) considering separately the cases n odd or even:

[ﬂfg,w%]c = (91 Cﬂgg) [$%»W2k—1]c - [903,9192 : Wzk—ﬂcﬂfgg

= —qlgak,l((:ﬁ%% + a:z:%z)xk — xkx%g) = —qr28j_1 (k‘(% - 1)+ a):cgzxk,
[$%7W2k+1]c = —Q12(a?g% + ang) [wg,wk}c —q12 [fvg,W%] T3
= —(12ag (Xk+1 — :L‘%2(:L‘%gxk — Xk:L‘%g)) = —qlgakxk"ﬂ.

Now we deal with (6.28). By formula (6.27), wy11 = z3sw, — (—1)"qiawnz3s. Let i = 1,3,
22 22
As 0; ($§§) = 0, we have that 0;(w,4+1) = 0. Now,
22

95 (Wnt1) = =219, + (=1)"qrawnz1 = =3 [21,wn]e = 0.
For the last skew-derivation we consider the cases n = 2k — 1, n = 2k:
Oa(war) = —agy; ! [z, wor1], = agyy w1, wap—1]e + 3502 (Wak-1)
+ 82(W2k—1)($%g + (a+ 1)35%2)

k—1 kl(w

= aak_lxk+b2k_1($%gl‘%2x - —I—.Z‘%QX N + (a+1)x%2))

e
NS}

= (aay_1 + bop_1)x",
Do (Wokt1) = —agay [xg,w%]c — agst[zy, war)e + 23505(wak) — Fa(war) (ﬂ:gg + (a+ 1)$%2)

= —aakxggxk + bgk(.’I)§§Xk _xk
2 22

x%g) — (a + 1)b2kxk$%2
= (bor(k(¥ —1) —a—1) — aak)xgzxk. [
Step 3. If 4 € N5y, then GK-dim B(V) = cc.

Proof of Step 3. We claim that w, # 0, b, # 0, for all n € Np. Indeed, % ¢ 7Z,s0 a, £ 0
for all £k € N. By (6.26), [x%,wn]c # 0, so w, # 0 for all n € Ny. Hence 0 # da(w,) = —bnl‘g;d,
2

so b, # 0 for all n € Ng.
By [6, Lemma 2.3.4], to prove the step it is enough to show that the set

Won, Wony * * " Wony, keNg, nmp<---<ngp€eN, (6.29)

is linearly independent. Otherwise pick a non-trivial linear combination S of elements in (6.29)
homogeneous of minimal degree N. By Step 2, we have

(0102)%™% By (Won, Wan, - - - Wan, )

k
2n;41++2ny 2ny, n;
= E :aniq211 (8162) k(anl T Wop, X PWon, g w2nk)
=1
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= Nk D2, Wor, Won, - Won, s

(8182)2m82(W2n1WQn2 .. -Wan) =0, if m > ny.

Let M be maximal between the ny’s such that wa,, wap, - - - way,, has coefficient # 0 in S. Then
0 = (0102)2M05(8) is a non-trivial linear combination of degree N — 4M — 1, a contradiction.
Thus (6.29) is linearly independent. [

Step 4. Assume that Y = 1. Then (6.15), (6.16) and (6.17) hold in B(V).

Proof of Step 4. By (6.23), the braiding of Z = <x%%,x%2> is minus the flip, hence #A(Z) ~
A(Z) hence (6.16) holds. Now <:c2,xg> ~ the Jordan plane, so (6.17) holds. To check (6.15), we
use (3.3), (3.4), (3.5), (6.13), (6.16):

_ 41 .
O5 (w3375 —qia(rg + 572)733)
_ 1 1 _ 1 _
= x%% — xl(xg +$2) — (mgg + 53:%2) +Q12(xg + §x2)x1 = _xl% — §$%2 =0,
) _ 1 )
82(:E%g$% qlg(aig + 2%2):63;)
= 3((w3 + 1) (23 +22) = w35 = 3735 — qra(w3 + 322) (23 +71))
_ 1 1 _
= 5(%'%% +$lg —l-:E%Q — T35 — §:E%2) =0,
03 (5”%3332 — q12%2T33) = —T1T2 + Q122221 = 0,
1 1 1
Bz(ﬁUgg:EQ - Chﬂﬂgg) = xgg + 5(:16% + 961)1’2 — (xgg + 5:632) — §Q12962(£L‘% +21) =0.
As 0y, 0s annihilate all the terms in (6.15), both relations hold in Z (V). [
2

Step 5. End of the case 4 = 1.

