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Direct estimation of central aortic
pressure from measured or
quantified mean and diastolic
brachial blood pressure:
agreement with invasive records
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Hipertensión Arterial, Departamento de Cardiología, Hospital Privado de Comunidad, Mar del Plata,
Argentina, 3Instituto de Investigación en Ciencias de la Salud, UNICEN-CCT CONICET, Tandil, Argentina

Background: Recently it has been proposed a new approach to estimate aortic
systolic blood pressure (aoSBP) without the need for specific devices, operator-
dependent techniques and/or complex wave propagation models/algorithms.
The approach proposes aoSBP can be quantified from brachial diastolic and
mean blood pressure (bDBP, bMBP) as: aoSBP = bMBP2/bDBP. It remains to be
assessed to what extent the method and/or equation used to obtain the bMBP
levels considered in aoSBP calculation may affect the estimated aoSBP, and
consequently the agreement with aoSBP invasively recorded.
Methods: Brachial and aortic pressure were simultaneously obtained invasively
(catheterization) and non-invasively (brachial oscillometry) in 89 subjects. aoSBP
was quantified in seven different ways, using measured (oscillometry-derived)
and calculated (six equations) mean blood pressure (MBP) levels. The agreement
between invasive and estimated aoSBP was analyzed (Concordance correlation
coefficient; Bland-Altman Test).
Conclusions: The ability of the equation “aoSBP =MBP2/DBP” to (accurately)
estimate (error <5 mmHg) invasive aoSBP depends on the method and equation
considered to determine bMBP, and on the aoSBP levels (proportional error).
Oscillometric bMBP and/or approaches that consider adjustments for heart rate
or a form factor ∼40% (instead of the usual 33%) would be the best way to
obtain the bMBP levels to be used to calculate aoSBP.

KEYWORDS

aortic pressure, brachial blood pressure, catheterism, invasive records, non-invasive
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Abbreviations

aoBP, central aortic blood pressure; aoSBP, central aortic systolic blood pressure; bBP, brachial artery blood
pressure; bDBP, brachial artery diastolic blood pressure; bDBPosc, brachial artery diastolic blood pressure
obtained with the oscillometric system; bMBP, brachial artery mean blood pressure; bMBPosc, brachial
artery mean blood pressure obtained with the oscillometric system; BP, blood pressure; bPP, brachial artery
pulse pressure; bPPosc, brachial artery pulse pressure obtained with the oscillometric system; bSBP, brachial
artery systolic blood pressure; bSBPosc, brachial artery systolic blood pressure obtained with the
oscillometric system; CCC, Lin’s concordance correlation coefficient; DCBP, direct central blood pressure;
FF, form factor; HR, heart rate; MBP, mean blood pressure; MOG, Mobil-O-Graph: oscillometry/
plethysmography.
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1. Introduction

Several approaches and devices are used to non-invasively

estimate aortic systolic blood pressure (aoSBP). They differ in the

technology (e.g., ultrasound, applanation tonometry), recording-site

(e.g., carotid, radial, brachial) and/or in the mathematical analysis

(e.g., direct vs. general transfer function-derived estimation)

considered (1–4). This could result in differences in the aoSBP

levels obtained (1, 2) and in the agreement with invasive aoSBP

data. This, in turn, could depend on the “calibration scheme”

considered (1, 2, 5–9). However, at present there is no consensus

and it is still discussed on which (if any) would be the best

approach to estimate aoSBP (1, 2). The above could have

contributed to the fact that aoSBP estimation has not become

widespread in clinical practice, despite the recognized value of

knowing central haemodynamics in different situations (10).

