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ABSTRACT
Using data from TNG300-2, we train a neural network (NN) to recreate the stellar mass (𝑀∗) and star formation rate (SFR) of
central galaxies in a dark-matter-only simulation. We consider 12 input properties from the halo and sub-halo hosting the galaxy
and the near environment. 𝑀∗ predictions are robust, but the machine does not fully reproduce its scatter. The same happens
for SFR, but the predictions are not as good as for 𝑀∗. We chained neural networks, improving the predictions on SFR to some
extent. For SFR, we time-averaged this value between 𝑧 = 0 and 𝑧 = 0.1, which improved results for 𝑧 = 0. Predictions of
both variables have trouble reproducing values at lower and higher ends. We also study the impact of each input variable in the
performance of the predictions using a leave-one-covariate-out approach, which led to insights about the physical and statistical
relation between input variables. In terms of metrics, our machine outperforms similar studies, but the main discoveries in this
work are not linked with the quality of the predictions themselves, but to how the predictions relate to the input variables. We
find that previously studied relations between physical variables are meaningful to the machine. We also find that some merger
tree properties strongly impact the performance of the machine. We conclude that ML models are useful tools to understand the
significance of physical different properties and their impact on target characteristics, as well as strong candidates for potential
simulation methods.
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1 INTRODUCTION

Cosmological simulations are a powerful tool to understand the na-
ture and evolution of galaxies, large-scale structures and baryonic
processes occurring within them. The ΛCDM universe can be de-
scribed with only six observationally-tuned parameters , and the
evolution of the cold dark matter in the universe is modelled by
following gravitational interactions between dark matter. The com-
plexity of the models only increases when one takes in consideration
the physics of baryonic matter. Simulations follow these models with
the goal of replicating the evolution of the large-scale universe and
the emergence of different bodies and structures.

The first simulations created were dark-matter-only (hereafter DM-
Only), only having gravitational interactions (Aarseth 1971) between
particles. Simulations that model the evolution this way are referred
to as N-body simulations. With time, simulations evolved into more
sophisticated algorithms, such as semi-analytical models, that cou-
pled to DM-Only simulations were able to follow barionic properties
of galaxies (hereafter SAM) (Kauffmann et al. 1993), and hydrody-
namical simulations (hereafter hydro) simulations (Katz et al. 1992).
The main difference between SAM and hydro simulations is that
SAMs take the approach of using approximate, analytic techniques
to treat the various physical processes associated with galaxy forma-
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tion, which makes them computationally cheaper (Cole et al. 2002).
In comparison, hydro simulations solve the physics of galaxy forma-
tion by computing directly the fundamental equations of gravitation,
hydrodynamics, cooling and star formation, and in some cases even
radiative transfer between a large number of particles. Both SAM and
hydro simulations can be contrasted with observations, thus testing
the physical processes involved from different perspectives.

The purpose of simulations is to understand the physical processes
involved in the formation and evolution of galaxies and the universe.
Since some simulations are more complex than others, there is a
large variety of scales and objects to study: from star formation and
evolution to galaxies and the large-scale structure of the universe.
Simulations have different applications. For example, pre-analyzing
large future observational surveys of galaxies (Sánchez et al. 2021;
Abolfathi et al. 2021; Korytov et al. 2019). The majority of cosmo-
logical surveys are focused on observing galaxies, therefore for a
simulation it is vital to consistently reproduce different features of
galaxies and baryonic matter. However, the modeling of said galaxies
is non-trivial due to the complex physical processes in their forma-
tion and evolution. For even a small fraction of the Universe -in
the context of hydrodynamical simulations- evolving tens of billions
of particles interacting under coupled effects of gravity, magneto-
hydrodynamics and radiative processes over cosmic time is incred-
ibly computationally costly. This cost increases with the volume of
the desired simulation. For example, TNG300-1 (one of the simula-
tions of the suite IllustrisTNG (Nelson et al. 2021; Pillepich et al.
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2017c; Springel et al. 2017; Nelson et al. 2017; Naiman et al. 2018;
Marinacci et al. 2018)), which has a simulation box of 205Mpc/ℎ
per side, required almost 35 million CPU hours to complete (Yip
et al. 2019; Pillepich et al. 2017c). This poses a challenge, since new
surveys are incrementally larger and simulations must keep the pace
with such large volumes of data (Djorgovski et al. 2013).

In contrast to magneto-hydrodynamical simulations, DM-Only N-
body simulations are computationally much cheaper as gravity is
the only interacting force. For example, the DM-Only simulation
Millennium, which traces the evolution of dark matter in a cube of
roughly 500Mpc/ℎ on a side, took only 350 thousand CPU hours
Springel et al. (2005b). In contrast with TNG300-1, Millenium took
100 times less computing time for a volume 14 times larger. On top
of this, we must consider that finding haloes and caracterizing them
is already a time-consuming task (Knebe et al. 2011). Therefore, it
would be extremely interesting to find a time-efficient mapping from
dark matter characteristics in N-body simulations to the baryonic
properties in full hydrodynamical simulations.

With this in mind, the goal would be finding this mapping to learn
from a different perspective the variables that govern the galaxy
formation process.While we know statistical relations between dark
matter properties and baryonic features, we propose a different ap-
proach. Since simulations cover very large volumes, there is a flood
of information to process and find the mapping we seek. Since DM-
Only simulation can provide merger trees as their output, we can
somewhat reduce the complexity of the whole simulation by track-
ing particles in said trees and inferring the dark matter properties of
haloes and subhaloes that emerge. In a typical simulation, we can find
hundreds of thousands of subhaloes (Chaves-Montero et al. 2016;
Dantas 2021; Feng & Modi 2016; Dolag et al. 2009; Gó mez et al.
2021), with a set of features like mass, half mass radius, spin, velocity
dispersion, etc. Therefore, the "domain" of this mapping contains a
very large amount of data.

There are quite a few theoretical models which describe differ-
ent relationships between the dark matter environment of baryonic
matter and its properties, using approaches with a phenomenologi-
cal approach (Wang et al. 2013), simulation-based (Tacchella et al.
2018) or via machine learning (Jo & Kim 2019; Agarwal et al. 2018)
methods. But with the amount and variety of data we are trying to
model we would need a quite complex model to describe the relation-
ships between all features of interest. In the spirit of understanding
large volumes of data, machine learning (hereafter ML) is a strong
alternative to traditional methods. Even more so, supervised ML
specializes in constructing mappings between a set of measurements
(input) and a target variable (output). There is one condition though.
In order for the algorithm to "learn", it needs a set of provided exam-
ples. Furthermore, a larger set of inputs and outputs may improve the
performance of the mapping fit by the algorithm (Sun et al. 2017;
Zhu et al. 2015). Once obtained, the mapping function can be used to
predict the output of previously-unseen inputs. The main difference
between traditional modeling and supervised ML is that the mapping
is predefined in traditional methods, while the supervised algorithm
constructs the mapping according to the training data.

A second advantage for ML algorithms is the computing time as
most of the computing resources are needed in the training phase
of the algorithm. After that, the cost of inference of an output by a
trained machine is low. There are quite a few fields where ML al-
gorithms outperform classical methods used for the same means. In
astrophysics there has been a rapid increase of studies on the appli-
cations of ML methods to process different types of data. Examples
range from detection, classification and analysis of structures in as-
tronomical images (González et al. 2018; Jacobs et al. 2017) and

spectrographic data (Baron & Poznanski 2016). The application of
ML in this area is not only oriented to observational data. Studies
have been successful in using ML methods to analyze, predict and
even replicate data from astrophysical simulations (Kamdar et al.
2016; Agarwal et al. 2018). The nature itself of astronomical data
(both in form and volume) make astrophysics and ML kindred fields
of study.

For simulations to be useful for the prediction and analysis of
cosmological surveys, one must take in account the nature of the sur-
veys. Some surveys detect galaxies using photometric observations
(e.g. LSST (Ivezić et al. 2019)). To replicate these observations one
must simulate properties such as the stellar mass of galaxies prop-
erly. Other surveys detect galaxies by observing the line emission
spectra (e.g. DESI (DESI Collaboration et al. 2016), EUCLID (Lau-
reĳs et al. 2011)). In this case, line emission responds to the ionizing
flux. Therefore, properties like star formation rate must be properly
simulated since it is massive, short lived stars the ones that produce
most of this flux(Orsi et al. 2014).

In this work we train a neural network (hereafter NN) to find a
mapping from dark matter data to baryonic target variables. We train
the algorithm using the publicly available catalog of IllustrisTNG,
more specifically the TNG300-2 simulation. Our goal is to fit a map-
ping from a selection of variables of the DM-Only simulation data
to two target baryonic properties found in the complete magneto-
hydrodynamical simulation: stellar mass and star formation rate. We
will use dark matter properties from the halo and subhalo containing
a galaxy to infer its stellar mass and SFR. For SFR in particular, we
time-averaged this value between consecutive snapshots 𝑧 = 0 and
𝑧 = 0.1, with the idea of reducing stochasticity of this variable at
𝑧 = 0 and getting a better idea of SFR as it changes in time and not as
a strictly instantaneous value. This averaging will improve our final
results. This study will focus on central galaxies of haloes, ignoring
galaxies contained in satellite subhaloes. In line with the nature of the
methods employed, this work focuses in the influence of the data from
the dark matter environment on the target galaxy properties, and not
necessarily on the comprehension of the physical processes behind
said influence. We study the importance of input variables on the
performance of the model using a leave-one-covariate-out approach,
which led to insights about the relation between input variables; in
particular those that are heavily correlated. To evaluate the perfor-
mance of the algorithms, we will use mean squared errors (MSE),
Pearson Correlation Coefficient (PCC) and Coefficient of determi-
nation (𝑅2) metrics. On top of that, we will study the distribution of
the predicted and real values of the target variables to be regressed
and compare to similar studies in literature.

