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Abstract: Phacopidae were a successful family of the

Silurian–Devonian period. Although their diversity trends

are well identified, their shape evolution is unknown; their

morphology often considered to be conservative. We have

quantified these morphologies using geometric morphomet-

rics (landmarks) and investigated their evolution using mor-

phological disparity indices. Results identified morphological

variations between the genera, and through time. Phacopids

differ from each other by the position of the facial suture

linked to the size of the visual complex, the shape of the

genal angle and the elongation of both cephalon and pygid-

ium. The morphological disparity of cephala was high from

the Silurian, contrary to that of pygidia. Subsequently, the

morphological disparity increased in the Early Devonian

with the development of narrow cephala and triangular pygi-

dia. Morphological disparity was greater in the Emsian for

both cephala and pygidia, more than 50 myr after the

origination of phacopids. It constituted a perfect example

illustrating that a peak of biodiversity does not necessarily

happen in the early history of a clade. Subsequently, a strong

decrease of morphological disparity occurred in the Middle

Devonian, in conjunction with sea-level changes and anoxic

events. Taxonomic richness and morphological disparity

declined strongly in the Givetian, in a non-random extinc-

tion affecting particularly blind genera. The morphological

disparity remained low in the Frasnian despite progressive

eye reduction influenced by environmental changes. An

extensive recovery occurred in the Famennian with an

important increase of both taxonomic and morphological

diversity. The Hangenberg event caused the final extinction

of phacopids.

Key words: Phacopidae, Palaeozoic, morphological disparity,

diversification, extinction.

PHACOP IDAE are a family that is frequently found in sed-

imentary rocks deposited on the Silurian–Devonian epi-

continental platforms and were thus an important

component of the marine benthos. They are represented

worldwide, especially in Europe and North Africa. This

family originated at the end of the Ordovician (Camp-

bell 1967; Lesp�erance & Sheehan 1988; Adrain 2013),

probably from the Pterygometopidae family (Ludvigsen &

Chatterton 1982). The oldest phacopid was the late Ordo-

vician Sambremeusaspis Lesp�erance in Lesp�erance & Shee-

han, 1988 (Ramsk€old & Werdelin 1991) discovered in

Belgium. Phacopids diversified, first slowly with a few

genera in the Silurian, then more importantly in the

Devonian, to reach their highest diversity in the Middle

Devonian (Crônier et al. 2011). Although initially they

occupied the Iapetus ocean margins, they quickly spread

worldwide (Ramsk€old & Werdelin 1991). While the Pha-

copidae was one of the few trilobite families to survive

the Frasnian–Famennian extinction, they vanished at the

end of the Devonian with the Hangenberg event

(Chlup�ac 1994; Lerosey-Aubril & Feist 2012). Throughout

their long evolutionary history, phacopids survived several

environmental perturbations (Walliser 1996, pp. 225–250;
House 2002; Calner 2008; Qie et al. 2019) including the

second of the five ‘big’ mass extinctions described by

Raup & Sepkoski (1982): the Kellwasser events (Bug-

gisch 1991; Carmichael et al. 2019). Some events posi-

tively influenced their diversity as for example the

Pragian regression, which led to the Pragian diversifica-

tion of phacopids as well as many other trilobite clades

(Chlup�ac 1994; Bault et al. 2022a). Other events had neg-

ative effects, such as the Late Devonian events, which led

to the extinction of many genera (Feist 1991).

Phacopids occupied numerous habitats of the Late

Devonian epicontinental platforms from the shallow

depths to beyond the photic zone, and they showed

strong bathymetrical and palaeogeographical affinities

(McKellar & Chatterton 2009; Crônier & Franc�ois 2014).
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Their morphology and behaviour were affected by envi-

ronmental changes, particularly at the Frasnian–Famen-

nian boundary characterized by the development of blind

forms living in deeper-water environments and/or endo-

benthic lifestyle (Feist et al. 2009).

Phacopidae was first established by Hawle &

Corda (1847). This family is characterized by a glabella

broadening markedly forward with lateral glabellar fur-

rows S2 and S3 obsolescent, and S1 often transglabellar

leading to an ‘intercalating ring’, genal angles rounded

without genal spines, and a visual complex often well-

developed. The phacopid pygidium is well rounded, semi-

circular or trapezoidal, without lateral or marginal spines

(Harrington et al. 1959). The morphological diversity

among Phacopidae is expressed especially in the shape of

both the vincular furrow and visual complex and in the

course of the facial suture (Fig. 1). These characters are

considered important for systematic considerations

(Crônier et al. 2011). Chlup�a�c (1977) identified two sub-

families: Phacopidellinae Delo, 1935, characterized by a

cephalic doublure without a vincular furrow, and Phaco-

pinae Reed, 1905, characterized by a cephalic doublure

with a deep and continuous vincular furrow.

Environmental changes are reflected in the variations

of the exoskeleton of trilobites and their evolutionary his-

tory, which is essentially adaptive. Therefore, they repre-

sent an exceptional model to analyse trends and

macroevolutionary processes (Foote 1989, 1990, 1991a,

1993; Gerber & Hopkins 2011; Webster & Zelditch 2011).

Besides, studies on the taxonomic diversity of trilobites

already highlighted the importance of phacopids, being

for example the major component of Devonian Trilobite

Evolutionary Faunas (Bault et al. 2022a). However, in

recent decades, morphological disparity has proven to be
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F IG . 1 . Schematic showing 12 landmarks and 4 semi-landmark curves of 30 points defined on the cephalon and 8 landmarks and 1

semi-landmark curve of 24 points on the pygidium. Modified from Crônier (2013).
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a successful, alternative biodiversity metric (Roy &

Foote 1997). Concerning trilobites, morphological dispar-

ity analyses have focused on very few families or subfam-

ilies, such as Pterocephaliidae (Hopkins 2013) but not on

this major group of Phacopidae.

Therefore, the present study aims to investigate the

morphological evolution of all phacopids from their orig-

ination in the Late Ordovician to the end of Devonian,

by analysing their cephalic and pygidial shapes at the

genus level by means of geometric morphometrics. Here,

morphological disparity is investigated for the first time

at a global scale, and using the stage for a temporal scale.

MATERIAL AND METHOD

Datasets

To explore the morphology of the Phacopidae, we have

compiled two datasets to investigate the two main struc-

tures (largest, most often collected and/or illustrated) of

the trilobite exoskeleton: the cephalon and the pygidium

(Whittington et al. 1997).

