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PSEUDO-DUAL PAIRS AND BRANCHING OF

DISCRETE SERIES
BENT ORSTED, JORGE A. VARGAS

ABSTRACT. For a semisimple Lie group G, we study Discrete Se-
ries representations with admissible branching to a symmetric sub-
group H. This is done using a canonical associated symmetric
subgroup Hj, forming a pseudo-dual pair with H, and a corre-
sponding branching law for this group with respect to its maxi-
mal compact subgroup. This is in analogy with either Blattner’s
or Kostant-Heckmann multiplicity formulas, and has some resem-
blance to Frobenius reciprocity. We give several explicit examples
and links to Kobayashi-Pevzner theory of symmetry breaking and
holographic operators. Our method is well adapted to computer
algorithms, such as for example the Atlas program.
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1. INTRODUCTION

For a semisimple Lie group G, an irreducible representation (m, V') of
G and closed reductive subgroup H C G the problem of decomposing
the restriction of m to H has received attention ever since number the-
ory or physics and other branches of mathematics required a solution.
In this paper, we are concerned with the important particular case of
branching representations of the Discrete Series, i.e. those 7 arising as
closed irreducible subspaces of the left regular representation in L*(G),
and breaking the symmetry by a reductive subgroup H. Here much
work has been done. Notable is the paper of Gross-Wallach, [9], and
the work of Toshiyuki Kobayashi and his school. For further references
on the subject, we refer to the overview work of Toshiyuki Kobayashi
and references therein. To compute the decomposition of the restric-
tion of 7 to a symmetric subgroup (see 3.4.2), in [9] it is shown a duality
Theorem for Discrete Series representation. Their duality is based on
the dual subgroup G¢ (this is the dual subgroup which enters the du-
ality introduced by Flensted-Jensen in his study of discrete series for
affine symmetric spaces |7]) and, roughly speaking, their formula looks
like

dimHompy (o, 7, ) = dimHomg(F,, 7).

Here, 7 is a irreducible square integrable representation of G, o is
a irreducible representation of H, F; is a irreducible representation
of a maximal compact subgroup K of G? and 7 is a finite sum of
fundamental representations of G? attached to . In [23], B. Speh
and the first author noticed a different duality Theorem for restriction
to a symmetric subgroup, let H, the associated subgroup to H and
L := HyN H a maximal compact subgroup of H. Then,

(1) dimHomy (o, m,,) = dimHomy (o, T0).

Here, 7 is certain irreducible representation of GG, ¢ is a irreducible
representation of H, oy is the lowest L-type of ¢ and II is a finite
sum of irreducible representation of H, attached to w. The purpose
of this paper is, for a H-admissible Discrete Series 7 for GG, to show a
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formula as the above and to provide an explicit isomorphism between
the two vector spaces involved in the equality. This is embodied in
Theorem 3.1.

Theorem 3.1 reduces the branching law in two steps (1) For the max-
imal compact subgroup K of G and the lowest K-type of w, branching
this under L (maximal compact in H and also in Hy) (2) branch-
ing a Discrete Series of Hy with respect to L, i.e. finding its L-types
with multiplicity. Both of these steps can be implemented in algo-
rithms, as they are available for example in the computer program
Atlas, http://atlas.math.umd.edu.

We would like to point out that T. Kobayashi, T. Kobayashi-Pevzner
and Nakahama have shown a duality formula as (f) for holomorphic
Discrete Series representation 7. In order to achieve their result, they
have shown a explicit isomorphism between the two vector spaces in the
formula. Further, with respect to analyze resy(m), Kobayashi-Oshima
have shown a way to compute the irreducible components of resy ()
in the language of Zuckerman modules Aq(X) [18][19].

As a consequence of the involved material, we obtain a necessary
and sufficient condition for a symmetry breaking operators to be rep-
resented via normal derivatives. This is presented in Proposition 6.1.

Another consequence is Proposition 4.9. That is, for the closure of
the linear span of the totality of Hoy-translates (resp. H-translates)
of the isotypic component associated to the lowest K-type of m, we
exhibit its explicit decomposition as a finite sum of Discrete Series
representations of Hy (resp. H).

Our proof is heavily based in that Discrete Series representations
are realized in reproducing kernel Hilbert spaces. As a consequence, in
Lemma 3.6, we obtain a general result on the structure of the kernel of
a certain restriction map. The proof also relies on the work of Hecht-
Schmid [11], and a result of Schmid in [27].

It follows from the work of Kobayashi-Oshima, else, from Tables
1,2,3, that whenever a Discrete Series for G has admissible restriction
to a symmetric subgroup, then, the infinitesimal character of the rep-
resentation is dominant with respect to either a Borel de Siebenthal
system of positive roots or to a system of positive roots so that it
has two noncompact simple roots, each of one, has multiplicity one in
the highest root. Under the H-admissible hypothesis, the infinitesimal
character of each of the irreducible components of IT in formula (1),
has the same property as the infinitesimal character of w. Thus, for
most H-admissible Discrete series, to compute the right hand side of
(1), we may appeal to the work of the first author and Wolf [26]. Their
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results let us compute the highest weight of each irreducible factor in
the restriction of 7 to K;(V), next, we apply |5, Theorem 5| for the
general case.

We may speculate that a formula like (1) might be true for 7 whose
underlying Harish-Chandra module is equivalent to a unitarizable Zuck-
erman module. In this case, the definition of oo would be the subspace
spanned by the lowest L-type of o and II would be a Zuckerman module
attached to the lowest K-type of 7.

The paper is organized as follows. In Section 2, we introduce facts
about Discrete Series representation and notation. In Section 3, we
state the main Theorem and begin its proof. As a tool, we obtain
information on the kernel of the restriction map.

In Section 4, we complete the proof of the main Theorem. As a sub-
product, we obtain information on the kernel of the restriction map,
under admissibility hypothesis. We present examples and applications
of the Main Theorem in section 5. This includes lists of multiplicity free
restriction of representations, many of the multiplicity free representa-
tions are non holomorphic Discrete Series representations. We also
dealt with quaternionic and generalized quaternionic representations.

In Section 6, we analyze when symmetry breaking operators are rep-
resented by means of normal derivatives. Section 7 presents the list of
H-admissible Discrete Series and related information.

Acknowledgements: The authors would like to thank T. Kobayashi
for much insight and inspiration on the problems considered here. Also,
we thank Michel Duflo, Birgit Speh, Yosihiki Oshima and Jan Frahm
for conversations on the subject. Part of the research in this paper was
carried out within the online research community on Representation
Theory and Noncommutative Geometry sponsored by the American
Institute of Mathematics. Also, some of the results in this note were
the subject of a talk in the "Conference in honour of Prof. Toshiyuki
Kobayashi" to celebrate his sixtieth birthday, the authors deeply thanks
the organizers for the facilities to present and participate in such a
wonderful meeting via zoom.

2. PRELIMINARIES AND SOME NOTATION

Let G be an arbitrary, matrix, connected semisimple Lie group.
Henceforth, we fix a maximal compact subgroup K for G and a max-
imal torus T for K. Harish-Chandra showed that G admits square
integrable irreducible representations if and only if 7" is a Cartan sub-
group of G. For this paper, we always assume 7' is a Cartan subgroup
of GG. Under these hypothesis, Harish-Chandra showed that the set of
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equivalence classes of irreducible square integrable representations is
parameterized by a lattice in it*. In order to state our results we need
to make explicit this parametrization and set up some notation. As
usual, the Lie algebra of a Lie group is denoted by the corresponding
lower case German letter. To avoid notation, the complexification of
the Lie algebra of a Lie group is also denoted by the corresponding
German letter without any subscript. V* denotes the dual space to a
vector space V. Let 6 be the Cartan involution which corresponds to
the subgroup K, the associated Cartan decomposition is denoted by
g = t+ p. Let &(g,t) denote the root system attached to the Car-
tan subalgebra t. Hence, ®(g,t) = &. U ®,, = ®.(g,t) U D, (g, t) splits
up as the union the set of compact roots and the set of noncompact
roots. From now on, we fix a system of positive roots A for ®.. For
this paper, either the highest weight or the infinitesimal character of
an irreducible representation of K is dominant with respect to A. The
Killing form gives rise to an inner product (...,...) in it*. As usual, let
p = pc denote half of the sum of the roots for some system of positive
roots for ®(g, t). A Harish-Chandra parameter for G is A € it* such that
(A, ) # 0, for every a € ®(g, t), and so that A+ p lifts to a character of
T'. To each Harish-Chandra parameter A\, Harish-Chandra, associates a
unique irreducible square integrable representation (7§, V.&) of G of in-
finitesimal character . Moreover, he showed the map A — (7§, V\©) is
a bijection from the set of Harish-Chandra parameters dominant with
respect to A onto the set of equivalence classes of irreducible square
integrable representations for G' (see [32, Chap 6]). For short, we will
refer to an irreducible square integrable representation as a Discrete
Series representation.

Each Harish-Chandra parameter A gives rise to a system of positive

roots

v, = \IIG’)\ = {Oé S @(g,t) : ()\,Oé) > 0}
From now on, we assume that Harish-Chandra parameter for G are
dominant with respect to A. Whence, A C ¥,. We write p) = p, =
%Zﬁe\ymén B, (Wa)n :=UyN D,

We denote by (7, W) := (x5, , , Vi, ) the lowest K—type of 7y :=
75. The highest weight of (rf,, , Vi ) is A + pp, — p.. We recall a
Theorem of Vogan’s thesis [31][0] which states that (7, W) determines
(7, V) up to unitary equivalence. We recall the set of square inte-
grable sections of the vector bundle determined by the principal bundle
K — G — G/K and the representation (7, W) of K is isomorphic to
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the space
LG %, W)
={fe LX(G)@W: f(gk) =7(k)" f(9),9 € G,k € K}.

Here, the action of G is by left translation L,,x € G. The inner
product on L*(G) ® W is given by

(. ), = /G (f(2), 9(x))wda,

where (...,...)w is a K—invariant inner product on W. Subsequently,
Lp (resp. Rp) denotes the left infinitesimal (resp. right infinitesimal)
action on functions from G of an element D in universal enveloping
algebra U(g) for the Lie algebra g. As usual, Q¢ denotes the Casimir
operator for g. Following Hotta-Parthasarathy [13], Enright-Wallach
6], Atiyah-Schmid [1], we realize V) := V\& as the space

H*(G,7) ={f € LX(G) @ W : f(gk) = 7(k)"' f(9)
g < GJ{: S K7 RQGf = [()‘a)‘) - (pa p)]f}
We also recall, R, = Lq. is an elliptic G—invariant operator on the
vector bundle W — G x, W — G/K and hence, H?(G, ) consists of
smooth sections, moreover point evaluation e, defined by H?*(G,7)
f — f(z) € W is continuous for each x € G (cf. |25, Appendix A4)).
Therefore, the orthogonal projector Py onto H?(G,T) is an integral
map (integral operator) represented by the smooth matriz kernel or
reproducing kernel |25, Appendix A1, Appendix A4, Appendix A6|.

which satisfies Ky (-, z)*w belongs to H?*(G, 1) for each z € G,w € W
and

(Pu(f) (&), w)w = / (F(9). Kaly, ) w)wdy, | € Lo(G x, W).

G
For a closed reductive subgroup H, after conjugation by an inner au-
tomorphism of G we may and will assume L := K N H is a max-

imal compact subgroup for H. That is, H is #—stable. In this pa-
per for irreducible square integrable representations (my, Vy) for G we
would like to analyze its restriction to H. In particular, we study the
irreducible H—subrepresentations for m,. A known fact is that any
irreducible H —subrepresentation of V) is a square integrable repre-
sentation for H, for a proof (cf. [9]). Thus, owing to the result
of Harish-Chandra on the existence of square integrable representa-
tions, from now on, we may and will assume H admits a compact
Cartan subgroup. After conjugation, we may assume U := H NT is
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a maximal torus in L = H N K. From now on, we set a square inte-
grable representation VMH = H*(H,0) C L*(H x4 Z) of lowest L—type
(Wﬁﬂ)ﬁ’ Vuﬁ—pﬁ) =:(0,2).

For a representation M and irreducible representation N, M[N] de-
notes the isotypic component of N, that is, M[N] is the linear span of
the irreducible subrepresentations of M equivalent to N. If topology
is involved M[N] is the closure of the linear span.

For a H-admissible representation 7, Specy(m), denotes the set of
Harish-Chandra parameters of the irreducible H-subrepresentations of
.

3. DUALITY THEOREM, EXPLICIT ISOMORPHISM

3.1. Statement and proof of the duality result. The unexplained
notation is as in section 2, our hypotheses are (G, H = (G7)) is a
symmetric pair and (7, V\¥) is a H-admissible, square integrable irre-
ducible representation for G. K = G? is a maximal compact subgroup
of G, Hy := (G°%)y and K is so that L = HN K = HyN K is a max-
imal compact subgroup of both H and H,. By definition, Hj is the
associated subgroup to H.

In this section, under our hypothesis, for VMH a irreducible factor for

resy(my), we show an explicit isomorphism from the space
Homp (V,[', V) onto Homp(VE s AU (o)) V[V, D)-

pitp
We also analyze the restriction map ro : H*(G,7) = L*(Hy X, W).
To follow, we present the necessary definitions and facts involved in

the main statement.

3.1.1. We consider the linear subspace L, spanned by the lowest
L-type subspace of each irreducible H-factor of resgy((L, H*(G,T))).
That is,

L is the linear span of Upegpeey (my) H*(G, 7)[VIIIVE L.

pph
We recall that our hypothesis yields that the subspace of L-finite vec-
tors in V\¥ is equal to the subspace of K-finite vectors |16, Prop. 1.6 |.

Whence, we have £, is a subspace of the space of K-finite vectors in

H*(G, 7).
3.1.2. We also need the subspace
U(bo)W = Luny) H* (G, 7)[Vi§ 0] = maU (o)) (VA [V o))

We write C1(U(ho)W) for the closure of U(ho)W. Hence, CL{U(ho)W)
is the closure of the left translates by the algebra U(hg) of the subspace
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of K-finite vectors

HXG,7)[VE ] = {Kx\(e)w:weW}=W

Ao
Thus, U(ho)W consists of analytic vectors for 7y. Therefore, C1(U (ho)W)
is invariant under left translations by Hy. In Proposition 4.9 we present
the decomposition of U(hy)W as a sum of irreducible representations
for Hy.

We point out

The L-module £, is equivalent to the underlying L -module in
U(bo)W.
This has been proven in [30, (4.5)]. For completeness we present a
proof in Proposition 4.9.

Under the extra assumption resy(7) is irreducible, we have U (ho)W
is a irreducible (ho, L)-module, and, in this case, the lowest L-type of
U(ho)W is (resp(T), W). That is, U(ho)W is equivalent to the underly-
ing Harish-Chandra module for H?(Hy, resr(7)). The Harish-Chandra
parameter 7y € iu* for CI(U(ho)W) is computed in 3.4.1.