Details about the simulation and the variables involved in the
training are discussed in Section 2. In Section 3 we will discuss the
theoretical background between the relationship of stellar mass and
SFR of galaxies with the dark matter environment, and talk about
work related to ours. In Section 4 we will discuss the nature of the
ML algorithms used and its modeling process. In Section 5 we will
present the results of our work. We will discuss and analyze these
results in Section 6. Finally, in Section 6 we present the conclusions
of our work.

2 COSMOLOGICAL SIMULATION AND DATA

In this work we use the IllustrisTNG suite of large volume, cos-
mological, gravo-magneto-hydrodynamical simulations that model
the physical processes most relevant to the formation and evolution
of galaxies in cosmological volumes (Pillepich et al. 2017a). These
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simulations were run with the moving-mesh code AREPO (Springel
2010) to solve the magneto-hydrodynamics and self-gravity cou-
pled equations (Nelson et al. 2021). This moving-mesh code em-
ploys a tree-particle-mesh algorithm to solve Poisson’s equation for
gravity and a second-order accurate finite-volume Godunov scheme
on a moving, unstructured Voronoi mesh for the equations of ideal
magneto-hydrodynamics (Pillepich et al. 2017c). The TNG project
is made up of three flagship runs, each with different volume and
particle resolution: TNG50, TNG100, and TNG300. For this work,
we will focus on TNG300, the largest simulation. It has a volume of
roughly 300 𝑐𝑀𝑝𝑐3. It is presented in three versions. From highest
resolution to lowest, they are: TNG300-1, TNG300-2 and TNG300-
3. Our work uses data from TNG300-2. This simulation took 1.3
million CPU hours on 6000 cores (Pillepich et al. 2017c). At 𝑧 = 0,
the simulation volume holds over two million subhaloes, identified
with the SubFind (Springel et al. 2001) and friends-of-friends (FOF
Davis et al. (1985)) halo finders. This simulation includes all relevant
galaxy-scale physics to follow the evolution of dark matter, stars, gas,
and super massive black holes.

Each simulation of the TNG suite, and specfically TNG300-2,
have a DM-Only counterpart. They are run with the same initial
conditions of their magneto-hydrodynamic counterpart, but only with
dark matter particles (Nelson et al. 2021). Since they share initial
conditions, the haloes and subhaloes that emerge are quite similar.
On top of that, there is a cross-match subhalos between baryonic and
dark matter runs. Said cross-match is a data product from Rodriguez-
Gomez et al. (2015a) for SubLink (Rodriguez-Gomez et al. 2015b)
found subhalo matching. There also exists a match for LHaloTree
(Nelson et al. 2015). This latter match is not used in this work.

2.1 Contrast between TNG300-2 and observational data

The public data release paper of IllustrisTNG (Nelson et al. 2021)
reports consistent results in several aspects when compared with ob-
servations. For example, Lovell et al. (2018) finds that the dark matter
fraction (DMF) at 𝑧 = 0 falls among estimates for disk-like galaxies
from the SWELLS and DiskMass samples from the SDSS survey.
They also find that, for Milky-Way-Like galaxies, the total circular
velocity curves beyond a few kpc from the galaxy centre behave
accordingly with observational constraints. Elliptical galaxies show
DMF in agreement with the measurements made from the SLUGGS
survey by Wojtak & Mamon (2013), but higher than the measure-
ments from Alabi et al. (2017). Another relation found by Pillepich
et al. (2017c) is that IllustrisTNG reproduces the general features
of the stellar mass - halo mass relation (SMHM) semi-empirical
constraints (as seen in Weinberger et al. (2016) and Pillepich et al.
(2017a)). This work also finds that, while the total simulated amount
of stellar mass in clusters is in agreement with available observa-
tional values, the mass in central galaxies appears up to a factor of
0.5 dex larger than the observational constraints in Kravtsov et al.
(2018).

With respect to the SFR, it is treated following Springel & Hern-
quist (2003), where gas cells are stochastically converted into star par-
ticles using a density threshold criteria. Gas cells with 𝑛𝐻 > 0.1𝑐𝑚−3

are considered to be star forming. The nature of this SFR is instanta-
neous, and the SFR of a galaxy is measured by summing the instanta-
neous SFR of all its star forming gas cells (Donnari et al. 2019). Due
to resolution issues, any gas cell in TNG300 with 𝑙𝑜𝑔(𝑆𝐹𝑅) < −3 is
considered as unresolved and assigned a SFR value of 0. When con-
trasted with observational data, we can see at 𝑧 = 0 that the threshold
to select star-forming v/s quenched galaxies in the UVJ diagram in
Whitaker et al. (2011) can be reasonably well applied to TNG galax-

ies to separate in a consistent fashion red, quenched galaxies from
blue, star-forming ones. With this said, the TNG galaxies populate
the UVJ diagram in a broadly successful way, but not identical to
observations. On top of that, TNG succesfuly recreates the quench-
ing at high stellar masses, since massive galaxies tend to be older
and non star forming Donnari et al. (2019). In the aforementioned
work, we can also see that TNG galaxies populate the 𝑆𝐹𝑅 −𝑀𝑠𝑡𝑎𝑟

plane in a qualitatively consistent fashion with observations. With
this said, due to the different nature of SFR observational indicators,
the authors limit their comparison between TNG and observations
by only focusing on the slope and mass trends of the star-forming
main sequence. While the agreement with observations falls short
at high redshifts, at 𝑧 = 0 the main sequence of TNG galaxies lies
inside the range of observational constraints bracketed by the mea-
surements of Oliver et al. (2010) and Zahid et al. (2012). Finally, as
previously mentioned, the SFR is calculated instantaneously which
is not a factually observable measurement. Therefore, to study SFR
in a way that makes sense when compared to observations, Donnari
et al. (2019) propose averaging SFR over some timescale. They find
that longer averaging time-scales lead to smaller levels of scatter. At
low redshifts (𝑧 < 2), and by accounting for measurement uncer-
tainties in stellar mass and SFR, the main sequence scatter is overall
consistent with observational findings (Davies et al. 2018).

In general, TNG simulations consistently match observational re-
lations and constraints. Even though we see that some features do not
perfectly match the empirical data, we can see a plethora of factors
that make TNG a reliable model which closely resembles observable
attributes of haloes and galaxies; thus making it a trustworthy source
of simulated astrophysical data.

2.2 Physical Models and Numerical Methods

The IllustrisTNG simulations assume a cosmology consistent with
the Planck Collaboration (Ade et al. 2016) results: ΩΛ,0 = 0.6911,
Ω𝑚,0 = 0.3089, Ω𝑏,0 = 0.0486, 𝜎8 = 0.8159, 𝑛𝑠 = 0.9667 and ℎ =

0.6774. It assumes Newtonian self-gravity, solved in an expanding
Universe i.e. in a cosmological background (Nelson et al. 2021).
The simulation starts at 𝑧 = 127 and runs until 𝑧 = 0. At 𝑧 = 127, the
initial conditions of TNG300-2 consist of 12503 DM particles with
𝑚𝐷𝑀 = 470×106𝑀⊙ and 12503 gas cells with𝑚𝑔𝑎𝑠 = 88×106𝑀⊙ .

Baryonic TNG runs include additional physical components, in-
cluding feedback, seeding and growth of supermassive black holes
and pressurization of the interstellar medium. Other relevant compo-
nents for this work are stochastic star formation in dense interstellar
medium gas above a threshold density criterion, and evolution of
stellar populations, with associated chemical enrichment and mass
loss (Nelson et al. 2021). The details on the behaviour and validation
of the physical models are presented in Pillepich et al. (2017b) and
Weinberger et al. (2016).

2.3 Identifying cosmological structures

The data product of each simulation is divided in 100 snapshots, each
at a different redshifts. At every snapshot, two types of group catalogs
are provided: haloes, identified and catalogued by the friends-of-
friends (FoF) algorithm, and subhaloes identified with the SUBFIND
algorithm (Springel et al. 2001).

FoF places any two particles with a separation less than some
linking length b into the same group. In this way, particle groups (or
haloes) are formed, corresponding to regions approximately enclosed
within isodensity surfaces with density inversely correlated with the
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volume of the sphere of radius b. For an appropriate choice of b,
groups are selected that are close to the virial overdensity predicted
by the spherical collapse model (Tomita 1969). This simulation uses
a linking length of 𝑏 = 0.2 (Nelson et al. 2021). The FOF algorithm is
not capable of detecting substructures inside larger virialized objects
with a linking length of this value (Springel et al. 2001).

To identify subhaloes, the SUBFIND algorithm is run over the
FOF groups data. The use of FOF-groups as input data provides a
mean to organize the groups in a simple two stage hierarchy consist-
ing of ‘background group’ and ‘substructure’. This algorithm first
identifies overdensities within a given, FOF group. It begins agglom-
erating neighbour particles to the most dense particle in the vicinity,
and setting the subhalo boundaries with criteria based on the density
gradient. To switch from a criteria based only on the spatial distri-
bution of particles to a more physical definition, a requirement of
self-boundedness is set. This is done by removing any particle with
positive energy, which are considered unbound. The unbinding is
performed in physical coordinates, where velocities (and therefore
energy) are computed by using the most bound particle (the one with
less potential energy) as the center. (Springel et al. 2001).