The dataset is at the genus taxonomic rank and at the

stage chronostratigraphic level. Our dataset includes almost

all known genera of Phacopidae. However, because of the

low number of genera before the Devonian, the Silurian

has been treated as a unique time bin. For each genus, a

representative specimen was selected, most often the holo-

type of the type species, unless the illustrations were insuf-

ficient. Because of the lack of illustration, the species of six

genera were not the same for both cephalon and pygidium:

Nephranomma Erben, 1952, Pedinopariops Struve, 1970,

Prokops Chlup�a�c, 1971, Struveaspis Alberti, 1966, Teicher-

tops Struve, 1992, and Weyerites Crônier & Feist, 2000. A

total of 77 cephala and 70 pygidia representing different

genera were analysed, all at a holaspid stage (Appendix S1).

For each genus, FAD and LAD (first and last appearance

datum, respectively) are noted.

The classification used for this dataset follows Jell &

Adrain (2002). Updates since this publication were taken

into account, such as the replacement of Cultrops

Struve, 1995 with Struvephacops (Ghobadi Pour, 2015) as

well as the description of new genera: Morocops

(Basse, 2006), Enigmapyge (Feist et al., 2016), Magreanops

(Van Viersen & Vanherle, 2018), and Feistops (Crônier

et al., 2020), Acutiphacops Feist & Klapper, 2022, Cronier-

ella Feist & Klapper, 2022, Girardina Feist & Klapper,

2022, and Occitanella Feist & Klapper, 2022 (Feist &

Klapper, 2022). The Late Devonian Phacops Emm-

rich, 1839 being significantly different from older speci-

mens (Crônier et al. 2011), we separated the Late

Devonian specimens into a distinct genus named:

Late Devonian Phacops. Moreover, the Pterygometopid

Calyptaulax Cooper, 1930, was also included. The Ptery-

gometopidae family is considered to be the sister group

of Phacopidae (Ludvigsen & Chatterton 1982) and Calyp-

taulax was used as an outgroup in phylogenetic analyses

of phacopids (McKellar & Chatterton 2009; Oudot

et al. 2019). Nevertheless, some poorly known, poorly

illustrated and/or hard to find genera were excluded (Por-

tlockia McCoy, 1846, Somatrikelon McMurtrie, 1819, Hot-

tonops Van Viersen et al. 2017 and Loreleiops Van

Viersen et al. 2017 without illustration in both datasets;

Enygmapyge Feist et al., 2016, without cephalon in ‘cepha-

lon’ dataset; Adastocephalum Mitchell, 1919, Afrops

Alberti, 1983, Burtonops Struve, 1990, Cryphops Richter &

Richter, 1926, Spinicryphops Crônier & Feist, 2000, Struve-

phacops Ghobadi Pour, 2015, Tangbailaspis Xiang &

Zhang in Zhang, 1983, and Zaplaops Baldis & Blasco in

Baldis et al., 1976, without pygidium in ‘pygidium’ data-

set). For each genus, the FAD and LAD are noted.

McKellar & Chatterton (2009) proposed a distribution

of genera and sub-genera into tribes, based on the work

of Flick & Struve (1984), Haas (1998) and Struve (1970,

1972, 1976, 1982, 1989, 1990, 1992, 1995). This distribu-

tion is in disagreement with the previous work of

Chlup�a�c (1977); numerous members belonging to Phaco-

pidellinae or Phacopinae are in the same tribe. Moreover,

not all phacopid taxa listed in the exhaustive list of Jell &

Adrain (2002), were taken into consideration by McKellar

& Chatterton (2009).

Landmarks and geometric morphometrics

To describe the 2D morphology of cephala and pygidia,

we used a geometric morphometric approach based on

homologous loci named landmarks (Bookstein 1991;

Rohlf & Marcus 1993; Adams et al. 2004; Mitteroecker &

Gunz 2009; Zelditch et al. 2012). This method is com-

monly used on trilobites for macroevolutionary and

developmental studies (Gerber & Hopkins 2011, Webster

& Zelditch 2011; Oudot et al. 2019; Bault et al. 2022b).

The x and y coordinates of 12 landmarks and 4 semi-

landmark curves of 30 points each on the cephalon, as

well as 6 landmarks and one semi-landmark curve of 24

points on the pygidium were digitized (Fig. 1, for land-

mark definition see Table S1) using the software TPSDig

2.32 (Rohlf 2006, 2015). For the cephalon, the semi-

landmark curves represent respectively the glabella shape,

the facial suture shape and the cephalic outline (Fig. 1).

For the pygidium, the semi-landmark curve represents the

pygidial outline. The landmark 2D coordinates were

exported in the standard TPS file format (Rohlf 2012;

Data S1, S2).

To remove effects of size, position and orientation, all

configurations of landmarks were superimposed by means

BAULT ET AL . : THE MORPHOLOGICAL HISTORY OF PHACOPIDS 3
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of a generalized Procrustes analysis (GPA) (Gower 1975;

Rohlf & Slice 1990; Bookstein 1991; Dryden & Mar-

dia 1998; O’Higgins 2000; Zelditch et al. 2012) and pro-

jected to a linear tangent space at the full Procrustes

mean (Kendall 1984; Rohlf 1999). A Procrustes sliding

was applied to the semi-landmark curves (Gunz &

Mitteroecker 2013).

To quantify morphological variation, a principal com-

ponent analysis (PCA; Ringn�er 2008; Abdi & Williams

2010) was performed on the variance–covariance matrix

of Procrustes residual coordinates. To illustrate the largest

shape changes over the morphospace, series of virtual

shapes are reconstructed by doing a back transformation

from the PC scores for PC1 and PC2, which are the two

major principal components (PCs) in terms of shape vari-

ance explained.

Additionally, in order to identify morphological

changes related to eye-reduction or blindness in the

cephalon, and their effect to the pygidium, blind and

occulated genera were illustrated separately over the mor-

phospace. Also, a one-side nonparametric, permutational

ANOVA on all PC axes was performed using the Wilks’

lambda test to assess statistically if a shape difference

exists between blind and sighted trilobites. The ANOVA was

performed on PCA axes instead of original Procrustes

coordinates because the scores of each axis are uncorre-

lated and the number of dimensions corresponds to the

degree of freedom (Rohlf 1993; Polly 2017).

To assess the robustness of the quantified morphos-

paces based on the selected specimens, two biases that

can influence the quantification of trilobite shapes have

been evaluated: the distribution of within-genus inter-

species variation and the measurement error of a single

specimen. In order to evaluate the impact of the selected

specimen representing a genus, we also quantified 10

specimens from 10 different species for the genus Moro-

cops. Furthermore, one randomly selected cephalon was

also digitized 10 times to identify the part of variation

attributed to measurements (Bartlett & Frost 2008). To

compare the variation between the different subgroups

(i.e. measurement error, inter-specific variability and

inter-generic variability) we measured the variance of the

distance to the centroid size of each subgroup.

