
Citation: Luque, G.C.; Moya, M.;

Picchio, M.L.; Bagnarello, V.; Valerio,

I.; Bolaños, J.; Vethencourt, M.;

Gamboa, S.-H.; Tomé, L.C.; Minari,

R.J.; et al. Polyphenol Iongel Patches

with Antimicrobial, Antioxidant and

Anti-Inflammatory Properties.

Polymers 2023, 15, 1076. https://

doi.org/10.3390/polym15051076

Academic Editor: Andreas Taubert

Received: 15 January 2023

Revised: 11 February 2023

Accepted: 13 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Polyphenol Iongel Patches with Antimicrobial, Antioxidant and
Anti-Inflammatory Properties
Gisela C. Luque 1,*, Melissa Moya 2,3 , Matias L. Picchio 1,4 , Vanessa Bagnarello 2,5, Idalia Valerio 2,3,6,
José Bolaños 2, María Vethencourt 2, Sue-Hellen Gamboa 3,6, Liliana C. Tomé 7 , Roque J. Minari 1,8,* and
David Mecerreyes 4,9,*

1 Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450,
Santa Fe 3000, Argentina

2 Laboratorio de Investigación, Universidad de Ciencias Médicas, San José 10108, Costa Rica
3 Facultad de Microbiología, Universidad de Ciencias Médicas, San José 10108, Costa Rica
4 POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72,

20018 Donostia-San Sebastian, Spain
5 Escuela de Fisioterapia, Universidad de Ciencias Médicas, San José 10108, Costa Rica
6 Facultad de Medicina, Universidad de Ciencias Médicas, San José 10108, Costa Rica
7 LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA,

Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
8 Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829,

Santa Fe 3000, Argentina
9 Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
* Correspondence: luquegc@intec.unl.edu.ar (G.C.L.); rjminari@santafe-conicet.gov.ar (R.J.M.);

david.mecerreyes@ehu.es (D.M.)

Abstract: There is an actual need for developing materials for wound healing applications with
anti-inflammatory, antioxidant, or antibacterial properties in order to improve the healing perfor-
mance. In this work, we report the preparation and characterization of soft and bioactive iongel
materials for patches, based on polymeric poly(vinyl alcohol) (PVA) and four ionic liquids containing
the cholinium cation and different phenolic acid anions, namely cholinium salicylate ([Ch][Sal]),
cholinium gallate ([Ch][Ga]), cholinium vanillate ([Ch][Van]), and cholinium caffeate ([Ch][Caff]).
Within the iongels, the phenolic motif in the ionic liquids plays a dual role, acting as a PVA crosslinker
and a bioactive compound. The obtained iongels are flexible, elastic, ionic conducting, and thermore-
versible materials. Moreover, the iongels demonstrated high biocompatibility, non-hemolytic activity,
and non-agglutination in mice blood, which are key-sought material specifications in wound healing
applications. All the iongels have shown antibacterial properties, being PVA-[Ch][Sal], the one with
higher inhibition halo for Escherichia Coli. The iongels also revealed high values of antioxidant activity
due to the presence of the polyphenol, with the PVA-[Ch][Van] iongel having the highest activity.
Finally, the iongels show a decrease in NO production in LPS-stimulated macrophages, with the
PVA-[Ch][Sal] iongel displaying the best anti-inflammatory activity (>63% at 200 µg/mL).

Keywords: iongels; biocompatible ionic liquids; wound healing

1. Introduction

Nowadays, bioactive natural compounds are gaining interest in the biomedical field
because of the possibility to obtain biocompatible, biodegradable, and non-toxic materials
with therapeutic properties [1,2]. In particular, the design of original skin healthcare mate-
rials, like wound healing membranes, is increasing significantly [3,4]. The wound healing
mechanism basically involves four steps: hemostasis, inflammation, proliferation, and
remodeling [5]. For this reason, evaluating the anti-inflammatory and antioxidant activity
of substances with potentiality for wound treatment is crucial because the upregulation
of inflammatory mediators and radical oxygen species (ROS) may delay and impair the
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healing process. Indeed, it is reported that dysregulation of the inflammatory response may
result in host tissue damage, rendering a chronic pathological inflammation [6,7]. At the
same time, the presence of free radicals and oxidative reactions can accelerate inflammation,
and oxidative stress can induce cellular damage, which are the main causes of delayed
wound healing.

The use of bioactive materials with anti-inflammatory and antioxidant properties can
offer an excellent opportunity to design novel patches for wound treatment and tissue
regeneration [6,7]. In this context, polyphenols appear as good candidates because of their
attractive properties like analgesic, anti-inflammatory [8], and antioxidant agents [9,10].
Moreover, polyphenols have acted as crosslinkers of different polymers due to their capa-
bility to form physical and chemical bindings [11,12]. There are some works reporting the
use of phenolic compounds (PhCs) in the synthesis of hydrogels and iongels [11,13–15].
Iongels, in particular, are a new generation of soft-ionic materials that can be applied
in several fields, such as drug delivery [16–18], sensors [14,19], energy [20–22], and bio-
electronics [23,24]. These exciting materials are tridimensional polymeric networks that
contain percolated an ionic liquid (IL) in their structure [25]. For bio-related applications,
the polymer and ILs employed need to be biocompatible, biodegradable, and preferably
bioactive.