For scalar holomorphic Discrete Series, the classification of the sym-
metric pairs (G, H) such that the equality U(ho)W = L, holds, is:

(su(m,n),su(m,l) + su(n — 1) +u(1)), (so(2m, 2),u(m, 1)),
(s0*(2n),u(l,n —1)), (s0*(2n),s0(2) + s0*(2n — 2)), (es(—14),50(2,8) +
50(2)). [30, (4.6)]. Thus, there exists scalar holomorphic Discrete Series

3.1.3. To follow, we set some more notation. We fix a representative
for (7, W). We write
(resp (1), W) = 21@9 qj(0j,%;), qj = dim Hom(Z;,res ,(W))
and the decomposition in isotypic components
W = @1<;<,Wl(0;, Zj)] = ®1<j< Wlo].
From now on, we fix respective representatives for (o;, Z;) with Z; C
Wl(o;, Z;)]-
Henceforth, we denote by
H*(Ho, 7)== Y dimHom(r,0;) H*(Hy, 7).
J
We think the later module as a linear subspace of
Z L2(H0 XO’]‘ W[Uj])Ho—disc = L2(H0 Xr W)Ho—disc-
J

Hence, H*(Hy, 7) C L*(Hy X» W), _dise- We note that when resy(7)
is irreducible, then H?(Hy, 7) = H?*(Hy, resg(T)).
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3.1.4. Owing to both spaces H*(H, o), H*(G, ) are reproducing ker-
nel spaces, we represent each T € Homg(H*(H,o), H*(G,T)) by a
kernel Kr : H x G — Homc(Z,W) so that K7(-,z)*w € H*(H, o)
and (T(g)(z), w)w = [4(g9(h), Kr(h,z)*w)zdh. Here, z € G,w €

W,g € H*(H,o). In [25], it is shown: Kp is a smooth function,
Kr(h, )z = Kp«(-,h)*2 € H*(G,7) and
(3.1) Kr(e,-)z € H(G,n)V,MV] i)

is a L-finite vector in H%(G, ).

3.1.5.  Finally, we recall the restriction map
To - H2(G,T) — L2(H0 X r W), 7’0(f)(h0) = f(h(]), ho S Ho,

is (L?, L?)-continuous [21].
The main result of this section is,

Theorem 3.1. We assume (G, H) is a symmetric pair and resg(my)
15 admissible. We fix a irreducible factor VMH for resg(my). Then, the
following statements hold.
i) The map ro : H*(G,7) — L*(Hy x, W) restricted to CL{U(ho)W)
yields a isomorphism between C1l(U(ho)W) onto H?(Hy, 7).
it) For each fized intertwining L-equivalence
D: ﬁA[VuLerﬁ] = H*(G, T)[VHH] [VMLJFPﬁ

the map

ry : Homy(H?*(H,0), H*(G, 7)) — Homy (V[ ., H?(Ho, 7))
defined by

| = U(b)W)IVE ).

T i (VE 3 2 ro(D(Kp(e,-)z)) € H*(Hy, 7))

ptpn
1s a linear isomorphism.

Remark 3.2. When the natural inclusion H/L — G/ K is a holomorphic
map, T. Kobayashi, M. Pevzner and Y. Oshima in [17],[20] has shown
a similar dual multiplicity result after replacing the underlying Harish-
Chandra module in H?( Hy, 7) by its representation as a Verma module.
Also, in the holomorphic setting, Jakobsen-Vergne in [14] has shown
the isomorphism H?(G, 1) = ,-, H*(H, 7, @S ((hoNp™))*). On the
papers, [22] [21], we find applications of the result of Kobayashi for their
work on decomposing holomorphic Discrete Series. H. Sekiguchi [28]
has obtained a similar result of branching laws for singular holomorphic
representations.

Remark 3.3. The proof of Theorem 3.1 requires to show the map r¥
is well defined as well as several structure Lemma’s. Once we verify
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the map is well defined, we will show injectivity, Corollary 3.9, Proposi-
tion 4.2 and linear algebra will give the surjectivity. In Proposition 4.9,
we show i), in the same Proposition we give a proof of the existence
of the map D as well as its bijectivity, actually this result has been
shown in [30|. However, we sketch a proof in this note. The surjectiv-
ity also depends heavily on a result in [30], for completeness we give
a proof. We may say that our proof of Theorem 1 is rather long and
intricate, involving both linear algebra for finding the multiplicities,
and analysis of the kernels of the intertwining operators in question
to set up the equivalence of the H-morphisms and the L-morphisms.
The structure of the branching and corresponding symmetry breaking
is however very convenient to apply in concrete situations, and we give
several illustrations.
We explicit the inverse map to the bijection r§’ in subsection 4.1.

Remark 3.4. When L, = U(ho)W we may take D equal to the identity
map. We believe that one choice of D is the orthogonal projector onto

ClU(ho)W) restricted to Ly [VMLerfi]'

Remark 3.5. A mirror statement to Theorem 3.1 for symmetry break-
ing operators is as follows: Homy(H*(G, 1), H*(H, o)) is isomorphic to
Homp(Z,H?*(Hy, 7)) viathe map S + (2 — (Hy > z — 1P (5*)(2)(z) =
ro(D(Ks(:,2)*)(2)) € W).

3.1.6.  We verify ro(D(K7(e,-)z))(-) belongs to L*(Hy X7 W) #y—dise-

Indeed, owing to our hypothesis, a result [5] (see |1, Proposition 2.4|)
implies 7y is L-admissible. Hence, [15, Theorem 1.2| implies 7y is Ho-
admissible. Also, [16, Proposition 1.6] shows the subspace of L-finite
vectors in H?(G,7) is equal to the subspace of K-finite vectors and
resumo) (H?*(G, T)k—fin) is a admissible, completely algebraically de-
composable representation. Thus, the subspace H*(G,7)[W] = W is
contained in a finite sum of irreducible U (hy)-factors. Hence, U(ho)W
is a finite sum of irreducible U(ho) factors. In [9], we find a proof
that the irreducible factors for resgy,(my) are square integrable rep-
resentations for H,, whence, the equivariance and continuity of rg
yields ro(CL(U(ho)W) is contained in L?(Hy X, W) g, —dise- 3.1.4 shows
Krp(e,-) € WVJIVE o], hence, D(Kr(e,-)z))(-) € U(ho)W, and the

) ptpl
claim follows.

3.1.7. The map Z > z — ro(D(Kr(e,*)2))(:) € L*(Hy x, W) is a
L-map.
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For this, we recall the equalities
Kr(hl, gk) = 7(k"")Kr(h,g9)o(l),k € K,1€ L,g€ G,h € H.

KT(hhl,hZL') = KT(hl,ZL'),h, h, € H r € G.

Therefore, Kr(e,hl1)o(lo)z = 7(I;NKp(ly,h)z = 7(I; ) Kp(e, I3 h)z
for l1,1ly € L, h € Hy and we have shown the claim.

We have enough information to verify the injectivity we have claimed
in 7) as well as the injectivity of the map 7. For these, we show a fact
valid for a arbitrary reductive pair (G, H) and arbitrary Discrete Series
representation.

3.2. Kernel of the restriction map. In this paragraph we show a
fact valid for any reductive pair (G, H) and arbitrary representation

my. The objects involved in the fact are the restriction map r from
H?(G,7) into L*(H x, W) and the subspace

(32) UMW = Luw H*(G,7)[Viy o] = m@U®m) (VI VA ),

We write C1(U(h)W) for the closure of U(h)W. The subspace Cl1(U(h)W)
is the closure of the left translates by the algebra U(f) of the subspace
of K-finite vectors
{K\(-,e)w :w e W} = H*(G, 7)[W].

Thus, U(H)W consists of analytic vectors for my. Hence, CL(U(h)W) is
invariant by left translations by H. Therefore the subspace

Ly(H*(G,7)[W]) = {K\(-,h)*w = Ly(Kx(-,e)*w) :w € W, h € H}
is contained in Cl(U(h)W)). Actually,

CULy(H(G, )W) = CLU(n)W).

The other inclusion follows from that Cl(Lg(H?*(G, 7)[W])) is invari-
ant by left translation by H and {K),(-,e)*w : w € W} is contained in
the subspace of smooth vectors in Cl(Lg(H?*(G,7)[W])).

The result pointed out in the title of the this paragraph is:

Lemma 3.6. Let (G, H) be a arbitrary reductive pair and a arbitrary
representation (my, H*(G,7)). Then, Ker(r) is equal to the orthogonal
subspace to CL{U(H)W).

Proof. Since, [24], r : H*(G,7) — L*(H x, W) is a continuous map, we
have Ker(r) is a closed subspace of H*(G, 7). Next, for f € H*(G, 1),
it holds the identity

( W - fG K)\ y> ) )Wdyavx S Gavw cW.
Thus, r( f) = 0 if and only if f is orthogonal to the subspace spanned
by {KA(-,h)*w cweW,heH}.
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Hence, Cl(Ker(r)) = (Cl(Ly(H?*(G,7)[W]))*. Applying the con-
siderations after the definition of Cl(U(h)W) we obtain Ker(r)t =
Cl{U(H)W). Thus Ker(r) = (Ker(r)t)* = ClU(H)W). O

Corollary 3.7. Any irreducible H-discrete factor M for CL{U(H)W)
contains a L-type in resp (7). That is, Mresr(T)] # {0}.

The corollary follows from that r restricted to C1({U(h)W) is injective
and that Frobenius reciprocity for L?*(H x, W) holds.

3.3. The map rf is injective. As a consequence of the general fact
shown in the previous subsection, we obtain the injectivity in ¢) and
the map r{ is injective.

Corollary 3.8. Let (G, H) be a symmetric pair and Hy = G°°. Then,
the restriction map ro : H*(G,7) — L*(Hy x, W) restricted to the
subspace CL{U(ho)W) is injective.

Corollary 3.9. Let (G, H) be a symmetric pair, Hy = G°° and we
assume resy(my) is H-admissible. Then, the map r{ is injective.

In fact, for T € Homyg(H*(H,0), H*(G, 1)), if 1o(D(K7(e,-)z)) =
0Vz € Z, then, since D(Kr(e,x)z) € U(hy)W, the previous corollary
implies D(Kr(e,r)z) = 0Yz,z € G. Since, Kr(e,-)z € VF[V,]] [V;ﬁrpf{]’
and D is injective we obtain Krp(e,z)z = 0Vz,Va. Lastly, we recall
equality Kr(h,z) = Kr(e,h~'z). Whence we have verified the corol-
lary.

Before we show the surjectivity for the map rf we would like to
comment other works on the topic object of this note.

3.4. Previous work on duality formula and Harish-Chandra
parameters. The setting for this subsection is: (G, H) is a symmetric
pair and (my, V,¥) is a irreducible square integrable representation of G
and H-admissible. As before, we fix K, L= HNK, T, U =HNT. The
following Theorem has been shown by [9], a different proof is in [18].

Theorem 3.10 (Gross-Wallach, T. Kobayashi-Y. Oshima). We as-
sume (G, H) is symmetric pair, 7§ -is H-admissible, then

a) resy(r$) is the Hilbert sum of inequivalent Square integrable
representations for H, W/I;,j = 1,2,..., with respective finite multi-

plicity 0 < m; < oo.
b) The Harish-Chandra parameters of the totality of discrete factors
or resy(n{) belong to a "unique” Weyl Chamber in iu*.
A

That is, V' = @1j<e VX [Vi] = @5 Homp (V. V) @ V1,
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dz’mHomH(V/fj, V&) =my, Wg =+ Wﬁ iffi # 4,
and there exists a system of positive roots Wy C ®(h,u), such that for
all j, (o, p15) >0 for all v € Uy .

In [30][18] (see Tables 1,2,3) we find the list of pairs (g, h), as well as
systems of positive roots Vg C ®(g,t), ¥y, C @(h,u) such that,

- X dominant with respect to W¢ implies resy(n§) is admissible.

- For all p1; in a) we have (p;, U ) > 0.

- When U =T, we have Uy, = ¥, N O(h, t).

Since (G, Hy) is a symmetric pair, Theorem 3.10 as well as its com-
ments apply to (G, Hy) and my. Here, when U = T, Uy, = U, N
(I)(b(]u t)

From the tables in [30] it follows that any of the system Wy, Wy \, ¥ g, 2
has, at most, two noncompact simple roots, and the sum of the respec-
tive multiplicity of each noncompact simple root in the highest root is
less or equal than two.

3.4.1. Computing Harish-Chandra parameters from Theorem 3.1. As
usual, p, = %Zﬁe\pm% 8, o = %de\pmm% B, px = %Zae\pmcpc Q,
pL = %Zae\lfH,méc a. We write resp (1) = resL(V)\Iipn) = Di<j<r G5 7rVLj =
Zj q;0;, with v; dominant with respect to W\ N ®.. we recall v; is
the infinitesimal character (Harish-Chandra parameter) of wlfj . Then,
the Harish-Chandra parameter for H?(H,, 7T5]) is n; = v; — pHo.
According to [27, Lemma 2.22|(see Remark 4.8), the infinitesimal
character of a L-type of H*(Ho, /) is equal to v; + B = n; + pj° + B
where B is a sum of roots in Wy, y N P,,.
The isomorphism 7 in Theore 3.1, let us conclude:
For each subrepresentation V" of resy(my), we have pu, + pfl is a
L-type of
H2(Hy, 7) = ®; ¢; H*(Ho, 7)) = & Y”H @D v;ji,
M
and the multiplicity of V/f is equal to the multiplicity of VMLS ol in
H?(H,, T).

3.4.2. Gross-Wallach multiplicity formula. To follow we describe the
duality Theorem due to [9]. (G, H) is a symmetric pair. For this
paragraph, in order to avoid subindexes we write g = Lie(G),h =
Lie(H) etc. We recall by = g°. We have the decompositions g =
t+p=b+qgq=ho+pnbh+qgn¢t The dual real Lie algebra to g is
g% = ho+i(pNbh-+qNE), the algebra g? is a real form for gc. A maximal
compactly embedded subalgebra for g¢ is t= hNe+i(hNyp). Let my
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be a H-admissible Discrete Series for G. One of the main results of
[9] attach to my a finite sum of underlying Harish-Chandra modules of
fundamental representation for G, (' | )P0t (N(A)), so that for each
subrepresentation V,/ of Vy we compute the multiplicity m®# (X, 1) of

V' by means of Blattner’s formula [11] applied to (I, )T (N(A) .

In more detail, since Lie(H)c = Lie(K)c, and the center of H is equal
to the center of K, for the infinitesimal character p and the central
character x of VuH , we may associate a finite dimensional irreducible

representation F), , for K. Then, they show

dimHomy gow (VT VE) = dimHomg(Fyy, (DKL )P0 (N(A)).

d
mEH(\, ) = (—1)7ImEHVED NN (5)p(A; + pi + ssmach).

i=1 SEWI?

where 7 = F* =37, M™ as a sum of irreducible H N L;-module and p
is the partition function associated to ®(uy/u; N b, u), here, uy is the
nilpotent radical of certain parabolic subalgebra q = [; + u; used to

define the A4(\)-presentation for my. Explicit example V presents the
result of [9] for the pair (SO(2m,2n), SO(2m,2n — 1)).

3.4.3. Duflo-Vargas multiplicity formula, [5]. We keep notation and hy-
pothesis as in the previous paragraph. Then,

mOH O\ p) =+ > e(w)psn(p — qu(wh)),
weWg
Here, g, : t* — u* is the restriction map. pgu is the partition function
associated to the multiset

Su = S\®(h/1 ), where, Sy = qu(w(Py)a) U AE/Lu).

We recall for a strict multiset of elements in vector space V the
partition function attached to S, roughly speaking, is the function that
counts the number of ways of expressing each vector as a nonnegative
integral linear combinations of elements of S. For a precise definition
see [5] or the proof of Lemma 4.4.