Morphological analyses were computed using R v3.6.2

(R Core Team 2013); and the packages geomorph (v3.2.1;

Adams & Ot�arola-Castillo 2013) and epaleo (v0.8.41;

available from CM).

Morphological disparity indices

To quantify phacopid morphological disparity changes

through time, we used several disparity indices, which

described different aspects of the morphospace occupation

(Foote 1991b; Ciampaglio et al. 2001; Wills 2001; Guil-

lerme et al. 2020). These disparity indices have already

been used for trilobites (Foote 1990, 1993; Hopkins 2013).

Disparity indices have been estimated for the Silurian as a

whole and for each stage of the Devonian.

Two indices were used to estimate the size of the mor-

phospace. The sum of range (SoR), corresponding to the

total range of morphologies, and the sum of variance

(SoV) corresponding to the average dissimilarity between

morphologies. The overall first-order nearest neighbour

distance (NND) was computed to characterize the density

of the morphospace. Finally, the mean values per stage

for PC1 and PC2 were computed to identify potential

shift in morphospace filling through time.

Confidence intervals on the computed disparity values

were obtained with a bootstrap approach, by iteratively

calculating SoR, SoV and NND (1000 times) from ran-

dom resampling with replacement of the individual

points in the morphospace (Foote 1993). The 2.5 and

97.5 percentile values of the resulting bootstrapped distri-

bution of each disparity metric are used as lower and

upper confidence intervals. Morphological indices were

performed with the package epaleo (v0.8.41; CM) in R

(v3.6.2; R Core Team 2013).

Diversity

The phacopid diversity is estimated as the raw count of

genera providing cephala in a time bin, as only Enygma-

pyge (Famennian), Portlockia (Pragian) and Somatrikelon

(Eifelian) did not record cephala to study. The count of

pygidia and cephala is compared with morphological dis-

parity indices to identify periods of coupled taxonomic

and morphological diversification or contrariwise,

decoupled trends.

RESULTS

Global morphospace

The measurements errors and the interspecific variation

tests indicated a much smaller (one order of magnitude)

variation than the inter-generic variation discussed there-

after (Fig. S1), therefore indicating a negligible impact on

our genus level analysis.

Cephalon shape. The first four principal components

explain 67% of the total shape variance (Fig. 2): PC1

(29.3%), PC2 (19.2%), PC3 (13.0%) and PC4 (5.1%).

PC1 depicts changes in the position of the facial suture

and the visual complex. The higher the PC1 value, the

more the suture is close to the lateral margin and more

4 PALAEONTOLOGY
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F IG . 2 . Global morphospace for phacopid cephala computed by performing a PCA based on Procrustes residuals. A, the first two

axes, PC1 and PC2, explain 49% of the variance. B, PC3 and PC4 axes explain 18% of the variance. Tribes according to McKellar &

Chatterton (2009): Ananaspini Haas, 1998 (brown); Cordapeltini Struve, 1989 (dark green); Cryphopini Struve, 1989 (orange); Geeso-

pini Flick & Struve, 1984 (dark blue); Phacopini Flick & Struve, 1984 (light green); Reedopini Struve, 1989 (purple); and incertae sedis

(light blue). The pterygometopid Calyptaulax is represented by a black square. Virtual shapes were reconstructed by doing the back

transformation from the considered PC scores, and then reshaping to landmark data.
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the visual complex is reduced (Fig. 2A). PC1 also shows

changes associated with the width/length ratio: narrow

(transversal) cephala in negative values to elongated (tr.)

cephala in positive values. The second axis PC2 depicts a

stretched genal angle in negative values and a rounded

genal angle in positive values. Where the PC2 is high, the

facial suture is more distant from the lateral margin.

Consequently, the filling of the morphospace (Fig. 2A) is

roughly triangular reflecting the influence of the three

cephalic parameters (width/length ratio, facial suture/

visual complex location, and the shape of the genal

angle). The bottom-left part of the morphospace corre-

sponds to elongated cephala with a stretched genal angle,

the bottom-right part to narrow cephala with a more

reduced visual complex and the top-central part to inter-

mediate shapes with a rounded genal angle. The distribu-

tion of genera is fairly homogeneous in the morphospace,

with the exception of three outliers characterized by low

PC1 and low PC2 values: Illaenula Chlup�a�c, 1977, Tei-

chertops and Zaplaops. The label of each morphospace

point is given in Figure S2. The pterygometopid Calyp-

taulax has a low PC1 value and one of the highest PC2

values placing it in the phacopid morphospace. The old-

est phacopid Sambremeusaspis had also a low PC1 value

but an average PC2 value.

Along the PC3 (Fig. 2B), the cephalic variations are asso-

ciated with the genal angle shape and the cheek proportion.

Cephala with an elongated genal angle and larger cheeks

relative to the cephalic shield are positioned in negative

values, and cephala with rounded genal angle and smaller

cheeks relative to the cephalic shield are in positive values.

Along the PC4, the cephalic variations are associated with

elongated genal angle (low PC4 values) or rounded genal

angle (high PC4 values). The distribution of genera is rela-

tively fairly homogeneous in the morphospace with the

exception of two outliers characterized by high PC3 values:

Illaenula and Sambremeusaspis. Because genal spines are

rare among phacopids, their presence is not clearly shown

by the four first PCA axes. The genera developing such

spines, such as Acernaspis Campbell 1967, Babinops Feist &

Becker, 1997, Drotops Struve, 1990, and Viaphacops Maksi-

mova, 1972, are located in the centre part of the morpho-

space with the phacopids without genal spines.

Pygidium shape. The first four axes (Fig. 3) explain 88% of

the total shape variance: PC1 (56.3%) PC2 (20%), PC3

(7.1%) and PC4 (4.5%). The first axis PC1 (Fig. 3A)

depicts changes in the pleural field proportion and the lat-

eral border angle. The lower the PC1, the more the pleural

field is important and the lateral border angle acute. The

second axis PC2 depicts changes associated with the posi-

tion of the greatest width: backward in negative values to

forward in positive values. A higher PC2 value indicates a

higher width/length ratio. The distribution of genera is

fairly homogeneous in the morphospace. Calyptaulax (with

the highest PC1 value) is slightly distinct from phacopids

with a high PC2 value. Echinophacops Zhou, 1983, is differ-

entiated from other phacopids by high PC1 and low PC2

values corresponding to a long pygidium.

