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PSEUDO-DUAL PAIRS AND BRANCHING OF

DISCRETE SERIES

BENT ØRSTED, JORGE A. VARGAS

Abstract. For a semisimple Lie group G, we study Discrete Se-
ries representations with admissible branching to a symmetric sub-
group H . This is done using a canonical associated symmetric
subgroup H0, forming a pseudo-dual pair with H , and a corre-
sponding branching law for this group with respect to its maxi-
mal compact subgroup. This is in analogy with either Blattner’s
or Kostant-Heckmann multiplicity formulas, and has some resem-
blance to Frobenius reciprocity. We give several explicit examples
and links to Kobayashi-Pevzner theory of symmetry breaking and
holographic operators. Our method is well adapted to computer
algorithms, such as for example the Atlas program.
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1. Introduction

For a semisimple Lie group G, an irreducible representation (π, V ) of
G and closed reductive subgroup H ⊂ G the problem of decomposing
the restriction of π to H has received attention ever since number the-
ory or physics and other branches of mathematics required a solution.
In this paper, we are concerned with the important particular case of
branching representations of the Discrete Series, i.e. those π arising as
closed irreducible subspaces of the left regular representation in L2(G),
and breaking the symmetry by a reductive subgroup H . Here much
work has been done. Notable is the paper of Gross-Wallach, [9], and
the work of Toshiyuki Kobayashi and his school. For further references
on the subject, we refer to the overview work of Toshiyuki Kobayashi
and references therein. To compute the decomposition of the restric-
tion of π to a symmetric subgroup (see 3.4.2), in [9] it is shown a duality
Theorem for Discrete Series representation. Their duality is based on
the dual subgroup Gd (this is the dual subgroup which enters the du-
ality introduced by Flensted-Jensen in his study of discrete series for
affine symmetric spaces [7]) and, roughly speaking, their formula looks
like

dimHomH(σ, π|H ) = dimHomK̃(Fσ, π̃).

Here, π is a irreducible square integrable representation of G, σ is
a irreducible representation of H , Fσ is a irreducible representation

of a maximal compact subgroup K̃ of Gd, and π̃ is a finite sum of
fundamental representations of Gd attached to π. In [23], B. Speh
and the first author noticed a different duality Theorem for restriction
to a symmetric subgroup, let H0 the associated subgroup to H and
L := H0 ∩H a maximal compact subgroup of H . Then,

(‡) dimHomH(σ, π|H ) = dimHomL(σ0, Π̃).

Here, π is certain irreducible representation of G, σ is a irreducible

representation of H , σ0 is the lowest L-type of σ and Π̃ is a finite
sum of irreducible representation of H0 attached to π. The purpose
of this paper is, for a H-admissible Discrete Series π for G, to show a
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formula as the above and to provide an explicit isomorphism between
the two vector spaces involved in the equality. This is embodied in
Theorem 3.1.

Theorem 3.1 reduces the branching law in two steps (1) For the max-
imal compact subgroup K of G and the lowest K-type of π, branching
this under L (maximal compact in H and also in H0) (2) branch-
ing a Discrete Series of H0 with respect to L, i.e. finding its L-types
with multiplicity. Both of these steps can be implemented in algo-
rithms, as they are available for example in the computer program
Atlas, http://atlas.math.umd.edu.

We would like to point out that T. Kobayashi, T. Kobayashi-Pevzner
and Nakahama have shown a duality formula as (‡) for holomorphic
Discrete Series representation π. In order to achieve their result, they
have shown a explicit isomorphism between the two vector spaces in the
formula. Further, with respect to analyze resH(π), Kobayashi-Oshima
have shown a way to compute the irreducible components of resH(π)
in the language of Zuckerman modules Aq(λ) [18][19].

As a consequence of the involved material, we obtain a necessary
and sufficient condition for a symmetry breaking operators to be rep-
resented via normal derivatives. This is presented in Proposition 6.1.

Another consequence is Proposition 4.9. That is, for the closure of
the linear span of the totality of H0-translates (resp. H-translates)
of the isotypic component associated to the lowest K-type of π, we
exhibit its explicit decomposition as a finite sum of Discrete Series
representations of H0 (resp. H).

Our proof is heavily based in that Discrete Series representations
are realized in reproducing kernel Hilbert spaces. As a consequence, in
Lemma 3.6, we obtain a general result on the structure of the kernel of
a certain restriction map. The proof also relies on the work of Hecht-
Schmid [11], and a result of Schmid in [27].

It follows from the work of Kobayashi-Oshima, else, from Tables
1,2,3, that whenever a Discrete Series for G has admissible restriction
to a symmetric subgroup, then, the infinitesimal character of the rep-
resentation is dominant with respect to either a Borel de Siebenthal
system of positive roots or to a system of positive roots so that it
has two noncompact simple roots, each of one, has multiplicity one in
the highest root. Under the H-admissible hypothesis, the infinitesimal

character of each of the irreducible components of Π̃ in formula (‡),
has the same property as the infinitesimal character of π. Thus, for
most H-admissible Discrete series, to compute the right hand side of
(‡), we may appeal to the work of the first author and Wolf [26]. Their



4 Ørsted- Vargas

results let us compute the highest weight of each irreducible factor in
the restriction of π to K1(Ψ), next, we apply [5, Theorem 5] for the
general case.

We may speculate that a formula like (‡) might be true for π whose
underlying Harish-Chandra module is equivalent to a unitarizable Zuck-
erman module. In this case, the definition of σ0 would be the subspace

spanned by the lowest L-type of σ and Π̃ would be a Zuckerman module
attached to the lowest K-type of π.

The paper is organized as follows. In Section 2, we introduce facts
about Discrete Series representation and notation. In Section 3, we
state the main Theorem and begin its proof. As a tool, we obtain
information on the kernel of the restriction map.

In Section 4, we complete the proof of the main Theorem. As a sub-
product, we obtain information on the kernel of the restriction map,
under admissibility hypothesis. We present examples and applications
of the Main Theorem in section 5. This includes lists of multiplicity free
restriction of representations, many of the multiplicity free representa-
tions are non holomorphic Discrete Series representations. We also
dealt with quaternionic and generalized quaternionic representations.

In Section 6, we analyze when symmetry breaking operators are rep-
resented by means of normal derivatives. Section 7 presents the list of
H-admissible Discrete Series and related information.

Acknowledgements: The authors would like to thank T. Kobayashi
for much insight and inspiration on the problems considered here. Also,
we thank Michel Duflo, Birgit Speh, Yosihiki Oshima and Jan Frahm
for conversations on the subject. Part of the research in this paper was
carried out within the online research community on Representation
Theory and Noncommutative Geometry sponsored by the American
Institute of Mathematics. Also, some of the results in this note were
the subject of a talk in the "Conference in honour of Prof. Toshiyuki
Kobayashi" to celebrate his sixtieth birthday, the authors deeply thanks
the organizers for the facilities to present and participate in such a
wonderful meeting via zoom.

2. Preliminaries and some notation

Let G be an arbitrary, matrix, connected semisimple Lie group.
Henceforth, we fix a maximal compact subgroup K for G and a max-
imal torus T for K. Harish-Chandra showed that G admits square
integrable irreducible representations if and only if T is a Cartan sub-
group of G. For this paper, we always assume T is a Cartan subgroup
of G. Under these hypothesis, Harish-Chandra showed that the set of
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equivalence classes of irreducible square integrable representations is
parameterized by a lattice in it⋆. In order to state our results we need
to make explicit this parametrization and set up some notation. As
usual, the Lie algebra of a Lie group is denoted by the corresponding
lower case German letter. To avoid notation, the complexification of
the Lie algebra of a Lie group is also denoted by the corresponding
German letter without any subscript. V ⋆ denotes the dual space to a
vector space V. Let θ be the Cartan involution which corresponds to
the subgroup K, the associated Cartan decomposition is denoted by
g = k + p. Let Φ(g, t) denote the root system attached to the Car-
tan subalgebra t. Hence, Φ(g, t) = Φc ∪ Φn = Φc(g, t) ∪ Φn(g, t) splits
up as the union the set of compact roots and the set of noncompact
roots. From now on, we fix a system of positive roots ∆ for Φc. For
this paper, either the highest weight or the infinitesimal character of
an irreducible representation of K is dominant with respect to ∆. The
Killing form gives rise to an inner product (..., ...) in it⋆. As usual, let
ρ = ρG denote half of the sum of the roots for some system of positive
roots for Φ(g, t). A Harish-Chandra parameter for G is λ ∈ it⋆ such that
(λ, α) 6= 0, for every α ∈ Φ(g, t), and so that λ+ρ lifts to a character of
T. To each Harish-Chandra parameter λ, Harish-Chandra, associates a
unique irreducible square integrable representation (πG

λ , V
G
λ ) of G of in-

finitesimal character λ. Moreover, he showed the map λ → (πG
λ , V

G
λ ) is

a bijection from the set of Harish-Chandra parameters dominant with
respect to ∆ onto the set of equivalence classes of irreducible square
integrable representations for G (see [32, Chap 6]). For short, we will
refer to an irreducible square integrable representation as a Discrete
Series representation.

Each Harish-Chandra parameter λ gives rise to a system of positive
roots

Ψλ = ΨG,λ = {α ∈ Φ(g, t) : (λ, α) > 0}.
From now on, we assume that Harish-Chandra parameter for G are
dominant with respect to ∆. Whence, ∆ ⊂ Ψλ. We write ρλn = ρn =
1
2

∑
β∈Ψλ∩Φn

β, (Ψλ)n := Ψλ ∩ Φn.

We denote by (τ,W ) := (πK
λ+ρn

, V K
λ+ρn

) the lowest K−type of πλ :=

πG
λ . The highest weight of (πK

λ+ρn
, V K

λ+ρn
) is λ + ρn − ρc. We recall a

Theorem of Vogan’s thesis [31][6] which states that (τ,W ) determines
(πλ, V

G
λ ) up to unitary equivalence. We recall the set of square inte-

grable sections of the vector bundle determined by the principal bundle
K → G → G/K and the representation (τ,W ) of K is isomorphic to



6 Ørsted- Vargas

the space

L2(G×τ W )

:= {f ∈ L2(G)⊗W : f(gk) = τ(k)−1f(g), g ∈ G, k ∈ K}.

Here, the action of G is by left translation Lx, x ∈ G. The inner
product on L2(G)⊗W is given by

(f, g)Vλ
=

∫

G

(f(x), g(x))Wdx,

where (..., ...)W is a K−invariant inner product on W. Subsequently,
LD (resp. RD) denotes the left infinitesimal (resp. right infinitesimal)
action on functions from G of an element D in universal enveloping
algebra U(g) for the Lie algebra g. As usual, ΩG denotes the Casimir
operator for g. Following Hotta-Parthasarathy [13], Enright-Wallach
[6], Atiyah-Schmid [1], we realize Vλ := V G

λ as the space

H2(G, τ) = {f ∈ L2(G)⊗W : f(gk) = τ(k)−1f(g)

g ∈ G, k ∈ K,RΩG
f = [(λ, λ)− (ρ, ρ)]f}.

We also recall, RΩG
= LΩG

is an elliptic G−invariant operator on the
vector bundle W → G×τ W → G/K and hence, H2(G, τ) consists of
smooth sections, moreover point evaluation ex defined by H2(G, τ) ∋
f 7→ f(x) ∈ W is continuous for each x ∈ G (cf. [25, Appendix A4]).
Therefore, the orthogonal projector Pλ onto H2(G, τ) is an integral
map (integral operator) represented by the smooth matrix kernel or
reproducing kernel [25, Appendix A1, Appendix A4, Appendix A6].

(2.1) Kλ : G×G → EndC(W )

which satisfies Kλ(·, x)
⋆w belongs to H2(G, τ) for each x ∈ G,w ∈ W

and

(Pλ(f)(x), w)W =

∫

G

(f(y), Kλ(y, x)
⋆w)Wdy, f ∈ L2(G×τ W ).

For a closed reductive subgroup H , after conjugation by an inner au-
tomorphism of G we may and will assume L := K ∩ H is a max-
imal compact subgroup for H. That is, H is θ−stable. In this pa-
per for irreducible square integrable representations (πλ, Vλ) for G we
would like to analyze its restriction to H. In particular, we study the
irreducible H−subrepresentations for πλ. A known fact is that any
irreducible H−subrepresentation of Vλ is a square integrable repre-
sentation for H , for a proof (cf. [9]). Thus, owing to the result
of Harish-Chandra on the existence of square integrable representa-
tions, from now on, we may and will assume H admits a compact
Cartan subgroup. After conjugation, we may assume U := H ∩ T is
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a maximal torus in L = H ∩ K. From now on, we set a square inte-
grable representation V H

µ ≡ H2(H, σ) ⊂ L2(H ×σ Z) of lowest L−type

(πL
µ+ρµn

, V L
µ+ρµn

) ≡: (σ, Z).

For a representation M and irreducible representation N , M [N ] de-
notes the isotypic component of N , that is, M [N ] is the linear span of
the irreducible subrepresentations of M equivalent to N . If topology
is involved M [N ] is the closure of the linear span.

For a H-admissible representation π, SpecH(π), denotes the set of
Harish-Chandra parameters of the irreducible H-subrepresentations of
π.

3. Duality Theorem, explicit isomorphism

3.1. Statement and proof of the duality result. The unexplained
notation is as in section 2, our hypotheses are (G,H = (Gσ)0) is a
symmetric pair and (πλ, V

G
λ ) is a H-admissible, square integrable irre-

ducible representation for G. K = Gθ is a maximal compact subgroup
of G, H0 := (Gσθ)0 and K is so that L = H ∩K = H0 ∩K is a max-
imal compact subgroup of both H and H0. By definition, H0 is the
associated subgroup to H .

In this section, under our hypothesis, for V H
µ a irreducible factor for

resH(πλ), we show an explicit isomorphism from the space
HomH(V

H
µ , V G

λ ) onto HomL(V
L
µ+ρµn

, πλ(U(h0))V
G
λ [V K

λ+ρn
]).

We also analyze the restriction map r0 : H
2(G, τ) → L2(H0 ×τ W ).

To follow, we present the necessary definitions and facts involved in
the main statement.

3.1.1. We consider the linear subspace Lλ spanned by the lowest
L-type subspace of each irreducible H-factor of resH((L,H

2(G, τ))).
That is,

Lλ is the linear span of ∪µ∈SpecH (πλ)H
2(G, τ)[V H

µ ][V L
µ+ρµn

].

We recall that our hypothesis yields that the subspace of L-finite vec-
tors in V G

λ is equal to the subspace of K-finite vectors [16, Prop. 1.6 ].
Whence, we have Lλ is a subspace of the space of K-finite vectors in
H2(G, τ).

3.1.2. We also need the subspace

U(h0)W := LU(h0)H
2(G, τ)[V K

λ+ρλn
] ≡ πλ(U(h0))(V

G
λ [V K

λ+ρλn
]).

We write Cl(U(h0)W ) for the closure of U(h0)W . Hence, Cl(U(h0)W )
is the closure of the left translates by the algebra U(h0) of the subspace



8 Ørsted- Vargas

of K-finite vectors

H2(G, τ)[V K
λ+ρλn

] = {Kλ(·, e)
⋆w : w ∈ W} ≡ W.

Thus, U(h0)W consists of analytic vectors for πλ. Therefore, Cl(U(h0)W )
is invariant under left translations by H0. In Proposition 4.9 we present
the decomposition of U(h0)W as a sum of irreducible representations
for H0.

We point out

The L-module Lλ is equivalent to the underlying L -module in
U(h0)W .

This has been proven in [30, (4.5)]. For completeness we present a
proof in Proposition 4.9.

Under the extra assumption resL(τ) is irreducible, we have U(h0)W
is a irreducible (h0, L)-module, and, in this case, the lowest L-type of
U(h0)W is (resL(τ),W ). That is, U(h0)W is equivalent to the underly-
ing Harish-Chandra module for H2(H0, resL(τ)). The Harish-Chandra
parameter η0 ∈ iu⋆ for Cl(U(h0)W ) is computed in 3.4.1.

For scalar holomorphic Discrete Series, the classification of the sym-
metric pairs (G,H) such that the equality U(h0)W = Lλ holds, is:

(su(m,n), su(m, l) + su(n− l) + u(1)), (so(2m, 2), u(m, 1)),
(so⋆(2n), u(1, n− 1)), (so⋆(2n), so(2) + so⋆(2n− 2)), (e6(−14), so(2, 8) +
so(2)). [30, (4.6)]. Thus, there exists scalar holomorphic Discrete Series
with U(h0)W 6= Lλ.

3.1.3. To follow, we set some more notation. We fix a representative
for (τ,W ). We write

(resL(τ),W ) =
∑

1≤j≤r qj(σj , Zj), qj = dimHomL(Zj , resL(W ))
and the decomposition in isotypic components

W = ⊕1≤j≤rW [(σj , Zj)] = ⊕1≤j≤rW [σj].

From now on, we fix respective representatives for (σj , Zj) with Zj ⊂
W [(σj, Zj)].

Henceforth, we denote by

H
2(H0, τ) :=

∑

j

dimHomL(τ, σj)H
2(H0, σj).

We think the later module as a linear subspace of
∑

j

L2(H0 ×σj
W [σj ])H0−disc ≡ L2(H0 ×τ W )H0−disc.

Hence, H2(H0, τ) ⊂ L2(H0 ×τ W )H0−disc. We note that when resL(τ)
is irreducible, then H

2(H0, τ) = H2(H0, resL(τ)).
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3.1.4. Owing to both spaces H2(H, σ), H2(G, τ) are reproducing ker-
nel spaces, we represent each T ∈ HomH(H

2(H, σ), H2(G, τ)) by a
kernel KT : H × G → HomC(Z,W ) so that KT (·, x)

⋆w ∈ H2(H, σ)
and (T (g)(x), w)W =

∫
H
(g(h), KT (h, x)

⋆w)Zdh. Here, x ∈ G,w ∈
W, g ∈ H2(H, σ). In [25], it is shown: KT is a smooth function,
KT (h, ·)z = KT ⋆(·, h)⋆z ∈ H2(G, τ) and

(3.1) KT (e, ·)z ∈ H2(G, τ)[V H
µ ][V L

µ+ρHn
]

is a L-finite vector in H2(G, τ).