3.4.4. Harris-He-Olafsson multiplicity formula, [10]. Notation and hy-
pothesis as in the previous paragraphs. Let

Pt HY(G,7) = LA(H Xgm(aayr (S™(p N q)* @ W),

the normal derivative map defined in [24]. Let O denote the Harish-
Chandra character of 7/, For f a tempered function in H*(G, ), they
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define ¢7r>\,7rﬁl,m(f) = Opn *Tm(f) . They show:
mH () = Tim_dim 6, g m(H3(G, 7) (1 (G, ) Ve )

3.5. Completion of the Proof of Theorem 3.1, the map 7}’ is
surjective. Item i) in Theorem 3.1 is shown in Proposition 4.9 ¢). The
existence of the map D is shown in Proposition 4.9 e).

To show the surjectivity of & we appeal to Theorem 4.2, |30, Theo-
rem 1|, where we show the initial space and the target space are equidi-
mensional, linear algebra concludes de proof of Theorem 3.1. Thus, we
conclude the proof of Theorem 3.1 as soon as we complete the proof of
Theorem 4.2 and Proposition 4.9.

4. DUALITY THEOREM, PROOF OF DIMENSION EQUALITY

The purpose of this subsection is to sketch a proof of the equality of
dimensions in the duality formula presented in Theorem 3.1 as well as
some consequences. Part of the notation has already been introduced
in the previous section. Sometimes notation will be explained after it
has been used. Unexplained notation is as in [5], [25], [30].

The setting is as follows, (G, H) is a symmetric pair,(my, V) =
(L, H*(G, 7)) a H-admissible irreducible square integrable representa-
tion. Then, the Harish-Chandra parameter A\ gives rise to systems of
positive roots ¥, in ®(g, t) and by mean of ¥,, in |5] is defined a non-
trivial normal connected subgroup K;(V¥,) = K of K, it is shown that
the H-admissibility yields K; C H'. Thus, € = & O, [ =, DINE, (as
ideals), and t = tNg; +tNEy, u := tNI[ = uNg; +unks is a Cartan subalge-
bra of [. Let ¢, denote restriction map from t* onto u*. Let K5 denote
the analytic subgroup corresponding to &. We recall Hy := (G,
L=KNH=KnNH,. Wehave K = K1 Ky, L = K;(KsN L). We set
A :=U,\Nd(E, t). Applying Theorem 3.10 to both H and H, we obtain
respective systems of positive roots Uy \ in ®(h,u), Wy, \ in $(ho,u).
For a list of six-tuples (G, H, ¥, Yy 5, U, », K1) we refer to [30, Table
1, Table 2, Table 3|. Always, Wy N Q. (Lu) = ¥p, \) N (L u). As
usual, either @, (g,t) or ®, denotes the subset of noncompact roots in
(g, 1), p) (vesp. pH, pfo) denotes one half of the sum of the elements in
U,Nd,(g,t) (resp. @, NV, @, NWy, ). When u =t,p} = pf + pllo.
From now on, the infinitesimal character of an irreducible representa-
tion of K (resp L) is dominant with respect to A (resp. Wy \NO ([, u)).
The lowest K-type (7, W) of m\ decomposes 7T§{+p;\L = wﬁl X w[{{;, with
wlf\{ss an irreducible representation for K,,s = 1,2. We express 7 =

IThis also follows from the tables in [15]
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(71,72) € t* =t + 5. Hence, [L1][3], A = A + (pp)1, A2 = Ao + (7)o

Sometimes (p)2 # 0. This happens only for su(m, n) and some partic-

ular systems W, (see proof of Lemma 4.7). Harish-Chandra parameters

for the irreducible factors of either resy(my) (resp. resy,(my))) will al-

ways be dominant with respect to Uy aN®(Lu) (resp. Uy aNO(Lu)).
For short, we write 7, := mx, A, - We write

TeSLmKZ(WAZ)ZTesLnKz(Wf;): Z meLﬂKz(A V) Lsz’

vo€(untz)*

as a sum of irreducible representations of L N K.
The set of vy so that m% L0 E2 (A, 15) # 0 is denoted by Specrni, (7'('/{(22).
Thus,

resp(myl Rmy2) = E m R (N o) TRt R iR

K.
vrESpecs ey (ri2)

as a sum of irreducible representations of L. Besides, for a Harish-
Chandra parameter n = (n1,72) for Hy, we write

TesL(?Tg‘fm)) = Z mOE((n1,72), (61, 602)) 7y T(61,02)
)

(61 ,Gz)ESpecL(w(n n2)

The restriction of my to H is expressed by (see 3.10)

resg(my) = resy(rd) = Z m&H (N, p) o

neSpecy (my)

In the above formulaes, m™ (-, -) are non negative integers and represent
multiplicities; for v5 € Specrnk, (7?1]\{22), vy is dominant with respect to
UyaNO(Ey,unty), and (Ay,14) is Wy, y-dominant (see [30]); in the
third formulae, (11, 72) is dominant with respect to Wy, » and (6, 62)
is dominant with respect to W, » N D.(ho, u); in the fourth formula, p
is dominant with respect to Wg . Sometimes, for p € SpecH(Wg), we
replace p! by pf.
We make a change of notation:
o; = myl K al0K2 and g; = mR2E0K2 (A, 1),

Then, in order to show elther the existence of the map D or the sur-
jectivity of the map r¥, we need to show:
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Theorem 4.1.
m&H (N, p) = dim Homp (H*(H, V), ), H*(G, V) ,0))
= Z sz’LﬂKz (Ag, 1/2)
VzESpeanKQ(ﬂf;)
x dim Homp,(V, n, H*(Ho, my! B al52)).
A complete proof of the result is in [30]. However, for sake of com-

pleteness and clarity we would like to sketch a proof. We also present
some consequences of the Theorem.

Next, we compute the infinitesimal character (Harish-Chandra pa-
rameter) for H?(Hy, Wﬁl X 7%>) and restate the previous Theorem.

ic(H?(Ho, my! R mi2)) = (Ay,we) = pffo = (M + pf = pflo, 1) =
(A1, v2) + pH. This equality is obviously true when (p}), = 0.

To follow, we state Theorem 4.1 regardless of the realization of the
involved Discrete Series.

Theorem 4.2. Duality, dimension formula. The hypothesis is (G, H)
15 a symmetric pair and 7y is a H-admissible representation. Then,

m&H(\, p) = dim HomH(VMH, V)
— Z sz,LﬂKg (Ag, 1/2)

v2ESpecrnik, (Wf\{;)
. L H,
x dim Homp (V. i Vixtwa) ot )
After Lemma 4.5 the formula simplifies to
m&H (N ) = Z m 02 (X, 1) dim Homy (V) Vflo va))-

K.
vaESpecsary (Th2)

The following diagram helps to understand the equalities in the The-
orem and in the next three Lemmas.

pp

H
UVZ ESP@CLmKZ (7TA2 ) SpeCL (‘/&)\10,1/2))

1/»—>V+p,IL{
1/»—)1/+p£1

Spec,(H?*(Hy, 7)) = UVQESpecLﬁKQ(WAQ)SpecL(‘/()\loyz)+p )

SpecH(V(f\"M\z))

A consequence of Theorem 4.2, Lemma 4.5 and Lemma 4.4 is:
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Corollary 4.3.

Specy(my) + py,!
= Spec, (H?*(Hy, 7)) = UV2€Sp60LmK2(WAQ)SpecL(V(I)iO,W)-;-pg)'

H,
SpeCH (7T)\) = Ul/QESpeanK2 (nAQ)SpecL(V()\f,VZQ-
Theorem 4.2 follows after we verify the next two Lemmas.

Lemma 4.4. The hypothesis is (G, H) is a symmetric space and Ty is
H-admassible. Then

dim Hompy (Vqu Vi)
- Z mB2E0R2 (N, 1) dim HomL(VuL’ V(I;\Ilov”?))'

K
va€Specrni, (T 7)

Proof of Lemma 4./. The hypothesis (G, H) is a symmetric pair and
7y is H-admissible, let us to apply notation and facts in [5], [30] as
well as in [12] [3] [9] [18]. The proof is based on an idea in [3] of pil-
ing up multiplicities by means of Dirac delta distributions. That is,
let 6, denote the Dirac delta distribution at v € u*. Under our hy-
pothesis, the function m@# (), i) has polynomial growth in z, whence,
the series ) i m%H (X, ) 6, converges in the space of distributions in
ww*.  Since Harish-Chandra parameter is regular, we may and will
extend the function m@ (), -) to a Wy-skew symmetric function by
the rule m&H (N wp) = e(w)mH(\, pn),w € Wy. Thus, the series
D peHO—param(H) m%H (X, )d, converges in the space of distributions in
1. Next, for 0 # v € iu* we consider the discrete Heaviside distribu-
tiony, ==, 0% 11y, and for a strict, finite, multiset S = {7, -, 7%}
of elements in u*, we set

Vs = Yp ko x Yy = Y ps(i)dy
pEIUr
Here, x is the convolution product in the space of distributions on 7u*.
ps is called the partition function attached to the set S. Then, in [5]
there is presented the equality

Z mG’H(A7:u> 5# = Z E(w) 5qu(w)\)*y55’
nweHC—param(H) weWg

Here, Wg is the Weyl group of the compact connected Lie group S for
a ad(u)-invariant linear subspace R of g¢, (R, u) denotes the multiset
of elements in ®(g,u) such that its root space is contained in R, and

S = lau(w(¥x)n) U AE/LwN\D(H/1 ).
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Since, K = K 1Ky, Wi = Wk, x Wg,, we write Wi > w = st,s €
Wit € Wgk,. We recall the hypothesis yields K7 C L. It read-
ily follows: s®(h/Lu) = d(h/lLu), sAE/Lu) = AE/Lu),t(V,), =
(Wa)nstm = m, 81 = 12 forn; € & Nu, squ(-) = qu(s-). Hence,

S = s([@u((¥a)n) UAR/LWN\D(D/Lu)) = s(T°) UA(E/Lu).
Thus,

> €(w) Squnkysy = Z6(3t>5qu<5M>*ys<ﬁ0)um/uu)

weWg s,t

= Z E(St)(squ(s%‘)\l+&t)\2)*ys(\1,50)*yA(E/[,u)
s,t

= Z €(5)0(sx1,0) K Y, (g 10 K Z €(1) g (tra) YA (e/10)-
s t

Following [12]|, we write the restriction of 71‘)]\(22 to L N K, in the lan-
guage of Dirac, Heaviside distributions in u*, whence

Z €<t> 5f1u (tX2) *yA(EQ/(?Qﬂ[) )

tGWKQ
T ) Y e

K
VzESpeanKQ(n/\;) w2EWK,nL

In the previous formula, we will apply A(ty/(82 N 1), u) = A(E/[ u).
We also write in the same language the restriction to L of a Discrete
Series Wgo for Hy. This is.

ST mol (A, 1), v) 6, = DR CH LMWL STy
Ve SEWK TEWK, L

Putting together the previous equalities, we obtain
> mPH (A ) §
o

= Zuz ESpechK2 (7rf\<22 )
X Zsele 7teWK2ﬂL G(St)d(st)\l 7Stljg) *yst(qng)

= ZV(ZyzeSpeanKQ(ﬂf;g) sz,LﬂK2()\2, I/Q)mHo,L(()\l, 1/2), l/)) (S,,.

Since, the family {0,},cqn+ is linearly independent, we have shown
Lemma 4.4. L]

sz,LﬂKg ()\2’ 1/2)

In order to conclude the proof of the dimension equality we state
and prove a translation invariant property of multiplicity.
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Lemma 4.5. For a dominant integral v € wu*, it holds:

mtoL (A, ve) + pf, i+ plf) = mHoL (A, 1), o).

Proof. We recall that the hypothesis of the Lemma 4.5 is: (G, H) is
a symmetric pair and m, is H-admissible. The proof of Lemma 4.5 is
an application of Blattner’s multiplicity formula, facts from [l 1] and
observations from [30, Table 1,2,3]. In the next paragraphs we only
consider systems W, so that resy(my) is admissible. We check the
following statements by means of case by case analysis and the tables
in [9] and [30].

OBS0. Every quaternionic system of positive roots that we are deal-
ing with, satisfies the Borel de Siebenthal property, except for the al-
gebra su(2,2n) and the systems W, (see 4.6). Its Dynkin diagram is
° o o o - Bullet represents non compact roots, circle
compact.

OBS1. Always the systems Wy 5, ¥, » have the same compact sim-
ple roots.

OBS2. When ¥, satisfies the Borel de Siebenthal property, it follows
that both systems Wy , Uy, » satisfy the Borel de Siebenthal property.

OBS3. WU, satisfies the Borel de Siebenthal property except for
two families of algebras: a) the algebra su(m,n) and the systems
Uya=1,+,m—1,¥,,b=1,---,n—1, the corresponding systems
Viox, Y\ do not satisfy the Borel de Siebenthal property. They have
two noncompact simple roots; b) For the algebra so(2m, 2) each system
P, does not satisfy the Borel de Siebenthal property, however, each
associated system Wgo(om 1)1, YH,,» satisfies the Borel de Siebenthal
property.

OBS4. For the pair (su(2,2n),sp(1,n)). ¥y does not satisfy the
Borel de Siebenthal property. Here, ¥y = ¥y, » and they have Borel
de Siebenthal property.

OBS5. Summing up. Both systems Wy ), Wy, » satisfy the Borel
de Siebenthal property except for (su(m,n),su(m,k) + su(n — k) +
u(l)), (su(m,n),su(k,n) +su(m — k) +u(1)) and the systems ¥,,a =

Lo om—1,0yb=1,--,n—1.

To continue, we explicit Blattner’s formula according to our setting,
we recall fact’s from [I 1] and finish the proof of Lemma 4.5 under the
assumption Uy, \ satisfies the property of Borel de Siebenthal. Later
on, we consider other systems.
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. ]ﬂattner’s multiplicity formula applied to the L-type VMLer i of V(I)\{f vo)tpll
yields

(4.1)  dimHomp(VE Vo

ptrpi o Y (A, v2)+pH )

= 37 e)Quls(u+ plf) — (v, wm) + o+ p110)).

seWr,

Here, @)y is the partition function associated to the set ®,,(ho) MW g, ».

We recall a fact that allows to simplify the formula of above under
our setting.

Fact 1: [11, Statement 4.31]. For a system Wy, » having the Borel de
Siebenthal property, it is shown that in the above sum, if the summand
attached to s € Wy contributes nontrivially, then s belongs to the
subgroup Wy (Vp,.») spanned by the reflections about the compact
simple roots in W, .

From OBS1 we have Wy (Vpg,,) = Wy(¥ga). Owing that either
U or Wy, has the Borel de Siebenthal property we apply [l1,
Lemma 3.3|, whence Wy (Vpy) = {s € Wi : s(¥g,NP,(h,u)) =
UpaN®,(h,u)}t. Thus, for s € Wy (g, ) we have spff = pf. We
apply the equality spff = pX in 4.1 and we obtain

dimHomL(VMpH,foqup ) = Z E(S)QO(S:U’_((AlvV2)+anO>>‘

SEWU (Y ag,A)

Blattner’s formula and the previous observations gives us that the right
hand side of the above equality is

dim Homy (V,}, V(I;l‘)w ) = mHoL (A, 1), 1),
whence, we have shown Lemma 4.5 when Wy, 5 has the Borel de Sieben-
thal property.