Along the PC3 and PC4 axes (Fig. 3B), the pygidial

variations are associated with the position of the rachis

relative to the pygidial posterior border and the lateral

outlines. The rachis is more (low PC3 and PC4 values) or

less (high PC3 and PC4 values) close to the posterior bor-

der of the pygidium. Most of the genera are located in

the right part of the morphospace, whereas Calyptaulax is

characterized by the highest PC3 values. While no com-

plete cephalon of Enigmapyge is known yet, the pygidium

of this genus has notably high PC1, PC3 and PC4 values

that correspond with an elongated (sag.) pygidium with a

short (sag.) rachis and a maximum pygidial width located

backward with a linear lateral border.

Tribes. The phacopid tribes were widespread in the mor-

phospace and they mingle with each other. Nevertheless,

some trends exist: Cryphopini is mostly restricted to posi-

tive PC1 values of the cephalon (Fig. 2A) and negative

PC1 values of the pygidium (Fig. 3A). Conversely, Geeso-

pini occupies negative PC1 and PC2 values of the cepha-

lon and positive PC1 values of the pygidium.

Blindness

Absence of eyes affected the shape of phacopid cephala

(Procrustes ANOVA: p = 0.001, r2 = 0.07). With two excep-

tions, the blind and reduced-eyed trilobites are clustered

in the highest PC1 values, while the occulated trilobites

are gathered in the negative and slightly positive PC1

values (Fig. 4A). The distribution of these blind taxa is

due to the presence of forms with a facial suture close to

the anterolateral margin. However, the two blind genera

Nephranops Richter & Richter, 1926, and Illaenula have

lower PC1 values characterized by a wide (tr.) cephalic

shield. In addition, blind taxa are mostly restricted to

positive PC3 values and average PC4 values due to the

presence of forms with a rounded genal angle and a facial

suture close to the anterolateral margin.

The blindness observed in cephala did not imply a dif-

ferent morphology of pygidia (Procrustes ANOVA:

p = 0.153, r2 = 0.03). However, the pygidia associated

with blind cephala are all gathered in the part of PC1

with the lowest values (Fig. 4B). This indicates that blind

phacopids did not display a rounded lateral border or a

large pleural field. The type of vision had no effect on

PC2, PC3 and PC4.

6 PALAEONTOLOGY
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F IG . 3 . Global morphopace for phacopid pygidia computed by performing a PCA based on Procrustes residuals. A, the first two axes

PC1 and PC2 explain 76% of the variance. B, PC3 and PC4 axes explain 12% of the variance. Tribes sensu McKellar & Chatter-

ton (2009): Ananaspini Haas, 1998 (brown); Cordapeltini Struve, 1989 (dark green); Cryphopini Struve, 1989 (orange); Geesopini Flick

& Struve, 1984 (dark blue); Phacopini Flick & Struve, 1984 (light green); Reedopini Struve, 1989 (purple); and incertae sedis (light

blue). The pterygometopid Calyptaulax is represented by a black square. Virtual shapes were reconstructed by doing the back transfor-

mation from the considered PC scores, and then reshaping to landmark data.
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Diversity through time

Taxonomic richness. Phacopids were poorly diversified in

the Silurian but their taxonomic richness increased almost

continuously until the Eifelian (Fig. 5). Only a slight

decrease occurred in the Pragian. In the Givetian, the

diversity decreased strongly from 26 to 12 genera. This

decline continued in the Frasnian before a substantial

increase in the Famennian, when 19 genera lived. No

phacopids survived into the Carboniferous.

Disparity of cephala. From the Late Ordovician to the

Pragian, the morphospace occupation moved toward

higher PC1 and lower PC2 values (i.e. toward a facial

suture closer to the lateral margin and a smaller cephalic

shield; Fig. 6). The Middle–Late Ordovician pterygometo-

pid Calyptaulax and the oldest phacopid Sambremeusaspis

are located at the top-left extremity of the morphospace

(Fig. 7). Calyptaulax is characterized by a glabella with a

hypertrophied frontal lobe anteriorly with well-developed

S3 and a subtriangular pygidium. In the Silurian, the pha-

copid shapes extended with the emergence of more

rounded cephala and a facial suture closer to the antero-

lateral border such as in Denckmannites Wedekind, 1914,

and Orygmatos Sandford, 2000. The morphospace

enlarged progressively in the Early Devonian with new

morphologies in the Pragian: cephala characterized by a

narrow (tr.) cephalic shield associated with anterolateral

facial sutures. The appearance of Afrops at the right edge

(i.e. high PC1 values) of the morphospace illustrated this

trend. In the Emsian, the morphospace is almost entirely

occupied except for the left part of the all-phacopids dis-

tribution. Thus, SoR increased (Fig. 5). At the same time,

NND and SoV tend to decrease.

During the Middle Devonian, the morphospace occu-

pation moved toward the opposite side, the left part of

the morphospace. The morphological disparity strongly

decreased meantime. However, the reduction of the occu-

pied part of the morphospace was initially only low in

the Eifelian (Fig. 7). Shapes with a facial suture located

close to the lateral border, such as the blind Altaesajania

Maksimova, 1978a, and Angulophacops Maksimova,

1978b, are no longer present and disappeared at the

Emsian–Eifelian boundary. Conversely, no new genera

appeared. The Eifelian was also characterized by the low-

est NND despite the presence of two outliers Illaenula

and Teichertops. These outliers were located in the left

part of the all-phacopids distribution during the Eifelian.
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F IG . 4 . Location of cephala (A) and pygidia (B) according to visual abilities of phacopids in the global morphospace defined on the

first four principal component axes performed on Procrustes residuals, respectively PC1 vs PC2 and PC3 vs PC4.
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Subsequently, the morphospace collapsed in the Givetian

because of the extinction of genera such as Nandanaspis

Zhang & Yin in Yin & Li, 1978, Eocryphops Richter &

Richter, 1931, Plagiolaria Kegel, 1952 and Reedops Richter

& Richter, 1925. Their morphology implied a facial suture

near the anterolateral border and a rounded genal angle.

Afterwards, Geesops Struve, 1982, and Nyterops Struve,

1972, disappeared at the end of the Givetian. They are

characterized by a cephalon with acute genal angles and a

posterior section of the facial suture close to the posterior

border. The occupied part of the morphospace is limited

to the bottom-left part of the all-phacopids distribution

(Fig. 7).

Finally, during the Late Devonian, the morphospace

occupation shifted again to higher PC1 and PC2 values,

due to the presence of more elongated cephalic shapes

and facial sutures closer to the posterior border. The

morphological disparity increased for the first time since

the Emsian. Nevertheless, the morphospace occupation

remain reduced in the Frasnian but with a displacement

of the occupied part of the morphospace. This displace-

ment is partly due to the successive origination of Acuti-

cryphops Crônier & Feist, 2000, and Trimerocephaloides

Feist et al., 2009, which spread toward higher PC2 values

of the morphospace with their anterolateral facial sutures

and a narrow cephalon with rounded genal angles. The

appearance of Girardina and Occitanella, characterized by

the presence of eyes and a rounded genal angle, explains

the displacement toward higher PC2 values. New genera

appeared in the Famennian, such as Dianops Richter &

Richter, 1923, Ductina Richter & Richter, 1931, Struveops

Crônier & Feist, 2000, and Trimerocephalus McCoy, 1849.