Despite the valuable features of iongels, there are scarce reports regarding their use
in wound healing applications, but ILs have been widely combined with biopolymers
to develop new materials for this application. Morais et al. reported the preparation
of bacterial nanocellulose membranes impregnated with cholinium-based phenolic ionic
liquids for skin treatment [26]. They demonstrated by in vitro assays that these membranes
present anti-inflammatory and analgesic properties due to the presence of phenolic acid
anions in the ILs’ composition. Nevertheless, the main drawback of these materials is their
rigidity and low deformation capability (reported elongation at break was around 2%),
limiting the surface adaptability during application. In the same line Arruda Fernandez
et al. summarizes the advantages to combine the properties of bacterian cellulose with
phenolic compounds to prevent the UV-induced skin damage [27]. Moreover, particularly
employing cholinium gallate in combination with silk fibroin Gomez et al. reported the
preparation of sponges with antioxidant and anti-inflammatory features to be in tissue
engineering strategies due to the benefits of the phenolic compound. They demonstrate
the influence of the use of the PhCs to balance the pro- and anti-inflammatory cytokines
and also no hemolysis effect was informed [28]. Taking advantage of the properties of
polyphelons, Shengye and co-workers reported the use of poly(tannic acid) nanorods
in a polysaccharide matrix composed by quaternary ammonium chitosan and oxidized
β-glucan in the design of hydrogels for diabetic wound healing [29]. They reported of
superior wound repair properties of the hydrogel by using diabetic rat model in comparison
with a commercial wound dressing.

On the other hand, Fang et al. took advantage of the antibacterial properties of
imidazolium-based ILs to synthesize hydrogels from 1-vinyl-3-butylimidazolium bromide
poly(ionic liquid) and polyvinyl alcohol (PVA), finding that these obtained materials
promoted epidermis reconstruction [30].

In this article, we present, with a different approach using iongels as soft ionic mate-
rials, the preparation of bioactive and soft-ionic materials bearing a biocompatible PVA
network and percolated phenolic-based ILs. First, four different ILs were synthesized, by
combining the cholinium cation and phenolic acids as anions, namely gallate, vanillate,
caffeate, and salicylate. The ILs play a dual role in these featured iongels: (i) as a phys-
ical crosslinker by forming H-bonding with PVA and (ii) as bioactive compounds. The
mechanical properties of the iongels were fully investigated depending on the material com-
position, looking for soft, flexible and elastic materials. Furthermore, the potential of the
prepared iongel materials for wound healing was studied in terms of their biocompatibility,
non-hemolytic properties, and antioxidant and anti-inflammatory activity.
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2. Experimental
2.1. Materials

Poly (vinyl alcohol) (PVA, Merck (Rahway, NJ, USA), degree of hydrolysis 99%, Mw
145 kDa), gallic acid (GA, Merck, ≥99.0%), salicylic acid (SA, Alfa Aesar, Haverhill, MA,
USA), caffeic acid (Cam TCI), vanillic acid (VA, Sigma Aldrich, St. Louis, MO, USA),
choline hydroxide solution (Sigma Aldrich) were used as supplied. Distilled-deionized
water was used for all experiments. The following reagents were used as received: RPMI
1640 (Thermofisher, Waltham, MA, USA), fetal bovine serum (Sigma Aldrich), PSN (peni-
cillin, streptomycin, neomycin) (Gibco), Trypsin (MP biomedics). Trypan blue (Gibco),
CyQuant XTT cell Viability assay (Invitrogen), phosphate buffer saline (Sigma Aldrich).
2,2-diphenyl-1-1picrylhydrazyl (Sigma Aldrich), ascorbic acid (Sigma Aldrich), methanol
(Sigma Aldrich), lipopolysaccharide (LPS, Sigma Aldrich), N- 1-(naphthyl) ethylenediamine
dihydrochloride (Sigma Aldrich), sulfanilamide (Sigma Aldrich), phosphoric acid (Sigma
Aldrich), nitrite standard for IC (Sigma Aldrich), ethanol (Sigma Aldrich) and parthenolide
(Sigma Aldrich).

2.2. Synthesis of Phenolic-Based Ionic Liquids

The ILs, namely cholinium salicylate ([Ch][Sal]), cholinium gallate ([Ch][Ga]), cholin-
ium vanillate ([Ch][Van]), and cholinium caffeate ([Ch][Caff]) were synthesized using a
procedure previously reported by Sintra et al. [31] The chemical structures and purities of
the ILs were confirmed by 1H- and 13C-MR.