3.1.5. Finally, we recall the restriction map

r0 : H
2(G, τ) → L2(H0 ×τ W ), r0(f)(h0) = f(h0), h0 ∈ H0,

is (L2, L2)-continuous [24].
The main result of this section is,

Theorem 3.1. We assume (G,H) is a symmetric pair and resH(πλ)
is admissible. We fix a irreducible factor V H

µ for resH(πλ). Then, the
following statements hold.
i) The map r0 : H2(G, τ) → L2(H0 ×τ W ) restricted to Cl(U(h0)W )
yields a isomorphism between Cl(U(h0)W ) onto H

2(H0, τ).
ii) For each fixed intertwining L-equivalence

D : Lλ[V
L
µ+ρµn

] = H2(G, τ)[V H
µ ][V L

µ+ρµn
] → (U(h0)W )[V L

µ+ρµn
],

the map

rD0 : HomH(H
2(H, σ), H2(G, τ)) → HomL(V

L
µ+ρµn

,H2(H0, τ))
defined by

T
rD07−→ (V L

µ+ρµn
∋ z 7→ r0(D(KT (e, ·)z)) ∈ H

2(H0, τ))

is a linear isomorphism.

Remark 3.2. When the natural inclusion H/L → G/K is a holomorphic
map, T. Kobayashi, M. Pevzner and Y. Oshima in [17],[20] has shown
a similar dual multiplicity result after replacing the underlying Harish-
Chandra module in H

2(H0, τ) by its representation as a Verma module.
Also, in the holomorphic setting, Jakobsen-Vergne in [14] has shown
the isomorphism H2(G, τ) ≡

∑
r≥0H

2(H, τ|L⊗S(r)((h0∩p
+))⋆). On the

papers, [22] [21], we find applications of the result of Kobayashi for their
work on decomposing holomorphic Discrete Series. H. Sekiguchi [28]
has obtained a similar result of branching laws for singular holomorphic
representations.

Remark 3.3. The proof of Theorem 3.1 requires to show the map rD0
is well defined as well as several structure Lemma’s. Once we verify
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the map is well defined, we will show injectivity, Corollary 3.9, Proposi-
tion 4.2 and linear algebra will give the surjectivity. In Proposition 4.9,
we show i), in the same Proposition we give a proof of the existence
of the map D as well as its bijectivity, actually this result has been
shown in [30]. However, we sketch a proof in this note. The surjectiv-
ity also depends heavily on a result in [30], for completeness we give
a proof. We may say that our proof of Theorem 1 is rather long and
intricate, involving both linear algebra for finding the multiplicities,
and analysis of the kernels of the intertwining operators in question
to set up the equivalence of the H-morphisms and the L-morphisms.
The structure of the branching and corresponding symmetry breaking
is however very convenient to apply in concrete situations, and we give
several illustrations.

We explicit the inverse map to the bijection rD0 in subsection 4.1.

Remark 3.4. When Lλ = U(h0)W we may take D equal to the identity
map. We believe that one choice of D is the orthogonal projector onto
Cl(U(h0)W ) restricted to Lλ[V

L
µ+ρµn

].

Remark 3.5. A mirror statement to Theorem 3.1 for symmetry break-
ing operators is as follows: HomH(H

2(G, τ), H2(H, σ)) is isomorphic to
HomL(Z,H

2(H0, τ)) via the map S 7→ (z 7→ (H0 ∋ x 7→ rD0 (S
⋆)(z)(x) =

r0(D(KS(·, x)
⋆)(z)) ∈ W ).

3.1.6. We verify r0(D(KT (e, ·)z))(·) belongs to L2(H0 ×τ W )H0−disc.

Indeed, owing to our hypothesis, a result [5] (see [4, Proposition 2.4])
implies πλ is L-admissible. Hence, [15, Theorem 1.2] implies πλ is H0-
admissible. Also, [16, Proposition 1.6] shows the subspace of L-finite
vectors in H2(G, τ) is equal to the subspace of K-finite vectors and
resU(h0)(H

2(G, τ)K−fin) is a admissible, completely algebraically de-
composable representation. Thus, the subspace H2(G, τ)[W ] ≡ W is
contained in a finite sum of irreducible U(h0)-factors. Hence, U(h0)W
is a finite sum of irreducible U(h0) factors. In [9], we find a proof
that the irreducible factors for resH0(πλ) are square integrable rep-
resentations for H0, whence, the equivariance and continuity of r0
yields r0(Cl(U(h0)W ) is contained in L2(H0 ×τ W )H0−disc. 3.1.4 shows
KT (e, ·) ∈ Vλ[V

H
µ ][V L

µ+ρHn
], hence, D(KT (e, ·)z))(·) ∈ U(h0)W , and the

claim follows.

3.1.7. The map Z ∋ z 7→ r0(D(KT (e, ·)z))(·) ∈ L2(H0 ×τ W ) is a
L-map.
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For this, we recall the equalities

KT (hl, gk) = τ(k−1)KT (h, g)σ(l), k ∈ K, l ∈ L, g ∈ G, h ∈ H.

KT (hh1, hx) = KT (h1, x), h, h1 ∈ H, x ∈ G.

Therefore, KT (e, hl1)σ(l2)z = τ(l−1
1 )KT (l2, h)z = τ(l−1

1 )KT (e, l
−1
2 h)z

for l1, l2 ∈ L, h ∈ H0 and we have shown the claim.

We have enough information to verify the injectivity we have claimed
in i) as well as the injectivity of the map rD0 . For these, we show a fact
valid for a arbitrary reductive pair (G,H) and arbitrary Discrete Series
representation.

3.2. Kernel of the restriction map. In this paragraph we show a
fact valid for any reductive pair (G,H) and arbitrary representation
πλ. The objects involved in the fact are the restriction map r from
H2(G, τ) into L2(H ×τ W ) and the subspace

(3.2) U(h)W := LU(h)H
2(G, τ)[V K

λ+ρλn
] ≡ πλ(U(h))(V

G
λ [V K

λ+ρλn
]),

We write Cl(U(h)W ) for the closure of U(h)W . The subspace Cl(U(h)W )
is the closure of the left translates by the algebra U(h) of the subspace
of K-finite vectors

{Kλ(·, e)
⋆w : w ∈ W} = H2(G, τ)[W ].

Thus, U(h)W consists of analytic vectors for πλ. Hence, Cl(U(h)W ) is
invariant by left translations by H . Therefore the subspace

LH(H
2(G, τ)[W ]) = {Kλ(·, h)

⋆w = Lh(Kλ(·, e)
⋆w) : w ∈ W,h ∈ H}

is contained in Cl(U(h)W )). Actually,
Cl(LH(H

2(G, τ)[W ])) = Cl(U(h)W ).
The other inclusion follows from that Cl(LH(H

2(G, τ)[W ])) is invari-
ant by left translation by H and {Kλ(·, e)

⋆w : w ∈ W} is contained in
the subspace of smooth vectors in Cl(LH(H

2(G, τ)[W ])).

The result pointed out in the title of the this paragraph is:

Lemma 3.6. Let (G,H) be a arbitrary reductive pair and a arbitrary
representation (πλ, H

2(G, τ)). Then, Ker(r) is equal to the orthogonal
subspace to Cl(U(h)W ).

Proof. Since, [24], r : H2(G, τ) → L2(H×τ W ) is a continuous map, we
have Ker(r) is a closed subspace of H2(G, τ). Next, for f ∈ H2(G, τ),
it holds the identity

(f(x), w)W =
∫
G
(f(y), Kλ(y, x)

⋆w)Wdy, ∀x ∈ G, ∀w ∈ W .
Thus, r(f) = 0 if and only if f is orthogonal to the subspace spanned
by {Kλ(·, h)

⋆w : w ∈ W,h ∈ H}.
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Hence, Cl(Ker(r)) = (Cl(LH(H
2(G, τ)[W ]))⊥. Applying the con-

siderations after the definition of Cl(U(h)W ) we obtain Ker(r)⊥ =
Cl(U(h)W ). Thus Ker(r) = (Ker(r)⊥)⊥ = Cl(U(h)W ). �

Corollary 3.7. Any irreducible H-discrete factor M for Cl(U(h)W )
contains a L-type in resL(τ). That is, M [resL(τ)] 6= {0}.

The corollary follows from that r restricted to Cl(U(h)W ) is injective
and that Frobenius reciprocity for L2(H ×τ W ) holds.

3.3. The map rD0 is injective. As a consequence of the general fact
shown in the previous subsection, we obtain the injectivity in i) and
the map rD0 is injective.

Corollary 3.8. Let (G,H) be a symmetric pair and H0 = Gσθ. Then,
the restriction map r0 : H2(G, τ) → L2(H0 ×τ W ) restricted to the
subspace Cl(U(h0)W ) is injective.

Corollary 3.9. Let (G,H) be a symmetric pair, H0 = Gσθ and we
assume resH(πλ) is H-admissible. Then, the map rD0 is injective.

In fact, for T ∈ HomH(H
2(H, σ), H2(G, τ)), if r0(D(KT (e, ·)z)) =

0 ∀z ∈ Z, then, since D(KT (e, x)z) ∈ U(h0)W , the previous corollary
implies D(KT (e, x)z) = 0 ∀z, x ∈ G. Since, KT (e, ·)z ∈ V G

λ [V H
µ ][V L

µ+ρHn
],

and D is injective we obtain KT (e, x)z = 0 ∀z, ∀x. Lastly, we recall
equality KT (h, x) = KT (e, h

−1x). Whence we have verified the corol-
lary.

Before we show the surjectivity for the map rD0 we would like to
comment other works on the topic object of this note.

3.4. Previous work on duality formula and Harish-Chandra

parameters. The setting for this subsection is: (G,H) is a symmetric
pair and (πλ, V

G
λ ) is a irreducible square integrable representation of G

and H-admissible. As before, we fix K,L = H ∩K, T, U = H ∩T . The
following Theorem has been shown by [9], a different proof is in [18].

Theorem 3.10 (Gross-Wallach, T. Kobayashi-Y. Oshima). We as-
sume (G,H) is symmetric pair, πG

λ -is H-admissible, then

a) resH(π
G
λ ) is the Hilbert sum of inequivalent Square integrable

representations for H, πH
µj
, j = 1, 2, . . . , with respective finite multi-

plicity 0 < mj < ∞.

b) The Harish-Chandra parameters of the totality of discrete factors
for resH(π

G
λ ) belong to a "unique" Weyl Chamber in iu⋆.

That is, V G
λ = ⊕1≤j<∞V G

λ [V H
µj
] ≡ ⊕j HomH(V

H
µj
, V G

λ )⊗ V H
µj

,
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dimHomH(V
H
µj
, V G

λ ) = mj, πH
µj

6= πH
µi

iff i 6= j,

and there exists a system of positive roots ΨH,λ ⊂ Φ(h, u), such that for
all j, (α, µj) > 0 for all α ∈ ΨH,λ.

In [30][18] (see Tables 1,2,3) we find the list of pairs (g, h), as well as
systems of positive roots ΨG ⊂ Φ(g, t),ΨH,λ ⊂ Φ(h, u) such that,

- λ dominant with respect to ΨG implies resH(π
G
λ ) is admissible.

- For all µj in a) we have (µj,ΨH,λ) > 0.

- When U = T , we have ΨH,λ = Ψλ ∩ Φ(h, t).

Since (G,H0) is a symmetric pair, Theorem 3.10 as well as its com-
ments apply to (G,H0) and πλ. Here, when U = T , ΨH0,λ = Ψλ ∩
Φ(h0, t).

From the tables in [30] it follows that any of the system Ψλ, ΨH,λ,ΨH0,λ

has, at most, two noncompact simple roots, and the sum of the respec-
tive multiplicity of each noncompact simple root in the highest root is
less or equal than two.

3.4.1. Computing Harish-Chandra parameters from Theorem 3.1. As
usual, ρn = 1

2

∑
β∈Ψλ∩Φn

β, ρHn = 1
2

∑
β∈ΨH,λ∩Φn

β, ρK = 1
2

∑
α∈Ψλ∩Φc

α,

ρL = 1
2

∑
α∈ΨH,λ∩Φc

α. We write resL(τ) = resL(V
K
λ+ρn

) = ⊕1≤j≤r qj π
L
νj
=∑

j qjσj , with νj dominant with respect to ΨH,λ ∩ Φc. we recall νj is

the infinitesimal character (Harish-Chandra parameter) of πL
νj

. Then,

the Harish-Chandra parameter for H2(H0, π
L
νj
) is ηj = νj − ρH0

n .

According to [27, Lemma 2.22](see Remark 4.8), the infinitesimal
character of a L-type of H2(H0, π

L
νj
) is equal to νj +B = ηj + ρH0

n +B
where B is a sum of roots in ΨH0,λ ∩ Φn.

The isomorphism rD0 in Theore 3.1, let us conclude:
For each subrepresentation V H

µs
of resH(πλ), we have µs + ρHn is a

L-type of
H

2(H0, τ) ≡ ⊕j qj H
2(H0, π

L
νj
) ≡ ⊕j V

H0
ηj

⊕ · · · ⊕ V H0
ηj︸ ︷︷ ︸

qj

,

and the multiplicity of V H
µs

is equal to the multiplicity of V L
µs+ρHn

in

H
2(H0, τ).

3.4.2. Gross-Wallach multiplicity formula. To follow we describe the
duality Theorem due to [9]. (G,H) is a symmetric pair. For this
paragraph, in order to avoid subindexes we write g = Lie(G), h =
Lie(H) etc. We recall h0 = gσθ. We have the decompositions g =
k + p = h + q = h0 + p ∩ h + q ∩ k. The dual real Lie algebra to g is
gd = h0+i(p∩h+q∩k), the algebra gd is a real form for gC. A maximal

compactly embedded subalgebra for gd is k̃ = h ∩ k + i(h ∩ p). Let πλ
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be a H-admissible Discrete Series for G. One of the main results of
[9] attach to πλ a finite sum of underlying Harish-Chandra modules of

fundamental representation for Gd, (ΓK̃
H∩L)

p0+q0(N(Λ)), so that for each
subrepresentation V H

µ of Vλ we compute the multiplicity mG,H(λ, µ) of

V H
µ by means of Blattner’s formula [11] applied to (ΓK̃

H∩L1
)p0+q0(N(Λ) .

In more detail, since Lie(H)C = Lie(K̃)C, and the center of H is equal

to the center of K̃, for the infinitesimal character µ and the central
character χ of V H

µ , we may associate a finite dimensional irreducible

representation Fµ,χ for K̃. Then, they show

dimHomh,H∩K(V
H
µ , V G

λ ) = dimHomK̃(Fµ,χ, (Γ
K̃
H∩L1

)p0+q0(N(Λ)).

mG,H(λ, µ) = (−1)
1
2
dim(H/H∩L1)

d∑

i=1

∑

s∈W
K̃

ǫ(s)p(Λi + ρK̃ + ssH∩Kµ).

where τ = FΛ =
∑

i M
Λi as a sum of irreducible H ∩L1-module and p

is the partition function associated to Φ(u1/u1 ∩ hC, u), here, u1 is the
nilpotent radical of certain parabolic subalgebra q = l1 + u1 used to
define the Aq(λ)-presentation for πλ. Explicit example V presents the
result of [9] for the pair (SO(2m, 2n), SO(2m, 2n− 1)).

3.4.3. Duflo-Vargas multiplicity formula, [5]. We keep notation and hy-
pothesis as in the previous paragraph. Then,

mG,H(λ, µ) = ±
∑

w∈WK

ǫ(w)pSH
w
(µ− qu(wλ)).

Here, qu : t
⋆ → u⋆ is the restriction map. pSH

w
is the partition function

associated to the multiset

SH
w := SL

w\Φ(h/l, u), where, S
L
w := qu(w(Ψλ)n) ∪∆(k/l, u).

We recall for a strict multiset of elements in vector space V the
partition function attached to S, roughly speaking, is the function that
counts the number of ways of expressing each vector as a nonnegative
integral linear combinations of elements of S. For a precise definition
see [5] or the proof of Lemma 4.4.

3.4.4. Harris-He-Olafsson multiplicity formula, [10]. Notation and hy-
pothesis as in the previous paragraphs. Let

rm : H2(G, τ) → L2(H ×Sm(Ad)⊠τ (S
m(p ∩ q)⋆ ⊗W )).

the normal derivative map defined in [24]. Let ΘπH
µ

denote the Harish-

Chandra character of πH
µ . For f a tempered function in H2(G, τ), they
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define φπλ,πH
µ ,m(f) = ΘπH

µ
⋆ rm(f) . They show:

mG,H(λ, µ) = lim
m→∞

dim φπλ,πH
µ ,m((H

2(G, τ) ∩ C(G, τ))[Vµ+ρHn
]).

3.5. Completion of the Proof of Theorem 3.1, the map rD0 is

surjective. Item i) in Theorem 3.1 is shown in Proposition 4.9 c). The
existence of the map D is shown in Proposition 4.9 e).

To show the surjectivity of rD0 we appeal to Theorem 4.2, [30, Theo-
rem 1], where we show the initial space and the target space are equidi-
mensional, linear algebra concludes de proof of Theorem 3.1. Thus, we
conclude the proof of Theorem 3.1 as soon as we complete the proof of
Theorem 4.2 and Proposition 4.9.