Recently, Chemla et al. proposed a simple approach [“direct

central blood pressure estimation (DCBP)”] that could “facilitate”

aoSBP estimation (and may help to expand its use in clinical

practice). According to the authors, from brachial diastolic (bDBP)

and mean (bMBP) blood pressure (BP), aoSBP could be determined

as: aoSBP = bMBP2/bDBP (11). It should be noted that prior to

becoming “accepted and generalized”, the proposed method must

be further evaluated by contrasting the aoSBP values it estimates

with those obtained invasively (catheterization). On the other hand,

and related with the above, it should be evaluated to what extent

the way in which bMBP is quantified could impact on the aoSBP

levels estimated. In this regard, mean blood pressure (MBP), could

correspond to MBP (or bMBP) measured by oscillometry (lowest

cuff pressure value measured during the maximum oscillations’

plateau), or calculated from bDBP and bSBP (1, 2, 12). About this,

bMBP has been calculated from equations that differ in the use of

predefined empirical adjustments (e.g., adding 5 mmHg to pre-

calculated values), corrections by heart rate (HR) and/or in the

form factor (FF) considered (e.g., 33%, 42%) (12–14). bMBP levels

obtained with different approaches can differ significantly and it

should be noted that while some authors have stated that a given

approach would be superior to the others when estimating bMBP,

others suggested that ´the best´ way to quantify bMBP may differ

depending on the situation and/or the aim pursued (12, 15–17).

The objective of the present study was to assess the level of

association and agreement between aoSBP obtained invasively

(catheterization) and estimated (DCBP), considering different

approaches to quantify bMBP. It is worth noting that in this

work we are not validating a calculated parameter, but providing

information on what margins of deviation and error could be

expected if the aortic pressure quantification approach (“DCBP”)

proposed by Chemla et al. is used in clinical settings.
2. Methods

2.1. Subjects

Eighty-nine subjects undergoing coordinated coronary

angiogram (Department of Cardiology of the Hospital Privado de
Frontiers in Cardiovascular Medicine 02
Comunidad, Mar del Plata, Argentina) were included. Aortic

valve disease, left ventricular (LV) outflow tract obstruction and/

or arrhythmia were exclusion criteria. Prior to the study, a

clinical evaluation enabled assessing the exposure to

cardiovascular risk factors (18–23). All the included subjects gave

their written informed consent. Data included in this work were

not considered in prior publications. The protocol was approved

by the Institutional Ethic Committee. The procedures agreed

with the Declaration of Helsinki.

The following data were obtained: (1) invasive aortic BP (aoBP)

and bBP (catheterization), (2) non-invasive bBP and aoBP, levels

and waveforms assessed from oscillometric/plethysmographic

brachial artery data (Mobil-O-Graph device, Model PWA, IEM

GmbH, Stolberg, Germany).
2.2. Invasive measurement of aoBP and bBP

Intra-arterial aoBP and bBP levels and waveforms were

obtained with the subjects lying in supine position. Asepsis of

the area, followed by cutaneous/subcutaneous injection of

lidocaine was performed prior to the arterial (radial) access.

Then, a 5 or 6 French introducer sheath was positioned in the

arterial lumen and heparin was administered. After that, a 0.035-

inch guide wire was placed in the ascending aorta and finally a 5

French pig tail catheter (Cordis, Miami, USA) was introduced.

The catheter tip was always placed ∼4 cm away from the aortic

valve. Once the correct positioning of the catheter was verified

(fluoroscopy), the guide was removed and the catheter was

washed with saline solution. Soft sedation was administered

during the catheterization to minimize pain and discomfort.

To obtain intravascular (proximal ascending aorta or brachial)

pressure, the fluid-filled catheter was connected to an external

transducer (TruWave, PX260, Edwards, Dominican Republic),

associated to a Mindray Mec 2012 system (Shenzhen Mindray

Bio-Medical Electronics Co., China) which was synchronized

with a x-ray device (Allura CV-20, Philips Healthcare,

Netherlands). The external transducer was always kept at the

heart level (mid-axillary line) and was calibrated in agreement

with the system’s inbuilt two-point calibration technique. The

Allura CV-20 monitor allowed a display of the registered BP

waves. Prior to any record or measurement the system was

flushed with saline solution and the quality of the pressure

signals was visually checked.

After obtaining aoBP data, the catheter was placed in the

brachial artery (opposite to that of the limb of the vascular

access), at the level in which the cuff for bBP measurement was

positioned. Then, invasive intra-arterial bBP was measured and

non-invasive (oscillometry-derived) bBP values were obtained

immediately before or after the invasive recordings. After each

bBP recording, the catheter was placed in the ascending aorta to

check hemodynamic stability.