In order to complete the proof of Lemma 4.5, owing to OBS5, we
are left to consider the pair (su(m,n),su(m, k) + su(n — k) + u(1))
as well as (su(m,n),su(k,n) + su(m — k) + u(1)) and the systems
Uyoa =1,---.m—1, U, b=1,---,n—1. The previous reasoning
says we are left to extend Fact 1, [11, Statement (4.31)], for the pair
(su(m,n), su(m, k)+su(n—k)+u(1)) (resp. (su(m,n),su(k,n)+su(m—
k)+u(1))) and the systems (V) a—1... m—1 (resp. (U3)p=1....n1). Under
this setting we first verify:

Remark 4.6. If w € W and Qo(wp — (A + pn)) # 0, then w €
WU(WH()’)\).
To show Remark 4.6 we follow [ 1]. We fix as Cartan subalgebra t of

su(m, n) the set of diagonal matrices in su(m, n). For certain orthogonal
basis €1,...,€n,01,...,0, of the dual vector space to the subspace of
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diagonal matrices in gl(m + n, C), we may, and will choose A = {¢, —
€5,0p — 04,1 <1 < s <m,1<p<q<n}, the set of noncompact roots
is @, = {£(e, — d,)}. We recall the positive roots systems for ®(g, t)
containing A are in a bijective correspondence with the totality of
lexicographic orders for the basis €,...,€,,01,...,0, which contains
the "suborder" ¢ > .-+ > €,,, 01 > --- > J,. The two holomorphic
systems correspond to the orders e > --- > ¢, >0 > -+ > §,; 01 >
>0, > € > > 6, Wefix1 <a<m-—1, and let ¥, denote the
set of positive roots associated to the order ¢ > --- > ¢, >0y > -+ >
Om > €qa1 > > €. Wefix1 < b<n-—1andlet U, denote the set of
positive roots associated to the order 6; > --- >, > € > -+ > ¢, >
dp1 > -+ > 0y Since, h = su(n, k)+u(m—=k), ho = su(n,n—k)+u(k).
The root systems for (b, t) and (ho, t) respectively are:

O(h,t) = {£(e, —€5), £(d, — &), £(e; — 0;), 1 <r <s<m,
1<p<qg<k or, k+1<p<qg<n,1<i<m,1<j<k}.

D(ho, t) = {£(e —€5), (0, — &), £(6; — 0;),1 <r <s<m,
1<p<qg<kork+1<p<qg<n1<i<mk+1<j<n}

The system Wy, = Wy NO(h,t), Uy, n = Uy N P(hy, t) which corre-
spond to ¥, are the system associated to the respective lexicographic
orders

€1 > > €, >01 > >0 > €1 > > €y, 01 > 000 > Oy

€1 > > € > 0pp1 > >0, > €qaq > > €y 01 >+ 00 > 0.

For the time being we set k = n and we show Remark 4.6 for su(m,n)
and ¥,. ) denotes the partition function for ¥, N ®,,.

The subroot system spanned by the compact simple roots in ¥, is

Oy ={e—€,1<i<agl<j<aora+1<i<ma+1<j;<
myU{6, — 0, 1< i#j <n}.

U, NPy ={e —€;,1<i<a,a+1<j<m}.

UV, N®, ={¢—0;,0; —¢,1<i<a,a+1<r<m,1<j<n}

20 =n(e1+-+e,) —nlegpr+-+em)+(a—(m—a)) (614 -+6,).

A finite sum of non compact roots in ¥, is equal a to

B = Zl<j<a Ajej = D aii<icm Bi€i + >, Cpd, with A;, B; non nega-
tive numbers.

Let w € W so that Q(wpu—(A+py,)) # 0. Hence, p = w™ ' (A+p,+B),
with B a sum of roots in ¥, N ®,,. Thus, w™! is the unique element in
W, that takes A+ p, + B to the Weyl chamber determined by ¥, N®.,.

Let wy € Wy(¥,) so that wi(A + p, + B) is ¥, N ®y-dominant.
Next we verify wy(\ + p, + B) is ¥, N ®.-dominant. For this, we fix



Duality 23

a € U,N® N\ Py and check (w1 (A+p,+B),a) > 0. a =¢—¢j,i < a < j,
and w; € Wy (¥,), hence, wy'(a) = e, — es,7 < a < s belongs to
U,. Thus, (wi(A+ pn + B),a) = (A + pp + B,w;'a) = (N, wy'a) +
(pn,wi'a) + (Bywi'a) = (N wi'a) + n — (—n) + A, + By, the first
summand is positive because A\ is ¥,-dominant, the third and fourth
are nonnegative. Therefore, w™! = w; and we have shown Rematk 4.6,
whence, we have concluded the proof of Lemma 4.5. O

Lemma 4.7. We recall pS = p} and Ay = Ay + (p5)2. We claim:
mK27LﬂK2 (A2’ VZ) — ng,LﬂKg(}\27 1/2).

In fact, when W, is holomorphic, p% is in 3 = € hence (p%)s = 0.
In [30] it is shown that when K is semisimple (p&)y = 0. Actually, this
is so, owing that the simple roots for Wy N ®(&,,ty) are simple roots
for ¥, and that p¢ is orthogonal to every compact simple root for Wy.
For general g, the previous considerations together with that (p&)s is
orthogonal to £; yields that (p), belongs to the dual of the center of
[N €. From Tables 1,2,3 we deduce we are left to analyze (p&)y for
su(m,n),so(m,2). For so(m,2) we follow the notation in 4.0.3, then
t; = span(ey, ..., en), ta = span(d;) and pY=m = cle; + -+ e,) € 1.
For su(m,n) we follow the notation in Lemma 4.5. It readily follows
that for 1 < a < m, p,* = 2((m —a)(er + -+~ + ea) — a(eay1 +
st oem)) + 222 ((n(er + -+ + en) —m(dy + -+ + dy)). The first
summand is in t N su(m), the second summand belongs to 3¢, thus,
(p¥a)y = 0 if and only if 2a = m. Whence, for (su(2,m),sp(1,m)),
we have (pyt), = 0. For (su(m,n),su(m, k) + su(n — k) + 31), always,
(p¥e)y determines a character of the center of €. In this case, Ay = Ay
except for (su(m,n),su(m, k) +su(n —k)+3), ¥V, and a # 2m, hence,

7T/[€; is equal to W)[\ZQ times a central character of K. Thus, the equality

holds.

4.0.1. Conclusion proof of Theorem 4.2. We just put together Lemma 4.5,
Lemma 4.4 and Lemma 4.7, hence, we obtain the equalities we were
searching for. This concludes the proof of Theorem 4.2.

4.0.2. Ezistence of D. To follow we show the existence of the isomor-
phism D in Theorem 4.2 i) and derive the decomposition into irre-
ducible factors of the semisimple ho-module U(ho)WW. On the mean
time, we also consider some particular cases of Theorem 4.2. Before,
we proceed we comment on the structure of the representation 7.

4.0.3. Representations wy so that resp(7) is irreducible. Under our H-
admissibility hypothesis of 7, we analyze the cases so that the represen-
tation resy(7) is irreducible. The next structure statements are verified
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in [30]. To begin with, we recall the decomposition K = K;Zk K5, (this
is not a direct product!, Zx connected center of K') and the direct prod-
uct K = KK, we also recall that actually, either K or K5 depend on
U,. When 7, is a holomorphic representation K; = Zx and ¢, = [, €];
when, Z is nontrivial and ) is not a holomorphic representation we
have Zx C Ky; for g = su(m,n),bh = su(m, k) + su(n — k) + 3., we
have T = Zx C Z; = T2 Here, Zx C L, and, 7|, irreducible, forces
T = wi?(m) X 77x K wfg,({j}) ; for g 2 su(m,n) and G/K a Hermitian
symmetric space, we have to consider the next two examples.

For both cases we have Ky = Zy(K»)ss and Zx € L.

1) When g = so(m, 2),h = so(m, 1) and ¥ = ¥, then t; = so(m),
£, = 3x and obviously res(7) is always an irreducible representation.

Ko - . . .
Here, 7,7 is one dimensional representation.

2) When g = su(2,n),h = sp(1,n), U\ = Uy, then & = sus(maz),
&, = sp(n) + 3, L = Ki(L N (K3)s). Here, 7, irreducible forces,
T=my Kric ) m2)es

P(Kg)ss "

We would like to point out, for g = so(2m,2n),h = so(2m,2n —
1),n > 1, V', Nn®, = {g £;}, & = so(2m), and if A is so that
A pp =ic(r) = (X e, k(61 + -+ + 0,1 £6,)) + pr, then resp(7)
is irreducible and 7@{22 = W]i((gl b1 0 )+ i, is not a one dimensional
representation for £ > 0. It follows from the classical branching laws

that these are the unique 7’s such that resy(7) is irreducible.

We believe, if resp(r) is irreducible and g 2 so(2m,2n) we may
conclude that 7 is the tensor product of a irreducible representation
of K; times a one dimensional representation of K,. That is, 7 =

7T1[\{11 X ﬂf}é ® Wsz.
In 5.3.1 we show that whenever a symmetric pair (G, H) is so that
some Discrete Series is H-admissible, then there exists H-admissible

Discrete Series so that its lowest K-type restricted to L is irreducible.

4.0.4. Analysis of U(ho)W, Ly, existence of D, case 1), 1is irreducible.
As before, our hypothesis is (G, H) is a symmetric space and 7§ is
H-admissible. For this paragraph we add the hypothesis 71, = res.(7)
is irreducible. We recall that U(ho)W = Ly, (H*(G, 7)[W]), Ly =

Bpespecn () H* (G, T) [VMH] [VHLJFP%] . We claim:

a) if a H-irreducible discrete factor of V) contains a copy of 7z, then
7, is the lowest L-type of such factor.

b) the multiplicity of resr () in H*(G, ) is one.

c) Cl(U(ho)W) is equivalent to H*(Hy,T).

d) Ly is equivalent to H*(Ho, 7)1 fin-
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e) Ly is equivalent to U(ho)W. Thus, D exists.
We rely on:

Remark 4.8. 1) Two Discrete Series are equivalent if and only if their
respective lowest L-types are equivalent. [31].

2) For any Discrete Series 7y, the highest weight (resp. infinitesimal
character) of any K-type is equal to the highest weight of the lowest
K-type (resp. the infinitesimal character of the lowest K-type) plus a
sum of noncompact roots in ¥, [27, Lemma 2.22].

From now on ic(¢) denotes the infinitesimal character (Harish-Chandra
parameter) of the representation ¢

Let V[ a discrete factor for resy(my) so that 7, is a L-type. Then,
Theorem 4.2 implies V},| ,n is a L-type for H 2(Hy, 7). Hence, after we
apply Remark 4.8, we obtain

p+pd + By = ic(7,) with By a sum of roots in Uy N ®,,.

p+ pH = ic(7,) + By with By a sum of roots in W, N ®,,.

Thus, By + By = 0, whence By = B; = 0 and u + pf = ic(7,), we
have verified a).

Due to H-admissibility hypothesis, we have U (h)W is a finite sum of
irreducible underlying modules of Discrete Series for H. Now, Corol-
lary 1 to Lemma 3.6, yields that a copy of a V' contained in ¢ ()W
contains a copy of Vj[W]. Thus, a) implies 7j, is the lowest L-type
of such V/'. Hence, H*(H,7) is nonzero. Now, Theorem 4.2 to-
gether with that the lowest L-type of a Discrete Series has multi-
plicity one yields that dim Homy(H?(H,7),Vy) = 1. Also, we ob-
tain dim Homp,(H?*(Hy,7),Vy) = 1. Thus, whenever 7, occurs in
resg(Vy), we have 7y, is realized in V\[IW]. In other words, the isotypic
compoent V)[r),] C Vi[W]. Hence, b) holds.

Owing our hypothesis, we may write U(ho)W = Ny + ... + Nj, with
each N; being the underlying Harish-Chandra module of a irreducible
square integrable representation for Hy. Since Lemma 3.6 shows 7
is injective in U(ho)W, we have 7o(CL(N;)) is a Discrete Series in
L?(H, Xresp(r) W), whence Frobenius reciprocity implies 7, is a L-
type for N;. Hence, b) and a) forces U(ho)W is ho-irreducible and c)
follows.

By definition, the subspace L) is the linear span of Vi[V,] [VMLJFPH]

with g € Specy(my). Since, dim V,\[VuH] [VMLJFPH] = dim HomH(VHH, Vi)
= dim Homy (V% i, HX(Ho, 7)) = dim H*(Ho, 7)[V%, ], and, both L-

modules are isotypical, and it follows d). Finally, e) follows from c¢) and
d).
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Under the assumption 7Tf22 is the trivial representation, the formulae
in Theorem 4.2 becomes:

dim Homy (V" V) = dim Homy (V5 i, Vi )

pterl T (Aprynr) ol

,1;17H2(H0,’7')) = dimHomL(VuL’V'(HO ))’

AL,PKyNL

= dim HomL(VHLer
the infinitesimal character of H%(Hy,7) is (A1 + p), pronz) — po =
(M1, prarin) + plf . Thus, H2(Ho,7) = Vo

ALpEynL)+PE

4.0.5. Analysis of U(ho)W, L, existence of D, for general (T,W).
We recall that by definition, £y = @uespecy (n)H* (G, 7)[V,]] [V;ﬁrpﬁ]’
Uho)W = Ly, (H*(G, 7)[W]).

Proposition 4.9. The hypothesis is: (G, H) is a symmetric pair and
m o H-admissible square integrable representation of lowest K-type
(1, W). We write
resp(T) = qo1 + - - + qy0,, with (0}, 2;) € I, ¢; > 0. Then,

a) if a H-irreducible discrete factor for resy(my) contains a copy of
0j, then o; is the lowest L-type of such factor.

b) the multiplicity of o; in res,(H*(G, 7)) is equal to g;.

c) o : CLU(ho)W) — H2(Hy, T) is a equivalence.

d) Ly is L-equivalent to H?(Ho, T) 1 fin-

e) Ly is L-equivalent to U(ho)W. Whence, D exists.

Proof. Let VI a discrete factor for resy(my) so that some irreducible
factor of 7j, is a L-type. Then, Theorem 4.2 implies VuL+p5 is a L-type
for H*(Hy, 7) = @,q;H*(Hp, 0;). Let’s say VuLer{f is a subrepresenta-
tion of H*(Hy,o;). We recall ic(¢) denotes the infinitesimal character
(Harish-Chandra parameter) of the representation ¢. Hence, after we
apply Remark 4.8 we obtain

p+ pl + By =ic(o;) with By a sum of roots in Wy \ N @,,.

p+ pl =ic(o;) + By with By a sum of roots in Wy, , N ®,,.

Thus, By + By = ic(o;) —ic(o;). Now, since € = € + &, €& C [,
T = wﬁl &ﬂffj, we may write o, = wﬁl X, with ¢ € ﬁg, whence,
ic(o;) —ic(o;) = ic(¢p;) — ic(¢;). Since, each ¢, is a irreducible factor
of resnk, (wlf\{;), we have ic(¢;) — ic(¢;) is equal to the difference of
two sum of roots in ® (€2, tN€y). The hypothesis forces that the simple
roots for W, N ®(&y, t N &) are compact simple roots for Wy (see [5])
whence ic(o;) — ic(0;) is a linear combination of compact simple roots
for ¥,. On the other hand, By + B; is a sum of noncompact roots in
V,. Now By + Bj can not be a linear combination of compact simple
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roots, unless By = By = 0. Whence, ic(0;) = ic(o;) and Z; = Vé is
the lowest L-type of VMH , we have verified a).

Due to H-admissibility hypothesis, we have U (h)W is a finite sum of
irreducible underlying Harish-Chandra modules of Discrete Series for
H. Thus, a copy of certain VuH contained in U(h)W contains W{o;].
Whence, o; is the lowest L-type of such V). Whence, H*(H,0;) is
nonzero and it is equivalent to a subrepresentation of CI(U(h)W).