4. Duality Theorem, proof of dimension equality

The purpose of this subsection is to sketch a proof of the equality of
dimensions in the duality formula presented in Theorem 3.1 as well as
some consequences. Part of the notation has already been introduced
in the previous section. Sometimes notation will be explained after it
has been used. Unexplained notation is as in [5], [25], [30].

The setting is as follows, (G,H) is a symmetric pair,(πλ, V
G
λ ) =

(L,H2(G, τ)) a H-admissible irreducible square integrable representa-
tion. Then, the Harish-Chandra parameter λ gives rise to systems of
positive roots Ψλ in Φ(g, t) and by mean of Ψλ, in [5] is defined a non-
trivial normal connected subgroup K1(Ψλ) = K1 of K, it is shown that
the H-admissibility yields K1 ⊂ H1. Thus, k = k1⊕k2, l = k1⊕ l∩k2 (as
ideals), and t = t∩k1+t∩k2, u := t∩l = u∩k1+u∩k2 is a Cartan subalge-
bra of l. Let qu denote restriction map from t⋆ onto u⋆. Let K2 denote
the analytic subgroup corresponding to k2. We recall H0 := (Gσθ)0,
L = K ∩H = K ∩H0. We have K = K1K2, L = K1(K2 ∩ L). We set
∆ := Ψλ∩Φ(k, t). Applying Theorem 3.10 to both H and H0 we obtain
respective systems of positive roots ΨH,λ in Φ(h, u), ΨH0,λ in Φ(h0, u).
For a list of six-tuples (G,H,Ψλ, ΨH,λ,ΨH0,λ, K1) we refer to [30, Table
1, Table 2, Table 3]. Always, ΨH,λ ∩ Φc(l, u) = ΨH0,λ) ∩ Φc(l, u). As
usual, either Φn(g, t) or Φn denotes the subset of noncompact roots in
Φ(g, t), ρλn (resp. ρHn , ρ

H0
n ) denotes one half of the sum of the elements in

Ψλ∩Φn(g, t) (resp. Φn∩ΨH,λ,Φn∩ΨH0,λ). When u = t, ρλn = ρHn +ρH0
n .

From now on, the infinitesimal character of an irreducible representa-
tion of K (resp L) is dominant with respect to ∆ (resp. ΨH,λ∩Φ(l, u)).

The lowest K-type (τ,W ) of πλ decomposes πK
λ+ρλn

= πK1
Λ1

⊠ πK2
Λ2

, with

πKs

Λs
an irreducible representation for Ks, s = 1, 2. We express γ =

1This also follows from the tables in [18]
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(γ1, γ2) ∈ t⋆ = t⋆1 + t⋆2. Hence, [11][3], Λ1 = λ1 + (ρλn)1,Λ2 = λ2 + (ρλn)2.
Sometimes (ρλn)2 6= 0. This happens only for su(m,n) and some partic-
ular systems Ψλ (see proof of Lemma 4.7). Harish-Chandra parameters
for the irreducible factors of either resH(πλ) (resp. resH0(πλ))) will al-
ways be dominant with respect to ΨH,λ∩Φ(l, u) (resp. ΨH0,λ∩Φ(l, u)).

For short, we write πΛ2 := πK2
Λ2

. We write

resL∩K2(πΛ2) = resL∩K2(π
K2
Λ2

) =
∑

ν2∈(u∩k2)⋆

mK2,L∩K2(Λ2, ν2) π
L∩K2
ν2

,

as a sum of irreducible representations of L ∩K2.
The set of ν2 so that mK2,L∩K2(Λ2, ν2) 6= 0 is denoted by SpecL∩K2(π

K2
Λ2

).
Thus,

resL(π
K1
Λ1

⊠ πK2
Λ2

) =
∑

ν2∈SpecL∩K2
(π

K2
Λ2

)

mK2,L∩K2(Λ2, ν2) π
K1
Λ1

⊠ πL∩K2
ν2

,

as a sum of irreducible representations of L. Besides, for a Harish-
Chandra parameter η = (η1, η2) for H0, we write

resL(π
H0

(η1,η2)
) =

∑

(θ1,θ2)∈SpecL(π
H0
(η1,η2)

)

mH0,L((η1, η2), (θ1, θ2)) π
L
(θ1,θ2).

The restriction of πλ to H is expressed by (see 3.10)

resH(πλ) = resH(π
G
λ ) =

∑

µ∈SpecH(πλ)

mG,H(λ, µ) πH
µ .

In the above formulaes, m·,·(·, ·) are non negative integers and represent
multiplicities; for ν2 ∈ SpecL∩K2(π

K2
Λ2

), ν2 is dominant with respect to
ΨH,λ ∩ Φ(k2, u ∩ k2), and (Λ1, ν2) is ΨH0,λ-dominant (see [30]); in the
third formulae, (η1, η2) is dominant with respect to ΨH0,λ and (θ1, θ2)
is dominant with respect to ΨH0,λ ∩Φc(h0, u); in the fourth formula, µ
is dominant with respect to ΨH,λ. Sometimes, for µ ∈ SpecH(π

G
λ ), we

replace ρµn by ρHn .
We make a change of notation:

σj = πK1
Λ1

⊠ πL∩K2
ν2

and qj = mK2,L∩K2(Λ2, ν2).
Then, in order to show either the existence of the map D or the sur-
jectivity of the map rD0 , we need to show:
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Theorem 4.1.

mG,H(λ, µ) = dimHomH(H
2(H, V L

µ+ρHn
), H2(G, V K

λ+ρGn
))

=
∑

ν2∈SpecL∩K2
(π

K2
Λ2

)

mK2,L∩K2(Λ2, ν2)

× dimHomL(V
L
µ+ρHn

, H2(H0, π
K1
Λ1

⊠ πL∩K2
ν2

)).

A complete proof of the result is in [30]. However, for sake of com-
pleteness and clarity we would like to sketch a proof. We also present
some consequences of the Theorem.

Next, we compute the infinitesimal character (Harish-Chandra pa-
rameter) for H2(H0, π

K1
Λ1

⊠ πL∩K2
ν2 ) and restate the previous Theorem.

ic(H2(H0, π
K1
Λ1

⊠ πL∩K2
ν2

)) = (Λ1, ν2) − ρH0
n = (λ1 + ρGn − ρH0

n , ν2) =

(λ1, ν2) + ρHn . This equality is obviously true when (ρλn)2 = 0.
To follow, we state Theorem 4.1 regardless of the realization of the

involved Discrete Series.

Theorem 4.2. Duality, dimension formula. The hypothesis is (G,H)
is a symmetric pair and πλ is a H-admissible representation. Then,

mG,H(λ, µ) = dimHomH(V
H
µ , V G

λ )

=
∑

ν2∈SpecL∩K2
(π

K2
Λ2

)

mK2,L∩K2(Λ2, ν2)

× dimHomL(V
L
µ+ρHn

, V H0

(λ1,ν2)+ρHn
).

After Lemma 4.5 the formula simplifies to

mG,H(λ, µ) =
∑

ν2∈SpecL∩K2
(π

K2
λ2

)

mK2,L∩K2(λ2, ν2) dimHomL(V
L
µ , V H0

(λ1,ν2)
).

The following diagram helps to understand the equalities in the The-
orem and in the next three Lemmas.

SpecH(V
G
(λ1,λ2)

)
µ7→µ

//

ν 7→ν+ρHn ++❳❳❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

∪ν2∈SpecL∩K2
(πΛ2

)SpecL(V
H0

(λ1,ν2)
)

ν 7→ν+ρHn
��

SpecL(H
2(H0, τ)) = ∪ν2∈SpecL∩K2

(πΛ2
)SpecL(V

H0

(λ1,ν2)+ρHn
)

A consequence of Theorem 4.2, Lemma 4.5 and Lemma 4.4 is:
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Corollary 4.3.

SpecH(πλ) + ρHn

= SpecL(H
2(H0, τ)) = ∪ν2∈SpecL∩K2

(πΛ2
)SpecL(V

H0

(λ1,ν2)+ρHn
).

SpecH(πλ) = ∪ν2∈SpecL∩K2
(πΛ2

)SpecL(V
H0

(λ1,ν2)
).

Theorem 4.2 follows after we verify the next two Lemmas.

Lemma 4.4. The hypothesis is (G,H) is a symmetric space and πλ is
H-admissible. Then

dimHomH(V
H
µ , V G

λ )

=
∑

ν2∈SpecL∩K2
(π

K2
λ2

)

mK2,L∩K2(λ2, ν2) dimHomL(V
L
µ , V H0

(λ1,ν2)
).

Proof of Lemma 4.4. The hypothesis (G,H) is a symmetric pair and
πλ is H-admissible, let us to apply notation and facts in [5], [30] as
well as in [12] [3] [9] [18]. The proof is based on an idea in [3] of pil-
ing up multiplicities by means of Dirac delta distributions. That is,
let δν denote the Dirac delta distribution at ν ∈ iu⋆. Under our hy-
pothesis, the function mG,H(λ, µ) has polynomial growth in µ, whence,
the series

∑
µm

G,H(λ, µ) δµ converges in the space of distributions in
iu⋆. Since Harish-Chandra parameter is regular, we may and will
extend the function mG,H(λ, ·) to a WL-skew symmetric function by
the rule mG,H(λ, wµ) = ǫ(w)mG,H(λ, µ), w ∈ WL. Thus, the series∑

µ∈HC−param(H) m
G,H(λ, µ)δµ converges in the space of distributions in

iu⋆. Next, for 0 6= γ ∈ iu⋆ we consider the discrete Heaviside distribu-
tion yγ :=

∑
n≥0 δ γ

2
+nγ, and for a strict, finite, multiset S = {γ1, . . . , γr}

of elements in iu⋆, we set

yS := yγ1 ⋆ · · · ⋆ yγr =
∑

µ∈iu⋆

pS(µ)δµ.

Here, ⋆ is the convolution product in the space of distributions on iu⋆.
pS is called the partition function attached to the set S. Then, in [5]
there is presented the equality

∑

µ∈HC−param(H)

mG,H(λ, µ) δµ =
∑

w∈WK

ǫ(w) δqu(wλ)⋆ySH
w
.

Here, WS is the Weyl group of the compact connected Lie group S; for
a ad(u)-invariant linear subspace R of gC, Φ(R, u) denotes the multiset
of elements in Φ(g, u) such that its root space is contained in R, and
SH
w = [qu(w(Ψλ)n) ∪∆(k/l, u)]\Φ(h/l, u).
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Since, K = K1K2, WK = WK1 × WK2, we write WK ∋ w = st, s ∈
WK1, t ∈ WK2. We recall the hypothesis yields K1 ⊂ L. It read-
ily follows: sΦ(h/l, u) = Φ(h/l, u), s∆(k/l, u) = ∆(k/l, u), t(Ψλ)n =
(Ψλ)n, tη1 = η1, sη2 = η2 for ηj ∈ kj ∩ u, squ(·) = qu(s·). Hence,

SH
w = s([qu((Ψλ)n) ∪∆(k/l, u)]\Φ(h/l, u)) = s(ΨH0

n ) ∪∆(k/l, u).

Thus,
∑

w∈WK

ǫ(w) δqu(wλ)⋆ySH
w
=

∑

s,t

ǫ(st)δqu(stλ)⋆y
s(Ψ

H0
n )∪∆(k/l,u)

=
∑

s,t

ǫ(st)δqu(s❈tλ1+❈stλ2)
⋆y

s(Ψ
H0
n )

⋆y∆(k/l,u)

=
∑

s

ǫ(s)δ(sλ1,0)⋆y
s(Ψ

H0
n )

⋆
∑

t

ǫ(t)δqu(tλ2)⋆y∆(k/l,u).

Following [12], we write the restriction of πK2

λ2
to L ∩K2 in the lan-

guage of Dirac, Heaviside distributions in iu⋆, whence
∑

t∈WK2

ǫ(t)δqu(tλ2)⋆y∆(k2/(k2∩l),u)

=
∑

ν2∈SpecL∩K2
(π

K2
λ2

)

mK2,L∩K2(λ2, ν2)
∑

w2∈WK2∩L

ǫ(w2)δ(0,w2ν2).

In the previous formula, we will apply ∆(k2/(k2 ∩ l), u) = ∆(k/l, u).
We also write in the same language the restriction to L of a Discrete
Series πH0

(λ1,ν2)
for H0. This is.

∑

ν∈iu⋆

mH0,L((λ1, ν2), ν) δν =
∑

s∈WK1
,t∈WK2∩L

ǫ(st)δst(λ1,ν2)⋆y
st(Ψ

H0
n )

.

Putting together the previous equalities, we obtain
∑

µ

mG,H(λ, µ) δµ

=
∑

ν2∈SpecL∩K2
(π

K2
λ2

)
mK2,L∩K2(λ2, ν2)

×
∑

s∈WK1
,t∈WK2∩L

ǫ(st)δ(stλ1,stν2)⋆y
st(Ψ

H0
n )

=
∑

ν(
∑

ν2∈SpecL∩K2
(π

K2
λ2

)
mK2,L∩K2(λ2, ν2)m

H0,L((λ1, ν2), ν)) δν .

Since, the family {δν}ν∈iu⋆ is linearly independent, we have shown
Lemma 4.4. �

In order to conclude the proof of the dimension equality we state
and prove a translation invariant property of multiplicity.
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Lemma 4.5. For a dominant integral µ ∈ iu⋆, it holds:

mH0,L((λ1, ν2) + ρHn , µ+ ρHn ) = mH0,L((λ1, ν2), µ).

Proof. We recall that the hypothesis of the Lemma 4.5 is: (G,H) is
a symmetric pair and πλ is H-admissible. The proof of Lemma 4.5 is
an application of Blattner’s multiplicity formula, facts from [11] and
observations from [30, Table 1,2,3]. In the next paragraphs we only
consider systems Ψλ so that resH(πλ) is admissible. We check the
following statements by means of case by case analysis and the tables
in [9] and [30].

OBS0. Every quaternionic system of positive roots that we are deal-
ing with, satisfies the Borel de Siebenthal property, except for the al-
gebra su(2, 2n) and the systems Ψ1 (see 4.6). Its Dynkin diagram is

• ◦ ◦ • . Bullet represents non compact roots, circle
compact.

OBS1. Always the systems ΨH,λ,ΨH0,λ have the same compact sim-
ple roots.

OBS2. When Ψλ satisfies the Borel de Siebenthal property, it follows
that both systems ΨH,λ,ΨH0,λ satisfy the Borel de Siebenthal property.

OBS3. Ψλ satisfies the Borel de Siebenthal property except for
two families of algebras: a) the algebra su(m,n) and the systems
Ψa, a = 1, · · · , m− 1, Ψ̃b, b = 1, · · · , n− 1, the corresponding systems
ΨH0,λ,ΨH,λ do not satisfy the Borel de Siebenthal property. They have
two noncompact simple roots; b) For the algebra so(2m, 2) each system
Ψ± does not satisfy the Borel de Siebenthal property, however, each
associated system ΨSO(2m,1),λ,ΨH0,λ satisfies the Borel de Siebenthal
property.

OBS4. For the pair (su(2, 2n), sp(1, n)). Ψ1 does not satisfy the
Borel de Siebenthal property. Here, ΨH,λ = ΨH0,λ and they have Borel
de Siebenthal property.

OBS5. Summing up. Both systems ΨH,λ,ΨH0,λ satisfy the Borel
de Siebenthal property except for (su(m,n), su(m, k) + su(n − k) +
u(1)), (su(m,n), su(k, n) + su(m− k) + u(1)) and the systems Ψa, a =
1, · · · , m− 1, Ψ̃b, b = 1, · · · , n− 1.

To continue, we explicit Blattner’s formula according to our setting,
we recall fact’s from [11] and finish the proof of Lemma 4.5 under the
assumption ΨH0,λ satisfies the property of Borel de Siebenthal. Later
on, we consider other systems.
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Blattner’s multiplicity formula applied to the L-type V L
µ+ρHn

of V H0

(λ1,ν2)+ρHn
yields

dimHomL(V
L
µ+ρHn

, V H0

(λ1,ν2)+ρHn
)(4.1)

=
∑

s∈WL

ǫ(s)Q0(s(µ+ ρHn )− ((λ1, ν2) + ρHn + ρH0
n )).

Here, Q0 is the partition function associated to the set Φn(h0)∩ΨH0,λ.
We recall a fact that allows to simplify the formula of above under

our setting.
Fact 1: [11, Statement 4.31]. For a system ΨH0,λ having the Borel de

Siebenthal property, it is shown that in the above sum, if the summand
attached to s ∈ WL contributes nontrivially, then s belongs to the
subgroup WU(ΨH0,λ) spanned by the reflections about the compact
simple roots in ΨH0,λ.

From OBS1 we have WU (ΨH0,λ) = WU(ΨH,λ). Owing that either
ΨH0,λ or ΨH,λ has the Borel de Siebenthal property we apply [11,
Lemma 3.3], whence WU (ΨH,λ) = {s ∈ WL : s(ΨH,λ ∩ Φn(h, u)) =
ΨH,λ ∩ Φn(h, u)}. Thus, for s ∈ WU(ΨH0,λ) we have sρHn = ρHn . We
apply the equality sρHn = ρHn in 4.1 and we obtain

dimHomL(V
L
µ+ρHn

, V H0

(λ1,ν2)+ρHn
) =

∑

s∈WU (ΨH0,λ
)

ǫ(s)Q0(sµ−((λ1, ν2)+ρH0
n )).

Blattner’s formula and the previous observations gives us that the right
hand side of the above equality is

dimHomL(V
L
µ , V H0

(λ1,ν2)
) = mH0,L((λ1, ν2), µ),

whence, we have shown Lemma 4.5 when ΨH0,λ has the Borel de Sieben-
thal property.