2.4 Halo catalogues

Among the group catalogs generated by the FoF algorithm, and the
subhalo catalog generated by the SUBFIND algorithm, the release
of IllustrisTNG also makes available 100 snapshots which contain
data for every particle and cell in the whole volume. Each snapshot
captures the state of galaxies, haloes, particles and cells at differ-
ent refshifts. In this work we will use data from two different full
snapshots at redshifts 𝑧 = 0 and 𝑧 = 0.1.

Another data product of this simulation are the merger trees.
Merger trees are a data structure which follow the growth and merg-
ers of dark-matter haloes over cosmic history. These give important
insights into the growth of cosmic structure, allowing to trace the
history of the dark matter interactions involved during the formation
of a halo or subhalo (Srisawat et al. 2013). IllustrisTNG has available
merger trees created using SubLink (Rodriguez-Gomez et al. 2015b)
and LHaloTree (Springel et al. 2005a). Merger trees will allow us to
trace back on time major mergers (mergers between haloes with a
mass ratio of 1/3) and the past mass of subhaloes at different redshifts.

2.5 Input and Output Data

For this work, we focus on present day (𝑧 = 0) central subhaloes. In
order to train the machine we will use properties from the subhalo,
the halo hosting this subhalo, neighbour halos, and merger history
of subhaloes. This data is obtained from the DM-Only version of
TNG300-2. At the same time, we take three baryonic properties of
subhaloes from the baryonic TNG300-2 run, which are linked to the
DM-Only data by the previously mentioned cross-match catalog. The
input data we use in our algorithms, from the TNG300-2 DM-Only
simulation are described in Illustris’ web page1 are:

2.5.1 Subhalo properties

We use subhalo properties as these have been shown to be highly
correlated to galaxy properties such as the stellar mass Rodrí guez-
Puebla et al. (2016).

1 IllustrisTNG Data Specifications.

(i) 𝑆sub ( 𝑘𝑝𝑐
ℎ

𝑘𝑚
𝑠 ): Magnitude of the spin of the subhalo, com-

puted for each as the mass weighted sum of the relative coordinate
times relative velocity of all member particles/cells.

(ii) 𝜎sub ( 𝑘𝑚𝑠 ): One-dimensional velocity dispersion of all the
member particles/cells in the subhalo (the 3D dispersion divided by√

3).
(iii) 𝑣𝑚𝑎𝑥 ( 𝑘𝑚𝑠 ): Maximum value of the spherically-averaged ro-

tation curve, i.e. maximum circular velocity of the subhalo.

2.5.2 Host halo properties

We also include host halo properties since these can be of importance
to central galaxies. If we were to include satellites, the halo properties
would also come into play as environmental properties.

(i) 𝑚ℎ𝑎𝑙𝑜 (𝑙𝑜𝑔(𝑀⊙/ℎ)): Logarithm of the sum of the individual
masses of every DM particle in the halo.

(ii) 𝑟𝑐𝑟𝑖𝑡 ,200 (𝑐𝑘 𝑝𝑐/ℎ): Comoving Radius of a sphere centered at
the most bound particle in the halo with a mean density of 200 times
the critical density of the Universe, at 𝑧 = 0.

(iii) 𝑟𝑐𝑟𝑖𝑡 ,500 (𝑐𝑘 𝑝𝑐/ℎ): Comoving Radius of a sphere centered
at the most bound particle in the halo with a mean density of 500
times the critical density of the Universe, at 𝑧 = 0.

(iv) 𝑚𝑐𝑟𝑖𝑡 ,200 (1010𝑀⊙/ℎ): Total Mass of this halo enclosed in
a sphere whose mean density is 200 times the critical density of the
Universe, at 𝑧 = 0.𝑚𝑠𝑡𝑒𝑙𝑙𝑎𝑟

2.5.3 Environment properties

We include environmental properties as these can be related to his-
torical events in the evolution of a galaxy. See Section 3.1.

(i) 𝜌𝑛 ((𝑐𝑘 𝑝𝑐/ℎ)−3): Numerical density of neighbour haloes,
computed as 5/𝑉5, where 𝑉5 is the volume of the sphere with a
radius equal to the distance to the fifth closest halo.

(ii) 𝜌𝑚𝑎𝑠𝑠 ((1010𝑀⊙) (𝑐𝑘 𝑝𝑐/ℎ)−3): Mass density of halo neigh-
bourhood, computed as 𝑚5/𝑉5, where𝑉5 is the volume of the sphere
with a radius equal to the distance to the fifth closest halo and 𝑚5 is
the sum of the masses of the five closest haloes.

2.5.4 Historical properties

Related to the environmental properties, we can also include histor-
ical properties directly in the analysis to then compare their relative
influence.

(i) 𝑧1/2: Redshift at which this subhalo had half of its actual mass.
(ii) ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 (1010𝑀⊙/𝐺𝑦𝑟): Free dark matter particles accreted

by the subhalo from 𝑧 = 0.1 to 𝑧 = 0
(iii) 𝑧𝑙𝑎𝑠𝑡 : Redshift at which this subhalo had its last major merger.

This is, when it merged with another subhalo such as their mutual
mass ratio is at least 1/3.

2.5.5 Output features

On the other hand, we choose two output galaxy properties that come
from the TNG300-2 magneto-hydrodynamical simulation. These
properties are fundamental and key in the selection process of sur-
veys. In addition we also include a variant of one of the two, that will
come in handy for our analysis in later sections:

• 𝑚∗ (𝑙𝑜𝑔(𝑀⊙/ℎ)): stellar mass obtained as the sum of the masses
of all star and wind particles within twice the stellar half mass radius.

MNRAS 000, 1–17 (2022)
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• SFR (𝑀⊙/𝑦𝑟): star formation rate obtained as the sum of the
individual star formation rates of all gas cells within twice the stellar
half mass radius. Instantaneous measure.

• meanSFR (𝑀⊙/𝑦𝑟): Time-scale averaged SFR between 𝑧 = 0
and 𝑧 = 0.01. As mentioned in §3, this measure is a better represen-
tation of the observationally measured SFR and presents less scatter
than the instantaneous SFR.

3 THEORETICAL BACKGROUND

3.1 Galaxy properties and the relation to their host haloes and
environment

As the universe evolves, baryonic and dark matter interactions shape
the structures we are able to observe today. Since the dark matter only
interacts through gravity, and it dominates the gravitational potential
in the universe, it is safe to assume that its properties and the ones
of the baryonic matter have an impact on each other. Several studies
have found correlations between the properties of haloes and the
galaxies that inhabit them. For example, studies have found strong
correlations between measured halo mass and the observed stellar
mass of the galaxies they host (Tinker et al. 2017; Huang et al. 2021;
Wang et al. 2013; Girelli et al. 2020).

In the literature there are records of a strong relation between SFR
and halo mass, although this relation is mediated by (i.e. more re-
lated to) the stellar mass of the galaxy (Wang et al. 2013; Kusakabe
et al. 2018; Salmon et al. 2015; Lee et al. 2018; Gabor et al. 2010).
This relation is known to evolve with redshift. Numerical studies
and observational estimates show that on top of that, the past events
of haloes also have an impact on the SFR, where mergers show an
elevated SFR in comparison to similar non-merging galaxies (Pear-
son et al. 2019; Horstman et al. 2020; Cortĳo-Ferrero et al. 2017).
Since they both respond to the gravitational potential, the features
of the dark matter of a halo should be able to characterize, one way
or another, its hosted galaxy. But finding relations between a high
number of features requires several observational data and complex
models of coupled equations. But, if said relations exist, one avenue
should be to describe them with a physically motivated model and
this has been done extensively (Cole et al. 2002; Croton et al. 2016;
Cora et al. 2018).

Instead of constructing a model this way, in this work we use ma-
chine learning methods to implicitly infer the underlying relations
between halo and galaxy properties. This approach will not provide
us an analytical model to understand said relations, but it will allow
to study the impact of the different halo features in the galaxy prop-
erties. There are machine learning methods that ideally require large
amounts of pre-analyzed data. This poses a challenge if we intend
to learn from observations, because on top of needing to process
these, training on data from different datasets (e.g. telescopes) can
result in different predictions (Crammer et al. 2008). For this reason
we apply these methods to data not from observations, but from the
cosmological simulation IllustrisTNG.

3.2 Previous ML related work

Even though there are several works studying the performance of ML
to infer galaxy and baryonic properties from DM only simulations
(Kamdar et al. 2015; Villaescusa-Navarro et al. 2021; de Santi et al.
2022), we will concentrate our comparisons to two studies, previ-
ously cited in this work, and highlight differences and similarities
with them. In first place, we have Agarwal et al. (2018) work. They

[b]

stellar mass SFR

𝑅2 0.909 0.555
PCC 0.953 0.745

Table 1. Metrics of best regressions for stellar mass and SFR in (Agarwal
et al. 2018) at 𝑧 = 0

also developed a ML framework to infer baryonic properties such as
Metallicity (Z), neutral (𝐻1) and molecular (𝐻2) hydrogen, and our
variables of study: SFR and stellar mass. They use the hydrodynam-
ical simulation MUFASA (Davé et al. 2016), which is smaller and
has less resolution than TNG300-2. They explore a few ML algo-
rithms, among them Multi-layer perceptrons (MLP hereafter). While
the scatter of the relationship between output variables and halo
mass was underpredicted, they recovered the mean trends of output
quantities with halo mass highly accurately. In their work they didn’t
get the best results using MLP but using Random Forest. Also, they
study the impact of additionally inputting key baryonic properties
(like stellar mass or SFR) when predicting 𝐻1 and 𝐻2, as would be
available e.g. from an equilibrium model. They found that in doing
so, their results improved. This result inspired us to use ML inferred
baryonic properties to improve the performance of our models, as
will be detailed in Section 4. We will also compare the metrics of the
regressions obtained in this work with ours. The results from their
regressions, which we compare later with our results, are shown in
Table 1.