Proof of Step 5. If # is the algebra with the claimed presentation, then there is a surjective
map & —» 93(61,+ (q, —%)) Now the following relations hold in %:

1
x].I%Q = _Q12$%2$1a €Z: -T%Q = _QI2$%2$%a €Z: 2$% = q12 (33% + 5552)13%27

2) T3

Njw

3
2
T1x35 = *Q12($§§ - %xég)xly r3x = *C]12(96§§ - %SU
22 22 2 2 22

(NI
wlw

35
22

Hence 4 is spanned by the monomials in (6.18). It only remains to prove that they are linearly
independent in #(61 4 (g, —%)) By direct computations,

my . m2,_.m3 M4, M5 _Me\ __ my ,.m2,.m3 M4 M5
31(9% Lo "T35L35L3 Ly )—5m6,11‘§ Lo "L35L35L3 "
2 2 2 2

22 2 22 2
mi,.m2,_,m3_ /mq4, M5\ __ mi,.m2,m3 M4
2 2 22 2 2 2 22 2
mi,.m2_.m3 M4 _ ma mi,,.m2, Mg
0105 (25" @3 37;57%2) = —(=1)" 0125 w52y,
20 32 22 2 2 2
mi Mo _mg\ __ mi ., mMm2
8182(% Ty %2) = Oy, 1T5 Ty
2 2 2
Thus the case 4 = 1 follows using again a recursive argument. |

Step 6. Assume that 9 = 2. Then (6.19), (6.20) and (6.21) hold in B(V).

Proof of Step 6. We check these relations using derivations. First we check that

(t) = w3, Oh(t) =2z

(NI
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Using these computations, (3.3), (3.4), (3.6), (6.13) and (6.17), we have

ag (wggﬂ?g - qmvgx%g - W) = 9?%2 - Q1QCI2196%2 =0,

(92($%2$% — qlza:ga:%Q) = —xl(x% + x2) + Q23T = —Ty3 = Do (w),

6% (txg - %2(33% + xz)t) =t+ mgQ(x% +x9) — qlg(l‘g + xg)x%Q — q12q21(t + W)
=t+w—(t+w) =0,

82('095% — qlg(x% +$2)t) = x%g(l‘g +x2) — qlg(xg +x2)x%g —(t+w) =0,

6; (w%2t + qua(t — w)xgz) = a?Q%Q + q12qQ1x2%2 =0,

82(9”%213 + qia(t — W)xgz) = —qur1(t —w) + L3935 — q2(t —w)ry + (fﬂgg — :p%Q)x%Z

= —quz1,t]c +x=0,

3% (vag —q12 (Cﬂg + x2)w) = w — quag21w = 0,

6% (l’ggt —|—q12(t —W) %g) = —qgll’l(t —W) +£L’gg$%2 —I-l'%Q(:L‘%g +IL‘%2) —qlg(t —w)ml
= —gulz1,t]lc +x =0,
32(.T%gt+ch2(t *W)ﬁgg) = q21($% +x1)(t fw) + (l‘%% fl‘%z) .T%g +$%2) +x2%%
+ qi2(t —w) (z3 + 21 =x—22%; +223; —x=0.
2 22 22
As 01, 0s annihilate all the terms in these relations, they hold in ZA(V). [
2

Step 7. End of the case 4 = 2.

Proof of Step 7. If A is the algebra with the claimed presentation, then there is a surjective
map B — HB(61,+(¢, —1)). Now the following relations hold in %:
1t = —¢2(t — W)z + quo%, T

)

t = —q%Q(t —W)x] + qi2x — 2:52%%

3
2
2

TaWw = —qlwrs + qroX, w =1t2=0,
2 2

and [x,y]. = 0 for other PBW generators x, y; thus Z is spanned by the monomials (6.33). We
prove linear independence in #(&; (g, —1)):

mi_.M2__Mms3,myg M5 Mg M7 Mg M9\ __ mi Mo __ms3,_my4 . M5 Mg .17 M3
(91(1:2 [ T3, X STy 5Ty Ty )—6m9713:2 Ty Wt Ty, X Sxy iy,
2

2 22 2 2 2 22 2
3% (m?lx?Qng’tm“mgL;Xmﬁmgg ay®) = Omg, 1Ty a5 2w x0T T
2 22 2 2 2 22
61(9% (m?lx?%m%m“w’;%m%g@ = —m7x;nlx?2wm3tm4x7§25xm6x7§g_l
2 2 22 2 2 22
01020102 (wgnlx?me%m“w’;;xmﬁ) = —2m6x?1x?2wm3tm4xg25xm6*l,
2 2 2 2
0102 (xgnlxg‘gwm‘”’tm‘lx’;;) = —Opmg, 104 2 2w,
2 2 2
0105 (xy 22T ™) = — Gy, 12l T2,
2 2
81628% (x?lxg2wm3) = —5m371x;”1:cg2.