From invasive BP data, the processing systems enabled HR,

systolic and diastolic BP values to be obtained.

After data collection, the catheter was withdrawn and the

patient was sent to the recovery area.
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2.3. Non-invasive measurement of bBP and
MBP estimation

Immediately before and/or after each invasive aortic or

brachial record, bBP was non-invasively determined from a

pneumatic cuff positioned in the arm opposite to that of the

vascular access (oscillometry/plethysmography, Mobil-O-Graph

device) (20, 24, 25). The system obtains bMBP (and HR) and

after applying internal algorithms (manufactureŕs property) it

gives systolic (bSBP) and bDBP (but not the bMBP), from

which pulse pressure can be calculated (bPP, bPP = bSBP-

bDBP).

From the data obtained, bMBP was quantified as follows

(1, 15, 26, 27):

(i) bMBP0.42 = 0.42*bSBPosc + 0.58*bDBPosc

(ii) bMBP0.412 = bDBPosc + [0.412*(bSBPosc-bDBPosc)]

(iii) bMBP0.33 = bDBPosc + 0.33*(bSBPosc-bDBPosc).

(iv) bMBP0.33 + 5 = bDBPosc + [0.33*(bSBPosc-bDBPosc) + 5].

(v) bMBP0.33HR= bDBPosc + [0.33 + (0.0012*HRosc)]*(bSBPosc-

bDBPosc)

(vi) bMBPSBP*DBP
0.5 = (bSBPosc*bDBPosc)0.5

The suffix osc was used to name the variables obtained from

oscillometry (bMBPosc, bSBPosc, bDBPosc, bPPosc and

HRosc). The bMBP values obtained as described were

considered to calculate the aoSBP using Chemla et al.

approach (DCBP) (11).
2.4. Estimation of aoSBP

Using the equation proposed by Chemla et al. (11), and

considering the different methods used to calculate MBP, aoSBP

levels were obtained from invasive aoBP, invasive bBP and non-

invasive bBP recordings. The non-invasive bBP data used to

calculate aoBP were obtained simultaneously with the invasive

aortic recordings. Then, as an example, aoSBP obtained from

non-invasive bBP was named according to the approach used to

quantify bMBP: (i) aoSBP_0.42, (ii) aoSBP_0.412, (iii)

aoSBP_0.33, (iv) aoSBP_033 + 5, (v) aoSBP_0.33HR, (vi)

aoSBP_SBP*DBP0.5 and (vii) aoSBP_Osc.
2.5. Data analysis

2.5.1. Association and agreement between
measured and estimated aoSBP

After analyzing the subjectś characteristics (Table 1;

Supplementary File S1, Supplementary Table S1), we evaluated

the association and agreement between aoSBP data invasively

measured and estimated. To this end, Lin’s Concordance

Correlation Coefficient (CCC) and Bland-Altman analyses

(Table 2; Supplementary File S1, Supplementary Tables S2–S4;

Supplementary File S2, Supplementary Figures S1–S3) were

considered. Measured (invasive) aoSBP was always the ´reference

method´. The analyses were performed for aoSBP levels (DCBP),
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calculated from systolic and diastolic BP values: (i) measured

at the aorta (Supplementary Figure S1), (ii) measured

at the brachial artery (Supplementary Figure S2), and

(iii) estimated from non-invasive bBP records (Mobil-O-Graph)

(Supplementary Figure S3). Bland-Altman tests were used to

assess the presence of mean (systematic) and proportional errors

between aoSBP data obtained with the reference (invasive) and

the ´tested´ method (DCBP). The analyses correspond to

reference data (measured aoSBP; x-axis) plotted against the

difference between measured and estimated aoSBP (y-axis). The

regression equations were obtained.