Cholinium gallate: 1H NMR (D2O, 400 MHz): δ/ppm = 6.98 (s, 2H, H-2 and H-6),
3.97–3.92 (m, 2H, NCH2CH2OH), 3.39–3.36 (m, 2H, NCH2CH2OH), 3.09 (s, 9H, N(CH3)3).

13C NMR (D2O, 101 MHz): δ/ppm = 174.83 (COO), 144.33 (C-3 and C-5), 135.72
(C-4), 128.19 (C-1), 109.33 (C-2 and C-6), 67.43 (t, JCN = 2.9 Hz, NCH2CH2OH), 55.54
(NCH2CH2OH), 53.57 (t, JCN = 3.9 Hz, N(CH3)3).

Cholinium vanillate: 1H NMR (D2O, 400 MHz): δ/ppm = 7.46 (d, 1H, H-2), 7.39 (dd, 1H,
and H-6), 7.36 (d, 1H, H-5), 4.00- 3.95 (m, 2H, NCH2CH2OH), 3.84 (s, 3H, OCH3), 3.45–3.42
(m, 2H, NCH2CH2OH), 3.12 (s, 9H, N(CH3)3).

13C NMR (D2O, 101 MHz): δ/ppm = 175.02 (COO), 148.17 (COH-4), 146.78 (COCH3-3),
128.40 (CCOO−1), 123.08 (C-6), 114.81 (C-5), 113.04 (C-2), 67.30 (t, NCH2CH2OH), 55.77
(NCH2CH2OH), 55.51 (OCH3), 53.7, (t, N(CH3)3).

Cholinium salicylate: 1H NMR (D2O, 400 MHz): δ/ppm = 7.65 (d, 1H, H-6), 7.24 (t,
1H, H-4), 6.75 (m, 2H, H-3 and H-5), 3.80–3.75 (m, 2H, NCH2CH2OH), 3.20–3.17 (m, 2H,
NCH2CH2OH), 2.89 (s, 9H, (N(CH3)3).

13C NMR (D2O, 101 MHz): δ/ppm = 175.02 (COO), 159.63 (COH-2), 134.02 (C-
4), 130.46 (C-6), 119.44 (CCOO−1), 117.81 (C-5), 116.32 (C-3), 67.23 (t, JCN = 3.1 Hz,
NCH2CH2OH), 55.56 (NCH2CH2OH), 53.66 (t, JCN = 3.9 Hz, N(CH3)3).

Cholinium caffeate: 1H NMR (d6-DMSO, 400 MHz): δ/ppm = 7.06 (d, 1H, CHCHCOO),
6.87 (d, 1H, H-2), 6.73 (dd, 1H, H-6), 6.66 (d, 1H, H-5), 6.09 (d, 1H, CHCHCOO), 3.87–3.82
(m, 2H, NCH2CH2OH), 3.43–3.39 (m, 2H, NCH2CH2OH), 3.11 (s, 9H, (N(CH3)3)

13C NMR (d6-DMSO, 101 MHz): δ/ppm = 171.55 (COO), 148.14 (CHCHCOO), 146.54
(COH-4), 138.27 (COH-3), 126.75 (CHCHCOO), 123.43 (C-1), 119.76 (C-6), 119.21 (C-5),
116.49 (C-2), 67.05 (t, JCN = 2.8 Hz, NCH2CH2OH), 55.05 (NCH2CH2OH), 53.14 (t, JCN = 3.8
Hz, N(CH3)3.

2.3. Preparation of Self-Assembly Iongel Materials

The iongel materials were formed by hydrogen bonding between PVA and the different
phenolic anions of ILs. Iongels with 5, 10, and 20% of polymer concentration (with respect
to the IL) were synthesized. The synthesis involved the dissolution of the PVA in water at
90 ◦C and the addition of the corresponding IL with a ratio water/IL 1:1. For example, to
prepare the PVA-[Ch][Sal] iongel with 10 wt% of polymer concentration, 0.05 g of PVA was
first dissolved at 90 ◦C in 0.5 g of water under vigorous stirring. Then, 0.5 g of [Ch][Sal]
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IL was added. After complete dissolution of all the components, the mixed solution was
poured into silicone molds and left at room temperature until gelation.

3. Characterization of Iongel Materials
3.1. Thermal Analysis

Thermogravimetric analyses (TGA) were carried out on a TGA Q500 device from TA
instruments. Samples of around 10 mg were heated at a constant rate of 10 ◦C min−1, under
a nitrogen atmosphere, from 25 to 600 ◦C. The temperature at the maximal decomposition
rate (Tmax) was determined at the main peak of the derivative weight loss curve.

3.2. FTIR Spectroscopy

A Bruker ALPHA spectrometer was used to collect the attenuated total reflection
Fourier transform infrared (ATR-FTIR) spectra, from 400 to 4000 cm−1, with a resolution of
4 cm−1 after 32 scans. The samples were placed directly on the ATR crystal.