We claim, for i # j, no o; is a L-type of CL({U(h)W)[H?(H, 5;)].

Indeed, if o; were a L-type in CL(U(h)W)[H?*(H, 0;)], then, o; would
be a L-type of a Discrete Series of lowest L-type equal to o;, according
to a) this forces i = j, a contradiction. Now, we compute the multiplic-
ity of H?(H,0;) in H*(G, ). For this, we apply Theorem 4.2. Thus,
dim Hompy(Vy, H*(H,0;)) = >, ¢ dim Hom (o, H*(H,0;)) = ¢;

In order to realize the isotypic component corresponding to H*(H, ;)
we write Vy[W]lo;] = Ry + -+ + Ry, a explicit sum of L-irreducibles
modules. Then, owing to a), Ly)(R,) contains a copy N, of H*(H, o)
and R, is the lowest L-type of N,. Therefore, the multiplicity compu-
tation yields H*(G,7)[H?(H,0;)] = N1 + --- + N,,. Hence, b) holds.
A corollary of this computation is:

Homy(H*(H,0;), (C{U(h)W))+) = {0}.

Verification of ¢). After we recall Lemma 3.6, we have ro : C1(U(ho) —
L?(Hyx, W) is injective and we apply to the algebra b := b, the state-
ment b) together with the computation to show b), we make the choice
of the ¢js subspaces Z; as a lowest L-type subspace of W[Z;]. Thus,
the image via 7 of U(ho)Z; is a subspace of L*(Hy X o;). Since, ei-
ther Atiyah-Schmid or Enright-Wallach [6] have shown H?(Hy, o;) has
multiplicity one in L?*(Hy x 0;) we obtain the image of rg is equal to
H2(H0, T).

The proof of d) and e) are word by word as the one for 4.0.4. O

Corollary 4.10. The multiplicity of H*(H, c;) in resy(H*(G, 1)) is
equal to
q; = dimHomp(oj, H*(G, T)).

Corollary 4.11. For each o, Li[Z;] = CL{U(ho)W)[Z;] = H*(G, 7)[W][Z;] =
"W(Z;). Thus, we may fix D = Iz, : LA[Z;] = CLU(ho)W)[Z;].

4.1. Explicit inverse map to ry. We consider three cases: resg(r)
is irreducible, resy(7) is multiplicity free, and general case. Formally,
they are quite alike, however, for us it has been illuminating to consider
the three cases. As a byproduct, we obtain information on the compo-
sitions r*r, r{ry; a functional equation that must satisfy the kernel of
a holographic operator; for some particular discrete factor H?(H, o) of
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resy(my) the reproducing kernel for H*(G, ) is a extension of the re-
producing kernel for H?(H, o) as well as that the holographic operator
from H?*(H, o) into H*(G,7) is just plain extension of functions.

4.1.1. Case (1,W) restricted to L is irreducible. In Tables 1,2,3, we
show the list of the triples (G, H, ) such that (G, H) is a symmetric
pair, and 7, is H-admissible. In 5.3.1 we show that if there exists
(G, H, 7)) so that ) is H-admissible, then there exists a H-admissible
myv so that its lowest K-type restricted to L is irreducible and )\ is
dominant with respect to m,. We denote by 7, the Harish-Chandra
parameter for H?(Hy, 1) = Cl(U(bo)W).
We set ¢ = d(my)dimW/d(m}). Next, we show

Proposition 4.12. We assume the setting as well as the hypothesis in
Theorem 3.1, and further (1, W) restricted to L is irreducible.

Let Ty € Homp(Z,H*(Hy, 7)), then the kernel Kr corresponding to
T := (rf)"(Ty) € Homy(H*(H,0), H*(G, 7)) is

Er(h,z)z = (D7'] %Kx(ho, )(To(2)(ho))dho] ) (h ™" x).

Ho

Proof. We systematically apply Theorem 4.9. Under our assumptions,
we have: H?(Hy, 7) is a irreducible representation and H?(Hy, 1) =
H2(H0, ’7');
Cl(U(bo)(H?*(G,7)[W])) is Hp-irreducible; We define
o = rest(rg) : CLU(ho)H*(G, 7)[W]) — H?(Hy,T) is a isomorphism.
To follow, we notice the inverse of 7y, is up to a constant, equal to
rg restricted to H?*(Hp,7). This is so, because functional analysis
yields the equalities C1(Im(r)) = ker(ro)* = CL({U(ho)W), Ker(ry) =
Im(rg)* = H?(Hy, 7). Thus, Schur’s lemma applied to the irreducible
modules H?(Hy, ), CL(U(ho)W) implies there exists non zero constants
b, d so that (fora)mz(%ﬂ = bl (py,m)5 ToTo = dlciuneyw). Whence, the
inverse to 7 follows. In 4.1.2, we show b = d = d(my)dimW/d(m}l°) = c.

For z € G,f € H*(G,7), the identity f(z) = [, K\(y,z)f(y)dy
holds. Thus, ro(f)(p) = f(p) = [, EKx(y,p)f(y)dy, forp € Hy, f €
H?(G,7), and, we obtain

KTO(x> hO) = KA("% h0)> KT{; (h0>$) = Kro(x> hO)* = K)\(ho,l’).

Hence, for g € H?(H,, T) we have,

f(;l(g)(l’> = %fHo Kra(ho,l’>g(h0)dh0 = %IHO K)\(h(],flf)g(ho)dho

Therefore, for Ty, € Homp(Z, H*(Hy, 7)), the kernel Kr of the ele-
ment T in Homy(H?*(H,0), H*(G, 7)) such that rP(T) = Ty, satisfies
for z € Z

D7 ([rg (To(2) (D) = Kr(e, )z € VC[H*(H, 0)][Z] € H*(G, 7).
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More explicitly, after we recall Kr(e, h=*z) = Kr(h, ),

Kr(hoa)e = (D7 [ K (ho, )(To(2) (ho))dhol) (h™'2).

Hy c
U
Corollary 4.13. For any T in Homg(H?*(H, o), H*(G, 7)) we have
1
Kr(h,2)z = (D7'[ | =Kx(ho, ) (ro(D(Kr(e, )2)) (ho)) dho) (h™ ).
Hop

Corollary 4.14. When D is the identity map, we obtain
1
KT(h,ZL')Z = EK)\(h(),h_ll')(To(Z)(ho))dho

Hy

1
= —K)\(hho,l’)KT(e, hQ)Zth

Hy €

The equality in the conclusion of Proposition 4.12 is equivalent to
D(Kr(e.)(y) = [y, LKrlho, y)D(Krle, ) (ho)dho, y € G.
Whence, we have derived a formula that let us to recover the kernel K
(resp. D(Kr(e,-))(+)) from Kr(e,-) (resp. D(Krp(e,-))(-)) restricted to
Hy!

Remark 4.15. We notice,

(4.2)  roro(f)(y) = Kx(ho,y)f(ho)dho, f € H*G, 1), y€G.

Ho

Since we are assuming 7}, is irreducible, we have Cl(U(ho)W) is ir-
reducible, hence, Lemma 3.6 let us to obtain that a scalar multiple of
r§To is the orthogonal projector onto the irreducible factor CL(U (ho) WV .

H,
Whence, the orthogonal projector onto C1(U(ho)W) is given by d(:g%
Thus, the kernel K ,, of the orthogonal projector onto Cl(U(ho) W)

18

7"67’0.

d 7r7HO
Km(@,y) = 7ol [ Ka(p,y) Koz, p)dp.
Doing H := H, we obtain a similar result for the kernel of the
orthogonal projector onto C1(U(h)W).

The equality (rorf) = cly2(p,,7) yields the first claim in:

|12 (r1g,m)

Proposition 4.16. Assume resp(7) is irreducible. Then,

a) for every g € H*(Hy,1),) (resp. g € H*(H, 7)), the function r§(g)
(resp. r*(g)), is an extension of a scalar multiple of g.

b) The kernel K¢ is a extension of a scalar multiple of KﬁL.
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When we restrict holomorphic Discrete Series, this fact naturally
happens, see [22], [25, Example 10.1] and references therein.

Proof. Let r : H*(G,7) — L*(H x, W) the restriction map. The du-
ality H, Hy, and Theorem 3.1 applied to H := H, implies H*(H,7) =
r(CHU(h)W)), as well as that there exists, up to a constant, a unique
T € Homy(H?*(H,7), H*(G,7)) = Hom (W, H*(H,7)) = C. Tt fol-
lows from the proof of Proposition 4.12, that, up to a constant, 7' = r*
restricted to H*(H, 7). After we apply the equality T(K[(-,e)*z)(z) =
Kr(e,x)z, (see [21]), we obtain,
P (K ()" 2)(y) = Kaly, )=
Also, Schur’s lemma implies rr* restricted to H*(H,T) is a constant
times the identity map. Thus, for b € H, we have rr* (K (-, e)*w)(h) =
qu(h, e)*w. For the value of ¢ see 4.1.2. Putting together, we obtain,
Kx(h,e)*z = r(K\(-,e)*z)(h) = ¢K [ (h,e)* .
Whence, for h, hy € H we have
Kx(hi,h)*z = Kx(h7'hy,e)*z = K[ (h'hy,e)*z = qK [ (hi, h)*z
as we have claimed. O

By the same token, after we set H := Hy we obtain:

Forresp(t) irreducible, (0, Z) = (resp (1), W), and Vo = H*(H,, 0),
the kernel K extends a scalar multiple of K. Actually, ro(Kx(-, e)*w) =
cK (- e) w.

Remark 4.17. We would like to point out that the equality
P ) (2)) () = ¢ (y, €)=

implies resy(my) is H-algebraically discretely decomposable. Indeed,
we apply a Theorem shown by Kobayashi [16, Lemma 1.5|, the Theo-
rem says that when (Vi) g _ s, contains an irreducible (b, L) irreducible
submodule, then V) is discretely decomposable. We know K, (y,e)*z
is a K-finite vector, the equality implies K,(y,e)*z is 3(U(h))-finite.
Hence, owing to Harish-Chandra [32, Corollary 3.4.7 and Theorem
4.2.1], H*(G,T)k—pin contains a nontrivial irreducible (h, L)-module
and the fact shown by Kobayashi applies.

4.1.2. Value of b= d = c when resy () is irreducible. We show b = d =
d(my)dimW/d(m}) = c. In fact, the constant b, d satisfies (r§70)u(o)w =
dLyveyw (rorg)‘H%Hoﬁ) = bly2(p, 7). Now, it readily follows b = d. To
evaluate riro at K)(-,e)*w, for hy € Hy we compute, for hy € Hy,
bK)\(hl, 6)*11) = Tsro(K)\(', €>*w)(h1) = fHO K)\(ho, hl)K)\(ho, 6)*dh0w

= d(m2)? [y, ®(hy " ho)®(ho)*dhow.
Here, ® is the spherical function attached to the lowest K-type of
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Tx. Since, we are assuming resp(7) is a irreducible representation,
we have U(hy)W is a irreducible (b, L)-module and it is equivalent to
the underlying Harish-Chandra module for H?(Hy, resy,(7)). Thus, the
restriction of ® to Hj is the spherical function attached to the lowest L-
type of the irreducible square integrable representation C1(U(ho)W) =
H?(Hy,resr(7)). We fix a orthonormal basis {w;} for U (ho)W[W]. We
recall,

O(r)w = Pum(v) Pww = D) i gimw (T(2)w, ;) 2w,

P(z71) = d(z)*.

For h, € Hy, we compute, to justify steps we appel to the invariance
of Haar measure and to the orthogonality relations for matrix coef-
ficients of irreducible square integrable representations and we recall
d(m}lo) denotes the formal degree for H*(Hy,res(7)).

/(I)(h Y wdh = Z/ hith)w;, w;) 2 (w(h™Hw, w;) p2w;
Hop

— Z/H (m(h)wj, hyw;) g2 (7 (R)w;, w) p2w;
= 1/d(m}*) Y "(w;, w)) 2 (hw;, w) 2

2%
= dimW/d(r[?) > " (hy 'w, w;) 2w
= dimW /d(m}l)®(hy)*w
Thus,

roro(Ka (-, e)*w)(h1) = d(m)? / O (ki h)®(h) wdh

Hy
= d(ﬁA)zdimW/d(W,%o)/d(ﬂ')\)K)\(hl, e) w
The functions Ky(-,e)*w, riro(K (-, e)*w)(-) belong to ClU(ho)W),
the injectivity of ro on ClL(U(ho)W), forces, for every = € G
rero(Ka(+, ) w)(x) = d(wx)dimW/d(W,%o)K,\(x, e)*w
Hence, we have computed b = d = c.

4.1.3. Analysis of v for arbitrary (1,W), (o, Z). We recall the decom-
position W =} K2 Wrgt ) whnie],

v2ESpecrLni, (7TA
A consequence of Proposition 4.9 is that r§ maps H?(H,, W[ﬂ'/]\(ll X
mEOR2]) into CLU (ho)W [mry ! Kk K2]). In consequence, rory restricted
to H2(Ho, Wry! @ﬂL”KQ]) is a bijective Hy-endomorphism C;. Hence,
the inverse map of rq restricted to CL(U (ho)W [ry ! K wENK2]) is roCy L
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Since, H 2(H0,7Tff11 X 7T52”K2) has a unique lowest L-type, we conclude
C; is determined by an element of Homy(my! B nl0&2 H?(H, 73t X
LK) [ U RIr LK) Since for D € U(hy), w € W we have Cj(Lpw) =
LpCj(w), we obtain C; is a zero order differential operator on the
underlying Harish-Chandra module of H?(Hy, 73! ®7rL%2). Summing
up, we have that the inverse to ro : Cl({U(ho)W) — H?(Hy,7) is the
function ra(@jC’j_l).

For T € Homy(H?*(H,0), H*(G,7)) and Ty € Hom(Z,H*(H,T)) so
that rd(T) = T, we obtain the equalities

Kr(e,x)z = (D7 [y, Ka(ho, ) (&;C;)T6(2)) (ho)dho)) ().
KT(h, SL’)Z

=(D7'[| Ki(ho,)

x ((8,C5 ) (ro(D(Kr(e, -)2)) () (ho)dho]) (h™ ).

When D is the identity the formula simplifies as the one in the second
Corollary to Proposition 4.12.

4.1.4. Eigenvalues of riry. For general case, we recall riry intertwines
the action of Hy. Moreover, Proposition 4.9 and its Corollary gives
that for each L-isotypic component Z; C W of res;(7), we have
U(ho)W[Z1] = Z;. Thus, each isotypic component of resy ((U(ho)W)[W])
is invariant by rjrg, in consequence, rjry leaves invariant the sub-
space "W = H?*(G,7)[W] = {K\(-,e)*w,w € W}. Since, Ker(rg) =
(CLU(ho)W))L, we have riry is determined by the values it takes on
"W?”. Now, we assume resy(7) is a multiplicity free representation, we
write Z{- = Zy @ - - @ Z,, where Z; are L-invariant and L-irreducible.
Thus, Proposition 4.9 implies ClL{U(ho)W) = ClU(bo)Z1) & --- &
Cl(U(ho)Z,). This a orthogonal decomposition, each summand is irre-
ducible and no irreducible factor is equivalent to other. For 1 <1 < ¢,
let n; denote the Harish-Chandra parameter for Cl1(U(bo)Z;).

