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1 Introduction

An electromagnetic field can have neutral interactions when the Lagrangian is written in
terms of the field strength and it does not involve the vector potential. Examples are a
higher derivative four photon term1 or the magnetic moment coupling to a neutral fermion:

L = −1
4 Fµν F

µν + ψ̄(iγµ∂µ −m)ψ − µ1
8 (F 2)2 − µ2

2 ψ̄ σµν ψ F
µν . (1.1)

1Higher derivative theories of the field strength have been called “Non-linear Electrodynamics”, see [1, 2]
and references therein for recent literature on the subject. An important example in this class of theories is
Born-Infeld electrodynamics [3]. Below we consider this class of theories together with magnetic couplings
with neutral fields. We call this larger zoo of theories “neutral electrodynamics”.
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These couplings are non renormalizable in any dimensions d > 2, and it is simple to realize
that it is not possible to find a renormalizable neutral coupling for the electromagnetic field.
In the standard model, these terms appear as low energy effective terms. The coupling
µ1 is of the order (e/me)4, while µ2 is of order e/mN for a neutron and e3ml/M

2
Z for a

neutrino, where mN is the neutron mass, and ml represents the charged lepton masses.
These neutral terms have characteristic scales µ−1/4

1 and µ−1
2 where the effective description

breaks down. In the standard model these terms are generated by integrating out charged
fields. In fact, the charged particles appear at smaller scales than µ−1/4

1 and µ−1
2 , where

the effective model predicts new physics to occur.
It is then evident we run into problems for constructing a purely neutral electrodynamics

from the perturbative point of view. The question we want to address is if the same
conclusion can be reached at the non perturbative level: is there a UV complete “neutral
electrodynamics”, or conversely, does any UV complete interacting theory for the photon
contain charges?

To address this problem in full generality we need to make the statement that “there
are no charges” more precise. Charged operators do not exist because they are not gauge-
invariant, and the existence of charged particles requires to understand the spectrum of the
theory. We choose a different route. The model (1.1), taken at the classical level, has two
different closed form fields

Fµν , d ∧ F = 0 , (1.2)
Gµν = εµναβ (Fαβ(1 + µ1 F

2) + µ2 ψ̄ σ
αβ ψ) , d ∧G = 0 . (1.3)

The field G is closed due to the equations of motion. The fact that there are two closed
two-form fields F and G is what we interpret as the absence of charges in the model. In
fact, magnetic charges would lead to d ∧ F 6= 0 and electric charges to the impossibility
to find a field G such that d ∧ G = 0. Writing the equation of motion in the usual way
∂ν F

νµ = Jµ the only way to obtain a closed two form G would be that

Jµ ∝ ∂νωµν (1.4)

for some other gauge invariant form-field ωµν . Then G = ∗(F + ω), where ∗ is the Hodge
dual (contraction with the Levi-Civita tensor). The particular form (1.4) of the current is
precisely what we get in the present model, but it is not the case for the usual quantum
electrodynamics. Eq. (1.4) means that there is a redefined non trivial electric flux operator
given by the integral of G on two dimensional surfaces which does not detect any charges
through the Gauss law.

To further clarify and generalize this situation, it is convenient to use the idea of
generalized symmetries [4], and specially an understanding of these symmetries in terms of
Haag duality violations [5, 6]. We formulate the problem in detail in these terms in the
next section. Here we anticipate that the effective model (1.1) has two form-symmetries
corresponding to the group R. The first is just the group of “non local” operators eiqΦF ,
q ∈ R, where ΦF is the flux of the closed form F on a two dimensional (non closed) surface.
This is a set of Wilson loops running along the boundary of the surface and corresponding
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to charge q. Second, in a dual way we have the t’ Hooft loop operators eigΦG , g ∈ R, that
also form a group R. We are writing ΦG for the flux of second closed form field G on a two
dimensional surface. Then, we have a dual set of form-symmetries given by non-compact
groups. If we now add to the model (1.1) a further (non gauge-invariant) field of electric
charge q0 we can form a gauge invariant Wilson line ended in these operators. The Wilson
loop of the same charge q0 can then be decomposed into a product of Wilson lines, and it
is not any more a non local operator along the path. The same will happen for operators
of charge n q0, n ∈ Z. Therefore the group of non local classes of Wilson loop operators
is reduced to a U(1) group, with q ∈ [0, q0). When there are electric charges, the electric
fluxes are not conserved any more, and only operators of charge g = 2πm/q0, with m ∈ Z,
are genuine line operators violating Haag duality, rather than surface operators. The group
of non local t’ Hooft loops is then reduced to Z. The dual of a compact group such as
U(1) is always a discrete group such as Z. Therefore, the dual symmetry in this case is
not continuous, and cannot have an infinitesimal generator such as the flux of G. If there
are electric charges we will not be able to find an exactly closed quantum field G. But of
course G could exist in an approximate effective way at low energies. The same happens in
a dual way: if there are magnetic charges there is no such a symmetry generator as a closed
field F .