They contributed to the partial refilling of the morpho-

space on its right side. These taxa exhibit a facial suture

closest to the lateral margin border, a small (tr.) cheek,

and a rounded genal angle. In the Famennian, the mor-

phological disparity strongly expanded with an increase of

SoR and SoV, while NND decreased slightly.
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Disparity of pygidia. From the Late Ordovician to the

Silurian, the morphospace occupation moved toward

lower PC1 and PC2 values to stay stable until the Pragian

(Fig. 6). Calyptaulax, with its subtriangular pygidium, is

located on one end of the morphospace (Fig. 7). In the

Silurian, the phacopid shapes developed with the presence

of more enlarged (tr.) pygidia with a larger pleural field.

This morphospace occupation (mainly the bottom-middle

right part) persisted until the Pragian. Thus, the morpho-

logical disparity remained almost stable, except for a

decrease in NND (Fig. 5). In the Emsian, the morpholog-

ical disparity of phacopids strongly increased to reach its

highest value. This is the result of innovations occurring

with the origination of Austerops McKellar & Chatter-

ton, 2009, Rhinophacops Kaneko, 1990, and Toxophacops

Zhou & Campbell, 1990, for instance. This corresponds

to a triangular pygidial shape and a weakly curved poste-

rior border. The morphospace became filled and almost

fully occupied except for the extreme left part.

During the Middle Devonian, the morphospace occu-

pation shifted slightly to opposite values, in other words,

to higher PC1 values; there was no real displacement on

PC2 (Fig. 6). Both SoR and SoV decreased while NND

increased after an initial diminution (Fig. 5). The occu-

pied part of the morphospace was still relatively expanded

in the Eifelian, with only the disappearance of taxa in the

top-right and the bottom-right parts of the morphospace

(Fig. 7). Indeed, Echinophacops and Rhinophacops were no

longer present and disappeared at the Emsian–Eifelian
boundary. These Asian genera are characterized by
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F IG . 7 . Morphological occupation of the cephalon (A) and pygidium (B) through time (PCA based on Procrustes residuals). Circles

represent eyed phacopids, crosses represent blind phacopids and the square represent the pterygometopid Calyptaulax.
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narrow (tr.) pygidia with small pleural fields. Subse-

quently, the morphospace collapsed in the Givetian, par-

ticularly because of the extinction of Morocops, Signatops

P�ribyl & Van�ek, 1971, and Viaphacops in the left part of

the morphospace. Therefore, the occupied part of the

morphospace was limited to the right part of the all-

phacopids distribution (Fig. 7).

Finally, during the Upper Devonian, the morphospace

occupation shifted again to reach the lowest PC1 values

whereas, once again, there is no real displacement on PC2

(Fig. 6). At the same time, SoR increased although the

morphospace occupation remained reduced in the Fras-

nian, with low SoV and NND (Fig. 5). Contrary to the

cephalon (characterized by lowest morphological disparity

in the Givetian) the minimal occupation of the pygidial

morphospace happened later, in the Frasnian (see SoV).

Only wider displacement of the occupied part of the mor-

phospace to the left occurred. This displacement is due to

the appearance of genera characterized by an elongated

(tr.) pygidium, such as Acuticryphops, Chlupacops Feist

et al., 2016 and Late Devonian Phacops. In the Famen-

nian, new genera appeared, such as Dianops Richter &

Richter, 1923, Trifoliops Crônier, 2003, Trimerocephalus

McCoy, 1849, and Weyerites, and contributed to a partial

refilling of the morphospace. All of these taxa exhibit an

elongated (tr.) pygidium. The morphological disparity

strongly increased to reach values that are amongst the

highest seen in phacopid history.

DISCUSSION

Morphological disparity

Phacopids did not exhibit a large morphological varia-

tion. This absence of strong differences among phacopid

genera and tribes explains the difficulties encountered in

determining their systematic structure (McKellar & Chat-

terton 2009). The choice of method and landmarks could

influence the morphological variation measured (Van

Bocxlaer & Schultheiß 2010; Webster & Sheets 2010; Zel-

ditch et al. 2012). Nonetheless, the set of landmarks used

catch most of trilobite morphology (Fig. 1; Bault

et al. 2022b). The low morphological variability points

towards morphological near-stasis in this group, although

some important variations remain clearly identifiable. The

low degree of variation is unexpected as phacopids have

invaded many different environments during their evolu-

tionary history (Chlup�a�c 1975; Crônier & Franc�ois 2014;

Bault et al. 2022a). Competition with other coexisting tri-

lobite orders and/or strong developmental constraints

may have hampered phacopids from exploring a large

range of morphologies (Oyston et al. 2015). A stabilizing

selection toward specific tasks may also explain the

relative morphological stasis (Hansen & Houle 2004;

Tendler et al. 2015). For instance, the conservation of the

Olenus-like morphology among the Olenids throughout

the early Palaeozoic has been interpreted as the persis-

tence of their habitats (Fortey 2000). However, phacopids

had a conservative morphology throughout their evolu-

tionary history whilst inhabiting the whole onshore–off-
shore profile (Bault et al. 2022a), indicating that

other factors could explain such a tendency. The fact that

phacopids did not develop extravagant morphologies

probably suggests that their ‘basic’ morphology was better

adapted to environmental variations, and invasion of new

ecological niches did not require morphological novelties.

Only one genus differs strongly from the others:

Echinophacops is the only phacopid which developed

prominent marginal spines on the cephalon (Zhou 1983).

The cephalic morphology of this genus is qualified as

‘marginal cephalic spines’ (sensu Fortey & Owens 1990).

Echinophacops occurs with ammonoids, conodonts, bra-

chiopods, gastropods and corals (Hua-Zhang & Cook

2003) in Lower Devonian calcareous sandstones of the

Zhusileng Formation (China), representative of subtidal

environments (Zhou & Campbell 1990). In this kind of

environment, spinose asteropygines, another Phacopida

subfamily, also proliferated at the same time (Morza-

dec 1992, 2001). Other phacopids co-occurred with Echi-

nophacops in the same horizon (i.e. Rhinophacops and

Toxophacops), as well as Zhusilengops Zhou & Camp-

bell, 1990, and Atopophacops Zhou & Campbell, 1990,

above the Zhusileng Formation (Zhou & Campbell 1990).