2.5.2. Level of agreement between invasive and
estimated aoSBP

The measurements were divided into four categories

(ranges) according to Bland-Altman mean errors (rounded

absolute value): (i) 0–5 mmHg, measurements considered

“very accurate” (errors without clinical relevance; green), (ii)

6–10 mmHg, measurements “slightly inaccurate” (yellow), (iii)

11–15 mmHg, measurements “moderately inaccuraté (orange),

and (iv) >15 mmHg, “very inaccurate” measurements (red)

(Table 3) (11, 28). Taking into account these bands and the

regression equation obtained in the Bland-Altman analysis,

the bias (in mmHg) for each of the methods used to

quantify aoSBP was determined considering the minimum,

the maximum and the percentiles 25th, 50th and 75th of the

invasive aoSBP data. (Table 3, Top). In addition, the ranges

of measured aoSBP levels for which the different estimation

methods would yield “very accurate” (−5 to 5 mmHg),

“slightly inaccurate” (−10 to 10 mmHg) or “moderately

inaccurate” (−15 to 15 mmHg) estimates were identified

(Table 3, Bottom). Finally, the “average” aoSBP levels for

which the different estimation methods would achieve the

described errors were calculated.

Evans’s Empirical Classification (“correlation strength”) was

used to interpret r values: <0.20: very weak; 0.20–0.39: weak;

0.40–0.59: moderate; 0.60–0.79: strong; ≥0.80: very strong (29).

According to the central limit theorem, taking into account

Kurtosis and Skewness coefficients distribution and the number

of subjects (sample size > 30) a normal distribution was

considered (30). The sample size exceeds the minimum (n = 85)

recommended for studies in which analyses of agreement

between invasive and non-invasive BP measurements are

performed (17). MedCalc (v.14.8.1, MedCalc Inc., Ostend,

Belgium) and IBM-SPSS Statistical Software (v.26, SPSS Inc.,

Illinois, USA) were used. A p < 0.05 was considered as the

statistical significance threshold.
3. Results

3.1. Population and hemodynamic
characteristics

The studied subjects were distributed over a wide range of ages

(37–85 y) (Table 1; Supplementary File S1, Supplementary
frontiersin.org
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TABLE 1 Demographic, anthropometric and clinical characteristics of the study population.

Variable MV ME SD Min p25th p50th p75th Max
Sex (Female, %) 36.8%

Age 66 1 10 37 60 67 73 85

Body height (cm) 168 1 9 145 160 168 175 190

Body weight (Kg) 81 1 16 52 70 77 92 123

BMI (Kg/m2) 28.62 0.37 4.52 21.64 25.00 28.09 31.35 42.06

Glicemia 110 2 28 81 95 103 116 256

Total cholesterol (mg/dl) 180 5 49 105 143 176 206 353

LDL cholestrol (mg/dl) 103 4 45 26 71 96 122 278

HDL cholesterol (mg/dl) 50 1 12 27 41 49 56 84

Triglycerides (mg/dl) 163 10 101 63 107 142 191 766

Creatinine (mg/dl) 0.94 0.02 0.21 0.57 0.78 0.91 1.04 1.48

Blood urea nitrogen (mg/dl) 39 2 15 21 29 36 46 100

Cardiovascular Major Event (%) 50.0

Peripheral arterial disease (%) 13.2

Hypertension (%) 82.9

Dyslipidemia (%) 75.0

Smoke, Never (%) 57.9

Smoke, Current (%) 17.1

Smoke, Ex (%) 25.0

Diabetes (%) 23.7

Sedentarism (%) 93.4

Obesity (%) 34.2

Familiy History CVD (%) 4.0

Drugs, Hypertension (%) 85.5

Drugs, Dyslipemia (%) 65.8

Drugs, Diabetes (%) 21.1

Invasive aortic and brachial blood pressure: arterial-catheterization
aoSBP_inv (mmHg) 135 2 26 88 116 135 151 220

aoDBP_inv (mmHg) 70 1 12 44 61 70 77 107

aoPP_inv (mmHg) 65 2 21 15 51 63 79 128

aoHR_inv (beats/minute) 65 1 10 44 58 64 71 95

bSBP_inv (mmHg) 135 2 24 92 117 132 152 189

bDBP_inv (mmHg) 68 1 11 43 60 69 75 107

bPP_inv (mmHg) 67 2 20 17 52 67 80 118

bHR (beats/minute) 64 1 9 44 58 63 69 92

Non-invasive brachial blood pressure: oscillometry
bSBP (mmHg) 137 2 21 101 118 135 152 188