In order to complete the proof of Lemma 4.5, owing to OBS5, we
are left to consider the pair (su(m,n), su(m, k) + su(n − k) + u(1))
as well as (su(m,n), su(k, n) + su(m − k) + u(1)) and the systems
Ψa, a = 1, · · · , m − 1, Ψ̃b, b = 1, · · · , n − 1. The previous reasoning
says we are left to extend Fact 1, [11, Statement (4.31)], for the pair
(su(m,n), su(m, k)+su(n−k)+u(1)) (resp. (su(m,n), su(k, n)+su(m−
k)+u(1))) and the systems (Ψa)a=1,··· ,m−1 (resp. (Ψ̃b)b=1,··· ,n−1). Under
this setting we first verify:

Remark 4.6. If w ∈ WL and Q0(wµ − (λ + ρn)) 6= 0, then w ∈
WU(ΨH0,λ).

To show Remark 4.6 we follow [11]. We fix as Cartan subalgebra t of
su(m,n) the set of diagonal matrices in su(m,n). For certain orthogonal
basis ǫ1, . . . , ǫm, δ1, . . . , δn of the dual vector space to the subspace of
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diagonal matrices in gl(m+ n,C), we may, and will choose ∆ = {ǫr −
ǫs, δp− δq, 1 ≤ r < s ≤ m, 1 ≤ p < q ≤ n}, the set of noncompact roots
is Φn = {±(ǫr − δq)}. We recall the positive roots systems for Φ(g, t)
containing ∆ are in a bijective correspondence with the totality of
lexicographic orders for the basis ǫ1, . . . , ǫm, δ1, . . . , δn which contains
the "suborder" ǫ1 > · · · > ǫm, δ1 > · · · > δn. The two holomorphic
systems correspond to the orders ǫ1 > · · · > ǫm > δ1 > · · · > δn; δ1 >
· · · > δn > ǫ1 > · · · > ǫm. We fix 1 ≤ a ≤ m− 1, and let Ψa denote the
set of positive roots associated to the order ǫ1 > · · · > ǫa > δ1 > · · · >
δm > ǫa+1 > · · · > ǫm. We fix 1 ≤ b ≤ n−1 and let Ψ̃b denote the set of
positive roots associated to the order δ1 > · · · > δb > ǫ1 > · · · > ǫm >
δb+1 > · · · > δn. Since, h = su(n, k)+u(m−k), h0 = su(n, n−k)+u(k).
The root systems for (h, t) and (h0, t) respectively are:

Φ(h, t) = {±(ǫr − ǫs),±(δp − δq),±(ǫi − δj), 1 ≤ r < s ≤ m,

1 ≤ p < q ≤ k, or, k + 1 ≤ p < q ≤ n, 1 ≤ i ≤ m, 1 ≤ j ≤ k}.

Φ(h0, t) = {±(ǫr − ǫs),±(δp − δq),±(ǫi − δj), 1 ≤ r < s ≤ m,

1 ≤ p < q ≤ k or k + 1 ≤ p < q ≤ n, 1 ≤ i ≤ m, k + 1 ≤ j ≤ n}.

The system ΨH,λ = Ψλ ∩ Φ(h, t), ΨH0,λ = Ψλ ∩ Φ(h0, t) which corre-
spond to Ψa are the system associated to the respective lexicographic
orders

ǫ1 > · · · > ǫa > δ1 > · · · > δk > ǫa+1 > · · · > ǫm, δ1 > · · · > δn.

ǫ1 > · · · > ǫa > δk+1 > · · · > δn > ǫa+1 > · · · > ǫm, δ1 > · · · > δn.

For the time being we set k = n and we show Remark 4.6 for su(m,n)
and Ψa. Q denotes the partition function for Ψa ∩ Φn.

The subroot system spanned by the compact simple roots in Ψa is
ΦU = {ǫi − ǫj , 1 ≤ i ≤ a, 1 ≤ j ≤ a or a + 1 ≤ i ≤ m, a + 1 ≤ j ≤

m} ∪ {δi − δj , 1 ≤ i 6= j ≤ n}.
Ψa ∩ Φc\ΦU = {ǫi − ǫj , 1 ≤ i ≤ a, a+ 1 ≤ j ≤ m}.
Ψa ∩ Φn = {ǫi − δj , δj − ǫr, 1 ≤ i ≤ a, a+ 1 ≤ r ≤ m, 1 ≤ j ≤ n}.
2ρHn = n(ǫ1+· · ·+ǫa)−n(ǫa+1+· · ·+ǫm)+(a−(m−a))(δ1+· · ·+δn).
A finite sum of non compact roots in Ψa is equal a to
B =

∑
1≤j≤aAjǫj −

∑
a+1≤i≤m Biǫi +

∑
r Crδr with Aj , Bi non nega-

tive numbers.
Let w ∈ W so that Q(wµ−(λ+ρn)) 6= 0. Hence, µ = w−1(λ+ρn+B),

with B a sum of roots in Ψa ∩Φn. Thus, w−1 is the unique element in
WL that takes λ+ρn+B to the Weyl chamber determined by Ψa∩Φc.

Let w1 ∈ WU(Ψa) so that w1(λ + ρn + B) is Ψa ∩ ΦU -dominant.
Next we verify w1(λ + ρn + B) is Ψa ∩ Φc-dominant. For this, we fix
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α ∈ Ψa∩Φc\ΦU and check (w1(λ+ρn+B), α) > 0. α = ǫi−ǫj , i ≤ a < j,
and w1 ∈ WU(Ψa), hence, w−1

1 (α) = er − es, r ≤ a < s belongs to
Ψa. Thus, (w1(λ + ρn + B), α) = (λ + ρn + B,w−1

1 α) = (λ, w−1
1 α) +

(ρn, w
−1
1 α) + (B,w−1

1 α) = (λ, w−1
1 α) + n − (−n) + Ar + Bs, the first

summand is positive because λ is Ψa-dominant, the third and fourth
are nonnegative. Therefore, w−1 = w1 and we have shown Rematk 4.6,
whence, we have concluded the proof of Lemma 4.5. �

Lemma 4.7. We recall ρGn = ρλn and Λ2 = λ2 + (ρGn )2. We claim:
mK2,L∩K2(Λ2, ν2) = mK2,L∩K2(λ2, ν2).

In fact, when Ψλ is holomorphic, ρGn is in zk = k1 hence (ρGn )2 = 0.
In [30] it is shown that when K is semisimple (ρGn )2 = 0. Actually, this
is so, owing that the simple roots for Ψλ ∩ Φ(k2, t2) are simple roots
for Ψλ and that ρGn is orthogonal to every compact simple root for Ψλ.
For general g, the previous considerations together with that (ρGn )2 is
orthogonal to k1 yields that (ρGn )2 belongs to the dual of the center of
l ∩ k2. From Tables 1,2,3 we deduce we are left to analyze (ρGn )2 for
su(m,n), so(m, 2). For so(m, 2) we follow the notation in 4.0.3, then
t1 = span(e1, . . . , em), t2 = span(δ1) and ρΨ±m

n = c(e1 + · · ·+ em) ∈ t1.
For su(m,n) we follow the notation in Lemma 4.5. It readily follows
that for 1 ≤ a < m, ρΨa

n = n
m
((m − a)(e1 + · · · + ea) − a(ea+1 +

· · · + em)) +
2a−m
2m

((n(e1 + · · · + em) − m(d1 + · · · + dn)). The first
summand is in t ∩ su(m), the second summand belongs to zk, thus,
(ρΨa

n )2 = 0 if and only if 2a = m. Whence, for (su(2, m), sp(1, m)),
we have (ρΨ1

n )2 = 0. For (su(m,n), su(m, k) + su(n− k) + zl), always,
(ρΨa

n )2 determines a character of the center of k. In this case, λ2 = Λ2

except for (su(m,n), su(m, k) + su(n− k) + zl),Ψa and a 6= 2m, hence,
πK2
Λ2

is equal to πK2
λ2

times a central character of K. Thus, the equality
holds.

4.0.1. Conclusion proof of Theorem 4.2. We just put together Lemma 4.5,
Lemma 4.4 and Lemma 4.7, hence, we obtain the equalities we were
searching for. This concludes the proof of Theorem 4.2.

4.0.2. Existence of D. To follow we show the existence of the isomor-
phism D in Theorem 4.2 i) and derive the decomposition into irre-
ducible factors of the semisimple h0-module U(h0)W . On the mean
time, we also consider some particular cases of Theorem 4.2. Before,
we proceed we comment on the structure of the representation τ .

4.0.3. Representations πλ so that resL(τ) is irreducible. Under our H-
admissibility hypothesis of πλ we analyze the cases so that the represen-
tation resL(τ) is irreducible. The next structure statements are verified
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in [30]. To begin with, we recall the decomposition K = K1ZKK2, (this
is not a direct product!, ZK connected center of K) and the direct prod-
uct K = K1K2, we also recall that actually, either K1 or K2 depend on
Ψλ. When πλ is a holomorphic representation K1 = ZK and k2 = [k, k];
when, ZK is nontrivial and πλ is not a holomorphic representation we
have ZK ⊂ K2; for g = su(m,n), h = su(m, k) + su(n − k) + zL, we
have T ≡ ZK ⊂ ZL ≡ T

2. Here, ZK ⊂ L, and, τ|L irreducible, forces

τ = π
SU(m)
Λ1

⊠ πZK
χ ⊠ π

SU(n)
ρSU(n) ; for g ≇ su(m,n) and G/K a Hermitian

symmetric space, we have to consider the next two examples.
For both cases we have K2 = ZK(K2)ss and ZK * L.
1) When g = so(m, 2), h = so(m, 1) and Ψλ = Ψ±m, then k1 = so(m),

k2 = zK and obviously resL(τ) is always an irreducible representation.
Here, πK2

Λ2
is one dimensional representation.

2) When g = su(2, n), h = sp(1, n), Ψλ = Ψ1, then k1 = su2(αmax),
k2 = sp(n) + zk, L = K1(L ∩ (K2)ss). Here, τ|L irreducible forces,

τ = πK1
Λ1

⊠ πZK
χ ⊠ π

(K2)ss
ρ(K2)ss

.

We would like to point out, for g = so(2m, 2n), h = so(2m, 2n −
1), n > 1, Ψλ ∩ Φn = {ǫi ± δj}, k1 = so(2m), and if λ is so that
λ + ρλn = ic(τ) = (

∑
ciǫi, k(δ1 + · · · + δn−1 ± δn)) + ρK , then resL(τ)

is irreducible and πK2
Λ2

= πK2

k(δ1+···+δn−1±δn)+ρK2
is not a one dimensional

representation for k > 0. It follows from the classical branching laws
that these are the unique τ ′s such that resL(τ) is irreducible.

We believe, if resL(τ) is irreducible and g ≇ so(2m, 2n) we may
conclude that τ is the tensor product of a irreducible representation
of K1 times a one dimensional representation of K2. That is, τ ≡

πK1
Λ1

⊠ πK2
ρK2

⊗ π
ZK2
χ .

In 5.3.1 we show that whenever a symmetric pair (G,H) is so that
some Discrete Series is H-admissible, then there exists H-admissible
Discrete Series so that its lowest K-type restricted to L is irreducible.

4.0.4. Analysis of U(h0)W , Lλ, existence of D, case τ|L is irreducible.
As before, our hypothesis is (G,H) is a symmetric space and πG

λ is
H-admissible. For this paragraph we add the hypothesis τ|L = resL(τ)
is irreducible. We recall that U(h0)W = LU(h0)(H

2(G, τ)[W ]), Lλ =
⊕µ∈SpecH(πλ)H

2(G, τ)[V H
µ ][V L

µ+ρµn
]. We claim:

a) if a H-irreducible discrete factor of Vλ contains a copy of τ|L, then
τ|L is the lowest L-type of such factor.

b) the multiplicity of resL(τ) in H2(G, τ) is one.
c) Cl(U(h0)W ) is equivalent to H2(H0, τ).
d) Lλ is equivalent to H2(H0, τ)L−fin.
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e) Lλ is equivalent to U(h0)W . Thus, D exists.

We rely on:

Remark 4.8. 1) Two Discrete Series are equivalent if and only if their
respective lowest L-types are equivalent. [31].

2) For any Discrete Series πλ, the highest weight (resp. infinitesimal
character) of any K-type is equal to the highest weight of the lowest
K-type (resp. the infinitesimal character of the lowest K-type) plus a
sum of noncompact roots in Ψλ [27, Lemma 2.22].

From now on ic(φ) denotes the infinitesimal character (Harish-Chandra
parameter) of the representation φ

Let V H
µ a discrete factor for resH(πλ) so that τ|L is a L-type. Then,

Theorem 4.2 implies Vµ+ρHn
is a L-type for H2(H0, τ). Hence, after we

apply Remark 4.8, we obtain
µ+ ρHn +B1 = ic(τ|L) with B1 a sum of roots in ΨH,λ ∩ Φn.
µ+ ρHn = ic(τ|L) +B0 with B0 a sum of roots in ΨH0,λ ∩ Φn.
Thus, B0 + B1 = 0, whence B0 = B1 = 0 and µ + ρHn = ic(τ|L), we

have verified a).
Due to H-admissibility hypothesis, we have U(h)W is a finite sum of

irreducible underlying modules of Discrete Series for H . Now, Corol-
lary 1 to Lemma 3.6, yields that a copy of a V H

µ contained in U(h)W
contains a copy of Vλ[W ]. Thus, a) implies τ|L is the lowest L-type
of such V H

µ . Hence, H2(H, τ) is nonzero. Now, Theorem 4.2 to-
gether with that the lowest L-type of a Discrete Series has multi-
plicity one yields that dimHomH(H

2(H, τ), Vλ) = 1. Also, we ob-
tain dimHomH0(H

2(H0, τ), Vλ) = 1. Thus, whenever τ|L occurs in
resL(Vλ), we have τ|L is realized in Vλ[W ]. In other words, the isotypic
compoent Vλ[τ|L] ⊂ Vλ[W ]. Hence, b) holds.

Owing our hypothesis, we may write U(h0)W = N1 + ... +Nk, with
each Nj being the underlying Harish-Chandra module of a irreducible
square integrable representation for H0. Since Lemma 3.6 shows r0
is injective in U(h0)W , we have r0(Cl(Nj)) is a Discrete Series in
L2(H0 ×resL(τ) W ), whence Frobenius reciprocity implies τ|L is a L-
type for Nj . Hence, b) and a) forces U(h0)W is h0-irreducible and c)
follows.

By definition, the subspace Lλ is the linear span of Vλ[V
H
µ ][V L

µ+ρHn
]

with µ ∈ SpecH(πλ). Since, dimVλ[V
H
µ ][V L

µ+ρHn
] = dimHomH(V

H
µ , Vλ)

= dimHomL(V
L
µ+ρHn

, H2(H0, τ)) = dim H2(H0, τ)[V
L
µ+ρHn

], and, both L-

modules are isotypical, and it follows d). Finally, e) follows from c) and
d).
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Under the assumption πK2
Λ2

is the trivial representation, the formulae
in Theorem 4.2 becomes:

dimHomH(V
H
µ , V G

λ ) = dimHomL(V
L
µ+ρHn

, V H0

(λ1,ρK2∩L)+ρHn
)

= dimHomL(V
L
µ+ρHn

, H2(H0, τ)) = dimHomL(V
L
µ , V H0

(λ1,ρK2∩L)
),

the infinitesimal character of H2(H0, τ) is (λ1 + ρλn, ρK2∩L) − ρH0
n =

(λ1, ρK2∩L) + ρHn . Thus, H2(H0, τ) ≡ V H0

(λ1,ρK2∩L)+ρHn
.

4.0.5. Analysis of U(h0)W , Lλ, existence of D, for general (τ,W ).
We recall that by definition, Lλ = ⊕µ∈SpecH(πλ)H

2(G, τ)[V H
µ ][V L

µ+ρµn
],

U(h0)W = LU(h0)(H
2(G, τ)[W ]).

Proposition 4.9. The hypothesis is: (G,H) is a symmetric pair and
πλ a H-admissible square integrable representation of lowest K-type
(τ,W ). We write

resL(τ) = q1σ1 + · · ·+ qrσr, with (σj , Zj) ∈ L̂, qj > 0. Then,
a) if a H-irreducible discrete factor for resH(πλ) contains a copy of

σj, then σj is the lowest L-type of such factor.
b) the multiplicity of σj in resL(H

2(G, τ)) is equal to qj.
c) r0 : Cl(U(h0)W ) → H

2(H0, τ) is a equivalence.
d) Lλ is L-equivalent to H

2(H0, τ)L−fin.
e) Lλ is L-equivalent to U(h0)W . Whence, D exists.

Proof. Let V H
µ a discrete factor for resH(πλ) so that some irreducible

factor of τ|L is a L-type. Then, Theorem 4.2 implies V L
µ+ρHn

is a L-type

for H
2(H0, τ) = ⊕jqjH

2(H0, σj). Let’s say V L
µ+ρHn

is a subrepresenta-

tion of H2(H0, σi). We recall ic(φ) denotes the infinitesimal character
(Harish-Chandra parameter) of the representation φ. Hence, after we
apply Remark 4.8 we obtain
µ+ ρHn +B1 = ic(σj) with B1 a sum of roots in ΨH,λ ∩ Φn.
µ+ ρHn = ic(σi) +B0 with B0 a sum of roots in ΨH0,λ ∩ Φn.
Thus, B0 + B1 = ic(σj) − ic(σi). Now, since k = k1 + k2, k1 ⊂ l,

τ = πK1
Λ1

⊠πK2
Λ2

, we may write σs = πK1
Λ1

⊠φs, with φs ∈ L̂ ∩K2, whence,
ic(σj) − ic(σi) = ic(φj) − ic(φi). Since, each φt is a irreducible factor

of resL∩K2(π
K2
Λ2

), we have ic(φj) − ic(φi) is equal to the difference of
two sum of roots in Φ(k2, t∩ k2). The hypothesis forces that the simple
roots for Ψλ ∩ Φ(k2, t ∩ k2) are compact simple roots for Ψλ (see [5])
whence ic(σj)− ic(σi) is a linear combination of compact simple roots
for Ψλ. On the other hand, B0 + B1 is a sum of noncompact roots in
Ψλ. Now B0 + B1 can not be a linear combination of compact simple
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roots, unless B0 = B1 = 0. Whence, ic(σi) = ic(σj) and Zj ≡ V L
σj

is

the lowest L-type of V H
µ , we have verified a).