Proposition 4.18. When resr (1) is a multiplicity free representation,

() di

the linear operator riro on ClU(ho)Z;) is equal to % times the
.

identity map. l

Proof. For the subspace C1(U(ho)W)[W], we choose a L*(G)-orthonor-
mal basis {w; }1<j<aimw equal to the union of respective L?*(G)-ortho-
normal basis for Cl(U(hy)Z;)[Z;]. Next, we compute and freely make
use of notation in 4.1.2. Owing to our multiplicity free hypothesis,
we have that rjrg restricted to Cl(U(ho)Z;) is equal to a constant d;
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times the identity map. Hence, on w € Cl(U(by)Z;)[Z;] we have dyw =
d(ﬂ')\)2 fHo (I)(ho)q)(ho)*’wclho

Now, ®(ho) = (ai;) = ((ma(ho)w;, w;)r2(cy), Whence, the pg-coefficient
of the product ®(hgy)P(ho)* is equal to

2_1<j<dimw (Ta(ho)w;, wp) 2(c) (ma(ho)wy, wj)Lz(G)

Let I; denote the set of indexes j so that w; € Z;. Thus, {1,...,dimW}
is equal to the disjoint union U;<;<,/;. A consequence of Proposition 4.9
is the L?*(G)-orthogonality of the subspaces Cl(U(bo)Z;), hence, for
t € I,,q € Igand a # d we have (my(ho)wg, we)r2c) = 0. There-
fore, the previous observation and the disjointness of the sets I, let us
obtain that for i # d,p € I;,q € I; each summand in

Z1§jgdimw fHo (ma(ho)ws, wp) r2(G) (ma(ho)wy, wj)L2(G)dh0

is equal to zero.

For p, q € I;, we apply the previous computation and the orthogonal-
ity relations to the irreducible representation Cl(U(ho)Z;. We obtain

Do 1<j<dimw fHO(WA(hO)wp wp) 2(6) (TA(ho)wg, Wj) 12 dho
= > jer S (ma(ho)ws, wp) 26y (ma(ho)wy, w;) 2oy Ao
= Zje]i d(ﬂ%o) (wj>wQ)L2(G) (wjawp)LQ(G) - m

Thus, we have shown Proposition 4.18. O

Remark 4.19. Even, when resy(7) is not multiplicity free, the conclu-
sion in Proposition 4.18 holds. In fact, let us denote the L-isotypic
component of resy (1) again by Z;. Now, the proof goes as the one for
Proposition 4.18 till we need to compute

= > jer, Ju, (Ma(ho)wj, wp) p26) (ma (ho)wg, wy) 12 oy dho

For this, we decompose "Z;” = 3 Z; as a L*(G)-orthogonal sum
of irreducible L-modules and we choose the orthonormal basis for 7 Z;”
as a union of orthonormal basis for each Z; ;. Then, we have the L?*(G)-
orthogonal decomposition Cl(U (ho)Z;) = >, CL{U(ho)Zis). Then, the

proof follows as in the case resy(7) is multiplicity free.

5. EXAMPLES

We present three type of examples. The first is: Multiplicity free
representations. A simple consequence of the duality theorem is that it
readily follows examples of symmetric pair (G, H) and square integrable
representation ¢ so that resy(my) is H-admissible and the multiplicity
of each irreducible factor is one. This is equivalent to determinate when
the representation resy(H?(Hy, 7)) is multiplicity free. The second is:
Explicit examples. Here, we compute the Harish-Chandra parameters
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of the irreducible factors for some resgy(H?*(G,7)). The third is: Ewis-
tence of representations so that its lowest K-types restricted to L is a
wrreducible representation.

In order to present the examples we need information on certain
families of representations.

5.1. Multiplicity free representations. In this paragraph we gener-
alize work of T. Kobayashi and his coworkers in the setting of Hermitian
symmetric spaces and holomorphic Discrete Series.

Before we present the examples, we would like to comment.

a) Assume a Discrete Series 7, has admissible restriction to a sub-
group H. Then, any Discrete Series ) for N dominant with respect
to W) is H-admissible [15].

b) If resy(my) is H-admissible and a multiplicity free representation.
Then the restriction to L of the lowest K-type for 7, is multiplicity
free. This follows from the duality theorem.

c¢) In the next paragraphs we will list families F of Harish-Chandra
parameters of Discrete Series for GG so that each representation in the
family has multiplicity free restriction to H. We find that it may
happen that F is the whole set of Harish-Chandra parameters on a
Weyl chamber or F is a proper subset of a Weyl Chamber. Information
on F for holomorphic reprentations is in [18], [19].

d) Every irreducible (g, K)-module for either g = su(n,1) or g =
s0(n, 1), restricted to K, is a multiplicity free representation.

5.1.1. Holomorphic representations. For G so that G/K is a Hermit-
ian symmetric space, it has been shown by Harish-Chandra that G
admits Discrete Series representations with one dimensional lowest K-
type. For this paragraph we further assume that the smooth imbedding
H/L — G/K is holomorphic, equivalently the center of K is contained
in L, and ), is a holomorphic representation. Under this hypothe-
sis, it was shown by Kobayashi [17] that a holomorphic Discrete Series
for G has a multiplicity free restriction to the subgroup H whenever
the it is a scalar holomorphic Discrete Series. Moreover, in [17, The-
orem 8.8] computes the Harish-Chandra parameter of each irreducible
factor. Also, from the work of Kobayashi and Nakahama we find a
description of the restriction to H of a arbitrary holomorphic Discrete
Series representations. As a consequence, we find restrictions which
are not multiplicity free.

In [19] we find a complete list of the pairs (g, ) so that H/L — G/K
is a holomorphic embedding. From the list in [17], it can be constructed
the list bellow.
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Also, Theorem 3.1 let us verify that the following pairs (g, ) are so
that resg(my) is multiplicity free for any holomorphic 7. For this, we

list the corresponding bj.
(su(m,n),u(u(m — 1,n) +u(1 ))), su(l,n) +su(m — 1) +u(l).
(su(m,n),s(u(m,n —1) +u(l))), ho = su(n — 1) + su(m, 1) + u(1).
(s0(2m,2),u(m, 1)), ho = u(m, 1).
(s0*(2n),50%(2) + s0*(2n — 2)), ho =u(l,n —1).
(sp(n,R), sp(n —1,R) +sp(1,R)), hp =u(l,n —1).
(26(_14),50 (10) +50( )), []() = 5u(5, ) +5[2(R) (Prasad).
The list is correct, owing to any Discrete Series for SU(n, 1) restricted
to K is a multiplicity free representation.

5.1.2. Quaternionic real forms, quaternionic representations. In [9],
the authors considered and classified quaternionic real forms as well
as they made a careful study of quaternionic representations. To fol-
low we bring out the essential facts for us. From [9] we read that the
list of Lie algebra of quaternionic groups is: su(2,n), so(4,n), sp(1,n),
€6(2), €7(—5)s €8(—24)s Ja(4), B2(2)- For each quaternionic real form G, there
exists a system of p051tlve roots ¥ C ®(g,t) so that the maximal root
Qmae 1IN W is compact, ay,g, is orthogonal to all compact simple roots
and au,qe is not orthogonal to each noncompact simple roots. Hence,
£ (V) = sus(ynaz). The system W is not unique. We appel such a
system of positive roots a quaternionic system.

Let us recall that a quaternionic representation is a Discrete Series
for a quaternionic real form G so that its Harish-Chandra parameter is
dominant with respect to a quaternionic system of positive roots, and
so that its lowest K-type is equivalent to a irreducible representation
for K1 (W) times the trivial representation for K,. A fact shown in [9] is:
Given a quaternionic system of positive roots, for all but finitely many
representations (7, ) equivalent to the tensor of a nontrivial repre-
sentation for K7(W) times the trivial representation of Ky, it holds:
7 is the lowest K-type of a quaternionic (unique) irreducible square
integrable representation H?(G, 7). We define a generalized quater-
nionic representation to be a Discrete Series representation 7y so that
its Harish-Chandra parameter is dominant with respect to a quater-
nionic system of positive roots.

From Table 1,2 we readily read the pairs (g, ) so that g is a quater-
nionic Lie algebra and hence, we have a list of generalized quaternionic
representations of G with admissible restriction to H.

Let (G, H) denote a symmetric pair so that a quaternionic represen-
tation (my, H*(G, 7)) is H-admissible. Then, from [30] [5] [4] we have:
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£ (V)) = sus(@maz) C I and 7y is L-admissible. In consequence, [16],
7y is Hp-admissible. By definition, for a quaternionic representation 7y,
we have 7), is irreducible, hence, H*(Hy,7) is irreducible. Moreover,
after checking on [30] or Tables 1,2, the list of systems Wy, », it follows
that H?(Hy, T) is again a quaternionic representation. Finally, in order
to present a list of quaternionic representations with multiplicity free
restriction to H we recall that it follows from the duality Theorem that
resy(H?*(G, 7)) is multiplicity free if and only if resy(H?(Hy, 7)) is a
multiplicity free representation, and that on [9, Page 88| it is shown
that a quaternionic representation for H is L-multiplicity free if and
only if hp = sp(n,1),n > 1.

To follow, we list pairs (g, h) where multiplicity free restriction holds
for all quaternionic representations.

(su(2,2n),sp(1,n)), ho = sp(1,n), n > 1.

(so(4,n),s0(4,n — 1)), ho = s0(4,1) + so(n — 1) (n even or odd).

(s p(l n),sp(1, k) + sp(n — k), ho = sp(1,n — k) + sp(k).

( ( ) ))7 bO —5p( ) )@511(2)

(36(2 f4 1), bo=sp(3,1).

A special pair is:

(SU(Q, 2)a5p(1? 1))> bo = ﬁp(l, 1)

Here, multiplicity free holds for any ) so that A is dominant with re-
spect to a system of positive roots that defines a quaternionic structure
on G/K. For details see |30, Table 2] or Explicit example II.

5.1.3. More examples of multiplicity free restriction. Next, we list pairs
(g, b) and systems of positive roots ¥ C ®(g, t) so that 7y, is H- admis-
sible and multiplicity free for every element N dominant with respect
to W. We follow either Table 1,2,3 or [19]. For each (g,b) we list the
corresponding bhy.

(SU(m, n)>5u(m> n-— 1) + u(l))7 \Ilaa \i]ba

ho = su(m, 1) +su(n — 1) +u(1).
(s0(2m,2n + 1),50(2m,2n)), Vi, ho = s0(2m, 1) + so(2n).
(s0(2m,2),50(2m, 1)), Uiy, by = s0(2m, 1).
(so(2m,2n),s50(2m,2n—1)),n > 1, Uo, hy = s0(2m, 1) +s0(2n —1).

5.2. Explicit examples.

5.2.1. Quaternionic representations for Sp(1,b). For further use we
present a intrinsic description for the Sp(1) x Sp(b)-types of a quater-
nionic representation for Sp(1,b), a proof of the statements is in [3].
The quaternionic representations for Sp(1,b) are the representations
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of lowest Sp(1) x Sp(b)-type S™(C?*) K C,n > 1. We label the sim-
ple roots for the quaternionic system of positive roots ¥ as in [9],
B1,- .., Bpr1, the long root is fyy1, B1 is adjacent to just one simple
root and the maximal root (.. is adjacent to —f;. Let Ay, ..., Agyq
the associated fundamental weights. Thus, A; = ﬁm% Let /~\1, - ,/~\b
denote the fundamental weights for W N ®(sp(b))”. The irreducible
L = Sp(1) x Sp(b)-factors of

H2(Sp(1,b), 7°00), ®mpt)) = H*(Sp(1,b), S"(C?) K C)

are ?
{Sn_1+m(C2) X Sm(c%)

__sp() Sp(b) S
= T ) B &WmAlersp(b)’ m > 0}.

The multiplicity of each L-type in H?(Sp(1,b), S"1(C?*)KC) is one.

5.2.2. FExplicit example I. We develop this example in detail. We re-
strict quaternionic representations for Sp(1,d) to Sp(1, k) x Sp(d — k).
For this, we need to review definitions and facts in [3|[19] [30]. The
group G := Sp(1,d) is a subgroup of GL(C*2?). A maximal compact
subgroup of Sp(1, d) is the usual immersion of Sp(1) x Sp(d). Actually,
Sp(1,d) is a quaternionic real form for Sp(C'*%). Sp(1,d) has a com-
pact Cartan subgroup 7" and there exists a orthogonal basis 9, €1, . .., €4
for it* so that

D(sp(d + 1,C),¢) = {26, 4261, ... 24, (e, £ ), 1 < i # j <
d,£(6te5),1 <s<d}.

We fix 1 < k < d. We consider the usual immersion of H :=
Sp(1, k) x Sp(d — k) into Sp(1,d).

Thus, ®(h, t) = {£26, £2€1,...,+2¢4, £(e;t€;), 1 <i# j < kork+
1<i#j<d t(dtes),1<s<Ek}

Then, Hy is isomorphic to Sp(1,d — k) x Sp(k). We have

(I)([](),t) = {j:25, :i:2€1, ceey :i:2€d, :t(EZ + Ej), k+1 <1 7é ] < dorl <
i# 7 <k+(0+e)k+1<s<d}.

From now on, we fix the quaternionic system of positive roots
U= {26,2€,...,264, (6, £€),1 <i<j<d(dLtes),1<s <d}.
Here, a4 = 29, pg = dj. The Harish-Chandra parameter A of a
quaternionic representation 7, is dominant with respect to ¥. Whence,
U, = V. The systems in Theorem 3.10 are ¥y, = ®(h, )NV, ¥y, \ =
(I)(b(],t) Nnw. AlSO, [ ], (I)(El = El(qf),fl = tﬂ?l) = {ZEQ(S}, @(EQ =
EQ(‘I’),JCQ = tmfg) = {:|:2€1, ceey :|:2€d, :l:(EZ :l:€j>, 1< #] < d} ThllS,
K1(W) = SUy(20) = Sp(1) € H, Ky = Sp(d). Hence, for a Harish-
Chandra parameter A = (A1, A2), A; € it} dominant with respect to W,
the representation 7, is H-admissible.
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The lowest K-type of a generalized quaternionie representation 7y
is the representation 7 = wf\ip% = 7r)\1+d5 X 7y, X2 Since, pr, = de; +
(d—1)eg + -+ - - + €q, for n > 2d + 1, the functional t* > A, :=nd + px,
is a Harish-Chandra parameter dorninant with respect to ¥ and the

lowest K-type 7, of m), is 7r(n+d) X 7r . That is, Wﬁ_i_pé is equal to
a irreducible representation of K; = Sp( ) = SU(20) times the triv-
ial representation of Ky = Sp(d). The family (my, ), exhausts, up to
equivalence, the set of quaternionic representations for Sp(1,d). Now,
H?(Hy, 1,) is the irreducible representation of lowest L-type equal to
the irreducible representation 7T( + a6 of K times the trivial represen-
tation of Ky N L. Actually, H?(Hy, 7% T dys X ™ ) is a realization of

5p0) g Seln—) )) for

the quaternionic representation H*(Sp(1,n—k), Tt dys B Tospini)

Sp(1,d — k) times the trivial representation of Sp(k). In |3, Proposi-
tion 6.3] it is shown that the representation H*(Sp(1,n — k), Wfé)_&))é X

5515(7::2) restricted to L is a multiplicity free representation as well as

it is computed the highest weight of the totality of L-irreducible fac-

tors. To follow we explicit such a computation. For this we recall 5.2.1

and notice b = d — k; Ay = 6, Baz = 20, A1 = €1; as Sp(1)-module,
SU(26) m _ s

S;(Cz) = (p+(1 5; for p > 1, as Sp(p)-module S™(C*) = wmi?ﬁpsp(p).