3.3. Rheological Behavior

In order to analyze the gel-sol transition temperatures (Tgel-sol) of the iongels, dynamic
mechanical thermal analysis (DMTA) was performed using a parallel-plate geometry (8 mm
in diameter), with a temperature sweep ranging from 20 to 120 ◦C and a heating rate of
2 ◦C min−1. The experiments were conducted at a frequency of 1.0 Hz and 0.1% of strain.
An Anton Paar Physica MCR 301 rheometer was used to measure the rheological behavior
of the polyphenol iongel materials.

3.4. Mechanical Properties

The mechanical properties were tested on a universal testing machine (INSTRON
3344) at 23 ◦C and 55% of relative humidity. Disks were prepared with around 1 mm in
thickness and then subjected to compression, in which a 10 mm diameter plane-tip was
moved down at a constant speed (1 mm·min−1) until compressing the samples 40% of their
height. Five consecutive cycles were performed for each iongel sample.

3.5. Ionic Conductivity

The ionic conductivity of the polyphenol iongel was measured by electrochemical
impedance spectroscopy (EIS) using an Autolab 302N potentiostat-galvanostat coupled to a
Microcell HC station, with temperature control during the measurements. Circular samples
of 8 mm in diameter were used. The samples were sandwiched between two stainless steel
electrodes and sealed in the Microcell. The temperature was set between 20 to 60 ◦C with a
step of 10 ◦C and 20 min of equilibration. Frequency ranged from 1.10–5 Hz to 1 Hz, and
the employed amplitude was 10 mV.

4. Biological Assays of Iongel Materials
4.1. Cytotoxicity

To determine the possible cytotoxic effect of the polyphenol iongels, solutions of
100 µg/mL of PVA-[Ch][Van], PVA-[Ch][Sal], PVA-[Ch][Ga], and PVA-[Ch][Caff] were
prepared in RPMI 1640 media without phenol red, and then, they were sterilized by
filtration through Millipore filter membranes of 0.45 and 0.22 µm pore size. These solutions
were kept sterile at 4 ◦C until their use.

Peritoneal macrophages were obtained by intraperitoneal puncture of CD1 mice (Mus
musculus strain CD1), and the macrophage suspension was prepared in RPMI + fetal
bovine serum 10% + antibiotics (Penicillin-Streptomycin 100,000 IU/L). The macrophage
suspension was placed in a sterile conical tube to perform cell counting in a Neubauer
chamber and kept at 4 ◦C until culture.

The animals were kept under the conditions recommended by animal welfare stan-
dards and after IACUC (Institutional Animal Care and Use Committee) approval CICUA-
044-2021.
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Briefly, 100 µL of 1 × 105 cells were plated per well in a 96-well plate and left to
stabilize for 2 hours before each experiment to allow cells to adhere to the plate surface.
Cells were incubated at 37 ◦C in a humidified atmosphere of 95% of air and 5% of CO2.

Cell viability assay using XTT: To determine the cell viability of macrophages after
exposure to each polyphenol iongel, cell viability was assessed using CyQuant XTT cell
viability assay, which includes XTT reagent (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-
2H-Tetrazolium-5-Carboxanilide) and an Electron Coupling Reagent. The XTT reagent, a
tetrazolium-based compound, is sensitive to cellular redox potential, and therefore life cells
reduce the compound and produce a colored formazan product that can be measured.

After 2 h of cell culture, 100 µL of each polyphenol iongel (100 µg/mL) was added
to the cell culture and incubated for 20 h. Then, 100 µL of supernatant were carefully
discarded and 70 µL of XTT reagent immediately prepared was added to each well and
incubated for 4 h at 37 ◦C.

Finally, the absorbance (Abs) was measured at 450 nm using a 96-well plate reader,
and the cell viability percentage was determined using a culture without any treatment or
stimulus as control according to:

% cell viability =
Abs sample
Abs control

× 100 (1)

Cell viability assay using vital dye: The macrophages were cultivated in microscope
slides. Briefly, 300 µL of 1 × 105 cells were seeded per slide and stabilized for 2 h at 37 ◦C
in a humidified atmosphere of 95% of air and 5% of CO2 before the assay to allow their
adhesion to the slide surface.

After the stabilization period, the macrophages culture and the polyphenol iongels
were in contact for 24 h in the same incubation conditions, then the supernatant was
removed, and phosphate buffer saline (PBS) was added to wash the slide. Immediately,
10 µL of the 0.4% trypan blue solution was added, and living and dead cells were counted
under a microscope, expressing the viability in terms of percentage.

4.2. In Vitro Hemolysis and Agglutination Test

Serial dilutions from 100 µg/mL of each iongel were prepared and mixed with 50 µL
of mice blood, previously mixed with EDTA as an anticoagulant, in a 96-well plate and
incubated for 24 h at 4 ◦C. After this period, a qualitative analysis of lysis and agglutination
was done in the stereoscope.

4.3. In Chemico Antioxidant Activity

The antioxidant activity (AA) of the polyphenol iongels was determined by a radical
scavenging assay using DPPH. An aqueous solution of ascorbic acid (5.7 µmol/L) was used
as a reference to compare the results because of its well-known antioxidant activity [25].