Due to H-admissibility hypothesis, we have U(h)W is a finite sum of
irreducible underlying Harish-Chandra modules of Discrete Series for
H . Thus, a copy of certain V H

µ contained in U(h)W contains W [σj].

Whence, σj is the lowest L-type of such V H
µ . Whence, H2(H, σj) is

nonzero and it is equivalent to a subrepresentation of Cl(U(h)W ).
We claim, for i 6= j, no σj is a L-type of Cl(U(h)W )[H2(H, σi)].
Indeed, if σj were a L-type in Cl(U(h)W )[H2(H, σi)], then, σj would

be a L-type of a Discrete Series of lowest L-type equal to σi, according
to a) this forces i = j, a contradiction. Now, we compute the multiplic-
ity of H2(H, σj) in H2(G, τ). For this, we apply Theorem 4.2. Thus,
dimHomH(Vλ, H

2(H, σj)) =
∑

i qi dimHomL(σj , H
2(H, σi)) = qj

In order to realize the isotypic component corresponding to H2(H, σj)
we write Vλ[W ][σj ] = R1 + · · · + Rqj a explicit sum of L-irreducibles
modules. Then, owing to a), LU(h)(Rr) contains a copy Nr of H2(H, σj)
and Rr is the lowest L-type of Nr. Therefore, the multiplicity compu-
tation yields H2(G, τ)[H2(H, σj)] = N1 + · · · + Nqj . Hence, b) holds.
A corollary of this computation is:

HomH(H
2(H, σj), (Cl(U(h)W ))⊥) = {0}.

Verification of c). After we recall Lemma 3.6, we have r0 : Cl(U(h0) →
L2(H0×τW ) is injective and we apply to the algebra h := h0, the state-
ment b) together with the computation to show b), we make the choice
of the q′js subspaces Zj as a lowest L-type subspace of W [Zj]. Thus,

the image via r0 of U(h0)Zj is a subspace of L2(H0 × σj). Since, ei-
ther Atiyah-Schmid or Enright-Wallach [6] have shown H2(H0, σj) has
multiplicity one in L2(H0 × σj) we obtain the image of r0 is equal to
H

2(H0, τ).
The proof of d) and e) are word by word as the one for 4.0.4. �

Corollary 4.10. The multiplicity of H2(H, σj) in resH(H
2(G, τ)) is

equal to
qj = dimHomL(σj , H

2(G, τ)).

Corollary 4.11. For each σj, Lλ[Zj] = Cl(U(h0)W )[Zj] = H2(G, τ)[W ][Zj] =
”W”[Zj]. Thus, we may fix D = I”W”[Zj ] : Lλ[Zj] → Cl(U(h0)W )[Zj].

4.1. Explicit inverse map to rD0 . We consider three cases: resL(τ)
is irreducible, resL(τ) is multiplicity free, and general case. Formally,
they are quite alike, however, for us it has been illuminating to consider
the three cases. As a byproduct, we obtain information on the compo-
sitions r⋆r, r⋆0r0; a functional equation that must satisfy the kernel of
a holographic operator; for some particular discrete factor H2(H, σ) of
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resH(πλ) the reproducing kernel for H2(G, τ) is a extension of the re-
producing kernel for H2(H, σ) as well as that the holographic operator
from H2(H, σ) into H2(G, τ) is just plain extension of functions.

4.1.1. Case (τ,W ) restricted to L is irreducible. In Tables 1,2,3, we
show the list of the triples (G,H, πλ) such that (G,H) is a symmetric
pair, and πλ is H-admissible. In 5.3.1 we show that if there exists
(G,H, πλ) so that πλ is H-admissible, then there exists a H-admissible
πλ′ so that its lowest K-type restricted to L is irreducible and λ′ is
dominant with respect to πλ. We denote by η0 the Harish-Chandra
parameter for H2(H0, τ) ≡ Cl(U(h0)W ).

We set c = d(πλ)dimW/d(πH0
η0 ). Next, we show

Proposition 4.12. We assume the setting as well as the hypothesis in
Theorem 3.1, and further (τ,W ) restricted to L is irreducible.
Let T0 ∈ HomL(Z,H

2(H0, τ)), then the kernel KT corresponding to
T := (rD0 )

−1(T0) ∈ HomH(H
2(H, σ), H2(G, τ)) is

KT (h, x)z = (D−1[

∫

H0

1

c
Kλ(h0, ·)(T0(z)(h0))dh0])(h

−1x).

Proof. We systematically apply Theorem 4.9. Under our assumptions,
we have: H

2(H0, τ) is a irreducible representation and H
2(H0, τ) =

H2(H0, τ);
Cl(U(h0)(H

2(G, τ)[W ])) is H0-irreducible; We define
r̃0 := rest(r0) : Cl(U(h0)H

2(G, τ)[W ]) → H2(H0, τ) is a isomorphism.
To follow, we notice the inverse of r̃0, is up to a constant, equal to
r⋆0 restricted to H2(H0, τ). This is so, because functional analysis
yields the equalities Cl(Im(r⋆0)) = ker(r0)

⊥ = Cl(U(h0)W ), Ker(r⋆0) =
Im(r0)

⊥ = H2(H0, τ)
⊥. Thus, Schur’s lemma applied to the irreducible

modules H2(H0, τ),Cl(U(h0)W ) implies there exists non zero constants
b, d so that (r̃0r

⋆
0)|H2(H0,τ)

= bIH2(H0,τ), r
⋆
0 r̃0 = dICl(U(h0)W ). Whence, the

inverse to r̃0 follows. In 4.1.2, we show b = d = d(πλ)dimW/d(πH0
η0

) = c.

For x ∈ G, f ∈ H2(G, τ), the identity f(x) =
∫
G
Kλ(y, x)f(y)dy

holds. Thus, r0(f)(p) = f(p) =
∫
G
Kλ(y, p)f(y)dy, for p ∈ H0, f ∈

H2(G, τ), and, we obtain

Kr0(x, h0) = Kλ(x, h0), Kr∗0
(h0, x) = Kr0(x, h0)

⋆ = Kλ(h0, x).

Hence, for g ∈ H2(H0, τ) we have,
r̃−1
0 (g)(x) = 1

c

∫
H0

Kr⋆0
(h0, x)g(h0)dh0 =

1
c

∫
H0

Kλ(h0, x)g(h0)dh0.

Therefore, for T0 ∈ HomL(Z,H
2(H0, τ)), the kernel KT of the ele-

ment T in HomH(H
2(H, σ), H2(G, τ)) such that rD0 (T ) = T0, satisfies

for z ∈ Z

D−1([r−1
0 (T0(z)(·))])(·) = KT (e, ·)z ∈ V G

λ [H2(H, σ)][Z] ⊂ H2(G, τ).
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More explicitly, after we recall KT (e, h
−1x) = KT (h, x),

KT (h, x)z = (D−1[

∫

H0

1

c
Kλ(h0, ·)(T0(z)(h0))dh0])(h

−1x).

�

Corollary 4.13. For any T in HomH(H
2(H, σ), H2(G, τ)) we have

KT (h, x)z = (D−1[

∫

H0

1

c
Kλ(h0, ·)(r0(D(KT (e, ·)z))(h0))dh0])(h

−1x).

Corollary 4.14. When D is the identity map, we obtain

KT (h, x)z =

∫

H0

1

c
Kλ(h0, h

−1x)(T0(z)(h0))dh0

=

∫

H0

1

c
Kλ(hh0, x)KT (e, h0)zdh0.

The equality in the conclusion of Proposition 4.12 is equivalent to
D(KT (e, ·))(y) =

∫
H0

1
c
Kλ(h0, y)D(KT (e, ·))(h0)dh0, y ∈ G.

Whence, we have derived a formula that let us to recover the kernel KT

(resp. D(KT (e, ·))(·)) from KT (e, ·) (resp. D(KT (e, ·))(·)) restricted to
H0!

Remark 4.15. We notice,

(4.2) r⋆0r0(f)(y) =

∫

H0

Kλ(h0, y)f(h0)dh0, f ∈ H2(G, τ), y ∈ G.

Since we are assuming τ|L is irreducible, we have Cl(U(h0)W ) is ir-
reducible, hence, Lemma 3.6 let us to obtain that a scalar multiple of
r⋆0r0 is the orthogonal projector onto the irreducible factor Cl(U(h0)W .

Whence, the orthogonal projector onto Cl(U(h0)W ) is given by
d(π

H0
η0

)

d(πλ)dimW
r⋆0r0.

Thus, the kernel Kλ,η0 of the orthogonal projector onto Cl(U(h0)W )
is

Kλ,η0(x, y) :=
d(π

H0
η0

)

d(πλ)dimW

∫
H0

Kλ(p, y)Kλ(x, p)dp.

Doing H := H0 we obtain a similar result for the kernel of the
orthogonal projector onto Cl(U(h)W ).

The equality (r0r
⋆
0)|H2(H0,τ)

= cIH2(H0,τ) yields the first claim in:

Proposition 4.16. Assume resL(τ) is irreducible. Then,
a) for every g ∈ H2(H0, τ|L) (resp. g ∈ H2(H, τ|L)), the function r⋆0(g)
(resp. r⋆(g)), is an extension of a scalar multiple of g.
b) The kernel KG

λ is a extension of a scalar multiple of KH
τ|L

.
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When we restrict holomorphic Discrete Series, this fact naturally
happens, see [22], [25, Example 10.1] and references therein.

Proof. Let r : H2(G, τ) → L2(H ×τ W ) the restriction map. The du-
ality H,H0, and Theorem 3.1 applied to H := H0 implies H2(H, τ) =
r(Cl(U(h)W )), as well as that there exists, up to a constant, a unique
T ∈ HomH(H

2(H, τ), H2(G, τ)) ≡ HomL(W,H2(H, τ)) ≡ C. It fol-
lows from the proof of Proposition 4.12, that, up to a constant, T = r∗

restricted to H2(H, τ). After we apply the equality T (KH
µ (·, e)⋆z)(x) =

KT (e, x)z, (see [24]), we obtain,
r⋆(KH

µ (·, e)∗z)(y) = Kλ(y, e)
⋆z.

Also, Schur’s lemma implies rr∗ restricted to H2(H, τ) is a constant
times the identity map. Thus, for h ∈ H , we have rr∗(KH

µ (·, e)⋆w)(h) =

qKH
µ (h, e)⋆w. For the value of q see 4.1.2. Putting together, we obtain,

Kλ(h, e)
⋆z = r(Kλ(·, e)

⋆z)(h) = qKH
µ (h, e)⋆z.

Whence, for h, h1 ∈ H we have
Kλ(h1, h)

⋆z = Kλ(h
−1h1, e)

⋆z = qKH
µ (h−1h1, e)

⋆z = qKH
µ (h1, h)

⋆z
as we have claimed. �

By the same token, after we set H := H0 we obtain:

For resL(τ) irreducible, (σ, Z) = (resL(τ),W ), and V H0
η0 = H2(H0, σ),

the kernel Kλ extends a scalar multiple of KH0
η0

. Actually, r0(Kλ(·, e)
⋆w) =

cKH0
η0 (·, e)

⋆w.

Remark 4.17. We would like to point out that the equality
r⋆(KH

µ (·, e)∗(z))(y) = qKλ(y, e)
⋆z

implies resH(πλ) is H-algebraically discretely decomposable. Indeed,
we apply a Theorem shown by Kobayashi [16, Lemma 1.5], the Theo-
rem says that when (V G

λ )K−fin contains an irreducible (h, L) irreducible
submodule, then Vλ is discretely decomposable. We know Kλ(y, e)

⋆z
is a K-finite vector, the equality implies Kλ(y, e)

⋆z is z(U(h))-finite.
Hence, owing to Harish-Chandra [32, Corollary 3.4.7 and Theorem
4.2.1], H2(G, τ)K−fin contains a nontrivial irreducible (h, L)-module
and the fact shown by Kobayashi applies.

4.1.2. Value of b = d = c when resL(τ) is irreducible. We show b = d =
d(πλ)dimW/d(πH0

η0
) = c. In fact, the constant b, d satisfies (r⋆0r0)U(h0)W =

dIU(h0)W , (r0r
⋆
0)|H2(H0,τ)

= bIH2(H0,τ). Now, it readily follows b = d. To

evaluate r⋆0r0 at Kλ(·, e)
⋆w, for h1 ∈ H0 we compute, for h1 ∈ H0,

bKλ(h1, e)
⋆w = r∗0r0(Kλ(·, e)

⋆w)(h1) =
∫
H0

Kλ(h0, h1)Kλ(h0, e)
⋆dh0w

= d(πλ)
2
∫
H0

Φ(h−1
1 h0)Φ(h0)

⋆dh0w.
Here, Φ is the spherical function attached to the lowest K-type of
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πλ. Since, we are assuming resL(τ) is a irreducible representation,
we have U(h0)W is a irreducible (h0, L)-module and it is equivalent to
the underlying Harish-Chandra module for H2(H0, resL(τ)). Thus, the
restriction of Φ to H0 is the spherical function attached to the lowest L-
type of the irreducible square integrable representation Cl(U(h0)W ) ≡
H2(H0, resL(τ)). We fix a orthonormal basis {wi} for U(h0)W [W ]. We
recall,
Φ(x)w = PWπ(x)PWw =

∑
1≤i≤dimW (π(x)w,wi)L2wi,

Φ(x−1) = Φ(x)⋆.
For h1 ∈ H0, we compute, to justify steps we appel to the invariance

of Haar measure and to the orthogonality relations for matrix coef-
ficients of irreducible square integrable representations and we recall
d(πH0

η0
) denotes the formal degree for H2(H0, resL(τ)).

∫

H0

Φ(h−1
1 h)Φ(h)⋆wdh =

∑

i,j

∫

H0

(π(h−1
1 h)wj, wi)L2(π(h−1)w,wj)L2wi

=
∑

i,j

∫

H0

(π(h)wj, h1wi)L2(π(h)wj, w)L2wi

= 1/d(πH0
η0

)
∑

i,j

(wj, wj)L2(h1wi, w)L2

= dimW/d(πH0
η0 )

∑

i

(h−1
1 w,wi)L2wi

= dimW/d(πH0
η0 )Φ(h1)

⋆w.

Thus,

r⋆0r0(Kλ(·, e)
⋆w)(h1) = d(πλ)

2

∫

H0

Φ(h−1
1 h)Φ(h)⋆wdh

= d(πλ)
2dimW/d(πH0

η0 )/d(πλ)Kλ(h1, e)
⋆w.

The functions Kλ(·, e)
⋆w, r⋆0r0(Kλ(·, e)

⋆w)(·) belong to Cl(U(h0)W ),
the injectivity of r0 on Cl(U(h0)W ), forces, for every x ∈ G

r⋆0r0(Kλ(·, e)
⋆w)(x) = d(πλ)dimW/d(πH0

η0 )Kλ(x, e)
⋆w.

Hence, we have computed b = d = c.

4.1.3. Analysis of rD0 for arbitrary (τ,W ), (σ, Z). We recall the decom-
position W =

∑
ν2∈SpecL∩K2

(π
K2
Λ2

)
W [πK1

Λ1
⊠ πL∩K2

ν2
].

A consequence of Proposition 4.9 is that r⋆0 maps H
2(H0,W [πK1

Λ1
⊠

πL∩K2
ν2

]) into Cl(U(h0)W [πK1
Λ1

⊠πL∩K2
ν2

]). In consequence, r0r
⋆
0 restricted

to H
2(H0,W [πK1

Λ1
⊠πL∩K2

ν2 ]) is a bijective H0-endomorphism Cj. Hence,

the inverse map of r0 restricted to Cl(U(h0)W [πK1
Λ1

⊠ πL∩K2
ν2

]) is r⋆0C
−1
j .
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Since, H2(H0, π
K1
Λ1

⊠ πL∩K2
ν2

) has a unique lowest L-type, we conclude

Cj is determined by an element of HomL(π
K1
Λ1

⊠ πL∩K2
ν2

, H2(H, πK1
Λ1

⊠

πL∩K2
ν2

)[πK1
Λ1

⊠πL∩K2
ν2

]). Since for D ∈ U(h0), w ∈ W we have Cj(LDw) =
LDCj(w), we obtain Cj is a zero order differential operator on the

underlying Harish-Chandra module of H2(H0, π
K1
Λ1

⊠πL∩K2
ν2

). Summing
up, we have that the inverse to r0 : Cl(U(h0)W ) → H

2(H0, τ) is the
function r⋆0(⊕jC

−1
j ).

For T ∈ HomH(H
2(H, σ), H2(G, τ)) and T0 ∈ HomL(Z,H

2(H, τ)) so
that rD0 (T ) = T0 we obtain the equalities

KT (e, x)z = (D−1[
∫
H0

Kλ(h0, ·)((⊕jC
−1
j )T0(z))(h0)dh0])(x).

KT (h, x)z

= (D−1[

∫

H0

Kλ(h0, ·)

× ((⊕jC
−1
j )(r0(D(KT (e, ·)z))(·))(h0)dh0])(h

−1x).

When D is the identity the formula simplifies as the one in the second
Corollary to Proposition 4.12.