Then,

the irreducible L = Sp(1) x Sp(d — k) x Sp(k)-factors of

H2(Ho, mli) g5 R k2 ) = HA(Sp(1,d — k), mi/t) s Rmpn ) K C.

n-‘rd n+d)6

are multiplicity free and it is the set of inequivalent representations

{Sn+d—1+m(c2) X Sm(C2 (d—k) ) X C

— Sp( ) Sp(d—k) Sp(k)
T(ntd+m)s X Tmer+psp(a—) X WPSP(k)v m > 0}.

Here pgp(d k) (d ]{Z)Gk+1 + (d k— 1)€k+2 +---te€ and pgp(k) =
kei + (k —Dex+ -+ + €.

We compute \IIHM\ = {20,2€1,...,2¢q4, (e, £€;),1 <i#j<kork+
1<i+#j<d(d+e)l <s <k} pf=pf=Fk5 Now, from
Theorem 3.1 we have Specy (my) + p = Specr,(H?(Hy, 7)), whence, we
conclude:

The representation T€85p(17k)><5p(d_k)(ﬂ'ff (1’d)) is a multiplicity free

representation and the totality of Harish-Chandra parameters of the
Sp(1, k) x Sp(d — k)-irreducible factors is the set

{(n+d+m)d +mer+ pspiotpsya iy — Pr =
(n+d+m—k)d+me; +(d—k)exs1+- - -+eg+keg+- - -+e,m > 0}



Duality 39

Whence, 7esgp(1,k)x Sp(d_k)(ﬁff (1’d)) is equivalent to the Hilbert sum

VSp(l,k) x Sp(d—k)
(ntd+m—k)d+mer+pspk)+PSpd—k)

_ 2 Sp(1)x Sp(k)x Sp(d—k)
= @mZOH (Sp(17 k) X Sp(d - k)’ ﬂ-(n—i-d—i-m)(s—i-mq+psp(k)+Psp(d7k)).

DPm>o0

A awkward point of our decomposition is that not provide a explicit
description of the H-isotypic components for resy(V,C).

5.2.3. Explicit example II. We restrict from Spin(2m,2),m > 2, to
Spin(2m, 1). We notice the isomorphism between (Spin(4,2), Spin(1,1))
and the pair (SU(2,2),Sp(1,1)). In this setting K = Spin(2m) x Z,
L = Spin(2m), Zx = T. Obviously, we may conclude that any irre-
ducible representation of K is irreducible when restricted to L. In this
case Hy = Spin(2m, 1), and (for m = 2, Hy = Sp(1,1)) and H?(Hy, 7)
is irreducible. Therefore, the duality theorem together with that any
irreducible representation for Spin(2m, 1) is L-multiplicity free, we ob-
tain:

Any Spin(2m, 1)-admissible representation (ﬂ_fpin(ZmQ)’ V)\Spm(Zm’z)) is

multiplicity free.

For (Spin(2m,2), Spin(2m, 1)) in [30, Table 2 |, [19] it is verified that
any my, with A dominant with respect to one of the systems W, (see
proof of 4.7) has admissible restriction to Spin(2m, 1) and no other
has admissible restriction to Spin(2m,1).

In [30, Table 2 | [15] [16] it is verified that any square integrable
representation 7, with A dominant with respect to a quaternionic sys-
tem for SU(2,2), has admissible restriction to Sp(1,1). As in 5.2.2,
we may compute the Harish-Chandra parameters for the irreducible

components of resg,,1) (ﬂ:\w@’z) ).

5.2.4. Explicit example I11. To follow, G is so that its Lie algebra is
sp(m,n), n > 2,m > 1. The aim of this example is twofold. One is
to produce Discrete Series representations so that the lowest K-type
restricted to K7 (W) is still irreducible and secondly to produce another
multiplicity free examples. Here, £ = sp(m) + sp(n). We fix maximal
torus 7' C K and describe the root system as in [30]. For the system
of positive roots ¥ := {¢; L €;,7 < J, 0, £ 65,7 < S, €4 £ 0,1 < a,i,j <
m,1 < b,r;s < n}, we have K;(V) = K; = Sp(m), Kx(V) = Ky =
Sp(n). Obviously, there exists a system of positive roots T so that
K, (U) = Sp(n), Ky(¥) = Sp(m). For any other system of positive
roots in ®(g, t) we have that the associated subgroup K is equal to K.
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It readily follows that A := 3}, j<m @j€j + pK, s a W-dominant Harish-
Chandra parameter when the coefficients a; are all integers so that
ay > -+ > a, >> 0. Since p) belongs to spanc{ei,...,en}, it follows
that the lowest K type of ) is equivalent to a irreducible representation
for Sp(m) times the trivial representation for Sp(n). Next, we consider
h =sp(m,n—1)+sp(1) in the usual embedding. Here, hy = sp(m, 1)+
sp(n — 1). Whence, after we proceed as in Explicit example I we may
conclude resgy(mn—1)xsp(1) (Wfp (m’")) is a multiplicity free representation
and we may compute the Harish-Chandra parameters of each Sp(m, n—
1) x Sp(1)-irreducible factor for 7.

5.2.5. Ewplicit example IV.  (eg(2), faa)). We fix a compact Cartan sub-
group 1" C K so that U := T N H is a compact Cartan subgroup of
L = K N H. Then, there exist a quaternionic and Borel de Sieben-
thal positive root system Wpg for ®(eg,t) so that, after we write the
simple roots as in Bourbaki (see [3]|[30]), the compact simple roots
are aq, g, g, as, o (They determinate the As-Dynkin sub-diagram)
and ap is noncompact. ay is adjacent to Qe and to ay. In [30],
it is verified Wpg is the unique system of positive roots such that
E1(\IIBS) = 5u2(amam)-
The automorphism o of g acts on the simple roots as follows

olag) = ag, o(a1) = ag, o(ag) = as, o(ay) = ay.

Hence, 0(¥ps) = Wps. Let hy € it* be so that o;(hy) = djo for
j=1,...,6. Then, hy = (352”;) and 0 = Ad(exp(mihy)). A straight-
forward computation yields: € = sus(@mez) + 5P(3), [ = sua(mas) +
sp(1) + sp(2); the fix point subalgebra for fo is isomorphic to sp(1,3).
Thus, the pair (eg2), 59(1,3)) is the associated pair to (eg(2), fa))- Let gy
denote the restriction map from t* into u*. Then, then, for A dominant
with respect to ¥pg, the simple roots for Uy = s, 0s Tespectively

\Ilsp(l,?)),)\a are:

az, ag, qu(as) = qulas), qular) = qu(as).
B = quag + ay + as) = qu(as + as + az), B2 = qu(1) = qulas),
Bs = qu(asz) = qulas), B1= ay.
The fundamental weight /~\1 associated to f; is equal to % Bmaz- Hence,
A =014 B+ B+ 181 =+ 3au+ az + a5 + 3(aq + ag).
Thus, from the Duality Theorem, for the quaternionic representation

2 SUZ(amaz)XSU(6)
H (E6(2)’ 7T”“’”%"‘PSU(G) )

the set of Harish-Chandra parameters of the irreducible Fyy-factors is
equal to:
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—pl plus the set of infinitesimal characters of the L = SU(Qnae) X
Sp(3)-irreducible factors for

S Qmaz) XS
TE€SSUs (amaz)xSp(3 )(H (Sp(1,3), 7 gj}w )% p(3))).

+P5p(3)
Here) _pﬁl = _dH%%a dH df4(4) (See [ ])

Therefore, from the computation in 5.2.1, we obtain:

F,
Eg(2) _ 4(4)
T68F4(4) (7T amaac - EBmZO V

(n=T+m) ez +mA14pgp(3)

+PSU(6)>

Here, pgp@) = 302 + 585 + 301 = 3(as + a3) + 2(a1 + ag) + 30w

5.2.6. Comments on admissible restriction of quaternionic represen-
tations. As usual (G, H) is a symmetric pair and (my, H*(G, 7)) a H-
admissible, non-holomorphic, square integrable representation. We fur-
ther assume G /K holds a quaternionic structure. Then, from Tables
1,2,3 it follows:

a) A is dominant with respect to a quaternionic system of positive
roots. That is, 7 is a generalized quaternionic representation.

b) H/L has a quaternionic structure.

c) Each system Wy 5, Wy, » is a quaternionic system.

d) The representation H?(Hy, 7) is a sum of generalized quaternionic
rep’s.

e) When 7y is quaternionic, then the representation H?(Hy, ) is
equal to H?(Hy,resr (7)), hence, it is quaternionic. Moreover, in [3], it
is computed the highest weight and the respective multiplicity of each
of its L-irreducible factors.

f) Thus, the duality Theorem 3.1 together with a)—e) let us com-
pute the Harish-Chandra parameters of the irreducible H-factors for
a quaternionic representation my. Actually, the computation of the
Harish-Chandra parameters is quite similar to the computation in Ez-
plicit example I, Explicit example 1V.

To follows we consider particular quaternionic symmetric pairs. One
pair is (fa(),50(5,4)). Here, ho = sp(1,2)+su(2). Thus, for any Harish-
Chandra parameter A dominant with respect to the quaternionic sys-
tem of positive roots, we have m restricted to SO(5,4) is a admissible
representation and the Duality theorem let us compute either multi-
plicities or Harish-Chandra parameters of the restriction. Moreover,
since quaternionic Discrete Series for Sp(1,2) x SU(2) are multiplicity
free, [8], we have that quaternionic Discrete Series for fy), restricted
to SO(5,4) are multiplicity free. It seems that it can be deduced from
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the branching rules for the pair (Sp(3),Sp(1) x Sp(2)) that a gener-
alized quaternionic representation, resso(s)(mx) is multiplicity free if
and only 7, is quaternionic.

For the pair (f4(1),50(5,4)), if we attempt to deduce our decomposi-
tion result from the work of 9], we have to consider the group of Lie
algebra g¢ = fa(—20y, its maximal compactly embedded subalgebra is
isomorphic to s0(9), a simple Lie algebra, hence no Discrete Series for
G? has admissible restriction to Hy (see |18] [5]). Thus, it is not clear
to us how to deduce our Duality result from the Duality Theorem in

[].

For the pairs (eg(—14), 54(2,4)+5u(2)), (e6(2), 50(6,4)+50(2)), (e7(—5), e6(2)+
50(2)), for each G, generalized quaternionic representations do exist
and they are H-admissible. For these pairs, the respective b, are:
su(2,4) + su(2),su(2,4) + su(2),su(6,2). In these three cases, the
Maple soft developed by Silva-Vergne[2|, allows to compute the L-
Harish-Chandra parameters and respective multiplicity for each Dis-
crete Series for Hy = SU(p,q) x SU(r), hence, the duality formula
yields the Harish-Parameters for resg(m,) and their multiplicity.

5.2.7. Ezplicit ezample V. The pair (SO(2m,n), SO(2m,n—1)). This
pair is considered in [9]. We recall their result and we sketch how to
derive the result from our duality Theorem. We only consider the case
g = s0(2m,2n+1). Here, ¢ = s0(2m)+s0(2n+1), h = s0(2m, 2n), hy =
s0(2m, 1) +s0(2n), [ = s0(2m) + so(2n). We fix a Cartan subalgebra
t C [ C £. Then, there exists a orthogonal basis €,...,€,,,01,...,0,
for it* so that
A={(e=*e),1<i<ji<m,(0,%£0d),1<7r<s<n}U{dti<j<m-

O, ={x(e, £d5),r=1,....m,s=1,...,.n}U{xe;,j=1,...,m}.

The systems of positive roots ¥, so that 7§ is an admissible repre-
sentation of H are the systems W associated to the lexicographic or-
ders €1 > -+ > €, > 01 > -+ > 0p, €1 > 1+ > €n_1 > —€y >
d > -+ > 0,1 > —0,. Here, for m > 3, &(Vy) = so(2m). For
m = 2, El(\I]i) = 5112(61 + 62). Then,

Uy ={(6%¢€),1<i<j<m (6 £d),1<r<s<n}tU{(e =
ds),r=1,....,m,s=1,...,n},

Upor ={(6i£€), 1 <i<j<m,(6,£),1<r<s<n}U{e,j=
1,...,m}.

g¢ = s0(2m+2n,1). Thus, from either our duality Theorem or from
[9], we infer that whenever resy(my) is H-admissible, then, resy(my)
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is a multiplicity free representation. Whence, we are left to com-

pute the Harish-Chandra parameters for resgo(m,an) (H*(SO(2m, 2n+
1), Wilo@m) X ﬂff@mﬂ))). For this, according to the duality Theorem,
we have to compute the infinitesimal characters of each irreducible fac-
tor of the underlying L-module in

SO(2m SO(2m
FE(Ho, ™) = Coespecsoanyrion) HHSO@m, 1), m )@V,

SO(2m))

The branching rules for resgom)(H*(SO(2m, 1), 7y, are found in

[29] and other references, the branching rule for resgom) (ﬂif(zmﬂ))

can be found in [29]. From both computations, we deduce: |9, Propo-
sition 3], for A = > ., A€ + D01<jcp Am+jdj, then VIis a H-

subrepresentation of H%(G,7) = V)\SO(Qm’QnH) (= D icicm Mi€i +
> 1<j<n Hj+md;) if and only if

1> A > > > Ay A S M > - Amn > | mn -

5.3. Existence of Discrete Series whose lowest K-type restricted
to K;(V) is irreducible. Let G a semisimple Lie group that admits
square integrable representations. This hypothesis allows to fix a com-
pact Cartan subgroup 7' C K of G. In [5] it is defined for each system
of positive roots ¥ C ®(g,t) a normal subgroup K;(¥) C K so that
for a symmetric pair (G, H), with H a #-invariant subgroup, it holds:
for any Harish-Chandra parameter dominant with respect to W, the
representation resy(my) is H-admissible if and only if K;(¥) is a sub-
group of H. For a holomorphic system W, K;(WV) is equal to the center
of K; for a quaternionic system of positive roots K;(¥V) = SUs(maz)-
Either for the holomorphic family or for a quaternionic real forms we
find that among the H-admissible Discrete Series for G, there are many
examples of the following nature: the lowest K-type of 7, is equal to a
irreducible representation of K;(¥) tensor with the trivial representa-
tion for Ky, [9]. To follow, under the general setting at the beginning
of this paragraph, we verify.

5.3.1. For each system of positive roots ¥ C ®(g,1t), there exists Dis-
crete Series with Harish-Chandra parameter dominant with respect to
U and so that its lowest K -type is equal to a irreducible representation
of K1(V) tensor with the trivial representation for Ko(\V).

We may assume K;(V) is a proper subgroup of K. Then, when
K,(V) = Zg, Harish-Chandra showed there exists such a represen-
tation. For G a quaternionic real form, ¥ a quaternionic system of
positive roots, K1 (V) = SUs(Qnaz), then, in [9] we find a proof of the
statement. From the tables in [5][30], we are left to consider the triples
(G, K, K1(V)) so that their respective Lie algebras is the triple
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(su(m,n),su(m) + su(n) +u(l),su(m)), m > 2,

(sp(m,n), sp(m) + sp(n), sp(m)).

(so(2m,n),s0(2m) + so(n),s0(2m)).

In Explicit example III we already analyzed the second triple of the
list. With the same proof it is verified that the statement holds for
the third triple. For the first triple, we further assume G = SU(p, q).
Thus, K is the product of two simply connected subgroups times a one
dimensional torus Zg, we notice p,* = pé\ — pk, hence, pre lifts to a
character of K. Thus, as in Explicit example I1I, we obtain 7, with A
dominant with respect to W, so that its lowest K = SU(p)SU(q)Zk-
type is the tensor product of a irreducible representation for SU(p)Zx
times the trivial representation for SU(q). Since p,,* lifts to a character
of K, after some computation the claim follows.