The second related study is (Jo & Kim 2019). In this work they
employ ML methods to estimate baryonic properties of a galaxy in-
side haloes from a DM-only simulation. They work with TNG100,
a smaller simulation with higher resolution than TNG300-2. They
train a machine to predict features like stellar mass and star formation
rate in a galaxy based on the DM content of the halo that hosts it.
The ML algorithm used by them is Extremely Randomized Trees
(Geurts et al. 2006), a variation of the Random Forest algorithm. For
a baseline training, they use only 3 properties of the halo: DM mass,
velocity dispersion and maximum circular velocity of the halo. Then,
they use different approaches to improve their results. One approach
is augmenting the baseline dataset. They add the halo spin, historical
properties like number of mergers and last major merger mass ratio,
and environmental properties like local density of haloes and number
of local halos. Another approach involves a two-stage learning pro-
cedure, where they use a first machine to predict a baryonic property.
This property is then used as an input to train a second machine. One
last approach is to use an error function with logarithmic scaling.
While different combinations of approaches sometime interfere with
each other, they find that using adequate combinations (which are dif-
ferent for each baryonic property) the results improve. Once they find
the best machine for each property, they generate a galaxy catalog
with the studied baryonic properties for another DM-Only simula-
tion: MultiDark-Planck (Riebe et al. 2013)(Rodríguez-Puebla et al.
2016) (Klypin et al. 2016). Finally, they compare the machine’s per-
formance against semi-analytic model (SAM) data, the MDPL2-Sag
catalogue (Cora et al. 2018). They compare the probability distri-
bution function (PDF) of each baryonic property between TNG100,
SAM (Sag) and their machine. Overall, they find that while the ma-
chine replicates better the PDF of TNG100 (which it was trained
to do), there are some clear mismatches in some higher or lower
ends of the distributions of properties, reported to be due to small
number statistics. In summary, they found that adding environment
and historical properties and employing a two-stage learning method
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improves their results, and that a catalog generated by their method
is largely compatible with a SAM catalog.

4 MACHINE LEARNING METHODS AND MODELING

In this Section we present our machine learning setup.

4.1 Supervised Learning

Supervised learning algorithms are trained to find complex relations
from previous data. They must be provided with a set of input-output
pairs. For example, in this work the input data corresponds to the DM-
Only features while the output data are the two baryonic properties:
stellar mass and SFR.

The machine tries to learn the best mapping from inputs to outputs,
so that when a new input (from which the machine didn’t learn)
is given to the machine it outputs a prediction based on the data
used to learn said mapping. To learn, the machine begins answering
randomly and it iteratively improves its answers by adjusting its
weights under an optimization scheme to reduce a given loss function,
i.e. gradient descent algorithms. The data used by the algorithm to
learn the optimal mapping is called training set. To evaluate how
good is the mapping learned by the machine, we must take a set of
data which the machine has not "looked at" before (i.e. it is not in
the training set). By taking data for which we know the output, we
can compare the machine’s prediction with the real value and use
mathematical methods (metrics) to evaluate the performance of the
trained machine. The set of data used to evaluate the performance of
the machine is called validation set.

Apart from the internal parameters previously mentioned, super-
vised algorithms have a set of parameters which must be previously
given by the user (called hyperparameters). These hyperparameters
are tuned to achieve the best metrics when evaluating in the valida-
tion set. Once we find an optimal set of hyperparameters, the final
performance of the machine is evaluated on a third set of data that is
different from both the training and validation set. This set of data is
called testing set. To begin training an algorithm, one usually divides
all the data available in three mutually exclusive sets: training, testing
and validation.

4.2 ML Setup

For this work we build custom MLP using the keras and tensorflow
packages for machine learning in a python script. We train two MLP,
one for each output. In early stages of the development of this re-
search, both outputs were predicted using only one model, but this
proved to be inefficient metric-wise and it reduced the volume of
data due to the restrictions mentioned in section 4.4. While we will
explore the behaviour of the machine in various methods for predict-
ing SFR, we will attune the machine for meanSFR since it is a more
significant value from a physical perspective, as mentioned in section
2.1. For short, we will address this machine as the SFR machine. Af-
ter thoroughly exploring the hyperparameter space and architectures,
we chose the number of hidden layers, neurons per layer, learning
rate and batch size for training. Each variable to be regressed has
a different machine, i.e. with different hyperparameters. The hidden
layer neurons use a ReLU activation function (Glorot et al. 2011),
and the output layer uses a softplus activation function (Dugas et al.
2000). We use an ADAM optimizer (Kingma & Ba 2017) in both
cases. We train using mean squared error as the loss function, since
it gives a harsher penalization on large errors.

The MLP for the stellar mass prediction has 3 hidden layers of 30
neurons each. The learning rate for the Adam optimizer has a value
of 5×10-4. The machine was trained for 20 epochs using a batch size
of 128.

On the other hand, the SFR machine has 4 hidden layers with 40
neurons each. The learning rate for the Adam optimizer has a value
of 5×10-4. The machine was trained for 22 epochs using a batch size
of 64.

4.3 Hyperparameters, width and depth exploration

To determine the optimal learning rate, batch size, number of hid-
den layers and number of neurons per layer; we intensively explored
combinations of hyperparameters. For each combination, we run five
trainings with different random seeds at a fixed number of epochs.
Once a training finishes, we evaluate metrics on the validation set
and record those values. Metrics are chosen by studying boxplots of
the performance of each hyperparameter. Then we train using the
chosen combination for different epochs, evaluating how the distri-
bution of predicted versus real values behaves. After that, we repeat
the hyperparameter exploration in a smaller range of values around
the previously found best values, using the lowest number of epochs
where a good fit was observed. We repeat this back-and-forth ex-
ploration iteratively until results converge. In figure 1 we see the
evolution of the distribution of real versus predicted values for differ-
ent epochs for the stellar mass prediction on the testing set. There is
a clear improvement with smaller dispersion and better predictions
at 20 epochs, and we can see in the figure that for more epochs the
correlation barely changes, and the distribution of predicted values
underestimates stellar mass for higher TNG values. In particular,
when exploring the optimal number of epochs, we tested with values
as high as 200 epochs, but the model began converging towards stable
metrics at near 20 epochs in both cases.

4.4 Data selection and preparation

Given the resolution of the simulation and the nature of the predicted
value we apply some cuts to the simulation data to construct our
datasets. In the first place, we only consider galaxies contained in
haloes with 𝑚ℎ𝑎𝑙𝑜 > 1011𝑚⊙ . As mentioned in section §2, the reso-
lution of dark matter particles in TNG300-2 is 𝑚𝐷𝑀 = 470∗106𝑚⊙ .
This means we are considering haloes with at least 200 DM par-
ticles. Setting a threshold on masses is a resolution-based criteria
for preprocessing also used in Jo & Kim (2019) and Agarwal et al.
(2018). Then, we make two additional cuts; one for predicting stellar
mass and the second for SFR. For stellar mass, we will make pre-
dictions on galaxies with 𝑀∗ > 109𝑚⊙ , which correspond to about
100 stellar particles per galaxy in TNG300 and is set as the criterion
for the minimum stellar mass values for haloes in Pillepich et al.
(2017c). As for SFR, the only cut we apply is that it must be greater
than 0, given that TNG has its own threshold to consider a group
of gas cells to be star forming (SFR < 10−3𝑚⊙/𝑦𝑟 are treated as
quenched, i.e. SFR = 0) (Donnari et al. 2019). For meanSFR, we use
the same cuts, allowing galaxies with 𝑆𝐹𝑅𝑧=0.1 = 0. As mentioned
in §2.1, the portion of quenched galaxies in TNG is consistent with
observational parameters, so these cuts should not pose a problem if
one intends to use this method to populate synthetic catalogs using
data from dark matter only simulations.

On top of the aforementioned cuts, we also performed a min-max
normalization on the input data using the MinMaxScaler function
for the sklearn package in python. This is a standard procedure when
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Figure 1. Kernel density estimate (KDE) plot of four stellar mass predictions on the testing set using the same hyperparameters at different epochs to illustrate
the evolution of the performance of the predictions. On the first panel from left to right it can be seen that the fit is already reasonably good after the first epoch
of training. In the second panel the fit has evolved and is closer to the perfect fit shown as the dotted line. The third and fourth plots show that the predictions
become less accurate due to overfitting to the training set. These panels illustrate how we explore for the optimal number of epochs.

preprocessing input and output data, since it improves performance
and reduces propagation errors in ML (Sola & Sevilla 1997).

4.5 Regression performance criteria and metrics

In this subsection we present the metrics adopted throughout.