A DPPH solution of 0.5 µmol/L was prepared in methanol and added to 100 µL of
100 µg/mL solution of each polyphenol iongel; then, it was incubated for 120 min, and the
absorbance at 515 nm was read with a 96-well microplate reader.

DPPH radical scavenging activity was determined according to:

%AA =
(Abs control−Abs sample)

Abs control
× 100 (2)

4.4. Anti-Inflammatory Assay

The potential anti-inflammatory activity of the polyphenol iongels was tested by
analyzing their ability to inhibit or decrease nitric oxide production in LPS-stimulated
macrophages using the Griess reagent. The Griess reaction is based on the formation of a
chromophore by the reaction of sulfanilamide with nitrite in an acidic medium, followed
by coupling with bicyclic amines such as N-1-(naphthyl) ethylenediamine dihydrochloride.
Griess reagent was prepared by mixing a solution of N-1-(naphthyl) ethylenediamine
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dihydrochloride (0.1% w/v in 5% H3PO4) with a solution of sulfanilamide (1% w/v in
5% w/v of H3PO4). Parthenolide (10 mM) was used as a positive control because of its
anti-inflammatory activity.

After stabilizing the cell culture for 2 h, different stimuli were added to the wells:
75 µL of 1 µg/mL LPS, 25 µL of 50, 100, and 200 µg/mL of each gel, and a mixture of
LPS/iongels to evaluate if the phenolic-based materials reduce the nitric oxide produced
by the LPS stimulus after 24 h. The colorimetric reaction was obtained by mixing 50 µL
of the supernatant, and 100 µL of the Griess reagent, allowing the reaction to take place
for 30 min in the dark at room temperature. A nitrite solution of known concentration
was used as a standard, and a calibration curve was prepared in the corresponding range
according to the behavior of the samples. Then, the absorbance was measured at 540 nm
and reported as NO% of the control, where the control is the cell culture without stimulus.

NO% of control =
Concentation of sample
Concentration of control

× 100 (3)

4.5. Antibacterial Activity

The antibacterial activity of the iongels was evaluated using a modification of the
Kirby–Bauer disk diffusion susceptibility test. A bacterial suspension of Escherichia coli
was prepared using a 0.5 McFarland standard in sterile saline. Mueller–Hinton plates were
previously prepared and then inoculated with the bacterial suspension using a sterile swab
by streaking the swab three times over the entire agar surface.

Then, the iongel disks (6 mm) were placed on the agar surface and incubated for 18 h
at 35 ◦C ± 2 ◦C. After this period of time, the inhibition zone was measured from edge to
edge across the zone of inhibition over the center of the disk.

5. Results and Discussion
5.1. Preparation and Characterization of Iongel Materials

The iongels were prepared using a simple hot dissolution/cooling self-assembly
procedure. Using this method, soft solid iongel materials can be obtained in a fast way.
Table S1 of the Supporting information (SI) summarizes the different polyphenol iongels
obtained, while Figure 1A shows a schematic representation of the PVA-[Ch][Ga] iongel.
The chemical structures of the investigated phenolic-based ILs are shown in Figure 1B. Both
components of the iongel (IL and PVA) were combined to prepare iongels with 5%, 10%,
and 20% of polymer PVA concentrations. In the case of PVA-[Ch][Ga], only iongels with
10% polymer concentration were obtained, while with 5% did not occur, and for 20%, a
non-homogenous mixture was obtained. Therefore, the four polyphenol iongels with a
polymer concentration of 10% were fully characterized.

ATR-FTIR was used to give more information about the interactions in the polymer
network of the polyphenol iongels. Figure S1 shows the ATR-FTIR spectra of neat PVA,
the four ILs, and the polyphenol iongels. In particular, Figure 1C displays the FTIR spectra
of neat PVA, [Ch][Gal] IL, and PVA-[Ch][Gal] iongel, and it can be observed that the
PVA and [Ch][Ga] ATR-FTIR spectra obtained are in agreement with those previously
reported [13,14,26]. In the case of neat PVA, the peaks observed at 3014–3680 cm−1 can be
attributed to the stretching vibration of OH groups. In addition, there are two bands, one
at 2931 cm−1 due to the asymmetrical stretching of -CH groups and another at 2853 cm−1

related to the -CH symmetrical stretching.
Regarding the [Ch][Ga] IL, the band of the OH stretching appears at 3080 cm−1and