bDBP (mmHg) 80 1 13 49 70 80 89 111

bPP (mmHg) 57 1 16 25 44 55 66 101

bHR (beats/minute) 64 1 10 44 56 64 71 96

MV, mean value; SD, standard deviation; Min and Max, minimum and maximum value; SD, standard deviation; p25th, p50th and p75th, percentiles 25, 50 (median) and 75,

respectively; BMI, body mass index; CVD, cardiovascular disease; SBP, DBP, PP and MBP, systolic, diastolic, pulse and mean blood pressure, respectively; HR, heart rate; Inv,

invasive derived; suffix: ao, aorta; b, brachial artery.

Bia et al. 10.3389/fcvm.2023.1207069
Table S1). Invasive aoSBP and bSBP values were also distributed

across a broad range: 7.8% and 4.5% were <100 mmHg, 53.9%

and 48.4% were between 100 and 139 mmHg, 21.3% and 30.3%

were between 140 and 159 mmHg, and 16.9% and 15.7% of the

values were ≥160 mmHg. In turn, invasive aoDBP and bDBP

values were <60 mmHg in 21.3% and 25.8% of cases; they were

between 60 and 84 mmHg in 68.5% and 64.0%, and in 10.1%

and 8.9% of cases the values were >85 mmHg. HR values were

always within the expected (normal) range.
Frontiers in Cardiovascular Medicine 04
3.2. Agreement between measured and
estimated aoSBP

3.2.1. Aortic invasive records
When considering invasive aoDBP and aoMBP calculated from

invasive aoSBP and aoDBP (Table 2; Supplementary File S1,

Supplementary Table S2, Supplementary File S2,

Supplementary Figure S1: (i) calculated and measured (invasive)

aoSBP data showed ´very strong association, (ii) the equation
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TABLE 3 Non-invasive approach error levels related to invasive blood pressure values.

(1) Errors (invasive—calculated) for different aoSBP levels invasively obtained

Invasive aoSBP (see Table 2)

Min p25th p50th p75th Max

Approach 88 mmHg 116 mmHg 135 mmHg 151 mmHg 220 mmHg Equation (*)
aoSBP_033 (mmHg) −8 5 13 20 51 y =−46.51 + 0.44x

aoSBP_033 + 5 (mmHg) −20 −8 1 7 37 y =−58.08 + 0.43x

aoSBP_033HR (mmHg) −14 −4 3 9 34 y =−47.01 + 0.37x

aoSBP_042 (mmHg) −15 −5 1 7 31 y =−45.82 + 0.34x

aoSBP_0412 (mmHg) −15 −5 2 8 33 y =−45.89 + 0.35x

aoSBP_(sbp*dbp)0.5 (mmHg) −18 −8 −1 5 30 y =−49.18 + 0.35x

aoSBP_Osc (mmHg) −19 −10 −4 1 22 y =−45.34 + 0.30x

(2) Ranges of invasive aoSBP for which non-invasive estimation ensure a very accurate (−5 to 5 mmHg), slightly inaccurate (−10 to 10 mmHg) or

moderately inaccurate (−15 to 15 mmHg) measurement
Associated error (mmHg) −15 −10 −5 5 10 15

aoSBP_033 (mmHg)
Invasive aoSBP (mmHg): 71 82 94 117 127 140

aoSBP_033 + 5 (mmHg)
Invasive aoSBP (mmHg) 99 110 122 146 158 169

aoSBP_033HR (mmHg)
Invasive aoSBP (mmHg) 86 99 113 141 155 168

aoSBP_042 (mmHg)
Invasive aoSBP (mmHg) 88 102 117 147 161 176

aoSBP_0412 (mmHg)
Invasive aoSBP (mmHg) 86 100 114 144 158 172

aoSBP_(sbp*dbp)0.5 (mmHg)
Invasive aoSBP (mmHg) 94 108 122 152 166 180

aoSBP_Osc (mmHg)
Invasive aoSBP (mmHg) 99 115 132 167 183 200

Average all methods (mmHg)
Invasive aoSBP (mmHg) 89 102 116 145 158 172

Standard deviation 9.7 10.7 11.7 14.9 16.7 17.9

Top (1): In the regression equation, “y” indicates the error (difference) between measured and estimated aoSBP (mmHg), and “x” value represents the invasively recorded