In these terms, we can rephrase what is special about any neutral electrodynamics
model by saying that it possesses a non-compact form symmetry. This is reflected in the
existence of the infinitesimal generators given by the two dual closed fields F and G. In [7]
we conjectured that non-compact generalized symmetries can only happen for free models.
This is precisely the content of the present paper restricted to the case of generalized
symmetries generated by local currents, namely form-symmetries.2 We will show that F
and G, generators of the dual form-symmetries, can be chosen to be free dual fields. This
means that if the effective theory fields F,G are interacting, the generalized symmetry has
to be broken down in the UV completion to a smaller group, implying the existence of
electric and/or magnetic charges.

Another example is the low energy theory of a Goldstone boson. Such a model can
only have derivative couplings

L = 1
2 (∂φ)2 + L̃(∂φ) . (1.5)

In this case, the two dual forms are given by

Fµ1···µd−1 = εµ1···µd−1µ

(
∂µφ+ ∂L̃

∂(∂µφ)

)
, Gµ = ∂µφ . (1.6)

Both of these fields are closed d ∧ F = d ∧G = 0 and the effective theory has non-compact
form-symmetries generated by d − 1 and 1-form fields. Again, all possible couplings are
non renormalizable since the dimension of ∂µφ is d/2 and must be accompanied in the
Lagrangian by a vector field of dimension smaller than d/2, which is not possible. The
question is whether the theory can be completed retaining the non-compact form-symmetry.

2We further comment on the more general case in the discussion section below.
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When this Lagrangian comes from a symmetry breaking of a compact Lie group, F turns
out to be the conserved current of the symmetry. As such it can persist as a well defined
conserved field in the UV. On the other hand, since the field φ lives in a compact space, it
is not a well defined field operator in the usual sense. Then, it does not follow that ∂φ is a
closed 1-form field exactly, and this will fail at energies larger than the symmetry braking
scale. This is similar to the previous case of neutral electrodynamics when including electric
charges. One current remains closed but it only generates a compact group. The dual
generalized symmetry becomes discrete and it cannot be generated by a local field.

In appendix A we show that models of neutral electrodynamics and effective theories
of Golstone bosons do not have any intrinsic problem at the classical level. The notion
of non-compact form-symmetry can be defined at the classical level and those models
display those symmetries. This allows to express the result of this paper with a slightly
different perspective. As the generalized symmetries of the classical models cannot be
implemented quantum mechanically, this can be interpreted as an anomaly. In the present
case, this anomaly coincides with, and expresses in a more rigorous way, the idea of the
non renormalizability of the concrete Lagrangian examples.

The main observation behind the proof that the closed fields F and G are free and
massless is quite simple and it only involves the analysis of the two point functions. We will
see that the correlator 〈FG〉 is non zero, contains a term that obeys the massless equation
of motion, and further it cannot renormalize. On the other hand, 〈FF 〉 and 〈GG〉 can
renormalize. By analysing the UV fix point it is possible to “filter” the free massless parts
of these fields.