Thus the claim follows by a recursive argument as in previous cases. |
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6.3.3 A pale block and a super Jordan plane

As in Section 6.3.2, we assume that ¢11 = —1, g0 = ¢ = q2_11, b= g and 4 =a € N, cf. (6.4).
But now g2 = —1 so that #(V5) is a super Jordan plane. When ¢ = 1, V is the braided vector
space &1 _(q), see (6.3). To state our result we need the same elements t and w as in (6.14).

Theorem 6.7. The algebra B(V) has finite GK-dim if and only if ¢ = 1. If 4 = 1, then
PB(S1,-(q)) is presented by generators 1, T3, Ty, Ts with defining relations (3.3), (3.4), (3.6),

(6.13) and
T39T5 = —(q12T5T39 + W, txrs = Q12(l‘§ — 562)13,
2 2 2 2 2 2
T3t = —qio(t 4+ 2W)Ts — 123,735, wrs = qi2(Ts — x2)W,
2 2 2 22 2 2
1.2
T35X3, = T35L35 — 5T T5L55 = L55L5 + T2L5
55752 52735 275w 3752 5273 2%3%2
A PBW-basis is formed by the monomials
P S (S A 1:7;26 YTyt
2 2 2 22 2
mi, My, M5, Mg, My € {07 1}7 ma, M3, Mg, M7 € I\IO-
Hence GK-dim A(61,-(q)) = 4.
Proof. We use (6.13) to check that
- X35 = — T35 +ars - I3z = — T35 +(a—1)x3,).
gr-T3s a1z 232 52)’ 92138 421 ( 232 ( ) 52)
From these equalities and Lemma 6.4, we get
ClT3: XT3,) =35 RT3, clrs, ®xss) = (T35
( 51 52) 52 50 ( 51 55) ( 53

Then (xs5,x3,) is a braided vector subspace of K.
22 2

Step 1. The Nichols algebra of (x3s5,x3,) is isomorphic to the Jordan plane.
22 2

{x%Qxb

35 |a,b € No} s a basis of the subalgebra ]k<w§2,a;3§> and
22 2 22
T3sxh, =5 T35 — (2a;1)”x7§+1 for all n € N.

532 32 52753 32

We define w,, € Z(V) recursively by wgp := 22 and
Wpil i= [x%g,wn]cza:%gwn—(glgg-wn)m%g, n € N.

Thus w = wy, see above. We also define scalars a,, b, by

n

ay, = *ﬁ I] (2% — Dk —29),
k=0
bntt == (—-1)"%a, — b, <(2g;1)” + (% - 1)).

Step 2. We have

[ZL‘%2,Wn]c = [$17Wn]c =0, [l'%awn]c = q7112an$g;rl‘
2

n, n+1

g1 - = (—1)"q}5 i, g2 - = (=1)" 1 gBw,.

Do (wn) = bpa's,, 0;(wy,) =0, i=1,23 neN,.
2

ORIDRI

+ (2a — 1)95%2) ® 3,

(6.30)
(6.31)
(6.32)

(6.33)

s
Il
™
[\l[e3

Then the set

(6.34)

(6.35)

(6.36)
(6.37)
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Proof of Steps 1 and 2. We proceed recursively on n € Ny. For n = 0, the first two equalities
of (6.35) follow since 3 = 0 = (ad. 1)z, while the last one, (6.36) and (6.37) are straightfor-
ward. Assume that (6.35), (6.36) and (6.37) hold for n. Then

91 Tnt1 = [—qu2(235 + azsy), (=D wn ], = (= 1) g 2w,

g2 Tny1 = (— 1)”+2q31+1 [x%g + (a — 1)x%2,wn]c = (—1)""2¢5 1,
(239 wni1], = [[wag,235] i), + (9192 735) [235,9n] , + qr2[735, wn] 235
= 22—1[2%2 WH]C:O,
w1, 1le = [[21,2335] wn], + (91 233) [71, Wne + quafan, wmews s =0,
[x%,wn_HL = Hxs x3§]c,wn]c (g1 -a:gs) [:ca ] + q12 [xs Wn]cl‘%g
_Q?;rlan (I§§ + aI§2)5632 + q?;rlanxg;rlx%g
= i tan BRGNS < a g e,

by (2.3), Lemma 6.4 and the inductive hypothesis. We conclude that
Wntl = T33Wn + 12Wnl353, so O01(Wpt1) = 8% (Wpt1) =0,
95 (wnr1) = (=1)"gz121900 — qrawnz1 = (=1)" g3 [21,wn]e = 0.
Finally, we compute the remaining skew-derivation:

Oo(Wpi1) = (—1)nqgla(x% + x1)w, + bnx%%x§2 — bnx§2(:v% + (a — 1)33%2)

5
2 2

- GQ12Wn(xg +x1)

= 0Py ]+ )~ (P50 o

2a —1
= ((—1)”aan —b, <(a2)n + (a — 1)))1‘231 = bn+1x3;1. |

Step 3. If 4 € N>y, then GK-dim #A(V') = oc.