the one related to the C=O stretching vibration can be seen at 1600 cm−1. On the other
hand, the C-OH stretching vibrations, which are typical of phenol groups, appear in the
region between 1200 and 1300 cm−1. A peak corresponding to the CN vibration from the
cholinium group can also be observed at 1185 cm−1. Other characteristic signals of the IL
can be found between 1100 and 750 cm−1, which correspond to the aromatic rings’ -CH
out-of-plane bending vibrations. Although it is well known that the shift in the signal
corresponding to the C=O stretching from 1710 to 1686 cm−1 is due to the formation of H
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bonding in PVA-phenolic-based hydrogel, no significant shifts in these bands were detected
in the case of PVA-[Ch][Ga] iongel [11].
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The thermal characteristics of polyphenol iongels were analyzed by TGA (Figure S2,
SI). According to the decomposition pattern, the iongels displayed good thermal stability,
with maximum decomposition temperatures (Tmax) between 206 and 242 ◦C. Additionally,
the TGA analysis showed that the iongels bearing the [Ch][Van] IL showed the lowest
degradation temperatures at 50% of weight loss (T50%), while the ones containing the
[Ch][Caff] IL presented the highest stability (T50% ≈ 275◦C). These results are consistent
with the neat ILs’ decomposition profiles shown in Figure S2 and Table S2 of SI.

In wound healing applications, the mechanical and rheological properties of the
materials are important aspects to be considered. The materials must be particularly soft,
elastic, and flexible to form mechanically compliant interfaces with the skin. Figure 2A
shows two typical consecutive compression curves for the axial compression until 40%
deformation of the PVA-[Ch][Sal] iongels with 10% polymer concentration. The different
cycles performed for each iongel started by the probe contacting the sample at the same
point. In all cases, the iongels returned to their initial dimension after being compressed,
as seen in Figure 2A. In summary, the material exhibits an elastic behavior, can resist high
deformations, and recover its initial shape after load removal during consecutive cycles. All
the polyphenol iongel materials revealed similar performances, which agrees with previous
reports of similar systems [13–15].

Additionally, the rheological properties of the polyphenol iongels were evaluated using
DMTA. As an example, Figure 2B shows the viscoelastic behavior of the PVA-[Ch][Sal]
iongel as a function of the temperature. At temperatures below 120 ◦C, the elastic modulus
(G′) is greater than the viscous modulus (G′ ′), indicating that polyphenol iongels exhibit
solid-like characteristics. When the temperature increases, a transition from an elastic
network to a viscoelastic liquid (G′ ′ > G′) occurs. The sol-gel transition temperature (Tgel-sol,
determined as the temperature at which G′ ′ = G′) for the polyphenol iongels ranged from
78 to 123 ◦C (Table S3 of SI). A reversible transition confirms the formation of the iongel
structure by H-bonding, which makes this material very interesting to be processed by 3D
printing.
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Figure 2. (A) Force vs. distance during two consecutive cycles of compression measured for the PVA-
[Ch][Sal] iongel (10% polymer concentration). (B) Thermomechanical behavior of the PVA-[Ch][Sal]
iongel and picture of the iongel transition (10% polymer concentration). (C) Ionic conductivity of
phenolic-based iongels (10% of polymer concentration).

Several authors have recently reported an acceleration in the regeneration tissue rate
when low currents are applied to the wound [32,33]. Considering the potential of these
iongels for electrically-stimulated wound healing, their ionic conductivity was measured
(Figure 2C) with obtained values ranging from 1.2 × 10−2 and 7.4 × 10−4 S cm−1 at room
temperature. These high values of ionic conductivity, which are in agreement to what
has been reported for other iongel systems, [34] indicate that this property could add a
further stimulus for wound healing to those provided by the bio-functionality of the iongels
components (analyzed below).

5.2. Biological Activity

Different assays were carried out to determine the viability of the polyphenol iongels
for wound healing applications. Firstly, the cytotoxicity of the iongels was tested on
peritoneal macrophages from Mus musculus CD1, because of their significant role in the
immune response [35]. Additionally, in vitro hemolysis and agglutination tests were carried
out with blood from the same mice to evaluate the action of the iongels in erythrocytes as
an important effect on wound healing treatments.

As evidenced in Figure 3A, the PVA-[Ch][Van], PVA-[Ch][Sal], and PVA-[Ch][Ga]
samples have viability percentages of 99%, 100%, and 90%, respectively, behaving very
similar to the control without any stimulus. The PVA-[Ch][Caff] sample showed the lowest
percentage of cell viability at around 74%.

Cell viability was also determined using the CyQUANT™ XTT Cell Viability Assay,
which is suggested for detecting mammalian cell viability [36,37]. As shown in Figure 3B,
the PVA-[Ch][Caff] sample showed again the lowest percentage of cell viability 35 ± 0.01%,
with 65% more cell mortality than the control. Moreover, in the case of PVA-[Ch][Van],
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PVA-[Ch][Sal], and PVA-[Ch][Ga] samples, they presented 161 ± 0.04%, 173 ± 0.09% and
162 ± 0.08%, respectively, of cell viability analyzed by this method.
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The cell viability percentages above 100% in the CyQUANT™ XTT Cell Viability
Assay may be due to three main reasons. The first is cell proliferation, which does not
apply in this case because the primary culture used for peritoneal macrophages does not
have the potential for proliferation; therefore, this factor is excluded. The second factor
is due to the redox potential of the iongels that can reduce the reagent too, but based on
the absorbance of the iongels alone with XTT reagent, no significant results were obtained;
then, this is not the reason either [38]. Finally, the third possibility is that iongels stimulate
macrophages and induce the production of ROS (reactive oxygen species) as a defense
mechanism, which, based on the principle of the method used, can interfere in the reduction
of the XTT used in this assay. However, this ROS production in a controlled way could
have a great potential for wound healing applications because of the immune response
stimulation [35,39]. In order to confirm if this stimulation and ROS production caused any
damage, these results were correlated with those of cell viability with trypan blue, which
do not suggest cell damage.