4.5.1 Mean Squared Error

The mean squared error (MSE) is the first metric we use to evaluate
the performance of the machine, and it is also the loss function of
the machines i.e. the value the MLP minimizes to learn the best fit.
It is calculated as

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 , (1)

where 𝑛 is the size of the sample, 𝑦𝑖 is the real value, and �̂�𝑖 is the
predicted value.

This metric evaluates how far the predictions are from the real
values. Therefore, better predictions will produce a MSE closer to 0.

4.5.2 Coefficient of Determination (R2)

The coefficient of determination, or R2 score, represents the propor-
tion of variance in the predicted values that can be explained from the
observed values. Instead of correlation between variables, it explains
to what extent the variance of the real values explain the variance
of the predicted values. To calculate R2 we must take in account the
residual sum of squares (RSS) and the total sum of squares (TSS).
These values are computed as:

RSS =

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (2)

TSS =

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̄�𝑖)2 , (3)

where 𝑛 is the size of the sample, 𝑦𝑖 is the real value, �̂�𝑖 is the
predicted value, and �̄�𝑖 is the mean of the real values.

Finally, R2 is calculated as:

R2 = 1 − RSS
TSS

. (4)

As opposed to MSE, R2 will be higher (and closer to 1) for good
predictions.

4.5.3 Pearson Correlation Coefficient

The Pearson Correlation Coefficient (PCC) measures linear correla-
tion between two predicted and real values. It is the ratio between
the covariance of two variables and the product of their standard
deviations. It is a normalised measurement of the covariance, with
values that range between -1 and 1. PCC is calculated as:

PCC =
cov(𝑦, �̂�)
𝜎𝑦𝜎�̂�

(5)

where cov(𝑦, �̂�) is the covariance between real and predicted values,
𝜎𝑦 is the standard deviation of the real values, and 𝜎�̂� is the standard
deviation of the predicted values

For PCC, a value of 1 indicates a perfect linear correlation and
a value of -1 indicates a perfect inverse correlation. A PCC of 0
indicates no correlation whatsoever. Since we seek to match exact
values, we aim for a PCC as close to 1 as possible.

4.6 Chained-network method: SFR+

As previously discussed in section 3.1, while SFR shows relation with
the dark matter halo properties, stellar mass has a very significant
relation with SFR in galaxies. While we cannot measure stellar mass
from a DM-Only simulation, we can estimate it and use it as input,
as previously done by Jo & Kim (2019). In this case, and based
on the quality of the stellar mass predictions presented in section 5
and discussed in 6, we use the pre-trained MLP described in section
4.2, trained using a dataset of 42705 galaxies, to predict the stellar
mass of a galaxy and then use this prediction as another input to
train a machine able to predict SFR (and meanSFR). The idea of
chaining of different estimators to improve results was first addressed
by Wolpert (1992) and by (Ting & Witten 1999), where is referred as
Stacked Generalization. This ensemble method is not restricted just
to neural networks, but the concept is tightly related with residual
neural networks (He et al. 2015). When presenting results and in
the discussion, we will address machines using chained networks as
SFR+ and meanSFR+, i.e., adding the plus sign to the shorthand.
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Stellar mass SFR SFR+ meanSFR meanSFR+

MSE 0.017 0.147 0.144 0.140 0.135
𝑅2 0.937 0.300 0.378 0.517 0.576

PCC 0.970 0.776 0.780 0.828 0.833

Table 2. Final metrics of the predictions in the validation

5 RESULTS

5.1 Stellar mass

After applying the constrains mentioned in section 4.4 our dataset
contains a total of 71177 galaxies, divided into 42705 galaxies for
the training set and 14236 for both validation and testing set. The
metrics for the predictions made by the machine with this training
are presented in Table 2 and the KDE plot of the TNG and predicted
values is presented in Figure 2. The KDE plot shows that the results
tightly agglomerate around the ideal prediction. This indicates that
the predicted stellar masses closely resemble the real values. We
can also see in Figure 3 that the stellar mass function (SMF) of the
predicted values closely resembles the original TNG SMF, indicating
that the distribution of stellar masses is recovered by the machine,
but presents a peak on higher values. The distribution also presents
a distinct peak on lower values, as shown in figures 4 and 6. Figure
4 shows the distribution of predicted and real values for Stellar and
Halo masses. The difference in PCC implies that there is a stronger
linear correlation between these variables in the prediction than in the
TNG data. This hints that the scatter and distribution of the prediction
are slightly off from the simulated data. To quantify the difference in
the scatter we compute the distance correlation between halo mass
and stellar mass of TNG and predicted values. This measure is closer
to 1 for variables that are less scattered from their mean relation.
In the case of TNG values, we get a distance correlation of 0.908
and in the prediction, we get a distance correlation of 0.935, which
implies a higher scatter in the TNG values in the stellar mass to
halo mass relation. On top of that, we can see that the machine is
unable to predict the lower values of the real sample. We also notice
what, for high halo masses, there appears to be a constant upper
threshold in the predictions from the machine, as shown in figure 5.
This phenomenon can also be seen at the higher mass end in Figure 3
and Figure 6. As these figures show, this behavior only occurs at high
halo masses, where there is only a small number of galaxies, only
0.6% of the total sample. With this in mind, we infer that this is due
to small number statistics. Also, in the same figure, a sharp drop at
lower stellar masses can be seen, which is consistent with the inability
to reproduce lower values previously mentioned. Finally, the metrics
of our results show that our machine outperforms the one trained in
Agarwal et al. (2018), presented in Table 1. They report better results
from a random forest than from a neural network. This suggests that a
proper hyperparameter tuning, plus the new features we introduced,
make neural networks a stronger candidate for performing predictions
from dark matter simulations.

5.2 Star formation rate

SFR proved to be a tricky variable to predict in Jo & Kim (2019) and
Agarwal et al. (2018). Also, as stated in Section 2.1, the SFR reported
in the Illustris catalog is instantaneous and stochastic. Because of this,
we will use ML methods to predict not only SFR at 𝑧 = 0, but also
the mean of SFRs for the same galaxy between 𝑧 = 0.1 and 𝑧 = 0.
This variable will be addressed as meanSFR. This not only allows us

Figure 2. KDE Plot comparing the actual stellar masses from the TNG300-2,
and the stellar masses predicted by the MLP trained with the TNG300-2 DM-
Only data. Darker shades of blue indicate a higher density of points. 𝑛𝑏𝑖𝑛
represents the number of dots per bin. Both sets of stellar masses are divided
in 200 bins. The black dotted line represents an ideal prediction.

Figure 3. Stellar Mass Function (SMF) of predicted and TNG values. The pre-
dicted SMF closely resembles the TNG SMF between 9 and 12 𝑙𝑜𝑔10 (𝑚⊙ ) ,
but it has a sharp increase at high masses, likely due to small number statistics.
This behaviour can be seen in figure 6 and is discussed in section 5.1.

to have a variable that can be better compared to SFR measured from
observations, which depending on the observed emission lines can
respond to different time averaging (for a discussion of the different
timescales associated to different observational estimates of the SFR,
see for instance Guaita et al. 2011), but this choice also reduces the
scatter of the variable which cannot be learnt by ML, as seen in
figure 7. The latter is convenient for this model since the inability of
reproducing the scatter reduces its impact on the results. On top of
that, as mentioned in 4.6, we will evaluate the performance of the
machine adding an extra variable, the stellar mass predicted by a pre-
trained machine on the same dataset. We use this approach on both
SFR and meanSFR. When treating these variables with the new input,
they will be addressed as "SFR+" and "meanSFR+" respectively.

For all the following trainings, after applying the cuts mentioned
in section 4.4, our dataset contains 81810 galaxies, divided in 47298
for the training set and 15767 for both validation and testing set.
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Figure 4. Density plots of the TNG and predicted stellar mass v/s Halo
Mass for the sample. Colors indicate the number of samples in each bin.
The comparison between both plots hints that the scatter and distribution are
slightly off from the simulated data. There appears to be an overdensity on
lower values in the predicted values (the colorbar of the right figure reach
values, which represent density, higher than 60 points per pixel, while the left
figure only reaches about 40 points per pixel). We can also see this density
difference in at lower values in the KDE plot in figure 5

Figure 5. Distributions of predicted and TNG Stellar Mass values. We can
see that the predicted distribution presents a higher density at lower values,
which is consistent with the overdensity observed in figure 4.

5.2.1 Metrics for predictions of SFR

The metrics made by the machine with this training are presented in
Table 2. As shown in this table, this is the worst of the 4 regressing
methods for SFR. Nontheless, the PCC metric surpasses the values
obtained by Agarwal et al. (2018) shown in Table 1, but our R2

score is considerably lower for the same prediction. As discussed in
Section 4.5, this means that, while the predicted and real values are
more correlated, the scatter in the predicted values does not resemble
the scatter in the TNG values, which is better reproduced in Agarwal
et al. (2018).

5.2.2 Metrics for predictions of SFR+

The metrics made by the machine with this training are presented in
Table 2. We can see an improvement in all metrics when compared
with SFR. While the results are better, we still find that only the PCC
metric is better than the one at Agarwal et al. (2018) shown in Table
1, while R2 score is still lower than theirs. From this comparison in
metrics, we can infer the same as in Section 5.2.1 about how the data
correlates.

Figure 6. Scatter plot showing Halo Mass against predicted Stellar Mass
values. We can see there are some values that are mapped to a constant upper
bound, which appears as a horizontal line in the higher values of the scatter
plot. The percentage of values presenting this behaviour only corresponds to
0.6% of the predictions.