The plan of the paper is as follows. In the next section we describe the setup and
the properties of the two generators of dual non-compact form symmetries. In section 3
we analyse the form of the most general two point functions of these fields, taking into
account the symmetries (or antisymmetries) required and the positivity constraints. To
this end we need to understand the two-point functions as biforms, so we review how some
of their properties extend from the usual approach to differential forms and review our
notation in appendix B. In section 4 we study aspects of generalized symmetries in scale
invariant theories. In particular we prove that in such a case the closed form current fields
that generate a non-compact form symmetry must be free and massless. Section 5 contains
the main proof. It extends the results obtained for scale invariant theories to all QFTs.
This will require the study of the UV fix points of the theory, and specially the constraints
they impose over the full QFT. Conveniently, in appendix E we review some recent results
concerning the mathematical approach to RG flows that are relevant to this discussion.
Finally, section 6 contains an open discussion on the results, and describes connections
with other problems. We have already mentioned appendix A containing a definition of
non-compact symmetries for classical fields. Also, appendix C contains a new proof that a
field obeying a linear equation of motion is free. Finally, appendices D and F contain some
lengthy calculations that might be of use to the reader.
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2 General setup for non-compact form symmetries

Non-compact form-symmetries correspond to the existence of a closed real k-form field F ,
dF = 0, and a closed q-form field G, dG = 0, with d = k + q, and 1 ≤ k, q ≤ d − 1. We
use the short-cut notation dF = d ∧ F . For definiteness we take k ≥ q. Both F and G are
assumed to be physical (gauge invariant) Wightmann fields.

The fluxes
ΦF =

∫
ΣF

F , ΦG =
∫

ΣG
G , (2.1)

over spatial k-dimensional surfaces ΣF , and q-dimensional surfaces ΣG, depend only on the
boundaries ΓF = ∂ΣF , ΓG = ∂ΣG, and not on the particular surfaces having these same
boundaries. For simplicity, we can think that ΣF and ΣF lie at x0 = 0. If k < d− 1, both
ΦF and ΦG commute with any local field operator at any point x spatially separated from
ΓF and ΓG respectively. This is because the surfaces ΣF and ΣG can be deformed such
as to be spatially separated from any such point x, without changing the flux operator.
In particular, the fluxes commute with F (x) and G(x) for x spatial to the boundaries.
If k = d − 1 the commutativity of ΦF with local operators spatially separated from the
boundary cannot be implied because we can only deform the surface ΣF in a time-like
direction. In this case, we further assume ΦF commutes with F (x) and G(x) for x spatial
to ΓF . In this case k = d − 1 the flux of F over all space gives a generator of a global
one parameter group of symmetries. Then, the additional requirement for this case is that
F and G are uncharged fields with respect to this symmetry. Note that, without loss of
generality, we can take the Hilbert space as the one generated by F,G acting on the vacuum,
such that these fields act irreducibly.

Take ΓF and ΓG with the topology of Sk−1 and Sq−1, and simply laced to each other
in the spatial plane x0 = 0. Let them be the boundaries of disk like regions ΣF ,ΣG, of
dimension k and q respectively. A last assumption involved in the idea of non-compact
form-symmetries is that the fluxes ΦF and ΦG do not commute to each other in this case
of simply laced boundaries. This implies that none of the form fields is a physically exact
form-field. That is, they cannot be written as F = df , or G = dg, for gauge invariant fields
f, g. Otherwise ΦF or ΦG could be written as integrals of local fields on ΓF and ΓG and
the fluxes would commute.3

A first simplification in this scenario is the following. The commutator [ΦF ,ΦG] does
not change if we deform ΓF or ΓG keeping them spatially separated and simply laced. The
reason is that the change in the flux ΦG under such a deformation of ΓG is a flux on a surface
in between the boundary ΓG and its deformation Γ′G. Then, it is a flux of G in a region
spatially separated from ΓF , and commutes with ΦF . The same happens deforming ΓF .