6. SYMMETRIC BREAKING OPERATORS AND NORMAL DERIVATIVES

For this subsection (G, H) is a symmetric pair and 7 is a square inte-
grable representation. Our aim is to generalize a result in [22, Theorem
5.1]. In [20] it is considered symmetry breaking operators expressed
by means of normal derivatives, they obtain results for holomorphic
embedding of a rank one symmetric pairs. As before, Hy = G is
the dual subgroup. We recall h N p is orthogonal to hy N p and that
bNp=T.,(H/L), hoNp = T..(Hy/L). Hence, for X € hy N p, more
generally for X € U(hy), we say Lx is a normal derivative to H/K
differential operator. For short, normal derivative. Other ingredient
necessary for the next Proposition are the subspaces £, and U(ho)W
The later subspace is contained in the subspace of K-finite vectors,
whereas, the former subspace, it is believed, that when resy(my) is not
discretely decomposable it is disjoint to the subspace of G-smooth vec-
tors. When, resy(my) is H-admissible £ is contained in the subspace
of K-finite vectors. However, it might not be equal to U(ho)W as we
have pointed out. The next Proposition and its converse, dealt with
consequences of the equality £y = U (ho)W

Proposition 6.1. We assume (G, H) is a symmetric pair. We also
assume there ezists a irreducible representation (o,Z) of L so that
H?(H,o0) is a irreducible factor of H*(G, 1) and H*(G,7)[H*(H,0)|[Z] =
LAZ) = U(ho)W[Z] = Luwy (H*(G,7)[W])[Z]. Then, resy(my) is H-
admissible. Moreover, any symmetry breaking operator from H*(G,T)
into H?(H, o) is represented by a normal derivative differential opera-
tor.

We show a converse to Proposition 6.1 in 6.0.1.
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Proof. To begin with we recall H*(G,7)[W] = {K\(-, e)*w,w € W} is
a subspace of H*(G,T)k_ fin, whence Ly (H?*(G,7)[W])[Z] is a sub-
space of H*(G,T)k_pin. Owing to our hypothesis we then have £,[Z]
is a subspace of H*(G,T)k_fm. Next, we quote a result of Harish-
Chandra: a U(h)—finitely generated, 3(U(h))—finite, module has a fi-
nite composition series. Thus, H*(G,T)x_ #in contains an irreducible
(h, L)-submodule. For a proof (cf. [32, Corollary 3.4.7 and Theorem
4.2.1]). Now, in [15, Lemma 1.5] we find a proof of: if a (g, K')—module
contains an irreducible (b, L)—submodule, then the (g, K')—module is
h—algebraically decomposable. Thus, resg(m,) is algebraically dis-
cretely decomposable. In [16, Theorem 4.2, it is shown that un-
der the hypothesis (G, H) is a symmetric pair, for Discrete Series,
h-algebraically discrete decomposable is equivalent to H-admissibility,
whence resp (7)) is H-admissible. Let S : H*(G, 1) — H*(H,0) = V!
a continuous intertwining linear map. Then, we have shown in 3.1,
for z € Z, Ks(-,e)*z € H*(G,7)[VI'][Z]. We fix a orthonormal basis
{z}, p=1,...,dimZ for Z. The hypothesis
(G, ) VA7) = Lty (H(G, 1)W)Z]

implies for each p, there exists D, € U(hy) and w, € W so that
Ks(-,e)*z, = Lp,Kx(-,e)*w,. Next, we fix fi € H*(G,7)°,h € H
and set f := L,-1(f1), then f(e) = fi(h). We have,

(S(F)(e), 20)z = / (F). Ks(y¢)*z)wdy

(6.1) = /G(LD;f(y),KA(y, e) wy)wdy

= (Lo f(e), w)w
= (Rp, (), wp)w

Thus, for each z € Z and f; smooth vector we obtain

(S()(R),2)z = 22,(S(F)(R), (2, 2p) 22p) 2 = (32, (R 1 (h), wp)w (2, 2) 2
As in [25, Proof of Lemma 2| we conclude for any f € H*(G,T) that

(6.2) S(H =Y By f(h)w)w 2

1<p<dimZ

Since D, € U(ho) such a expression of S(f) is a representation in terms
of normal derivatives. O

6.0.1. Converse to Proposition 6.1. We want to show: If every ele-
ment in Homy(H?(G, 1), H*(H, o)) has a expression as differential op-
erator by means of "normal derivatives", then, the equality £,[Z] =
H?*(G,7)[H?*(H,0)][Z] = U(ho)W[Z] holds.
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In fact, the hypothesis S(f)(h) = Zl<p<dimz(R[);f(h)>wp)W Zps
D, € U(hy), yields Kg(-,e)*z = Lp, Ky(-, e)*w,, D, € U(ho), w, € W.
The fact that (o, Z) has multiplicity one in H*(H, o) gives

dimHomy(H?*(G, 1), H*(H,0)) = dimH?*(G, 7)[H?*(H, 0)][Z].
Hence, the functions

{Ks(-,e)*z,z € Z,S € Homy(H*(G, 1), H*(H,0))}
span H*(G,7)[H*(H,0)][Z]. Therefore, H*(G,T)[H?*(H,0)][Z] is con-
tained in U (ho)W[Z] = Ly, H?*(G,7)[W][Z]. Owing to Theorem 3.1,
both spaces have the same dimension, whence, the equality holds.

The pairs so that Proposition 6.1 holds for scalar holomorphic Dis-
crete Series are (su(m, n), su(m, l)+su(n—10)+u(1)), (so(2m, 2),u(m, 1)),
(s0*(2n),u(l,n — 1)), (s0*(2n),s0(2) + s0*(2n — 2)), (eg(—14),50(2,8) +
50(2)). See [30, (4.6)].

6.0.2. Comments on the interplay among the subspaces, Ly, U(ho)W,
H?*(G,7)k— pin and symmetry breaking operators. It readily follows that
the subspace £,[Z] = VE[H?(H,0)][Z] is equal to the closure of the
linear span of

Ksy(G, H) :={Kg(e,)z2 = Ks(-,€)*z,2 € Z,S € Homy(VZ, VI)}.

m
(1) H*(G, 7)k—inNKsy(G, H) is equal to the linear span of elements
in g, (G, H) so that the corresponding symmetry breaking operator
is represented by a differential operator. See |25, Lemma 4.2].

(2) U(ho)WNKsy(G, H) is equal to the linear span corresponding to
element Kg in Kg,(G, H) so that S is represented by normal derivative
differential, operator. This is shown in Proposition 6.1 and its converse.

(3) The set of symmetry breaking operators represented by a dif-
ferential operator is not the null space if and only if resy(my) is H-
admissible. See [25, Theorem 4.3] and the proof of Proposition 6.1.

(4) We believe that from Nakahama’s thesis, it is possible to con-
struct examples of V.°[H2(H,0)][Z] NU(ho)W[Z] # {0}, so that the
equality VIC[H?(H,0)][Z] = U(ho)W|[Z] does not hold! That is, there
are symmetry breaking represented by plain differential operators and
some of them are not represented by normal derivative operators.

6.0.3. A functional equation for symmetry breaking operators. Nota-
tion is as in Theorem 3.1. We assume (G, H) is a symmetric pair and

resy(my) is admissible. The objects involved in the equation are: Hy =
G 7 = Vﬁpﬁ the lowest L-type for V.7, £y = > H*(G,n)[VIVE «l,

ptp!
U(ho)W = Ly H?*(G, 7)[W], L-isomorphism D : L£,[Z] — U(ho)W[Z],
a H-equivariant continuous linear map S : H*(G,7) — H?*(H, o), the

kernel Kg : G x H — Homc(W, Z) corresponding to S, 3.1 implies
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Kg(-,e)*z € L,[Z], finally, we recall K : G x G — Homc(W, W) the
kernel associated to the orthogonal projector onto H?*(G, ). Then,

Proposition 6.2. For z € Z, y € G we have

D(Ks(e, )" (2))(y) = | Kx(ho,y) D(Ks(e,-)"(2))(ho)dho

Hy

When, D is the identity map, the functional equation turns into

Ks(l’, h) = Ks(h0,6)K)\(ZL', hho)dho

Hop

The functional equation follows from Proposition 4.12 applied to
T := S*. The second equation follows after we compute the adjoint of
the first equation.

We note, that as in the case of holographic operators, a symmetry
breaking operator can be recovered from its restriction to Hy.

We also note that 22| has shown a different functional equation for
K for scalar holomorphic Discrete Series and holomorphic embedding

H/L = G/K.

7. TABLES

For an arbitrary symmetric pair (G, H), whenever 7¢ is an admissible

representation of H, we define,

Ko Zx if U holomorphic
171 Ki(¥,) otherwise

In the next tables we present the 5-tuple so that: (G, H) is a symmetric
pair, Hy is the associated group to H, ¥, is a system of positive such
that 7§ is an admissible representation of H, and K, = Z; (W) K, (¥,).
Actually, instead of writing Lie groups we write their respective Lie
algebras. Each table is in part a reproduction of tables in [18] [30].
The tables can also be computed by means of the techniques presented
in [5]. Note that each table is "symmetric" when we replace H by Hy.
As usual, «,, denotes the highest root in ¥,. Unexplained notation is
as in [30].



1 9se) T 9[quL

orydiowojoyuou Yq ‘7,

G H Hy U K
su(m,n) su(m, k) ®su(n — k) ®u(l) | su(m,n — k) ®su(k) du(l) v, su(m)
su(m,n) su(k,n) ®su(m —k)®u(l) | su(m — k,n) ®su(k) du(l) U, su(n)

s0(2m,2n),m > 2 s0(2m, 2k) @ so(2n — 2k) | so(2m,2n — 2k) @ so(2k) v, s0(2m)

s0(4,2n) s0(4,2k) @ so(2n — 2k) s0(4,2n — 2k) @ so(2k) v, sus ()

s0(2m,2n+1),m > 2| so(2m, k) ®so(2n+1—k) | so(2m,2n+ 1 — k) ® so(k) v, s0(2m)

s50(4,2n + 1) s0(4, k) ®so(2n+1—k) s50(4,2n+1—Fk) @& so(k) i suy ()

50(4,2n),n > 2 u(2,n); wu(2,n), Uy suy ()

s0(4,2n),n > 2 u(2,n)y wu(2,m)s Uy sus ()

50(4, 4) u(2, 2)11 wu(2, 2)11 \Ijl —1, U)Q(;\Ill_l EHQ(OZm)

50(4,4) U.(Q, 2)12 UJU.(Q, 2)12 ‘1’1_1, w675‘1’11 SUQ(Qm)

50(4,4) U.(Q, 2)21 UJU.(Q, 2)21 ‘1’11, 'LUE75\111 -1 SUQ(Qm)

50(4, 4) u(2, 2)22 wu(2 2)22 \Ill 1, U)Q(;\Illl EHQ(OZm)
sp(m,n) sp(m, k) ®sp(n —k) sp(m,n — k) @ sp(k) v, sp(m

Fa(a) sp(1,2) & su(2) 50(5,4) Ups sug ()

¢6(2) 50(6,4) B so(2) su(4,2) @ su(2) Upg sus(ayy)

e7(—5) 50(8,4) & su(2) (8, 4) & su(2) Upg sus(ayy)

¢7(_5) s5u(6,2) ¢(2) D 50(2) Ups sug ()

es(—24) 50(12,4) e7(—5) D su(2) Ups sug ()

8V

Se3IRA -PIISI()



G H Ky
su(2,2n), n > 2 sp(l,n) suy ()
su(2,2 sp(1,1) sus ()
su(2,2) sp(1,1) sus ()
50(2m,2n),m > 2 | so(2m, 2k + 1) + s0(2n — 2k — 1) | so(2m, 2n — 2k — s50(2m)
50(4,2n), 50(4,2k+ 1) +s0(2n — 2k —1) | so(4,2n — 2k — suy ()
s0(2m,2),m > 2 s0(2m, 1) 50(2m)
s0(4,2), s0(4,1) sus ()
€6(2) faa) Sua (v

orydiowofoy uou Y ‘. f, # 1] 9s€)) ‘Z 9[qel

Lyreng

67
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G H (a) Hy (b)
su(m,n),m #n | su(k,l) +su(m —k,n—1)+u(l) | su(k,n—1)+su(m—k,1)+u(l)
su(n,n) su(k,l) +su(n —kn—1)+u(l) | su(k,n—10)+su(n—k,1)+u(l)
50(2,2n) 50(2,2k) + s0(2n — 2k) 50(2,2n — 2k) + so(2k)
50(2,2n) u(l,n) u(l,n)
50(2,2n+1) s50(2,k) +s0(2n+1—k) 50(2,2n+ 1 — k) + so(k)
50*(2n) u(m,n —m) 50*(2m) + s0*(2n — 2m)
sp(n, R) u(m,n —m) sp(m,R) + sp(n —m, R)
C6(—14) 50(2,8) + s0(2) 50(2,8) + s0(2)
C6(—14) su(2,4) + su(2) su(2,4) + su(2)
e6(—14) 50*(10) + s0(2) su(b, 1) +sl(2,R)
¢7(—25) 50*(12) + su(2) s5u(6,2)
¢7(—25) 50(2,10) + sl(2,R) ¢6(—14) + 50(2)
su(n,n) 50*(2n) sp(n,R)
50(2,2n) 50(2,2k+ 1) +s0(2n—2k—1) | s0(2,2n —2k —1)+s0(2k+ 1)

Table 3, 7¢ holomorphic Discrete Series.
The last two lines show the unique holomorphic pairs so that U # T.

8. PARTIAL LIST OF SYMBOLS AND DEFINITIONS
- (1, W), (0,2), L*(G x, W), L*(H x, Z) (cf. Section 2).

_H2(G> 7) =W = V)\Ga Hz(Ha U) = VMH

H
77TM77TV

K (cf. Section 2).

-7y = 75, dy = d(my) dimension of 7y, Py, P,, Ky, K,, (cf. Section 2).
- Px orthogonal projector onto subspace X.
-®(z) = Pyn(x)Pw spherical function attached to the lowest K-type

W of my.

-K(y, ) = d(m)2(z"y).
-Mg_ fin(resp.M>) K —finite vectors in M (resp. smooth vectors in

M).

-dg, dh Haar measures on G, H.
-A unitary representation is square integrable, equivalently a Discrete

Series representation, (resp.

integrable) if some nonzero matrix co-

efficient is square integrable (resp. integrable) with respect to Haar

measure.

'@ﬂf(“') Harish-Chandra character of the representation .

H

-For a module M and a simple submodule N, M[N] denotes the iso-
typic component of N in M. That is, M[N] is the sum of all irreducible
submodules isomorphic to N. If topology is involved, we define M[N]
to be the closure of M[N].
-Mpy_g4isc 18 the closure of the linear subspace spanned by the totality
of H—irreducible submodules. My;s. := Mg_gisc
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-A representation M is H—discretely decomposable if My _gi5c = M.
-A representation is H—admissible if it is H —discretely decomposable
and each isotypic component is equal to a finite sum of H—irreducible
representations.

-U(g) (resp. 3(U(g) = 34) universal enveloping algebra of the Lie alge-
bra g(resp. center of universal enveloping algebra).

-Cl(X) =closure of the set X.

-Ix identity function on set X.

-T one dimensional torus.

-Zg identity connected component of the center of the group S.

ST (V) the r*"-symmetric power of the vector space V.
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