Figure 7. 2D histogram comparing SFR and meanSFR distributions with
respect to stellar mass. The latter is a good predictor for SFR as discussed
in Section 3.1. We can appreciate a higher scatter in SFR than in meanSFR
around the main body of values. On top of that, the distribution of meanSFR
propagates to lower values, as the horizontal grid lines allow to observe. This
is because some galaxies are not star forming at 𝑧 = 0.1, and therefore the
SFR is reduced when calculating the mean between redshifts.

5.2.3 Metrics for predictions of MeanSFR

We can see an important improvement in the metrics in this case. This
method improves the metrics over SFR better than the SFR+ method.
The R2 score metric is the one that sees the higher improvement. This
makes sense when considering the discussion in Section 3.1 and the
scatter plot in Figure 7, since a lower scatter in values makes R2 a
more forgiving metric.

5.2.4 Metrics for predictions of MeanSFR+

This approach, combining both previous methods, gives the best re-
sults obtained for SFR regressions. This time, both R2 and PCC are
better than the ones from Agarwal et al. (2018). For this regression,
the KDE plot is presented in Figure 8, which compares the meanSFR
values of TNG against predicted values using the meanSFR+ method.
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Figure 8. KDE Plot comparing meanSFR computed from the TNG300-2, and
the meanSFR predicted by the MLP trained with the TNG300-2 DM-Only
data with the meanSFR+ method. Darker shades of blue indicate a higher
density of points. 𝑛𝑏𝑖𝑛 represents the number of objects in one bin. Both sets
of SFRs are divided in 200 bins by default. The black, dotted line represents
the ideal prediction. The density being above the ideal prediction at lower
values and under the same line at higher values shows that the machine is not
predicting values in the same range as the TNG data.

Figure 9. Star formation rate Function of TNG and machine predicted values
(different colours, shown in the figure key). We use meanSFR as the TNG
value and the meanSFR+ for the predicted value. We can see the machine
overpredicts low SFR values and cannot predict values past a threshold, as
discussed in section 5.2.4

It can be seen that while the distribution lies around the ideal predic-
tion, the machine overpredicts values for low SFR and underpredicts
values for high SFR. This can be seen in the density of predictions
lying over the ideal prediction line for lower meanSFR values, and
the density lying under the ideal prediction at higher values. This
is consistent with the scatters observed in Figure 10 and with the

Figure 10. Scatter plots comparing the distributions of TNG and predicted
meanSFR+ values vs. stellar mass. In the left we have the distribution of TNG
values and in the right the predicted values. We can see the machine having
problems at reproducing the natural scatter of this property, and its inability
to predict high and low values of mean star formation.

SFR function in Figure 9, where the machine is seen to be unable to
reproduce the lower and higher values of the mean SFR from TNG
using the meanSFR+ method.

5.3 Predicting departures from mean values and their sign.

As stated in section 3.1, observations indicate that a mean relation
between stellar mass and halo mass, and also between SFR and stellar
mass, can be estimated from observations. With this in mind, we will
explore how well our machine predicts in terms on how far each
galaxy is from the mean relation. In other words, we are interested in
studying if the deviation from the mean relation (to either higher or
lower values) is recovered. We will study how well can we recover
this deviation, or delta, for stellar mass and meanSFR. We calculate
this delta from mean relations as:

𝛿𝑀∗ = 𝑀∗,𝑇𝑁𝐺 − ⟨𝑀∗,𝑇𝑁𝐺⟩𝑀ℎ𝑎𝑙𝑜,𝑇𝑁𝐺
(6)

𝛿𝑚𝑆𝐹𝑅 = mSFR𝑇𝑁𝐺 − ⟨mSFR𝑇𝑁𝐺⟩𝑀∗,𝑇𝑁𝐺
, (7)

where 𝑀∗,𝑇𝑁𝐺 is the stellar mass from TNG300-2,
⟨𝑚∗,𝑇𝑁𝐺⟩𝑀ℎ𝑎𝑙𝑜,𝑇𝑁𝐺

is the value at the same halo mass from the
mean relation of TNG’s stellar mass with respect to TNG’s DM-
only halo mass, mSFR𝑇𝑁𝐺 is the meanSFR from TNG300-2, and
⟨mSFR𝑇𝑁𝐺⟩𝑀∗,𝑇𝑁𝐺

is the value at the same stellar mass from the
mean relation of TNG’s meanSFR with respect to TNG’s stellar mass.

In both equations, we compute the mean relation as a piecewise
linear function that goes through the mean values of binned stellar
masses (or meanSFRs), in bin intervals of halo mass (or stellar mass).

For calculating predicted values’ means, we change the predicted
value for its respective TNG value.

5.3.1 Stellar mass

In the case of stellar mass, the mean relation is well predicted for
𝑙𝑜𝑔(𝑚ℎ𝑎𝑙𝑜) < 13𝑚⊙ . After that, the scatter plus the upper thresh-
old predictions mentioned in section 5.1 make the mean relation to
deviate upwards. With that being said, we can see in the KDE plot
in figure 12 that there is a correlation between the deltas from TNG
and the simulation. While the deltas are not tightly gathered around
the ideal prediction, we can see the orientation of the distribution
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Figure 11. Scatter plots showing the distribution of stellar mass in relation to halo mass. In the left figure, we can see TNG data. In the right figure, we see the
prediction’s distribution. We can picture an erratic behaviour at high halo masses for the prediction due to low number statistics.

Figure 12. KDE plot comparing the difference from the mean value of the
Halo Mass/stellar mass relation. We can see that the machine is able to
partially reproduce the sign of the deviation from the mean relation present
in the TNG galaxies.

follows the identity line, which means the sign of the deviation from
the mean is well predicted.

5.3.2 MeanSFR

For this variable, the lack of values at upper and lower values makes
the mean relation to have a narrower curve, as seen in figure 13. With
this said, it reproduces the quenching of galaxies at high masses
discussed at section 2.1, and the sudden increase for 𝑀∗ > 11 ∗
1010𝑚⊙ . Since the prediction presents less scatter, it is reasonable to
assume that the deltas in this case will be smaller. In figure 14 we
can see this is the case, but the correlation between the sign of the
deviations seem weakly correlated.

5.4 Influence of input variables in results

5.4.1 Parameter ranking

From comparisons with previous work and by studying the chained-
network method, we observe that adding new variables impacts pos-
itively the performance of the machine. The parameter ranking has
been approached in different ways in studies similar to this one. In
Jo & Kim (2019) and Agarwal et al. (2018), where they use random
forests to make the regression, they count how many times a variable
appears in the trees, with the most important features appearing more
times. Calderon & Berlind (2019) use the same approach and also use
an xgboost regressor which natively computes feature importance to
study the impact of each input variable. Shao et al. (2022), on the
other hand, use saliency values which identify the most important
variables that contribute to the relationship between all inputs and
outputs.

In this work we take a different approach for checking how each
input variable affects the model running multiple trainings removing
one input feature at a time. We run 10 trainings for each variable,
to check that the change in the performance is smaller than the
standard deviation of the metrics, allowing to check if the difference
in the performance is influenced by the removed variable or by the
intrinsic stochasticity of NN. Because of their similar nature, we
removed 𝑚ℎ𝑎𝑙𝑜 and 𝑚𝑐𝑟𝑖𝑡 ,200 together, because one variable could
give information contained in the other one. The same applies for
𝑟𝑐𝑟𝑖𝑡 ,200 and 𝑟𝑐𝑟𝑖𝑡 ,500.

Table 3 shows that, for 𝑀∗, the maximum circular velocity was the
most impactful feature to remove, followed by the 𝑟crit. The maximum
velocity being a good predictor of the stellar mass is a result that has
been reported already (Zehavi et al. 2019), which supports our results.
In third and fourth place we have 𝑧1/2 and 𝑧𝑙𝑎𝑠𝑡 . This suggests that
the history of the evolution of the dark matter medium has a strong
influence on this variable, not only in terms of the number of mergers
or their mass ratio as studied in Jo & Kim (2019), but also the age of
the universe for these events. In the case of halo mass, it is not very
intuitive for it to come in fifth place. While the halo mass’s strong
correlation with stellar mass has been thoroughly investigated, one
may argue that 𝑣𝑚𝑎𝑥 and 𝑟𝑐𝑟𝑖𝑡 are strongly correlated with 𝑚ℎ𝑎𝑙𝑜

and therefore, the machine can infer to some extent this relation with
halo mass (Zehavi et al. 2019).

Figure 15 presents a correlation matrix between all input and out-
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Figure 13. Scatter plots showing the distribution of star formation rate in relation to stellar mass. In the left figure, we can see TNG data. In the right figure, we
see the prediction’s distribution. The white dotted line represents a piecewise function, where we bin meanSFR in 20 Stellar Mass bins, and compute the mean
of the values for each bin.