Contrary to Echinophacops, these genera did not have

spines. Nevertheless, an intermediate morphology existed

between taxa with long spines (i.e. Echinophacops mirabilis

Zhou, 1983), and taxa without spines, such as Rhinopha-

cops schlizoma Zhou, 1983. The pygidium of Echinopha-

cops also differed from other phacopids, which makes the

entire exoskeleton of this genus special.

Among other genera, very few have a very differenti-

ated morphology like that of Enigmapyge from the

Famennian of Algeria (Feist et al. 2016). Although incom-

pletely preserved, its cephalon shows all the characteristics

of a phacopid. Nonetheless, its pygidium is unusual

among this family in having a large pygidial margin and

a short (sag.) pygidial axis ending at a considerable dis-

tance from the posterior edge (Feist et al. 2016). The

morphology of the cephala of Teichertops and Zaplaops

was also uncommon. These two genera are represented by

very few specimens in the literature and deformation of

the landmarked fossils is possible. The specimen of Tei-

chertops was found in black marls (Struve 1970) where

distortions often happen (Webster & Hughes 1999). The

usual shape of the pygidium of Teichertops tends to con-

firm this assumption although the cephalon and the

pygidium of the same taxon show a different distribution
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in morphospace (Bault et al. 2022b). For its part,

Zaplaops could be a junior synonym of Ananaspis Camp-

bell, 1967 (Holloway & Rust�an 2012), which is not an

outlier. This latter genus is characterized by an elongated

cephalon as in Zaplaops (negative PC1 value) but without a

downward genal field (average PC2 value), probably a con-

sequence of a distortion. Acernaspis, Adrisiops, Babinops,

Drotops and Viaphacops are the five genera differentiated

by an elongated genal angle. Genal spines could develop

from this configuration, as it is the case for Babinops (Feist

& Becker 1997), Viaphacops (Eldredge 1973) and Drotops

armatus (Struve 1995). Usually, phacopids had a genal

spine during the early stages of their development, but

these spines then reduced (Crônier & Feist 1997; Crônier

et al. 1999; Crônier & Courville 2003). Contrary to the

Early Devonian tendency among Trilobita (Bault

et al. 2022b), this development of genal spines among pha-

copids was not a temporal trend because taxa with such

morphology existed throughout the evolutionary history of

phacopids. Only the presence of the strongly spinose Echi-

nophacops coincided with the Early and Middle Devonian

trends in spiny marine faunas, mainly in response to

increasing predation (Brett & Walker 2002; Brett 2003).

The presence of such genal spines could also favour stabili-

zation on soft substrates (Brett 2003).

Except the few taxa described above, most phacopid

genera show only slight differences between them. The

main variation concerns the position of the facial suture,

which corresponds to a line of weakness facilitating the

moulting process (Daley & Drage 2016; Drage 2019). This

allows the separation between the cranidium and the free

cheeks during ecdysis (Drage 2019). Among trilobites, the

phacopids have a proparian suture, the posterior section

of which intersects the lateral cephalic margins in front of

the genal angles (Harrington et al. 1959). The position

of this facial suture constituted a trade-off between the

ability to moult and a resistance to burrowing loads

(Esteve et al. 2021). Although the facial sutures are non-

functional during the holaspid period in phacopids

(Speyer 1985), they are functional during the larval and

juvenile periods (Crônier & Feist 1997; Crônier et al.

1998, 2005; Crônier & Courville 2003), exposing them to

such a trade-off. Among phacopids, the size of the visual

complex influences the location of the facial suture.

Blindness or reduced-eyes imply a facial suture situated

close to the lateral margin. Indeed, the reduction and

marginal ‘migration’ of the visual complex caused the dis-

placement of the associated dorsal facial sutures (Feist

1995). Consequently, the facial sutures of blind taxa are

located on the anterolateral margins, relating to a macro-

evolutionary paedomorphic process (Feist 1995; Crônier

& Courville 2003; Crônier et al. 2005; Crônier 2013). This

‘migration’ occurred, even though cephala with marginal

facial sutures seem to become less resistant to stress

related to burrowing (Esteve et al. 2021). Such a charac-

teristic challenges the assumed endobenthic behaviour of

blind phacopids, but the ankylosed facial suture of holas-

pid phacopids and their moulting by disarticulation of

the cephalothoracic joint (Drage 2019) could be a

response to that issue. In addition to the facial suture dis-

placement along with the visual complex reduction, blind

phacopids have a less curved genal angle, with the excep-

tion of Illaenula. A marginal facial suture and weakly

arched genal angles characterized blind phacopids but

these characteristics are also found among some sighted

genera. There were reduced-eye trilobites such as Eocry-

phops (Holloway 2005), that showed the suture displace-

ment. Blind trilobites are not associated with a particular

morphology of the pygidium as was the case for the

cephalon. Nevertheless, the morphology of blind phaco-

pids was limited to a particular shape of pygidium: those

with high width/length ratios.

The second most important morphological variation in

phacopids concerned the curvature of the genal angle and

the cheek width. Large cheeks give a vaulted form to the

cephalon. This kind of cephalic shape is found in other

clades such as harpetids, and is thought to have prevented

the trilobite from sinking into mud (Richter 1920; Feist &

Clarkson 1989). Many phacopids with the most vaulted

cephalons lived indeed in a muddy environment; for

example, Echidnops taphomimus (Rust�an & Balseiro 2016),

Illaenula struvei (Basse & M€uller 2000), Nephranomma

sweeti (Sandford 2003), Orygmatos yanyeani (Sand-

ford 2000), Teichertops soetenicus (Struve 1970) and

Zaplaops zaplensis (Baldis et al. 1976). However, some tri-

lobites with a vaulted cephalon occurred in limestone

deposits; such as Lochkovella misera (Chlup�a�c 1977). Con-

sequently, the type of substrate is not the only factor

influencing the shape of the cephalon. Although all phaco-

pids are characterized by a similar shape of glabella, nar-

rower (tr.) at the base and wider (tr.) at the front, there

were glabellar changes associated with cephalic changes.

The glabella is wider at its front with a less curved genal

angle for a vaulted cephalon. The base/frontal part width

ratios are partly due to the putative predatory/scavenger

habit of phacopids, a forwardly expanding glabella allowing

ingestion of higher volumes (Fortey & Owens 1999). How-

ever, Bruton & Haas (2003) claimed that phacopids were

more likely to be filtering detritus. This pattern contrasts

with the morphological changes observed during the

ontogeny for which the maximal width of the glabella/min-

imal width of the glabella ratio increased while the genal

spines, and so the curvature of the genal angle, reduced

(Crônier & Fortey 2006; Crônier 2007).