4.1.4. Eigenvalues of r⋆0r0. For general case, we recall r⋆0r0 intertwines
the action of H0. Moreover, Proposition 4.9 and its Corollary gives
that for each L-isotypic component Z1 ⊆ W of resL(τ), we have
U(h0)W [Z1] = Z1. Thus, each isotypic component of resL((U(h0)W )[W ])
is invariant by r∗0r0, in consequence, r⋆0r0 leaves invariant the sub-
space ”W” = H2(G, τ)[W ] = {Kλ(·, e)

⋆w,w ∈ W}. Since, Ker(r0) =
(Cl(U(h0)W ))⊥, we have r⋆0r0 is determined by the values it takes on
”W”. Now, we assume resL(τ) is a multiplicity free representation, we
write Z⊥

1 = Z2 ⊕ · · · ⊕ Zq, where Zj are L-invariant and L-irreducible.
Thus, Proposition 4.9 implies Cl(U(h0)W ) = Cl(U(h0)Z1) ⊕ · · · ⊕
Cl(U(h0)Zq). This a orthogonal decomposition, each summand is irre-
ducible and no irreducible factor is equivalent to other. For 1 ≤ i ≤ q,
let ηi denote the Harish-Chandra parameter for Cl(U(h0)Zi).

Proposition 4.18. When resL(τ) is a multiplicity free representation,

the linear operator r⋆0r0 on Cl(U(h0)Zi) is equal to d(πλ)dimZi

d(π
H0
ηi

)
times the

identity map.

Proof. For the subspace Cl(U(h0)W )[W ], we choose a L2(G)-orthonor-
mal basis {wj}1≤j≤dimW equal to the union of respective L2(G)-ortho-
normal basis for Cl(U(h0)Zi)[Zi]. Next, we compute and freely make
use of notation in 4.1.2. Owing to our multiplicity free hypothesis,
we have that r⋆0r0 restricted to Cl(U(h0)Zi) is equal to a constant di
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times the identity map. Hence, on w ∈ Cl(U(h0)Zi)[Zi] we have diw =
d(πλ)

2
∫
H0

Φ(h0)Φ(h0)
⋆wdh0.

Now, Φ(h0) = (aij) = ((πλ(h0)wj, wi)L2(G)), Whence, the pq-coefficient
of the product Φ(h0)Φ(h0)

⋆ is equal to∑
1≤j≤dimW (πλ(h0)wj, wp)L2(G)(πλ(h0)wq, wj)L2(G)

Let Ii denote the set of indexes j so that wj ∈ Zi. Thus, {1, . . . , dimW}
is equal to the disjoint union ∪1≤i≤qIi. A consequence of Proposition 4.9
is the L2(G)-orthogonality of the subspaces Cl(U(h0)Zj), hence, for
t ∈ Ia, q ∈ Id and a 6= d we have (πλ(h0)wq, wt)L2(G) = 0. There-
fore, the previous observation and the disjointness of the sets Ir, let us
obtain that for i 6= d, p ∈ Ii, q ∈ Id each summand in∑

1≤j≤dimW

∫
H0
(πλ(h0)wj, wp)L2(G)(πλ(h0)wq, wj)L2(G)dh0

is equal to zero.
For p, q ∈ Ii, we apply the previous computation and the orthogonal-

ity relations to the irreducible representation Cl(U(h0)Zi. We obtain∑
1≤j≤dimW

∫
H0
(πλ(h0)wj, wp)L2(G)(πλ(h0)wq, wj)L2(G)dh0

=
∑

j∈Ii

∫
H0
(πλ(h0)wj, wp)L2(G)(πλ(h0)wq, wj)L2(G)dh0

=
∑

j∈Ii
1

d(π
H0
ηi

)
(wj, wq)L2(G)(wj, wp)L2(G) =

dimZi

d(π
H0
ηi

)
.

Thus, we have shown Proposition 4.18. �

Remark 4.19. Even, when resL(τ) is not multiplicity free, the conclu-
sion in Proposition 4.18 holds. In fact, let us denote the L-isotypic
component of resL(τ) again by Zi. Now, the proof goes as the one for
Proposition 4.18 till we need to compute
=

∑
j∈Ii

∫
H0
(πλ(h0)wj, wp)L2(G)(πλ(h0)wq, wj)L2(G)dh0

For this, we decompose ”Zi” =
∑

s Zi,s as a L2(G)-orthogonal sum
of irreducible L-modules and we choose the orthonormal basis for ”Zi”
as a union of orthonormal basis for each Zi,s. Then, we have the L2(G)-
orthogonal decomposition Cl(U(h0)Zi) =

∑
s Cl(U(h0)Zi,s). Then, the

proof follows as in the case resL(τ) is multiplicity free.

5. Examples

We present three type of examples. The first is: Multiplicity free
representations. A simple consequence of the duality theorem is that it
readily follows examples of symmetric pair (G,H) and square integrable
representation πG

λ so that resH(πλ) is H-admissible and the multiplicity
of each irreducible factor is one. This is equivalent to determinate when
the representation resH(H

2(H0, τ)) is multiplicity free. The second is:
Explicit examples. Here, we compute the Harish-Chandra parameters
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of the irreducible factors for some resH(H
2(G, τ)). The third is: Exis-

tence of representations so that its lowest K-types restricted to L is a
irreducible representation.

In order to present the examples we need information on certain
families of representations.

5.1. Multiplicity free representations. In this paragraph we gener-
alize work of T. Kobayashi and his coworkers in the setting of Hermitian
symmetric spaces and holomorphic Discrete Series.

Before we present the examples, we would like to comment.

a) Assume a Discrete Series πλ has admissible restriction to a sub-
group H . Then, any Discrete Series πλ′ for λ′ dominant with respect
to Ψλ is H-admissible [15].

b) If resH(πλ) is H-admissible and a multiplicity free representation.
Then the restriction to L of the lowest K-type for πλ is multiplicity
free. This follows from the duality theorem.

c) In the next paragraphs we will list families F of Harish-Chandra
parameters of Discrete Series for G so that each representation in the
family has multiplicity free restriction to H . We find that it may
happen that F is the whole set of Harish-Chandra parameters on a
Weyl chamber or F is a proper subset of a Weyl Chamber. Information
on F for holomorphic reprentations is in [18], [19].

d) Every irreducible (g, K)-module for either g ≡ su(n, 1) or g ≡
so(n, 1), restricted to K, is a multiplicity free representation.

5.1.1. Holomorphic representations. For G so that G/K is a Hermit-
ian symmetric space, it has been shown by Harish-Chandra that G
admits Discrete Series representations with one dimensional lowest K-
type. For this paragraph we further assume that the smooth imbedding
H/L → G/K is holomorphic, equivalently the center of K is contained
in L, and πλ is a holomorphic representation. Under this hypothe-
sis, it was shown by Kobayashi [17] that a holomorphic Discrete Series
for G has a multiplicity free restriction to the subgroup H whenever
the it is a scalar holomorphic Discrete Series. Moreover, in [17, The-
orem 8.8] computes the Harish-Chandra parameter of each irreducible
factor. Also, from the work of Kobayashi and Nakahama we find a
description of the restriction to H of a arbitrary holomorphic Discrete
Series representations. As a consequence, we find restrictions which
are not multiplicity free.

In [19] we find a complete list of the pairs (g, h) so that H/L → G/K
is a holomorphic embedding. From the list in [17], it can be constructed
the list bellow.
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Also, Theorem 3.1 let us verify that the following pairs (g, h) are so
that resH(πλ) is multiplicity free for any holomorphic πλ. For this, we
list the corresponding h0.
(su(m,n), u(u(m− 1, n) + u(1))), h0 = su(1, n) + su(m− 1) + u(1).
(su(m,n), s(u(m,n− 1) + u(1))), h0 = su(n− 1) + su(m, 1) + u(1).
(so(2m, 2), u(m, 1)), h0 = u(m, 1).
(so⋆(2n), so⋆(2) + so⋆(2n− 2)), h0 = u(1, n− 1).
(sp(n,R), sp(n− 1,R) + sp(1,R)), h0 = u(1, n− 1).
(e6(−14), so

⋆(10) + so(2)), h0 = su(5, 1) + sl2(R) (Prasad).
The list is correct, owing to any Discrete Series for SU(n, 1) restricted

to K is a multiplicity free representation.

5.1.2. Quaternionic real forms, quaternionic representations. In [9],
the authors considered and classified quaternionic real forms as well
as they made a careful study of quaternionic representations. To fol-
low we bring out the essential facts for us. From [9] we read that the
list of Lie algebra of quaternionic groups is: su(2, n), so(4, n), sp(1, n),
e6(2), e7(−5), e8(−24), f4(4), g2(2). For each quaternionic real form G, there
exists a system of positive roots Ψ ⊂ Φ(g, t) so that the maximal root
αmax in Ψ is compact, αmax is orthogonal to all compact simple roots
and αmax is not orthogonal to each noncompact simple roots. Hence,
k1(Ψ) ≡ su2(αmax). The system Ψ is not unique. We appel such a
system of positive roots a quaternionic system.

Let us recall that a quaternionic representation is a Discrete Series
for a quaternionic real form G so that its Harish-Chandra parameter is
dominant with respect to a quaternionic system of positive roots, and
so that its lowest K-type is equivalent to a irreducible representation
for K1(Ψ) times the trivial representation for K2. A fact shown in [9] is:
Given a quaternionic system of positive roots, for all but finitely many
representations (τ,W ) equivalent to the tensor of a nontrivial repre-
sentation for K1(Ψ) times the trivial representation of K2, it holds:
τ is the lowest K-type of a quaternionic (unique) irreducible square
integrable representation H2(G, τ). We define a generalized quater-
nionic representation to be a Discrete Series representation πλ so that
its Harish-Chandra parameter is dominant with respect to a quater-
nionic system of positive roots.

From Table 1,2 we readily read the pairs (g, h) so that g is a quater-
nionic Lie algebra and hence, we have a list of generalized quaternionic
representations of G with admissible restriction to H .

Let (G,H) denote a symmetric pair so that a quaternionic represen-
tation (πλ, H

2(G, τ)) is H-admissible. Then, from [30] [5] [4] we have:
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k1(Ψλ) ≡ su2(αmax) ⊂ l and πλ is L-admissible. In consequence, [16],
πλ is H0-admissible. By definition, for a quaternionic representation πλ,
we have τ|L is irreducible, hence, H2(H0, τ) is irreducible. Moreover,
after checking on [30] or Tables 1,2, the list of systems ΨH0,λ, it follows
that H2(H0, τ) is again a quaternionic representation. Finally, in order
to present a list of quaternionic representations with multiplicity free
restriction to H we recall that it follows from the duality Theorem that
resH(H

2(G, τ)) is multiplicity free if and only if resL(H
2(H0, τ)) is a

multiplicity free representation, and that on [9, Page 88] it is shown
that a quaternionic representation for H0 is L-multiplicity free if and
only if h0 = sp(n, 1), n ≥ 1.

To follow, we list pairs (g, h) where multiplicity free restriction holds
for all quaternionic representations.
(su(2, 2n), sp(1, n)), h0 = sp(1, n), n ≥ 1.
(so(4, n), so(4, n− 1)), h0 = so(4, 1) + so(n− 1) (n even or odd).
(sp(1, n), sp(1, k) + sp(n− k)), h0 = sp(1, n− k) + sp(k).
(f4(4), so(5, 4)), h0 = sp(1, 2)⊕ su(2).
(e6(2), f4(4)), h0 = sp(3, 1).

A special pair is:
(su(2, 2), sp(1, 1)), h0 = sp(1, 1).
Here, multiplicity free holds for any πλ so that λ is dominant with re-

spect to a system of positive roots that defines a quaternionic structure
on G/K. For details see [30, Table 2] or Explicit example II.

5.1.3. More examples of multiplicity free restriction. Next, we list pairs
(g, h) and systems of positive roots Ψ ⊂ Φ(g, t) so that πλ′ is H- admis-
sible and multiplicity free for every element λ′ dominant with respect
to Ψ. We follow either Table 1,2,3 or [19]. For each (g, h) we list the
corresponding h0.

(su(m,n), su(m,n− 1) + u(1)), Ψa, Ψ̃b,
h0 = su(m, 1) + su(n− 1) + u(1).

(so(2m, 2n+ 1), so(2m, 2n)), Ψ±m, h0 = so(2m, 1) + so(2n).
(so(2m, 2), so(2m, 1)), Ψ±m, h0 = so(2m, 1).
(so(2m, 2n), so(2m, 2n−1)), n > 1, Ψ±, h0 = so(2m, 1)+ so(2n−1).

5.2. Explicit examples.

5.2.1. Quaternionic representations for Sp(1, b). For further use we
present a intrinsic description for the Sp(1)× Sp(b)-types of a quater-
nionic representation for Sp(1, b), a proof of the statements is in [8].
The quaternionic representations for Sp(1, b) are the representations
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of lowest Sp(1) × Sp(b)-type Sn(C2) ⊠ C, n ≥ 1. We label the sim-
ple roots for the quaternionic system of positive roots Ψ as in [9],
β1, . . . , βb+1, the long root is βb+1, β1 is adjacent to just one simple
root and the maximal root βmax is adjacent to −β1. Let Λ1, . . . ,Λd+1

the associated fundamental weights. Thus, Λ1 = βmax

2
. Let Λ̃1, . . . , Λ̃b

denote the fundamental weights for ”Ψ ∩ Φ(sp(b))”. The irreducible
L = Sp(1)× Sp(b)-factors of

H2(Sp(1, b), π
Sp(1)

nβmax
2

⊠ π
Sp(b)
ρSp(b)) = H2(Sp(1, b), Sn−1(C2)⊠ C)

are
{Sn−1+m(C2)⊠ Sm(C2b)

≡ π
Sp(1)

(n+m)βmax
2

⊠π
Sp(b)

mΛ̃1+ρSp(b)
, m ≥ 0}.

The multiplicity of each L-type in H2(Sp(1, b), Sn−1(C2)⊠C) is one.

5.2.2. Explicit example I. We develop this example in detail. We re-
strict quaternionic representations for Sp(1, d) to Sp(1, k)×Sp(d− k).
For this, we need to review definitions and facts in [8][19] [30]. The
group G := Sp(1, d) is a subgroup of GL(C2+2d). A maximal compact
subgroup of Sp(1, d) is the usual immersion of Sp(1)×Sp(d). Actually,
Sp(1, d) is a quaternionic real form for Sp(C1+d). Sp(1, d) has a com-
pact Cartan subgroup T and there exists a orthogonal basis δ, ǫ1, . . . , ǫd
for it⋆ so that
Φ(sp(d + 1,C), t) = {±2δ,±2ǫ1, . . . ,±2ǫd,±(ǫi ± ǫj), 1 ≤ i 6= j ≤

d,±(δ ± ǫs), 1 ≤ s ≤ d}.
We fix 1 ≤ k < d. We consider the usual immersion of H :=

Sp(1, k)× Sp(d− k) into Sp(1, d).
Thus, Φ(h, t) := {±2δ,±2ǫ1, . . . ,±2ǫd,±(ǫi±ǫj), 1 ≤ i 6= j ≤ k or k+

1 ≤ i 6= j ≤ d,±(δ ± ǫs), 1 ≤ s ≤ k}.
Then, H0 is isomorphic to Sp(1, d− k)× Sp(k). We have
Φ(h0, t) := {±2δ,±2ǫ1, . . . ,±2ǫd,±(ǫi ± ǫj), k + 1 ≤ i 6= j ≤ d or 1 ≤

i 6= j ≤ k,±(δ ± ǫs), k + 1 ≤ s ≤ d}.
From now on, we fix the quaternionic system of positive roots

Ψ := {2δ, 2ǫ1, . . . , 2ǫd, (ǫi ± ǫj), 1 ≤ i < j ≤ d, (δ ± ǫs), 1 ≤ s ≤ d}.
Here, αmax = 2δ, ρΨn = dδ. The Harish-Chandra parameter λ of a
quaternionic representation πλ is dominant with respect to Ψ. Whence,
Ψλ = Ψ. The systems in Theorem 3.10 are ΨH,λ = Φ(h, t)∩Ψ, ΨH0,λ =
Φ(h0, t) ∩ Ψ. Also, [5], Φ(k1 := k1(Ψ), t1 := t ∩ k1) = {±2δ}, Φ(k2 :=
k2(Ψ), t2 := t∩ k2) = {±2ǫ1, . . . ,±2ǫd,±(ǫi± ǫj), 1 ≤ i 6= j ≤ d}. Thus,
K1(Ψ) ≡ SU2(2δ) ≡ Sp(1) ⊂ H , K2 ≡ Sp(d). Hence, for a Harish-
Chandra parameter λ = (λ1, λ2), λj ∈ it⋆j dominant with respect to Ψ,
the representation πλ is H-admissible.
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The lowest K-type of a generalized quaternionic representation πλ

is the representation τ = πK
λ+ρλn

= πK1
λ1+dδ ⊠ πK2

λ2
. Since, ρK2 = dǫ1 +

(d− 1)ǫ2 + · · ·+ ǫd, for n ≥ 2d+ 1, the functional t⋆ ∋ λn := nδ + ρK2

is a Harish-Chandra parameter dominant with respect to Ψ and the
lowest K-type τn of πλn

is πK1

(n+d)δ ⊠ πK2
ρK2

. That is, πK
λn+ρλn

is equal to

a irreducible representation of K1 ≡ Sp(1) = SU(2δ) times the triv-
ial representation of K2 ≡ Sp(d). The family (πλn

)n exhausts, up to
equivalence, the set of quaternionic representations for Sp(1, d). Now,
H

2(H0, τn) is the irreducible representation of lowest L-type equal to
the irreducible representation πK1

(n+d)δ of K1 times the trivial represen-

tation of K2 ∩ L. Actually, H2(H0, π
K1

(n+d)δ ⊠ πK2
ρK2

) is a realization of

the quaternionic representation H2(Sp(1, n− k), π
Sp(1)
(n+d)δ ⊠π

Sp(n−k)
ρSp(n−k)) for

Sp(1, d − k) times the trivial representation of Sp(k). In [8, Proposi-

tion 6.3] it is shown that the representation H2(Sp(1, n− k), π
Sp(1)
(n+d)δ ⊠

π
Sp(n−k)
ρSp(n−k)) restricted to L is a multiplicity free representation as well as

it is computed the highest weight of the totality of L-irreducible fac-
tors. To follow we explicit such a computation. For this we recall 5.2.1
and notice b = d − k; Λ1 = δ, βmax = 2δ, Λ̃1 = ǫ1; as Sp(1)-module,

Sp(C2) ≡ π
SU(2δ)
(p+1)δ ; for p ≥ 1, as Sp(p)-module Sm(C2p) ≡ π

Sp(p)
mǫ1+ρSp(p)

.