Additionally, as shown in Figure 4A, the cultures of the PVA-[Ch][Van], PVA-[Ch][Sal],
and PVA-[Ch][Ga] samples under the microscope evidence viable cells adapted to cell
culture with more elongated morphology unlike the culture exposed to PVA-[Ch][Caff]
iongels, where only smaller and rounded cells are evidenced. This result correlates with
the viability percentage obtained by both methods by suggesting that the increase in the
percentage of cell viability may be due to cellular stimulation.

Regarding PVA-[Ch][Caff], which showed the lowest cell viability when evaluated
by both techniques (Trypan blue and XTT) and different cell morphology, Chen et al.
described that caffeate derivates have cytotoxic and apoptotic effects and can cause loss of
mitochondria membrane potential [40].

This modification in the mitochondria is evidenced as low cell viability because the
principle of the XTT assay is to evaluate cell viability through cellular respiration given in
the mitochondria, and if there is damage in the membrane and morphology of the cell, the
trypan blue dye can get into the cytoplasm confirming cell death.

Moreover, the in vitro hemolysis and agglutination tests help to identify if the iongels
present hemolytic properties because they can harm patients’ health and interfere the
wound healing process. As it can be observed in Figure 4B, there is no hemolytic effect and
agglutination after 24 h of exposure of mice blood to each polyphenol iongel, which was
repeated eight times with each material [41].
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of incubation. (a) Control, (b) [Ch][Caff], (c) [Ch][Van], (d) [Ch][Sal], (e) [Ch][Ga]. (B) Hemolysis and
agglutination test using mice blood after 24 h.

One of the most interesting properties of these polyphenol iongels are their potential
anti-inflammatory properties due to the presence of the phenolic IL anions. The nitric oxide
production was assessed via a Griess assay [26,42]. Data are presented as NO% of control
(Figure 5) based on a calibration curve using a nitrite standard and as the concentration of
NO (Figure S3 of SI) [43]. The assay allowed us to quantify if there was a decrease in NO
production between cells treated with LPS and cells treated with LPS in the presence of
PVA-[Ch][Van], PVA-[Ch][Sal], PVA-[Ch][Ga], and PVA-[Ch][Caff] materials. As shown in
Figure 5, the polyphenol iongels decreased the LPS-induced NO production, indicating
the anti-inflammatory activity of the materials. There is an evident inhibition when higher
concentrations are used (≤100 µg/mL).

The PVA-[Ch][Caff] sample (200 µg/mL) showed the best anti-inflammatory activity
by reducing the NO production more than 63%, as the positive control of anti-inflammatory
activity used (parthenolide). The PVA-[Ch][Van], PVA-[Ch][Sal], and PVA-[Ch][Ga] iongels
diminish in 30%, 27%, and 35%, respectively, the NO production at the same concentration.
At lower concentrations (50 and 100 µg/mL), the inhibition percentage is lower, but there is
always an inhibition when compared with the culture with LPS stimulus (Figure 5). These
results demonstrate better anti-inflammatory activity than those reported for nanostruc-
tured cellulose membranes loaded with cholinium-based ILs bearing caffeate and gallate
anions [26].
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Figure 5. Evaluation of the capacity of iongels to prevent LPS-induced NO production in murine
peritoneal macrophages different concentrations (200 µg/mL (A) 100 µg/mL (B) and 50 µg/mL (C))
of each polyphenol iongel reported as NO% of control.

Another key property of polyphenol iongels is their potential antioxidant activity. This
property depends on the bioactive phenolic compounds, mainly due to the presence of
pyrogallol and catechol groups, which can act as radical scavengers through an electron
donation or hydrogen donation mechanism. Antioxidants can react with a stable radical
(DPPH) by providing an electron or a hydrogen atom, thus reducing it to 2,2-diphenyl-1-
hydrazine (DPPH-H) or analogous substituted hydrazine (DPPH-R) characterized by a pale
yellow color that could be easily monitored at 515 nm [26,44]. Antioxidant activity, using
DPPH reagent (a widely used technique to evaluate the ability of compounds to operate as
free radical scavengers and hydrogen suppliers) is presented as percentage in Figure 6. As
a reference, the ascorbic acid solution tested revealed 51% of antioxidant activity [45,46].