The elongation of the pygidium was also a major varia-

tion in phacopids. Some genera had an elongated pygid-

ium with a width/length ratio greater than 2 (e.g.

Trifoliops) while others had a ratio less than 1, such as

BAULT ET AL . : THE MORPHOLOGICAL HISTORY OF PHACOPIDS 13
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Enygmapyge (Feist et al. 2016). It is noticeable that the

genera with the most elongated (tr.) pygidium are not the

same as those with the largest cephalon. The pygidium

shape was probably less suitable for stabilizing the organ-

ism on the seafloor. The morphology of organisms being

the result of trade-offs between different tasks (Shoval

et al. 2012; Ou et al. 2020), the pygidial organization

probably favoured functions other than the balance of the

trilobite. For example, enrolment influenced both cepha-

lon and pygidium morphology, but it had probably a

stronger effect on the pygidium, which was dedicated to

fewer tasks (Oudot et al. 2019; Su�arez & Esteve 2021).

Consequently, there is a decoupling at the level of innova-

tions between cephala and pygidia. Finally, although the

length of the pygidial axis also changes between different

phacopids, only a short (sag.) postaxial area characterized

the phacopid family, except Enigmapyge as discussed

above.

Evolutionary history

The shape of the pterygometopid Calyptaulax, a sister

group of phacopids (Oudot et al. 2019), is located closed

to the edge of phacopid morphologies with a facial suture

close to the posterior border. Its shape is not completely

different from phacopid morphologies, being close to the

shape of the oldest phacopid Sambremeusaspis. Hence,

the assumption that Pterygometopidae is a sister taxon of

phacopids seems relevant (Ludvigsen & Chatterton 1982).

Similarities between ontogenetic trajectories of this genus

and some phacopids (Jacobs & Carlucci 2019) reinforce

this hypothesis. Calyptaulax had a facial suture (and

therefore the eyes) near to the posterior border furrow,

and a vaulted cephalon (Clarkson & Tripp 1982). From

similar ancestral character states, phacopids developed

from the Late Ordovician onwards leading to an increase

of their morphological disparity. Although the oldest pha-

copid, Sambremeusaspis, exhibited a general morphology

similar to that of Calyptaulax, the facial sutures of phaco-

pids are relatively close to the lateral margin in the Silu-

rian. This was particularly the case for Denckmannites,

Lochkovella and Orygmatos, the first reduced-eye phaco-

pids (Chlup�a�c 1977; Sandford 2000; Crônier & Cour-

ville 2003). An eye reduction in trilobites could be linked

to migration and an adaptation to deeper environments

(Feist et al. 2009; Feist 2019). While Acernaspis and Paci-

phacops Maksimova, 1972, lived in shallow environments

(Waisfeld et al. 1988; Owen et al. 2008; Rust�an et al.

2011), Denckmannites, Lochkovella and Orygmatos lived in

a relatively deep environment. The observed morphologi-

cal change seems to be related to the invasion of this

environmental niche. However, Calyptaulax proliferated

in a deep environment (Owen & Parkes 2000; Carlucci &

Westrop 2012), indicating that this large-eyed morphol-

ogy is not inconsistent with the habitat of a basin

environment. On its side, the pygidium of phaco-

pids lengthened compared to its probable ancestral

morphology.

The morphological disparity trends corresponding to

the cephalon and to the pygidium shapes, are partly

uncorrelated. The constant increase of the morphospace

occupancy from the Silurian until the Emsian observed in

the cephalon is more irregular in the pygidium. This

period was more favourable to the origination of novel-

ties in other trilobite families, such as proetids, scutelluids

and dalmanitids than in phacopids (Chlup�ac 1994). The

taxonomic diversity increase in the Lochkovian was asso-

ciated with only a slight increase of morphological dispar-

ity. Therefore, no important innovations occurred, the

new morphologies remained close to those of the Silurian.

Origination of new species brought morphologies close to

those already existing. Nevertheless, the cephalon mor-

phospace shifted throughout the Silurian and the Early

Devonian. There was probably a slight directional selec-

tion linked to a change of phenotypic optimums. From

the Silurian to the Pragian, environmental conditions

fluctuated, including a decrease in the sea-level, cooling

and sedimentological changes (Haq & Schutter 2008; Sco-

tese et al. 2021) and probably affected morphological evo-

lution of phacopids. Most of the phacopids developed a

narrower cephalon with eyes upward through this period.

During the Pragian–Emsian diversification, the taxo-

nomic richness of phacopids increased, as did many trilo-

bite families (Chlup�ac 1994; Bault et al. 2021, 2022a).

This boost of diversity was linked to the increase in mor-

phological disparity for both cephala and pygidia. Com-

petition and niche partitioning within Phacopidae and

with other trilobites in this period of diversification may

have strengthened the morphological diversification

(Cross et al. 2022; Bault et al. 2022b). Nevertheless, no

important novelties characterized the development of new

phacopids. Only the blind genus Afrops exhibits a

new cephalon morphology, with a small cephalic shield

without an elongated genal angle (Alberti 1983). For pygi-

dia, the main innovation involved a triangular shape as in

Rhinophacops schizoloma (Kaneko 1990) or the elongated

(tr.) pygidium as in Morocops granulops (Chatterton

et al. 2006). Nevertheless, the Emsian was the age of max-

imum disparity for both cephala and pygidia. Contrary to

most of the trilobites, for which the peak of morphologi-

cal disparity occurred usually after the peak of diversity

(Foote 1993), phacopids showed a different pattern. The

Emsian morphological disparity peak occurred earlier

than the maximum diversity, which followed in the Eife-

lian (Crônier & Courville 2003). Decoupling between

morphological disparity and taxonomic diversity is com-

mon in the fossil record (Foote 1993) but has often been

14 PALAEONTOLOGY

 14754983, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pala.12673 by U

niv N
acional de C

ordoba U
N

C
, W

iley O
nline L

ibrary on [04/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



linked to extinctions (Bapst et al. 2012; Hopkins 2013;

Wan et al. 2021). In this case, the Eifelian anoxic events,

associated with sea-level changes, may have affected mor-

phological disparity more than diversity. This pattern dif-

fers from mass extinction events for which the impacts

are stronger on the diversity component (Villier &

Korn 2004; Oyston et al. 2015). The decrease of morpho-

logical disparity might have been caused either by a loss

of ecological habitats (Valentine 1995; Oyston et al. 2015)

or by an increase in developmental constraint (Gould

1991; Oyston et al. 2015).