Figure 14. KDE plot comparing the difference from the mean value of the
stellar mass/SFR relation. The distribution slightly tilts towards the direction
of the identity line, which indicates a weak relation. The range of the machine
deltas is narrower. This makes sense since the machine’s SFR distribution has
a considerably lower scatter.

put variables, with the goal to study the influence between variables
and gain insights into how the information they provide, or the ab-
sence of it, impacts the model. This matrix shows that the three
aforementioned input variables are strongly correlated. The ranking
continues with the environmental properties. From the table, we can
see these variables improve the results of the predictions, but they are
clearly not as influential as historical or environmental dark matter
properties. Finally, we highlight the low influence shown by the halo
spin and velocity dispersion. These two variables play an important
role in Jo & Kim (2019) and Agarwal et al. (2018), where they are
relatively well predicted. We believe that this is relevant enough to
be studied on its own, and while we conjecture that the relevant infor-

Figure 15. Correlation matrix between input and output variables. We can
see a particularly high correlation between input variables 𝑣𝑚𝑎𝑥 , 𝑚ℎ𝑎𝑙𝑜 ,
𝑟𝑐𝑟𝑖𝑡 and 𝜎sub. As 3 and 4 show, 𝑚ℎ𝑎𝑙𝑜 and 𝜎sub doesn’t impact the model
when removed by themselves, which we infer is due to the high correlation to
the more impactful variables 𝑣𝑚𝑎𝑥 and 𝑟𝑐𝑟𝑖𝑡 . We can also observe that both
output variables, 𝑀∗ and 𝑚𝑒𝑎𝑛𝑆𝐹𝑅 have higher correlation with those four
input variables.

mation these variables contribute is encompassed by other variables,
deepening these relations is beyond the scope of this work.

On the other hand, for SFR Table 4 shows the predicted stellar
mass as the most impactful feature when removed. This reinforces
the value of adding such a feature to the input data and the consistency
of chaining networks. Once again, 𝑧1/2 appears high in the ranking,
showing the importance of historical data for inferring baryonic prop-
erties. While 𝑚ℎ𝑎𝑙𝑜 coming in third place is relevant to mention, the
fourth place deserves special attention. ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 is another variable
that was not explicitly seen in literature, and it suggests a relation
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between the accretion of a subhalo and the star formation happening
inside. In fifth place, and very close to ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 comes 𝑧𝑙𝑎𝑠𝑡 , once
again showing the importance of historical properties. Environmen-
tal properties have a positive, but smaller impact. We interpret this as
them being consistently influential in the studied galaxy properties,
even if said influence is overshadowed by more impactful variables.
The spin and velocity dispersion have again a low place in the rank-
ing. But this time, unlike with stellar mass, the critical radius and
maximum circular velocity are also low in the ranking. While this
may reinforce the conjecture made earlier in this section, we infer
that this may also suggest that the dynamic properties of a halo are
not as important as historical and environmental properties on the
SFR, though to study this in depth is beyond the scope of this work.
We deepen the discussion about input variables in section 6.2.

5.4.2 Distribution of best and worst prediction inputs

We will also analyze the histogram distribution of some input vari-
ables in the best 10% and worst 10% predictions. This will shed
light on how these parameters behave and influence the quality of the
predictions. These features might not be the most influential overall
as seen in Section 5.4.1, but they present the highest shift between
the best and worst predictions. In figure 16 we can see the frequency
distribution for three variables: 𝑀∗, 𝑣𝑚𝑎𝑥 and 𝑆𝑠𝑢𝑏ℎ𝑎𝑙𝑜. In the case
of stellar mass, for the three variables, we can see that the worst
predictions tend to have higher values. This trend becomes more
evident for the spin and maximum velocity. While not as notorious
as in the stellar mass, the three chosen variables also have higher
frequencies at higher values for meanSFR. With this on mind, we
believe that for future works, this kind of behaviour could be studied
in the preprocessing stage. This will be discussed in more detail in
section 6.3.

6 DISCUSSION

6.1 Main Results

In this work, we trained a machine that was able to predict stellar
mass in a very consistent way, not only in metrics but also replicating
distributions and deviations from mean relations. While the results
for meanSFR were not as robust as the ones obtained for stellar
mass, our results for both properties still present improved metrics
with respect to, for instance, Agarwal et al. (2018). We explored
approaches to improve the predictions for SFR, where time-averaging
SFR and chaining neural networks were successful in doing so. In
particular, time-averaging was quite impactful in the results. This
approach to predicting SFR and its benefits have not been addressed
in similar studies. Time-averaging not only reduced the scatter in
the SFR values (which makes it harder for the machine to find an
appropriate mapping for), but also makes more sense when taking
into account that the SFR measured in real galaxies corresponds to
a time averaged quantity. This should be taken into account if a ML
method is to be used to reproduce the SFR measurements of particular
surveys to match the estimated timescale of averaging present in the
observations. This being said, SFR proved to be a tricky property to
predict for our model. In section 6.3 we discuss ideas for improving
predictions.

In terms of the predicted values, both 𝑀∗ and SFR had issues
at the lower and higher ends of the range of values. While some
issues can be interpreted from small number statistics, the inability of
reproducing extreme values is an important flaw in this method, and

should be treated with special attention in future work. The intrinsic
scatter of the predicted values could not be fully reproduced, this
being particularly true for meanSFR. With respect to the deviation
from observed mean relations, the machine was partially successful
in doing so for 𝑀∗/𝑚ℎ𝑎𝑙𝑜 and, arguably, minimally achieved for
meanSFR/𝑀∗.

We studied the feature importance and impact of physical prop-
erties using a leave-one-covariate-out approach, which has not been
previously used in the literature. Doing so, and studying the cor-
relation between input variables, we observe that some variables
which would be impactful by themselves (e.g. 𝑚ℎ𝑎𝑙𝑜 for 𝑀∗), when
removed do not impact the results of the predictions as much as ex-
pected. We infer that this is due to their high correlation to the two
most relevant features according to the analysis (e.g. 𝑣𝑚𝑎𝑥 and 𝑟𝑐𝑟𝑖𝑡
in the case of 𝑀∗)

Finally, in Section 5.4.1 we discovered that 𝑧𝑙𝑎𝑠𝑡 and 𝑧1/2 were
quite relevant in the performance of the machine for both 𝑀∗ and
mean SFR. ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 was also particularly impactful for regressing
SFR. These and other interesting features will be discussed in section
6.2.

6.2 Remarkable input variables

As stated in Section 6.1, historical properties like 𝑧1/2 and 𝑧𝑙𝑎𝑠𝑡 have
an important impact on the predictions. This makes sense consider-
ing that the properties of a galaxy are a product of its evolution,
and shows that this kind of features should be considered as impor-
tant when generating models to predict baryonic features of galaxies.
On top of that, ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜, which could also be seen as a historical
property (since it considers data from previous redshifts) had a sur-
prising impact in meanSFR. These variables had not been addressed
in similar studies (although Jo & Kim (2019) used other historical
properties).

Other input feature of interest, particularly for 𝑀∗, is 𝑣𝑚𝑎𝑥 .
Naively one tends to think of the mass of the halo as the main de-
scriptor of stellar mass, however, it has been shown in the literature
that there is a stronger relation with the maximum circular velocity
(see for instance Kulier et al. 2019). Therefore it is quite remarkable
that the machine is able to identify its importance. The information
lost by taking 𝑚ℎ𝑎𝑙𝑜 from the inputs might be compensated by the
critical radius and maximum circular velocity. As figure 15 shows,
the correlation between these three variables is very high, which
supports this inference.

Regarding the variables studied in Section 5.4.2, we can observe in
figure 16 that the top left histogram shows that better 𝑀∗ predictions
tend to have lower halo mass values. This is also true for 𝑣𝑚𝑎𝑥 and
𝑆𝑠𝑢𝑏ℎ𝑎𝑙𝑜 in the upper middle and upper left histograms. For these
variables, the inclination towards low values for good predictions
is more evident, although these values (unlike 𝑚ℎ𝑎𝑙𝑜) are not in
logarithmic scale. The same patterns are also present in the three
histograms for meanSFR in the bottom row. There also seems to be a
tendency to have better results at lower values, but the impact is not
as clear as it is for 𝑀∗. In overall, this shows that bad predictions tend
to have higher input values. We suggest that these variables should be
treated carefully and taken in special consideration when exploring
methods similar to the one presented here.

6.3 On how can this method be improved

As shown in the results section, our method struggled to replicate re-
sults in the upper and lower limits of the range of predicted properties
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[b]

Feature MSE MSE % R2 Score R2 % PCC PCC %

𝑣𝑚𝑎𝑥 0.0194 14.378% 0.9234 0.467% 0.9655 1.456%
𝑟𝑐𝑟𝑖𝑡 0.0190 11.614% 0.9253 0.329% 0.9668 1.253%
𝑧1/2 0.0184 8.226% 0.9288 0.274% 0.9673 0.872%
𝑧𝑙𝑎𝑠𝑡 0.0183 7.676% 0.9296 0.277% 0.9673 0.791%
𝑚ℎ𝑎𝑙𝑜 0.0179 5.572% 0.9303 0.237% 0.9677 0.710%
𝜌𝑚𝑎𝑠𝑠 0.0179 5.434% 0.9305 0.210% 0.9680 0.693%
𝜌𝑛 0.0177 4.252% 0.9318 0.224% 0.9678 0.550%
𝑆sub 0.0177 4.089% 0.9314 0.202% 0.9680 0.601%
𝜎sub 0.0177 3.981% 0.9313 0.209% 0.9680 0.604%

¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 0.0175 3.058% 0.9322 0.197% 0.9681 0.516%

Table 3. Parameter ranking for stellar mass prediction. Percentages indicate the level to which the metric worsened by removing the corresponding feature in
that row, with respect to the best results obtained.