aoSBP value (mmHg). (*): equation resulting from the Bland-Altman analysis. The difference (error) was categorized into four bands according to its rounded absolute

value: 0–5 mmHg (green: measurements considered “very accurate” or no error of clinical relevance); 6–10 mmHg (yellow: measurements considered “slightly

inaccurate”); 11–15 mmHg (orange: measurements considered “moderately inaccurate”); >15 mmHg (red: measurements considered “very inaccurate”). Bottom (2):

Associated error: the value indicates the error (invasive—estimated aoSBP; mmHg); the colour indicates the error category (band): 0–5 mmHg (green); 6–10 mmHg

(yellow), 11–15 mmHg (orange).
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using a FF = 33% showed a large mean error (14.2 mmHg),

whereas (iii) the equations using a FF = 33% with HR correction,

a FF = 42% or a FF = 41.2% achieved very low mean errors (0.3

to 1.85 mmHg). The equation aoMBP = (aoSBP*aoDBP)0.5

allowed full agreement with invasive aoSBP. With the only

exception of the latter, all the methods showed proportional

errors. The largest was observed when using FF = 33%.

3.2.2. Brachial invasive records
Similarly, when analyzing invasive bDBP and bMBP calculated

from invasive bSBP and bDBP records (Table 2; Supplementary

File S1, Supplementary Table S3, Supplementary File S2,

Supplementary Figure S2): (i) calculated and invasive aoSBP

showed “very strong” association, (ii) using a FF = 33% resulted in

large mean error (11.5 mmHg), and (iii) equations using FF =

33% and HR correction, FFs = 42% and FF = 41.2%, achieved very

low mean bias (<5 mmHg), and showed no proportional errors.
Frontiers in Cardiovascular Medicine 06
3.2.3. Brachial non-invasive (oscillometric) records
Invasive and non-invasive aoSBP data showed “strong” and

“very strong” degrees of concordance (CCC between 0.64 and

0.83). The lowest CCC (yet statistically significant) was observed

when analyzing invasive aoSBP and DCBP quantified using

bMBP_033 (FF = 33% without HR correction) (Table 2;

Supplementary File S1, Supplementary Table S4,

Supplementary File S2, Supplementary Figure S3).

The mean error values obtained with the different methods

were distributed over a wide range (−4.30 to 13.14 mmHg).

However, most (6 out of 7) approaches showed mean bias

between −5 and 5 mmHg and several (4 out of 7) showed mean

errors without statistical significance (Table 2). The highest mean

error was observed for aoSBP quantified using bMBP_033 (FF =

33% uncorrected for HR).

The “slopes” (proportional errors) of the linear adjustments

showed that regardless of the equation used to quantify bMBP,
frontiersin.org
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aoSBP data obtained from bMBP2/bDBP showed variations in the

error levels related to inter-individual differences in invasive aoSBP

(Table 2).
3.3. Agreement between measured and
estimated aoSBP

Related with the above, when analyzing the errors observed

when considering different aoSBP levels it was found that

(Table 3, Top): (i) all approaches underestimated aoSBP (error

range: 22–51 mmHg) at high aoSBP levels (e.g., close to

220 mmHg, the maximum measured). The highest bias was

obtained when using FF = 33% without correction for HR; (ii) at

low invasive aoSBP levels (e.g., close to 88 mmHg, the lowest value

measured) all approaches overestimated aoSBP (error range:

8–20 mmHg); (iii) for aoSBP values within 25th and 75th

percentiles (116–151 mmHg), non-invasive approaches allowed

reaching errors <10 mmHg (except for the method using a FF =

33%). The calculation of aoSBP using bMBPosc would enable to

minimize errors when considering high invasive aoSBP levels

(Table 3, Top); but the use of bMBP calculated using FF = 33%

corrected for HR, FF = 42% or 41.2%, would result in acceptable bias.