Another feature of the morphological diversification of

this family is that its peak was reached in the later part

of its evolutionary history. This was the opposite of the

common trend among Palaeozoic clades, which often

have a maximum of disparity early in their evolutionary

history (Hughes et al. 2013). Hopkins & Smith (2015)

argued that evolutionary dynamics changed through time

and were not necessarily higher in the first period of their

existence. New ecological opportunities, such as those in

the Devonian, could generate an increase of the evolu-

tionary rate and thus, a morphological disparity rise.

An important extinction phase occurred in the Givetian

with a strong decrease of both diversity and morphologi-

cal disparity. The sea-level changes and the anoxia of the

Middle Devonian events (Walliser 1996, pp. 225–250;
House 2002) affected all trilobites (Lerosey-Aubril &

Feist 2012; Bault et al. 2022a). The phacopids did not

escape these environmental events and lost more than

60% of their genera. The mid-Givetian Taghanic event

was the most devastating for them (Feist 1991; Crônier &

Courville 2003). This crisis caused a collapse of the mor-

phospace occupation, characteristic of non-random

extinctions (Ciampaglio et al. 2001). On the contrary, the

density of the morphospace was not disturbed by these

events, implying a marginal or lateral extinction (Korn

et al. 2013). Interestingly, a lateral extinction of the mor-

phospace affected the cephalon with the disappearance of

genera with well-rounded genal angles and anterolateral

facial sutures such as Eocryphops and Nandanaspis. There-

fore, the morphospace shifted during the Middle Devo-

nian, while a rather marginal extinction with no strong

change in the morphospace range affected the pygidium

morphospace. The Taghanic extinction event led to the

disappearance of genera with a cephalon characterized by

an anterolateral facial suture. Therefore, in the late Give-

tian all phacopids had large eyes. Nevertheless, reduced-

eyed trilobites did survive these environmental changes in

other families such as Tropidocoryphidae (Feist 2003).

Abiotic causes were not the only possible explanations for

the Middle Devonian morphological variations: increasing

predation at that time may have reshaped the phacopid

morphospace (Brett & Walker 2002; Bault et al. 2022a).

Meanwhile, two of the largest genera of the family

appeared: Drotops and Hypsipariops Struve, 1982

(Struve 1995). Indeed, the Early and Middle Devonian

were times of giant organisms including trilobites (Klug

et al. 2014). This trend can hardly be explained by single

environmental parameters although a latitudinal influence

cannot be excluded (Klug et al. 2014). Drotops and Hypsi-

pariops lived in the mid-latitudes of Morocco (Struve

1995), exactly the range of gigantism occurrences.

In the Frasnian, morphological disparity remained low.

This stage has long been thought to be poorly diversified,

despite Feist & Klapper (2022) proposing four new pha-

copid genera. Nevertheless, this was the least populated

period in phacopid history. Generic diversity mainly

increased in middle and late Frasnian times. Nevertheless,

the stagnation of morphological disparity was accompa-

nied by important morphological changes. For cephala,

morphospace occupancy shifted to the area indicating the

acquisition of an anterolateral facial suture, underlying

the Late Devonian trend towards blindness (Feist 1995,

2019; Crônier & Courville 2003; Crônier et al. 2011). This

trend was also noticed in other families (Feist & Clark-

son 1989; Lerosey-Aubril & Feist 2012; Schoene-

mann 2018). As for the Silurian, the existence of blind

phacopids was associated with a life in deeper environ-

ments (Feist et al. 2009; Feist 2019). The successive trans-

gressions and the long-term sea-level rise in the second

part of the Devonian forced the trilobites to adapt to

these new environments (Lerosey-Aubril & Feist 2012;

Crônier & Franc�ois 2014). Whatever the water depth, an

endobenthic habit or a turbid environment with low

luminosity could also imply an eye-reduction (Feist

et al. 2009). Rust�an et al. (2011) had precisely identified

an increase of endobenthic behaviour among phacopids

in the Devonian due to increasing predation. Concomi-

tantly with the progressive modification of the eye and

the displacement of the facial suture on the cephalon, the

pygidium changed to a more elongated shape in phaco-

pids. The morphological innovations still developed in

the same direction in the Famennian. The combination of

lateral facial sutures and an elongated pygidium contrib-

uted to increase the morphological disparity, particularly

for the pygidium. Subsequent to the disastrous Kellwasser

events at the Frasnian–Famennian boundary (Bug-

gisch 1991; Bond & Wignall 2008), trilobites recovered

and invaded various habitats and areas (Crônier &

Franc�ois 2014). As the result of this dispersal, morpholog-

ical disparity increased, as was the case with the appear-

ance of new niches in the Pragian. Some phacopids

recolonized shallower environments and developed large

eyes, such as Omegops (Crônier & Franc�ois 2014).
The evolutionary history of phacopids stopped at the

end of the Devonian with the disappearance of the whole

order Phacopida (Bault et al. 2022a). Their extinction was

the consequence of the Hangenberg event consisting of
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sea-level changes, carbon cycle perturbation and tempera-

ture oscillations (Kaiser et al. 2016). All phacopids van-

ished regardless of their shape, but the predominance of

reduced-eyed and blind taxa inhabiting more distal envi-

ronments probably doomed them. Indeed, this event was

devastating for non-occulated and reduced-eyed trilobites,

including Proetida (Lerosey-Aubril & Feist 2012).

CONCLUSION

Phacopidae originated at the end of the Ordovician and

rapidly diversified. They had a morphology close to their

sister taxon Pterygometopidae, with a glabella broadening

forward and a proparian facial suture. Some genera had an

unusual morphology but most of them had rather a similar

shape with minor morphological changes. The main mor-

phological variations among phacopids were the position

of the facial suture, the shape of the genal angle and the

elongation of both cephalon and pygidium. For cephala,

most morphologies already existed in the Silurian but the

morphological diversity increased in the Devonian. Innova-

tions and novelties were particularly favoured by the colo-

nization of new habitats offered by Pragian environmental

changes. The maximum of morphological disparity

occurred in the Emsian, late in the evolutionary history of

the phacopids. Their diversity peak occurred later, in the

Eifelian. The Middle Devonian events strongly affected

the phacopids, leading to a decrease of more than half of

the morphological and taxonomic diversity in the Givetian.

These extinctions were non-random, particularly affecting

trilobites with reduced-eyes. Although morphological dis-

parity remained low in the Frasnian, some morphological

changes occurred. The facial suture migrated toward the

anterolateral margins related to the eye-reduction and

blindness and the pygidium elongated laterally. Eye reduc-

tion was achieved during environmental changes, especially

sea-level changes. These trends continued in the Famen-

nian, during which a recovery caused an increase in both

diversity and morphological disparity. However, the Hang-

enberg event at the Devonian–Carboniferous boundary led

to the disappearance of this representative trilobite family

during the Devonian.
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