Proof of Step 3. First we claim that w, # 0, b, # 0, for all n € Np.
If 9 =a > 2, then 22" =1+ 575 ¢ Z, so a, # 0 for n € N. By (6.35), we have

[€3,Wp]c # 0, so w, # 0. By (6. 37), 0 # O2(wp), so by, # 0.
2
By [6, Lemma 2.3.4], to prove the step it is enough to show that the set

Wiy Wny © * Wpy, keNg, m<---<np,eN (6.38)

is linearly independent. Otherwise pick a non-trivial linear combination S of elements in (6.38),
homogeneous of minimal degree N. By Step 2, we have

(010)"* O (i, Wy - - ¥y, )
k
bn,(—1)ni"'l+"'+nk+k_lq;{+1+."+nk (6162)nk (Wn1 W 1x7§12+1wn1+1 . 'Wnk)

1

i=1
n
(—1)™ ng!by, Wpy Way - - Wy

(0102)" 02 (wp Wy - - - Wy, ) = 0, it m > ny.

Let M be maximal between the n;’s such that w,, wy, ---w,, has coefficient # 0 in S. Then
0 = (0102)M05(S) is a non-trivial linear combination of degree N — 2M — 1, a contradiction.
Thus (6.38) is linearly independent. [
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Step 4. Assume that Y = 1. Then (6.30), (6.31) and (6.32) hold in B(V).

The first relation in (6.32) is (6.34) for n = a = 1 while the second holds since (z,25) ~
2

the Jordan super plane. Next we check (6.30) and (6.31). First we use (6.13) and that w is w;
in Step 2 to get

Using these computations, (3.3), (3.4), (3.6), (6.13) and (6.32), we have

03 (a:%Qa:o + q12x5m32) =0 =05 (w),

Bg(x%st + qlgﬂfsl‘sz) —T3 (—:c% +a:2) —qaTsTs = T3y = 0o (w);
5% (tx% *(]12(565 *"172)13) = 32(tx5 — qlz(azs — 1:2)1:) =0;

6% (W:L’% —Chz(:vs —ZL'Q) ) = 32(w1:g - Q12(azg — mg)w) =0;

3% (x%t + q12 (t + 2w)z T3) =T33, + q12x32(x% + xl) = 1223571,
5% (l‘%2$% ) = —I3,71,

)

+ q12(m30 + 2:032)(&63 +x1)

5
2
2 —
2($%t+ql t+2w)xs)— g 3

5
2
= 1273573 + q12T3321 + QQ12$§2931,

32(.%%21‘%%)ZQQ1$1IEgg*$%2($%+$1):*IE Tr1 — %2$3*2$32$1

35
22

As 01, 8% annihilate all the terms in (6.30) and (6.31), they hold in Z (V).

Let % be the algebra with the claimed presentation. Then there is a surjective map % —
PB(S1,—(q)). Also the following relations hold in %:

2 2
Tt = —qiy(t + 2w)z; — %xdz, T3T5y = (1275573 + 2w,
2
_ 2 1.2 2 9
T3W = —qnwx% — 23732, x%Q:z:gz q12x52:z:32 + 2qi12x2w,
2
2 2
tTo = qroTat + 3q1oxow + 33321'%2, w=t"=0,

and [x,y]. = 0 for other pairs of PBW generators x, y.
Hence £ is spanned by the monomials in (6.33). It only remains to prove that they are
linearly independent in #(&;,—(q)). By direct computations,

my,.m2,.M3_.M44,Mms5,.1M6 .17 . TN8 . TNY\ __ mi m3 m4 ms .16 .17
(9183( T x i R A A A )—5m9715m8,1x2 a:52:z t a:32:z35,

2 2 22 2 2 2 22
(918% (xQ ngSUg 8 AL oxgngxg”g) = —myxy" x?;:ngnswmztt oxgngxg”g 1’
8182(x§n1$?;xg”3wm4tm5mg§) = —mﬁmg”ac52a:m3 m4tm5xT26 !
018285 (:L‘2 1x52x?3wm4tm5) = —Oms 125" lac?gx?Swm‘*
618285 (x;’“x?;x?g'wm“) = —5m471x?1x7§122w?3.
Thus the proof follows using a recursive argument as in previous cases. |
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