Table 3 (Bottom), shows that different non-invasive

approaches had different aoSBP ranges in which they “ensured”

errors between (i) −5 and 5 mmHg (green), (ii) −10 and

10 mmHg (yellow) and/or (iii) −15 and 15 mmHg (orange). For

instance, estimating aoSBP from bDBP and bMBPosc, allowed

ensuring errors <10 mmHg when invasive aoSBP levels were

between 115 and 183 mmHg, while the calculus of bMBP using

an FF = 33%, would ensure reduced errors within an aoSBP

range between 82 and 127 mmHg. In general terms, the

remaining methods (FF = 33% corrected for HR, FF = 42% or

41.2%) resulted in errors <10 mmHg, within a pressure range of

100–110 (lower limit) and 155–165 mmHg (upper limit). In

summary, the different approaches used to calculate aoSBP: (i)

showed differences in “global” mean bias, (ii) over- and under-

estimated aoSBP at low and high BP levels, respectively, and (iii)

showed differences in the aoSBP range in which they would

perform best as aoSBP estimators.
4. Discussion

4.1. Clinical and physiological relevance

Chemla et al. developed their equation by comparing invasive

(cathetersm) measurements in the ascending aorta with invasive

measurements in the radial and brachial arteries. The validation

of the Chemla et al. equation for cuff-based oscillometrically

measured bBP values is still pending. Additionally, it remains to

be assessed to what extent the method or equation used to

obtain the bMBP levels has an influence on the validity of the

Chemla et al. equation. In this work we applied, for the first time

using invasive and non-invasive records, the method proposed by

Chemla et al. and analyzed the obtained data with the aim of
Frontiers in Cardiovascular Medicine 07
contributing to define to what extent the approach considered to

determine the bMBP values to be used to calculate the aoSBP

according to the method would impact on the accuracy and

validity of the estimated data. The main contribution of this

manuscript is the demonstration that the usefulness of the

method recently proposed by Chemla et al. would be (i) highly

dependent on the approach used to quantify bMBP, and (ii) on

the aoBP levels considered. Our work highlights four issues.

First, the ability of Chemla et al. (11) approach to obtain aoSBP

values close to those measured invasively depends on the way in

which bMBP is obtained (measured or quantified) and on the

actual aoSBP levels in the specific subject. Then, trying to

generalize and define dichotomously whether the approach is

“good or bad” without taking into account the above would be a

mistake (and an over-simplification). The different approaches

used to calculate aoSBP: (i) showed differences in “global” mean

bias, (ii) over- and under-estimated aoSBP at low and high BP

levels, respectively, and (iii) showed differences in the aoSBP

range in which they would perform best as aoSBP estimators.

Second, calculating bMBP using a FF = 33% without HR

adjustment (the most widespread way of calculating the MBP),

would result in aoSBP values far from the invasive ones.

Furthermore, that approach gave the highest mean error levels.

Additionally, compared to other approaches, its best performance

(lowest error) was observed at low aoSBP levels (Table 3,

Bottom) which would be mainly observed in haemodynamic

states or clinical situations in which assessing central

haemodynamics could not be considered decisive (e.g., in terms

of clinical decisions). On the other hand, and in the same line, at

least in theory, aoSBP_033 could be considered useful to assess

aoSBP in children and adolescents who have low aoSBP.

However, it would not be useful in children/adolescents exposed

to clinical conditions and/or risk factors (e.g., sedentary,

overweight-obesity) in which aoSBP levels have been shown to be

elevated (25, 31–33). This should be evaluated in future studies.

Third, the other methods used to calculate bMBP and/or

bMBPosc, showed (quite) similarity in their ability to estimate

aoSBP. Unfortunately, most brachial cuff-based methods

(oscillometric devices) do not give bMBPosc, even though it is

quantified as a prior step to the obtaining of bSBP and bDBP

(the values actually given). In fact, most of the oscillometric

devices do not show the researcher or clinician the bMBPosc

(e.g., Mobil-O-Graph, Omron semi-automatic BP devices). These

devices show on the display the HR and bSBP and bDBP values

(calculated with the manufacturer’s own internal algorithms).