Then,
the irreducible L = Sp(1)× Sp(d− k)× Sp(k)-factors of

H
2(H0, π

K1

(n+d)δ ⊠ πK2
ρK2

) ≡ H2(Sp(1, d− k), π
Sp(1)
(n+d)δ ⊠ π

Sp(d−k)
ρSp(d−k))⊠ C.

are multiplicity free and it is the set of inequivalent representations

{Sn+d−1+m(C2)⊠ Sm(C2(d−k))⊠ C
≡ π

Sp(1)
(n+d+m)δ ⊠ π

Sp(d−k)
mǫ1+ρSp(d−k)

⊠ π
Sp(k)
ρSp(k), m ≥ 0}.

Here, ρSp(d−k) = (d− k)ǫk+1 + (d− k− 1)ǫk+2 + · · ·+ ǫd and ρSp(k) =
kǫ1 + (k − 1)ǫ2 + · · ·+ ǫk.

We compute ΨH,λ = {2δ, 2ǫ1, . . . , 2ǫd, (ǫi ± ǫj), 1 ≤ i 6= j ≤ k or k +
1 ≤ i 6= j ≤ d, (δ ± ǫs), 1 ≤ s ≤ k}. ρµn = ρHn = kδ. Now, from
Theorem 3.1 we have SpecH(πλ)+ρHn = SpecL(H

2(H0, τ)), whence, we
conclude:

The representation resSp(1,k)×Sp(d−k)(π
Sp(1,d)
λn

) is a multiplicity free
representation and the totality of Harish-Chandra parameters of the
Sp(1, k)× Sp(d− k)-irreducible factors is the set

{(n+ d+m)δ +mǫ1 + ρSp(k)+ρSp(d−k)
− ρHn =

(n+d+m−k)δ+mǫ1+(d−k)ǫk+1+· · ·+ǫd+kǫ1+· · ·+ǫk, m ≥ 0}.
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Whence, resSp(1,k)×Sp(d−k)(π
Sp(1,d)
λn

) is equivalent to the Hilbert sum

⊕m≥0V
Sp(1,k)×Sp(d−k)
(n+d+m−k)δ+mǫ1+ρSp(k)+ρSp(d−k)

≡ ⊕m≥0H
2(Sp(1, k)× Sp(d− k), π

Sp(1)×Sp(k)×Sp(d−k)
(n+d+m)δ+mǫ1+ρSp(k)+ρSp(d−k)

).

A awkward point of our decomposition is that not provide a explicit
description of the H-isotypic components for resH(V

G
λ ).

5.2.3. Explicit example II. We restrict from Spin(2m, 2), m ≥ 2, to
Spin(2m, 1). We notice the isomorphism between (Spin(4, 2), Spin(1, 1))
and the pair (SU(2, 2), Sp(1, 1)). In this setting K = Spin(2m)× ZK ,
L = Spin(2m), ZK ≡ T. Obviously, we may conclude that any irre-
ducible representation of K is irreducible when restricted to L. In this
case H0 ≡ Spin(2m, 1), and (for m = 2, H0 ≡ Sp(1, 1)) and H

2(H0, τ)
is irreducible. Therefore, the duality theorem together with that any
irreducible representation for Spin(2m, 1) is L-multiplicity free, we ob-
tain:

Any Spin(2m, 1)-admissible representation (π
Spin(2m,2)
λ , V

Spin(2m,2)
λ ) is

multiplicity free.

For (Spin(2m, 2), Spin(2m, 1)) in [30, Table 2 ], [19] it is verified that
any πλ, with λ dominant with respect to one of the systems Ψ±m (see
proof of 4.7) has admissible restriction to Spin(2m, 1) and no other πλ

has admissible restriction to Spin(2m, 1).

In [30, Table 2 ] [15] [16] it is verified that any square integrable
representation πλ with λ dominant with respect to a quaternionic sys-
tem for SU(2, 2), has admissible restriction to Sp(1, 1). As in 5.2.2,
we may compute the Harish-Chandra parameters for the irreducible

components of resSp(1,1)(π
SU(2,2)
λ ).

5.2.4. Explicit example III. To follow, G is so that its Lie algebra is
sp(m,n), n ≥ 2, m > 1. The aim of this example is twofold. One is
to produce Discrete Series representations so that the lowest K-type
restricted to K1(Ψ) is still irreducible and secondly to produce another
multiplicity free examples. Here, k = sp(m) + sp(n). We fix maximal
torus T ⊂ K and describe the root system as in [30]. For the system
of positive roots Ψ := {ǫi ± ǫj , i < j, δr ± δs, r < s, ǫa ± δb, 1 ≤ a, i, j ≤
m, 1 ≤ b, r, s ≤ n}, we have K1(Ψ) = K1 ≡ Sp(m), K2(Ψ) = K2 ≡

Sp(n). Obviously, there exists a system of positive roots Ψ̃ so that
K1(Ψ̃) ≡ Sp(n), K2(Ψ̃) ≡ Sp(m). For any other system of positive
roots in Φ(g, t) we have that the associated subgroup K1 is equal to K.
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It readily follows that λ :=
∑

1≤j≤m ajǫj +ρK2 is a Ψ-dominant Harish-
Chandra parameter when the coefficients aj are all integers so that
a1 > · · · > am >> 0. Since ρλn belongs to spanC{e1, . . . , em}, it follows
that the lowest K type of πλ is equivalent to a irreducible representation
for Sp(m) times the trivial representation for Sp(n). Next, we consider
h = sp(m,n−1)+sp(1) in the usual embedding. Here, h0 ≡ sp(m, 1)+
sp(n− 1). Whence, after we proceed as in Explicit example I we may

conclude resSp(m,n−1)×Sp(1)(π
Sp(m,n)
λ ) is a multiplicity free representation

and we may compute the Harish-Chandra parameters of each Sp(m,n−
1)× Sp(1)-irreducible factor for πλ.

5.2.5. Explicit example IV. (e6(2), f4(4)). We fix a compact Cartan sub-
group T ⊂ K so that U := T ∩ H is a compact Cartan subgroup of
L = K ∩ H . Then, there exist a quaternionic and Borel de Sieben-
thal positive root system ΨBS for Φ(e6, t) so that, after we write the
simple roots as in Bourbaki (see [8][30]), the compact simple roots
are α1, α3, α4, α5, α6 (They determinate the A5-Dynkin sub-diagram)
and α2 is noncompact. α2 is adjacent to αmax and to α4. In [30],
it is verified ΨBS is the unique system of positive roots such that
k1(ΨBS) = su2(αmax).

The automorphism σ of g acts on the simple roots as follows

σ(α2) = α2, σ(α1) = α6, σ(α3) = α5, σ(α4) = α4.

Hence, σ(ΨBS) = ΨBS. Let h2 ∈ it⋆ be so that αj(h2) = δj2 for

j = 1, . . . , 6. Then, h2 = 2Hαm

(αm,αm)
and θ = Ad(exp(πih2)). A straight-

forward computation yields: k ≡ su2(αmax) + sp(3), l ≡ su2(αmax) +
sp(1) + sp(2); the fix point subalgebra for θσ is isomorphic to sp(1, 3).
Thus, the pair (e6(2), sp(1, 3)) is the associated pair to (e6(2), f4(4)). Let qu
denote the restriction map from t⋆ into u⋆. Then, then, for λ dominant
with respect to ΨBS , the simple roots for ΨH,λ = Ψf4(4),λ, respectively
Ψsp(1,3),λ, are:

α2, α4, qu(α3) = qu(α5), qu(α1) = qu(α6).
β1 = qu(α2 + α4 + α5) = qu(α2 + α4 + α3), β2 = qu(α1) = qu(α6),

β3 = qu(α3) = qu(α5), β4 = α4.

The fundamental weight Λ̃1 associated to β1 is equal to 1
2
βmax. Hence,

Λ̃1 = β1 + β2 + β3 +
1
2
β4 = α2 +

3
2
α4 + α3 + α5 +

1
2
(α1 + α6).

Thus, from the Duality Theorem, for the quaternionic representation

H2(E6(2), π
SU2(αmax)×SU(6)

nαmax
2

+ρSU(6)
)

the set of Harish-Chandra parameters of the irreducible F4(4)-factors is
equal to:
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−ρHn plus the set of infinitesimal characters of the L ≡ SU(αmax)×
Sp(3)-irreducible factors for

resSU2(αmax)×Sp(3)(H
2(Sp(1, 3), π

SU2(αmax)×Sp(3)

nαmax
2

+ρSp(3)
)).

Here, −ρHn = −dH
αmax

2
, dH = df4(4) = 7 (see [9]).

Therefore, from the computation in 5.2.1, we obtain:

resF4(4)
(π

E6(2)

nαmax
2

+ρSU(6)
) = ⊕m≥0 V

F4(4)

(n−7+m)αmax
2

+mΛ̃1+ρSp(3)
.

Here, ρSp(3) = 3β2 + 5β3 + 3β4 =
3
2
(α5 + α3) +

5
2
(α1 + α6) + 3α4.

5.2.6. Comments on admissible restriction of quaternionic represen-
tations. As usual (G,H) is a symmetric pair and (πλ, H

2(G, τ)) a H-
admissible, non-holomorphic, square integrable representation. We fur-
ther assume G/K holds a quaternionic structure. Then, from Tables
1,2,3 it follows:

a) λ is dominant with respect to a quaternionic system of positive
roots. That is, πλ is a generalized quaternionic representation.

b) H/L has a quaternionic structure.
c) Each system ΨH,λ, ΨH0,λ is a quaternionic system.
d) The representation H

2(H0, τ) is a sum of generalized quaternionic
rep’s.

e) When πλ is quaternionic, then the representation H
2(H0, τ) is

equal to H2(H0, resL(τ)), hence, it is quaternionic. Moreover, in [8], it
is computed the highest weight and the respective multiplicity of each
of its L-irreducible factors.

f) Thus, the duality Theorem 3.1 together with a)—e) let us com-
pute the Harish-Chandra parameters of the irreducible H-factors for
a quaternionic representation πλ. Actually, the computation of the
Harish-Chandra parameters is quite similar to the computation in Ex-
plicit example I, Explicit example IV.

To follows we consider particular quaternionic symmetric pairs. One
pair is (f4(4), so(5, 4)). Here, h0 ≡ sp(1, 2)+su(2). Thus, for any Harish-
Chandra parameter λ dominant with respect to the quaternionic sys-
tem of positive roots, we have πλ restricted to SO(5, 4) is a admissible
representation and the Duality theorem let us compute either multi-
plicities or Harish-Chandra parameters of the restriction. Moreover,
since quaternionic Discrete Series for Sp(1, 2)× SU(2) are multiplicity
free, [8], we have that quaternionic Discrete Series for f4(4), restricted
to SO(5, 4) are multiplicity free. It seems that it can be deduced from
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the branching rules for the pair (Sp(3), Sp(1) × Sp(2)) that a gener-
alized quaternionic representation, resSO(5,4)(πλ) is multiplicity free if
and only πλ is quaternionic.

For the pair (f4(4), so(5, 4)), if we attempt to deduce our decomposi-
tion result from the work of [9], we have to consider the group of Lie
algebra gd ≡ f4(−20), its maximal compactly embedded subalgebra is
isomorphic to so(9), a simple Lie algebra, hence no Discrete Series for
Gd has admissible restriction to H0 (see [18] [5]). Thus, it is not clear
to us how to deduce our Duality result from the Duality Theorem in
[8].

For the pairs (e6(−14), su(2, 4)+su(2)), (e6(2), so(6, 4)+so(2)), (e7(−5), e6(2)+
so(2)), for each G, generalized quaternionic representations do exist
and they are H-admissible. For these pairs, the respective h0 are:
su(2, 4) + su(2), su(2, 4) + su(2), su(6, 2). In these three cases, the
Maple soft developed by Silva-Vergne[2], allows to compute the L-
Harish-Chandra parameters and respective multiplicity for each Dis-
crete Series for H0 ≡ SU(p, q) × SU(r), hence, the duality formula
yields the Harish-Parameters for resH(πλ) and their multiplicity.

5.2.7. Explicit example V. The pair (SO(2m,n), SO(2m,n−1)). This
pair is considered in [9]. We recall their result and we sketch how to
derive the result from our duality Theorem. We only consider the case
g = so(2m, 2n+1). Here, k = so(2m)+so(2n+1), h = so(2m, 2n), h0 =
so(2m, 1) + so(2n), l = so(2m) + so(2n). We fix a Cartan subalgebra
t ⊂ l ⊂ k. Then, there exists a orthogonal basis ǫ1, . . . , ǫm, δ1, . . . , δn
for it⋆ so that
∆ = {(ǫi ± ǫj), 1 ≤ i < j ≤ m, (δr ± δs), 1 ≤ r < s ≤ n} ∪ {δj}1≤j≤m.

Φn = {±(ǫr ± δs), r = 1, . . . , m, s = 1, . . . , n} ∪ {±ǫj , j = 1, . . . , m}.

The systems of positive roots Ψλ so that πG
λ is an admissible repre-

sentation of H are the systems Ψ± associated to the lexicographic or-
ders ǫ1 > · · · > ǫm > δ1 > · · · > δn, ǫ1 > · · · > ǫm−1 > −ǫm >
δ1 > · · · > δn−1 > −δn. Here, for m ≥ 3, k1(Ψ±) = so(2m). For
m = 2, k1(Ψ±) = su2(ǫ1 ± ǫ2). Then,
ΨH,+ = {(ǫi ± ǫj), 1 ≤ i < j ≤ m, (δr ± δs), 1 ≤ r < s ≤ n} ∪ {(ǫr ±

δs), r = 1, . . . , m, s = 1, . . . , n},
ΨH0,+ = {(ǫi± ǫj), 1 ≤ i < j ≤ m, (δr±δs), 1 ≤ r < s ≤ n}∪{ǫj , j =

1, . . . , m}.

gd = so(2m+2n, 1). Thus, from either our duality Theorem or from
[9], we infer that whenever resH(πλ) is H-admissible, then, resH(πλ)
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is a multiplicity free representation. Whence, we are left to com-
pute the Harish-Chandra parameters for resSO(2m,2n)(H

2(SO(2m, 2n+

1), π
SO(2m)
Λ1

⊠ π
SO(2m+1)
Λ2

)). For this, according to the duality Theorem,
we have to compute the infinitesimal characters of each irreducible fac-
tor of the underlying L-module in

H
2(H0, τ) =

∑
ν∈SpecSO(2m)(π

SO(2m+1)
Λ2

)
H2(SO(2m, 1), π

SO(2m)
Λ1

)⊠V
SO(2m)
ν .

The branching rules for resSO(2m)(H
2(SO(2m, 1), π

SO(2m)
Λ1

) are found in

[29] and other references, the branching rule for resSO(2m)(π
SO(2m+1)
Λ2

)
can be found in [29]. From both computations, we deduce: [9, Propo-
sition 3], for λ =

∑
1≤i≤m λiǫi +

∑
1≤j≤n λm+jδj , then V H

µ is a H-

subrepresentation of H2(G, τ) ≡ V
SO(2m,2n+1)
λ (µ =

∑
1≤i≤m µiǫi +∑

1≤j≤n µj+mδj) if and only if

µ1 > λ1 > · · · > µm > λm, λm+1 > µm+1 > . . . λm+n > |µm+n|.

5.3. Existence of Discrete Series whose lowest K-type restricted

to K1(Ψ) is irreducible. Let G a semisimple Lie group that admits
square integrable representations. This hypothesis allows to fix a com-
pact Cartan subgroup T ⊂ K of G. In [5] it is defined for each system
of positive roots Ψ ⊂ Φ(g, t) a normal subgroup K1(Ψ) ⊂ K so that
for a symmetric pair (G,H), with H a θ-invariant subgroup, it holds:
for any Harish-Chandra parameter dominant with respect to Ψ, the
representation resH(πλ) is H-admissible if and only if K1(Ψ) is a sub-
group of H . For a holomorphic system Ψ, K1(Ψ) is equal to the center
of K; for a quaternionic system of positive roots K1(Ψ) ≡ SU2(αmax).
Either for the holomorphic family or for a quaternionic real forms we
find that among the H-admissible Discrete Series for G, there are many
examples of the following nature: the lowest K-type of πλ is equal to a
irreducible representation of K1(Ψ) tensor with the trivial representa-
tion for K2, [9]. To follow, under the general setting at the beginning
of this paragraph, we verify.

5.3.1. For each system of positive roots Ψ ⊂ Φ(g, t), there exists Dis-
crete Series with Harish-Chandra parameter dominant with respect to
Ψ and so that its lowest K-type is equal to a irreducible representation
of K1(Ψ) tensor with the trivial representation for K2(Ψ).

We may assume K1(Ψ) is a proper subgroup of K. Then, when
K1(Ψ) = ZK , Harish-Chandra showed there exists such a represen-
tation. For G a quaternionic real form, Ψ a quaternionic system of
positive roots, K1(Ψ) = SU2(αmax), then, in [9] we find a proof of the
statement. From the tables in [5][30], we are left to consider the triples
(G,K,K1(Ψ)) so that their respective Lie algebras is the triple
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(su(m,n), su(m) + su(n) + u(1), su(m)), m > 2,
(sp(m,n), sp(m) + sp(n), sp(m)).
(so(2m,n), so(2m) + so(n), so(2m)).