The antioxidant activities of the prepared polyphenol iongels varied between 3%
to 57%, and the PVA-[Ch][Caff] material showed the maximum antioxidant capacity
(57% ± 0.009 and inhibition of the DPPH radical), more than ascorbic acid, followed by
PVA-[Ch][Ga] (32%± 0.029), PVA-[Ch][Van] (31%± 0.011), and PVA-[Ch][Sal] (3% ± 0.026).
These results are in agreement to what was previously reported for the neat ILs [31].
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Due to the well know antioxidant properties of polyphenols, different efforts to de-
velop biomaterials employing these compounds have been carried out. For example,
Amain et al. have used polyphenols in polymer networks as antidiabetic agents to im-
prove human health care. In this way, the results obtained in our research show that the
synthesized iongels have the potential as antioxidant materials, which could be used for
different biomedical applications, including wound healing and dermal treatments [47].
Analyzing the tendency and variability between the iongels, the lowest antioxidant activity
is for [Ch][Sal], the relation between this reduction and its chemical structure could be due
to the presence of other molecules that can be interfering in the reaction because of the
chelation of metals by the hydroxyl groups [48]. In salicylates, the possible interactions
with non-redox active metals such as calcium or magnesium have been reported and both
are components of the culture media used (RPMI) in the biological assays. Studies by Zhao
et al. conclude that calcium affects the antioxidant activity of simple phenols extracted from
plants, such as hydroxybenzoates [49,50]. The chelation of the calcium ion could explain
the decrease in the antioxidant activity of PVA-[Ch][Sal], which has the lowest antioxidant
activity compared to the rest of the gels. However, given the potential of these materials
for biological applications, this interference should always be considered because of the
presence of these metals in blood, sweat, and other biological fluids that may be present in
dermal wounds.

Based on the potential use of the proposed polyphenol iongels for wound healing
applications and considering the previous reports of the antimicrobial properties of the ILs
against antibiotic-resistant pathogens [51], the antibacterial activity of synthesized iongels
was also tested. Regarding the antibacterial activity of ILs, Nickfarjam et al. reported
the antibacterial properties of different ILs and they observed that this property could be
attributed to the adsorption of the IL by the cell membrane through electrostatic interactions,
and because of both, penetration of the IL that may produce leakage of the cytoplasm and
cell lysis [51]. Furthermore, Ibsen et al. mentioned that ionic liquids have great antibacterial
properties that have been previously demonstrated [52].

In order to determine if Escherichia coli is sensible to the polyphenol iongels, inhibition
halos were compared with the standard pattern obtained with Gentamicin 10 µg/mL,
which was reported as sensible with a halo ≥ 15 mm [53]. As shown in Figure 7A,B, the
PVA-[Ch][Sal] presented the highest inhibitory activity (25 mm of inhibition), while the
PVA-[Ch][Caff] had the lowest. Based on the reference of Gentamicine, we can conclude
that Escherichia coli is more sensible to the PVA-[Ch][Sal] iongel. The other three iongels
also show antibacterial activity but at a lower capacity when compared to that of the
PVA-[Ch][Sal].

The highest antibacterial activity of PVA-[Ch][Sal] could be because salicylate and
related compounds affect virulence factor production in some bacteria and are well-known
as natural and safe antimicrobial agents. One of the mechanisms described for salicylic
acid against Escherichia coli is the leakage of intracellular alkaline phosphatases and macro-
molecular substances (nucleic acids and proteins), which suggests the disruption of the
bacterial cell wall [54].
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6. Conclusions

In this work, we present new polyphenol iongel materials bearing PVA and phenolic-
based ionic liquids. The iongels were prepared by an easy self-assembly process due to the
H-bond interactions between the phenolic IL anion compounds and the PVA polymer ma-
trix. Within the iongels, the phenolic IL anions play a dual role, acting as a crosslinker and
as bioactive compounds. These iongels are flexible, elastic, and thermoreversible materials.
Moreover, iongels with 10% polymer concentration demonstrated high biocompatibil-
ity, non-hemolytic activity, and non-agglutination in mice blood, which are key-sought
specifications for materials in wound healing applications. All the iongels showed an-
tibacterial properties, and PVA-[Ch][Sal] showed the highest inhibition halo for Escherichia
coli. The polyphenol iongels also revealed high values of antioxidant activity, with the
PVA-[Ch][Van] showing the highest activity. Regarding the anti-inflammatory activity,
the four iongels showed a decrease in NO production in LPS-stimulated macrophages,
with the PVA-[Ch][Sal] unveiling the best anti-inflammatory activity of more than 63% at
200 µg/mL.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym15051076/s1. Table S1. Pictures of polyphenol iongels,
Figure S1. FTIR spectra of neat PVA, ILs, and polyphenol iongels, Figure S2. TGA analysis of
polyphenol iongels with 10% of polymer concentration and the corresponding ILs, Table S2 Tmax
and T50% of the polyphenol iongels, Table S3. Gel to sol transition temperatures of the polyphenol
iongels, Figure S3. Evaluation of the capacity of iongels to prevent LPS-induced NO production in
murine peritoneal macrophages different concentrations of each iongel reported NO (µg/mL).
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