[b]

Feature MSE MSE % R2 Score R2 % PCC PCC %

𝑚∗, 𝑝𝑟𝑒𝑑 0.1518 12.436% 0.4576 2.595% 0.8114 20.558%
𝑧1/2 0.1460 8.116% 0.4989 1.647% 0.8193 13.385%

𝑚ℎ𝑎𝑙𝑜 0.1447 7.182% 0.5060 1.407% 0.8213 12.150%
¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 0.1445% 7.016 0.5078% 1.394 0.8214 11.839%
𝑧𝑙𝑎𝑠𝑡 0.1444 6.951% 0.5082 1.392% 0.8214 11.775%
𝜌𝑛 0.1432 6.052% 0.5103 1.166% 0.8233 11.399%

𝜌𝑚𝑎𝑠𝑠 0.1430 5.903% 0.5116 1.128% 0.8236 11.177%
𝑣𝑚𝑎𝑥 0.1426 5.595% 0.5174 1.081% 0.8240 10.166%
𝜎sub 0.1400% 3.737 0.5377% 0.622 0.8278 6.653%
𝑟𝑐𝑟𝑖𝑡 0.1393% 3.156 0.5308 0.447% 0.8293 7.849%
𝑆sub 0.1392% 3.082 0.5365 0.274% 0.8307 6.864%

Table 4. Parameter ranking for meanSFR prediction. Percentages indicate how much the metric worsened by removing the corresponding feature in that row,
with respect to the best results obtained.

as seen in Figure 10, where the machine is unable to reproduce the
range of values; and Figure 4, where the machine could not predict
values in the lower bound and mapped some values to the same upper
threshold. The limits issue could be approached by exploring other
kinds of normalization, such as gaussian or quantile normalizations.

We should also address the stack of values of predicted 𝑀∗ for
large halo masses. This is a direct sign that a larger dataset could
improve results, as we can see a decay in the performance at high
masses where there is a smaller number of galaxies, although a
weighting scheme may be needed for the machine to learn about
the sparse sample of objects with the highest masses. We propose
tackling this issue by balancing the dataset either generating synthetic
data to have more high mass candidates for the machine to learn
from, or by reducing the number of galaxies with average values
to have a homogeneous distribution of galaxies of different nature.
This second approach might hurt the performance of the machine
because of the reduced amount of data. Another possibility is to
remove outlier values with clustering methods (like DBSCAN) to
reduce the amount of subhaloes with extreme values that might affect
the learning of the machine. Alternatively, in order to improve the
performance one could try log-scaling the input features or using a
principal component analysis before inputting values into the MLP.

Several works in the literature have already shown other methods
to improve the tail of the distributions (see, Jo & Kim (2019); de Santi
et al. (2022); Stiskalek et al. (2022)). For instance, modifying the loss
function in Jo & Kim (2019) and, as proposed early for balancing
the dataset, it was already done in de Santi et al. (2022). These
improvements are beyond the scope of this study, but it will be
interesting to address in future research.

As we saw in Sections 5.2 and 5.4.1, chaining networks by using
a predicted feature as input to predict a second feature remarkably
improved the results. With this in mind, the model could be improved
by predicting new baryonic properties which, if they can be robustly
predicted, may be used as inputs to predict more erratic properties
such as the SFR. An example of a feature that could be used this
way is metallicity, which was consistently predicted in Agarwal et al.
(2018).

In section 4.3, we discussed about how we explored the hyperpa-
rameter space to fine-tune our machine. The employed method, where
we manually went over different combinations of hyperparameters
is called grid search, and it is one of the most basic approaches to
this end. In future works, one might employ more sophisticated hy-
perparameter optimization methods, eg. gradient-based or bayesian
optimizations.

For this work we used only 12 input features (𝑆sub, 𝜎sub, 𝑣𝑚𝑎𝑥 ,
𝑚ℎ𝑎𝑙𝑜, 𝑟𝑐𝑟𝑖𝑡 ,200, 𝑟𝑐𝑟𝑖𝑡 ,500, 𝑚𝑐𝑟𝑖𝑡 ,200, 𝜌𝑛, 𝜌𝑚𝑎𝑠𝑠 , 𝑧1/2, 𝑧𝑙𝑎𝑠𝑡 , and
predicted 𝑚∗ only for meanSFR). Considering the amount of data
products that come from a DM-Only discussed in section 2.4, the
number of input features could be increased. Particularly, we pro-
pose that considering more historical features could greatly improve
the ability of the machine to predict complex attributes like SFR.
Considering how important the halo growth history proved to be,
adding data from earlier redshifts might also improve the method.

The MLP is one of the most basic NN architectures. This is not an
issue in this work, since we use little input data. But if the amount
of data were increased, one could make use of more sophisticated
machine learning methods to process said data. If, for example, we
decide to use direct historical data (eg. the masses measured in pre-
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Figure 16. Histograms of the distribution of 𝑚ℎ𝑎𝑙𝑜 , 𝑣𝑚𝑎𝑥 and 𝑆𝑠𝑢𝑏ℎ𝑎𝑙𝑜 for the 10% best and worst predictions for 𝑀∗ and meanSFR. Histograms in the top
row belong to 𝑀∗. Histograms in the bottom row belong to meanSFR. In all histograms, the 𝑦 axis is log-scaled. The left column shows the 𝑚ℎ𝑎𝑙𝑜 distribution,
the center column shows the 𝑣𝑚𝑎𝑥 distribution, and the right column shows the 𝑆𝑠𝑢𝑏ℎ𝑎𝑙𝑜 distribution.

vious snapshots), recurrent neural networks could be an excellent
candidate since they have the advantage of being efficient at learning
from sequential data (Schmidt 2019).

7 CONCLUSIONS

In this work we employed machine learning methods, and in par-
ticular neural networks, to predict baryonic properties of galaxies
from dark matter data. Our networks learned from hydrodynamic
simulations. We made predictions for stellar mass with a fairly good
performance, but when predicting the SFR of galaxies the results
were far from ideal. In both cases, predictions also presented unde-
sirable behaviours at the lower and upper limits of the input values.
However, the main results in this work are not linked with the quality
of the predictions themselves, but on how the predictions relate with
the chosen input variables.

Our results showed that stellar mass is a consistently predictable
variable. Apart from the troublesome results at low and high values,
we were able to reproduce to a fair extent the stellar mass function,
the distribution of stellar masses with respect to halo mass, and how
much they deviate from the mean of this relation. We outperformed
the metrics achieved in other studies, both in stellar mass and SFR
predictions. But, unlike stellar mass, SFR was not as well predicted.

With the goal of reducing the scatter of this latter property, we used a
time-averaged SFR, which is also a more meaningful property given
that observational estimates of SFR are time averaged to different
degrees. We highlight this time-averaging approach since it has not
been adopted in previous works. This averaging improved our results
in predicting SFR to some extent. We also achieved better results by
using as input the output of a second neural network that reproduced
stellar mass robustly, showing an interesting approach of linking
networks to dig deeper in the information that can be deduced from
our data. While there was a resemblance in the relation between SFR
and stellar mass, the values predicted by the machine fall in a smaller
range of values than the ones from TNG. Also, the deviation from
the mean relation was, arguably, weakly recovered. All this points
towards the need for more data, or different approaches in order to
produce a consistent SFR prediction.

With respect to the relevance of input variables, we highlight in first
place 𝑧𝑙𝑎𝑠𝑡 and 𝑧1/2, two variables which have an important impact
on the results of the predictions of both baryonic properties. Specif-
ically for SFR, ¤𝑚𝑠𝑢𝑏ℎ𝑎𝑙𝑜 also proved to be a feature of importance.
This shows the relevance of considering events in the evolution of a
galaxy and its environment when describing or predicting its baryonic
properties. We also highlight the leave-one-covariate-out approach
used to study the relevance of input variables, which is different to the
methods used in similar studies. Our implementation shows insights
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about how some relevant variables lose impact when added to the
model with other highly correlated variables. Our results support the
idea of not only considering instantaneous properties, which is also
being considered in other related works.

When analyzing the importance of input features, we also found
that 𝑣𝑚𝑎𝑥 has a stronger impact than 𝑚ℎ𝑎𝑙𝑜 in the prediction of 𝑀∗,
consistent with previous analyses (eg. Kulier et al. 2019) but obtained
independently by the machine which was able to infer that 𝑣𝑚𝑎𝑥 has
more information pertinent to the stellar content of galaxies. This
is interesting to highlight since, for example, when we study the
correlation between input and output variables for 𝑀∗ (as seen in
figure 15) we can see that the most correlated feature is 𝑚ℎ𝑎𝑙𝑜, but
this variable ranks fifth in importance. We can also see that variables
with high importance, like 𝑧ℎ𝑎𝑙 𝑓 in the case of 𝑚𝑒𝑎𝑛𝑆𝐹𝑅, is not
highly correlated with the output variable. These and other insights
from the comparison between correlation and impact in the model are
relevant to address in future studies. The analysis itself of how each
input variable affects the results can be of special interest and shed
light on interesting relations. This could help, for example, to improve
SAMs by hinting which properties should be given special attention.
While it is a valid goal to use machine learning methods to populate
dark matter simulations with less computational cost than required to
run SAMs, these methods can also support and complement galaxy
formation modelling.

Finally, taking all points in consideration, we conclude that ma-
chine learning models are not only strong candidates for potential
simulation methods, but they also give us new tools and perspectives
to understand the significance of different properties and their impact
on target characteristics, enabling us to improve the already existing
methods for recreating and studying the evolution of the universe and
the Galaxies that live within it.
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