Then, the researcher and/or clinician can only quantify bMBP

using equations such as those used in our manuscript. In other

words, the systems “measure” the bMBPosc (as is widely known),

but then use it to calculate bSBP and bDBP values, which are the

values shown, and do not display the measured data. Therefore,

the bMBPosc related approach while accurate would be difficult

to apply and generalize in clinical practice.

Fourth, methods using a FF = 33% with HR correction and/or a

FF close to 40% (42% or 41.2%) may be one step ahead of the rest

when jointly considering three factors: (i) agreement with invasive

aoSBP, (ii) aoSBP range within which they ensure the lowest errors
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(100–110 to 155–165 mmHg), and (iii) feasibility to be applied in

clinical practice.
4.2. Strengths and limitations

First, healthy subjects were not included in this work. This is a

common feature of this kind of studies given the conditions

required for the indication of invasive evaluations (e.g., suspected

or known cardiovascular disease) (2). However, and in line with

the above, the studied subjects would be representative of those

whose accurate hemodynamic and/or cardiovascular assessment

would be considered critical in clinical practice.

Second, the sample size (n = 89) exceeded the minimum

recommended for studies aimed at analyzing the agreement

(e.g., Blant-Altman test) between invasive and non-invasive BP

measurements (17). In addition, despite, the sample size could

be considered moderate, it enabled to detect statistical

differences, thus achieving suitable statistical power

(minimizing type 2 errors). Measurements in the brachial

artery opposite to that of the vascular access limb and the need

for additional recordings in the aorta considered in the study

protocol, increased catheterization-time, which restricted the

number of patients considered elective and/or who agreed to

participate.

Third, although we are aware that differences between

measured and estimated aoSBP could vary depending on

covariates (34, 35) neither the sample size, nor its heterogeneity

allowed to define subgroups (e.g., defined by age, sex and/or

exposure to risk factors) and perform adequate statistical

analyses. Further multicentre studies would be necessary to

analyze the impact of covariates on the results.

Fourth, we used “fluid column” transducers instead of solid-

state pressure sensors, which characteristically provide accurate

BP waveforms (mainly due to their ability to detect the high-

frequency components of the wave). In any case, fluid column

transducers are not only the sensors used in our Hospital but

they are widely used to measure aoSBP in clinical practice.

Furthermore, in the ARTERY Society task force consensus

statement on protocol standardization, Sharman et al. stated that

while micromanometer-tipped catheters would be the sensors of

choice, if carefully handled, fluid column catheters could be used

to measure intra-arterial BP (17). Additionally, recently, in a

systematic review and meta-analysis, fluid-filled and catheter-

tipped transducers have shown similar mean bias in non-invasive

aoSBP estimation (2). Taking into account the natural frequency

and damping coefficient of our recording (catheter-tubing-

external transducer) system, and although the methods and

devices used are widely validated, the systolic and diastolic BP

values obtained invasively could entail a small over- and under-

estimation, respectively.

Fifth, an issue to consider is that regardless of the method

used, non-invasively assessed bBP always has “inherent errors”

(e.g., under- and over-estimation of bSBP and bDBP,

respectively) (36). Then, the ability of bBP to accurately quantify

aoBP (using the method of Chemla et al.) may depend (among
Frontiers in Cardiovascular Medicine 08
other factors) on the approach and device used. Additionally,

taking into account the inter-individual differences in BP

amplification and in the brachial pulse waveform, the form

factor that should be used to properly calculate bMBP may

vary (37). In this regard, Schultz et al. showed that no universal

form factor would achieve an accurate estimation of bMBP in all

individuals (37). Thus, our results regarding the best approach

to quantify bMBP to be used to estimate aoSBP must be

analyzed in the context of the overall scenario, as there may be

differences among individuals.
5. Conclusions

The ability of “aoSBP =MBP2/DBP” equation to accurately

estimate (error <5 mmHg) invasive aoSBP levels depends on the

bMBP method/equation employed, and on the actual aoSBP

levels (proportional error).

The best way to obtain bMBP to be used to calculate aoSBP

would be bMBPosc and/or approaches that include adjustments

for HR or FF ∼40% (bMBP042, bMBP0.412, bMBP033HR), instead

of the usual FF = 33%.
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