In Explicit example III we already analyzed the second triple of the
list. With the same proof it is verified that the statement holds for
the third triple. For the first triple, we further assume G = SU(p, q).
Thus, K is the product of two simply connected subgroups times a one
dimensional torus ZK , we notice ρΨa

n = ρλg − ρK , hence, ρΨa
n lifts to a

character of K. Thus, as in Explicit example III, we obtain πλ with λ
dominant with respect to Ψa so that its lowest K = SU(p)SU(q)ZK-
type is the tensor product of a irreducible representation for SU(p)ZK

times the trivial representation for SU(q). Since ρΨa
n lifts to a character

of K, after some computation the claim follows.

6. Symmetric breaking operators and normal derivatives

For this subsection (G,H) is a symmetric pair and πλ is a square inte-
grable representation. Our aim is to generalize a result in [22, Theorem
5.1]. In [20] it is considered symmetry breaking operators expressed
by means of normal derivatives, they obtain results for holomorphic
embedding of a rank one symmetric pairs. As before, H0 = Gσθ is
the dual subgroup. We recall h ∩ p is orthogonal to h0 ∩ p and that
h ∩ p ≡ TeL(H/L), h0 ∩ p ≡ TeL(H0/L). Hence, for X ∈ h0 ∩ p, more
generally for X ∈ U(h0), we say LX is a normal derivative to H/K
differential operator. For short, normal derivative. Other ingredient
necessary for the next Proposition are the subspaces Lλ and U(h0)W .
The later subspace is contained in the subspace of K-finite vectors,
whereas, the former subspace, it is believed, that when resH(πλ) is not
discretely decomposable it is disjoint to the subspace of G-smooth vec-
tors. When, resH(πλ) is H-admissible Lλ is contained in the subspace
of K-finite vectors. However, it might not be equal to U(h0)W as we
have pointed out. The next Proposition and its converse, dealt with
consequences of the equality Lλ = U(h0)W .

Proposition 6.1. We assume (G,H) is a symmetric pair. We also
assume there exists a irreducible representation (σ, Z) of L so that
H2(H, σ) is a irreducible factor of H2(G, τ) and H2(G, τ)[H2(H, σ)][Z] =
Lλ[Z] = U(h0)W [Z] = LU(h0)(H

2(G, τ)[W ])[Z]. Then, resH(πλ) is H-
admissible. Moreover, any symmetry breaking operator from H2(G, τ)
into H2(H, σ) is represented by a normal derivative differential opera-
tor.

We show a converse to Proposition 6.1 in 6.0.1.
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Proof. To begin with we recall H2(G, τ)[W ] = {Kλ(·, e)
⋆w,w ∈ W} is

a subspace of H2(G, τ)K−fin, whence LU(h0)(H
2(G, τ)[W ])[Z] is a sub-

space of H2(G, τ)K−fin. Owing to our hypothesis we then have Lλ[Z]
is a subspace of H2(G, τ)K−fin. Next, we quote a result of Harish-
Chandra: a U(h)−finitely generated, z(U(h))−finite, module has a fi-
nite composition series. Thus, H2(G, τ)K−fin contains an irreducible
(h, L)-submodule. For a proof (cf. [32, Corollary 3.4.7 and Theorem
4.2.1]). Now, in [15, Lemma 1.5] we find a proof of: if a (g, K)−module
contains an irreducible (h, L)−submodule, then the (g, K)−module is
h−algebraically decomposable. Thus, resH(πλ) is algebraically dis-
cretely decomposable. In [16, Theorem 4.2], it is shown that un-
der the hypothesis (G,H) is a symmetric pair, for Discrete Series,
h-algebraically discrete decomposable is equivalent to H-admissibility,
whence resH(πλ) is H-admissible. Let S : H2(G, τ) → H2(H, σ) = V H

µ

a continuous intertwining linear map. Then, we have shown in 3.1,
for z ∈ Z, KS(·, e)

⋆z ∈ H2(G, τ)[V H
µ ][Z]. We fix a orthonormal basis

{zp}, p = 1, . . . , dimZ for Z. The hypothesis
H2(G, τ)[V H

µ ][Z] = LU(h0)(H
2(G, τ)[W ])[Z]

implies for each p, there exists Dp ∈ U(h0) and wp ∈ W so that
KS(·, e)

⋆zp = LDp
Kλ(·, e)

⋆wp. Next, we fix f1 ∈ H2(G, τ)∞, h ∈ H
and set f := Lh−1(f1), then f(e) = f1(h). We have,

(S(f)(e), zp)Z =

∫

G

(f(y), KS(y, e)
⋆zp)Wdy

=

∫

G

(LD⋆
p
f(y), Kλ(y, e)

⋆wp)Wdy

= (LD⋆
p
f(e), wp)W

= (RĎ⋆
p
f(e), wp)W

(6.1)

Thus, for each z ∈ Z and f1 smooth vector we obtain
(S(f1)(h), z)Z =

∑
p(S(f1)(h), (z, zp)Zzp)Z = (

∑
p(RĎ⋆

p
f1(h), wp)W (zp, z)Z .

As in [25, Proof of Lemma 2] we conclude for any f ∈ H2(G, τ) that

(6.2) S(f)(h) =
∑

1≤p≤dimZ

(RĎ⋆
p
f(h), wp)W zp

Since Dp ∈ U(h0) such a expression of S(f) is a representation in terms
of normal derivatives. �

6.0.1. Converse to Proposition 6.1. We want to show: If every ele-
ment in HomH(H

2(G, τ), H2(H, σ)) has a expression as differential op-
erator by means of "normal derivatives", then, the equality Lλ[Z] =
H2(G, τ)[H2(H, σ)][Z] = U(h0)W [Z] holds.
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In fact, the hypothesis S(f)(h) =
∑

1≤p≤dimZ(RĎ⋆
p
f(h), wp)W zp,

Dp ∈ U(h0), yields KS(·, e)
⋆z = LDz

Kλ(·, e)
⋆wz, Dz ∈ U(h0), wz ∈ W .

The fact that (σ, Z) has multiplicity one in H2(H, σ) gives
dimHomH(H

2(G, τ), H2(H, σ)) = dimH2(G, τ)[H2(H, σ)][Z].
Hence, the functions

{KS(·, e)
⋆z, z ∈ Z, S ∈ HomH(H

2(G, τ), H2(H, σ))}
span H2(G, τ)[H2(H, σ)][Z]. Therefore, H2(G, τ)[H2(H, σ)][Z] is con-
tained in U(h0)W [Z] = LU(h0)H

2(G, τ)[W ][Z]. Owing to Theorem 3.1,
both spaces have the same dimension, whence, the equality holds.

The pairs so that Proposition 6.1 holds for scalar holomorphic Dis-
crete Series are (su(m,n), su(m, l)+su(n−l)+u(1)), (so(2m, 2), u(m, 1)),
(so⋆(2n), u(1, n− 1)), (so⋆(2n), so(2) + so⋆(2n− 2)), (e6(−14), so(2, 8) +
so(2)). See [30, (4.6)].

6.0.2. Comments on the interplay among the subspaces, Lλ, U(h0)W ,
H2(G, τ)K−fin and symmetry breaking operators. It readily follows that
the subspace Lλ[Z] = V G

λ [H2(H, σ)][Z] is equal to the closure of the
linear span of
KSy(G,H) := {KS∗(e, ·)z = KS(·, e)

⋆z, z ∈ Z, S ∈ HomH(V
G
λ , V H

µ )}.

(1) H2(G, τ)K−fin∩KSy(G,H) is equal to the linear span of elements
in KSy(G,H) so that the corresponding symmetry breaking operator
is represented by a differential operator. See [25, Lemma 4.2].

(2) U(h0)W ∩KSy(G,H) is equal to the linear span corresponding to
element KS in KSy(G,H) so that S is represented by normal derivative
differential, operator. This is shown in Proposition 6.1 and its converse.

(3) The set of symmetry breaking operators represented by a dif-
ferential operator is not the null space if and only if resH(πλ) is H-
admissible. See [25, Theorem 4.3] and the proof of Proposition 6.1.

(4) We believe that from Nakahama’s thesis, it is possible to con-
struct examples of V G

λ [H2(H, σ)][Z] ∩ U(h0)W [Z] 6= {0}, so that the
equality V G

λ [H2(H, σ)][Z] = U(h0)W [Z] does not hold! That is, there
are symmetry breaking represented by plain differential operators and
some of them are not represented by normal derivative operators.

6.0.3. A functional equation for symmetry breaking operators. Nota-
tion is as in Theorem 3.1. We assume (G,H) is a symmetric pair and
resH(πλ) is admissible. The objects involved in the equation are: H0 =
Gσθ, Z = V H

µ+ρHn
the lowest L-type for V H

µ , Lλ =
∑

µ H
2(G, τ)[V H

µ ][V L
µ+ρHn

],

U(h0)W = LU(h0)H
2(G, τ)[W ], L-isomorphism D : Lλ[Z] → U(h0)W [Z],

a H-equivariant continuous linear map S : H2(G, τ) → H2(H, σ), the
kernel KS : G × H → HomC(W,Z) corresponding to S, 3.1 implies
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KS(·, e)
⋆z ∈ Lλ[Z], finally, we recall Kλ : G × G → HomC(W,W ) the

kernel associated to the orthogonal projector onto H2(G, τ). Then,

Proposition 6.2. For z ∈ Z, y ∈ G we have

D(KS(e, ·)
⋆(z))(y) =

∫

H0

Kλ(h0, y)D(KS(e, ·)
⋆(z))(h0)dh0

When, D is the identity map, the functional equation turns into

KS(x, h) =

∫

H0

KS(h0, e)Kλ(x, hh0)dh0

The functional equation follows from Proposition 4.12 applied to
T := S⋆. The second equation follows after we compute the adjoint of
the first equation.

We note, that as in the case of holographic operators, a symmetry
breaking operator can be recovered from its restriction to H0.

We also note that [22] has shown a different functional equation for
KS for scalar holomorphic Discrete Series and holomorphic embedding
H/L → G/K.

7. Tables

For an arbitrary symmetric pair (G,H), whenever πG
λ is an admissible

representation of H, we define,

K1 =

{
ZK if Ψλ holomorphic
K1(Ψλ) otherwise

In the next tables we present the 5-tuple so that: (G,H) is a symmetric
pair, H0 is the associated group to H, Ψλ is a system of positive such
that πG

λ is an admissible representation of H, and K1 = Z1(Ψλ)K1(Ψλ).
Actually, instead of writing Lie groups we write their respective Lie
algebras. Each table is in part a reproduction of tables in [18] [30].
The tables can also be computed by means of the techniques presented
in [5]. Note that each table is "symmetric" when we replace H by H0.
As usual, αm denotes the highest root in Ψλ. Unexplained notation is
as in [30].
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G H H0 Ψλ K1

su(m,n) su(m, k)⊕ su(n− k)⊕ u(1) su(m,n− k)⊕ su(k)⊕ u(1) Ψa su(m)

su(m,n) su(k, n)⊕ su(m− k)⊕ u(1) su(m− k, n)⊕ su(k)⊕ u(1) Ψ̃b su(n)
so(2m, 2n), m > 2 so(2m, 2k)⊕ so(2n− 2k) so(2m, 2n− 2k)⊕ so(2k) Ψ± so(2m)

so(4, 2n) so(4, 2k)⊕ so(2n− 2k) so(4, 2n− 2k)⊕ so(2k) Ψ± su2(αm)
so(2m, 2n+ 1), m > 2 so(2m, k)⊕ so(2n+ 1− k) so(2m, 2n+ 1− k)⊕ so(k) Ψ± so(2m)

so(4, 2n+ 1) so(4, k)⊕ so(2n+ 1− k) so(4, 2n+ 1− k)⊕ so(k) Ψ± su2(αm)
so(4, 2n), n > 2 u(2, n)1 wu(2, n)1 Ψ1−1 su2(αm)
so(4, 2n), n > 2 u(2, n)2 wu(2, n)2 Ψ1 1 su2(αm)

so(4, 4) u(2, 2)1 1 wu(2, 2)11 Ψ1−1, wǫ,δΨ1−1 su2(αm)
so(4, 4) u(2, 2)12 wu(2, 2)12 Ψ1−1, wǫ,δΨ1 1 su2(αm)
so(4, 4) u(2, 2)21 wu(2, 2)21 Ψ1 1, wǫ,δΨ1−1 su2(αm)
so(4, 4) u(2, 2)22 wu(2, 2)22 Ψ1 1, wǫ,δΨ1 1 su2(αm)
sp(m,n) sp(m, k)⊕ sp(n− k) sp(m,n− k)⊕ sp(k) Ψ+ sp(m)
f4(4) sp(1, 2)⊕ su(2) so(5, 4) ΨBS su2(αm)
e6(2) so(6, 4)⊕ so(2) su(4, 2)⊕ su(2) ΨBS su2(αm)

e7(−5) so(8, 4)⊕ su(2) so(8, 4)⊕ su(2) ΨBS su2(αm)
e7(−5) su(6, 2) e6(2) ⊕ so(2) ΨBS su2(αm)
e8(−24) so(12, 4) e7(−5) ⊕ su(2) ΨBS su2(αm)

T
ab

le
1.

C
ase

U
=

T
,Ψ

λ
n
on

h
olom

orp
h
ic
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G H H0 Ψλ K1

su(2, 2n), n > 2 sp(1, n) sp(1, n) Ψ1 su2(αm)
su(2, 2) sp(1, 1) sp(1, 1) Ψ1 su2(αm)

su(2, 2) sp(1, 1) sp(1, 1) Ψ̃1 su2(αm)
so(2m, 2n), m > 2 so(2m, 2k + 1) + so(2n− 2k − 1) so(2m, 2n− 2k − 1) + so(2k + 1) Ψ± so(2m)

so(4, 2n), so(4, 2k + 1) + so(2n− 2k − 1) so(4, 2n− 2k − 1) + so(2k + 1) Ψ± su2(αm)
so(2m, 2), m > 2 so(2m, 1) so(2m, 1) Ψ± so(2m)

so(4, 2), so(4, 1) so(4, 1) Ψ± su2(αm)
e6(2) f4(4) sp(3, 1) ΨBS su2(αm)

T
ab

le
2,

C
ase

U
6=

T
,Ψ

λ
n
on

h
olom

orp
h
ic
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G H (a) H0 (b)
su(m,n), m 6= n su(k, l) + su(m− k, n− l) + u(1) su(k, n− l) + su(m− k, l) + u(1)

su(n, n) su(k, l) + su(n− k, n− l) + u(1) su(k, n− l) + su(n− k, l) + u(1)
so(2, 2n) so(2, 2k) + so(2n− 2k) so(2, 2n− 2k) + so(2k)
so(2, 2n) u(1, n) u(1, n)

so(2, 2n+ 1) so(2, k) + so(2n+ 1− k) so(2, 2n+ 1− k) + so(k)
so⋆(2n) u(m,n−m) so⋆(2m) + so⋆(2n− 2m)
sp(n,R) u(m,n−m) sp(m,R) + sp(n−m,R)
e6(−14) so(2, 8) + so(2) so(2, 8) + so(2)
e6(−14) su(2, 4) + su(2) su(2, 4) + su(2)
e6(−14) so⋆(10) + so(2) su(5, 1) + sl(2,R)
e7(−25) so⋆(12) + su(2) su(6, 2)
e7(−25) so(2, 10) + sl(2,R) e6(−14) + so(2)
su(n, n) so⋆(2n) sp(n,R)
so(2, 2n) so(2, 2k + 1) + so(2n− 2k − 1) so(2, 2n− 2k − 1) + so(2k + 1)

Table 3, πG
λ holomorphic Discrete Series.

The last two lines show the unique holomorphic pairs so that U 6= T.

8. Partial list of symbols and definitions

- (τ,W ), (σ, Z), L2(G×τ W ), L2(H ×σ Z) (cf. Section 2).
-H2(G, τ) = Vλ = V G

λ , H2(H, σ) = V H
µ , πH

µ , πK
ν . (cf. Section 2).

-πλ = πG
λ , dλ = d(πλ) dimension of πλ, Pλ, Pµ, Kλ, Kµ, (cf. Section 2).

-PX orthogonal projector onto subspace X.
-Φ(x) = PWπ(x)PW spherical function attached to the lowest K-type
W of πλ.
-Kλ(y, x) = d(πλ)Φ(x

−1y).
-MK−fin(resp.M

∞) K−finite vectors in M (resp. smooth vectors in
M).
-dg, dh Haar measures on G, H .
-A unitary representation is square integrable, equivalently a Discrete
Series representation, (resp. integrable) if some nonzero matrix co-
efficient is square integrable (resp. integrable) with respect to Haar
measure.
-ΘπH

µ
(...) Harish-Chandra character of the representation πH

µ .

-For a module M and a simple submodule N , M [N ] denotes the iso-
typic component of N in M . That is, M [N ] is the sum of all irreducible
submodules isomorphic to N. If topology is involved, we define M [N ]
to be the closure of M [N ].
-MH−disc is the closure of the linear subspace spanned by the totality
of H−irreducible submodules. Mdisc := MG−disc
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-A representation M is H−discretely decomposable if MH−disc = M.
-A representation is H−admissible if it is H−discretely decomposable
and each isotypic component is equal to a finite sum of H−irreducible
representations.
-U(g) (resp. z(U(g) = zg) universal enveloping algebra of the Lie alge-
bra g(resp. center of universal enveloping algebra).
-Cl(X) =closure of the set X.
-IX identity function on set X.
-T one dimensional torus.
-ZS identity connected component of the center of the group S.
S(r)(V ) the rth-symmetric power of the vector space V .
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