As a result, we can displace both surfaces together to infinity keeping them linked, and
the commutator cannot change. This implies the commutator of the fluxes commutes with
any local operator, and therefore is a number, which is also a topological invariant for the

3An exception is the case of global symmetries k = d− 1, q = 1, where G could be of the form dφ, for a
scalar field φ. However, in order to have non commuting fluxes φ must be an operator charged under the
global symmetry, and thus falls out of the neutral algebras generated by G and F .
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pair ΓF ,ΓG. We can normalize it to be

[ΦF ,ΦG] = i . (2.2)

In this situation the theory generated by the fields F,G contains violations of Haag
duality, as described in [5, 6]. To see this more clearly, take causally complementary4 regions
RF and RG, such that ΓF ⊂ RF and ΓG ⊂ RG. Then, we can assign to these regions
von Neumann algebras A(RF ) and A(RG) generated by both fields F,G in RF and RG.
However, these algebras do not include the one parameter groups of unitaries a(q) = eiqΦ̃F ,
b(g) = eigΦ̃G , q, g ∈ R, formed by exponentials of smeared versions Φ̃F , Φ̃G of the fluxes,
where the boundaries have support inside the respective regions.5 To see this note that by
construction a(q) commutes with A(RG) and b(g) commutes with A(RF ). Then the algebra
A(RF ) cannot contain a(q) because all the elements of this algebra commute with the flux
ΦG while a(q) does not. In the same way, b(g) is not contained in A(RG). So we have

A(RF ) ( A(RG)′ , (2.3)
A(RG) ( A(RF )′ . (2.4)

Here A′ means the algebra of all operators that commute with A. Eqs. (2.3), (2.4) imply
there is no Haag duality for these regions.6 The operators a(q), b(g), are non local operators
in their respective regions in the sense that they cannot be formed locally in these regions,
but still commute with the local operators outside them. The form-fields generate the dual
continuous groups of non local symmetry operators in a way analogous to the way a Noether
current generates a continuous global symmetry. The charges q, g, describe different non
local classes of operators. Members of the same non local class differ by the action of local
operators in the regions. The non local operators a(q), b(g) are dual to each other in the
sense they are based on complementary regions and do not commute with each other. Both
sets of dual non local operators form continuous groups, and we take this scenario as a
definition of a non-compact form symmetry.

The relation (2.2) eliminates the possibility that any of the dual groups be a compact
U(1) group, and gives two dual non-compact R groups of generalized symmetries.7 The
commutation relations for the non local operators is fixed to be

a(q) b(g) = e−i q g b(g) a(q) . (2.5)

4Two space-time regions R1, R2, are causally complementary if R′1 = R2, and R′2 = R1, where R′ is the
set of points spatially separated from R.

5For a longer detailed description of these smeared fluxes and their relation to Haag duality violation
see [8, 9].

6For two causally complementary regions A′ = B, B′ = A, causality implies that the corresponding
algebras commute, A(A) ⊆ A(B)′, A(B) ⊆ A(A)′. Haag duality is a form of maximality for the local
algebras in which A(B) = A(A)′ and viceversa.

7If one of the dual symmetries were U(1) the dual one would be forced to be a non continuous Z group,
and its non local operators could not be generated by a form-field in a way analogous in which a discrete
global symmetry is not generated by a current.
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3 The two point functions

In this section we analyse the general form of the two point functions of the real form fields
F and G in any dimension. We start with the study of all the possible tensor structures in
momentum space. Then, we provide the most general expression for correlators in the Kallen-
Lehmann representation allowed by conservation of the fields, spatial commutativity, and the
flux commutator (2.2). The positivity constraints required on the spectral Kallen-Lehmann
functions in each case are also given.

3.1 Tensor structures

Any of the two point functions of F and G is a biform conserved in each index. In other
words, in momentum space the generic structure of the Wightman function is of the form∫

ddp

(2π)d−1 θ(p
0) θ(p2) eipx Pµ|ν(p) , (3.1)

where µ, ν in the polarization tensor Pµ|ν(p) are antisymmetric (k|k), (q|q), (k|q) or (q|k)
multi-indices, depending on the particular two point function. See appendix B for a more
extended review of the notation used thought this paper for biforms. The conservation
dF = 0, dG = 0, requires that

p ∧ P = P ∧ p = 0 , (3.2)

where the notation means the wedge product acting on the left or right indices respectively.
Using the Hodge star operator ∗, we can analyse an equivalent dual problem. If we define
P̃ = ∗P∗, the conservation condition is given by p · P̃ = P̃ · p = 0. This is because these
two tensors are proportional

∗ p ∧ ∗(· · · ) ∼ p · (· · · ) . (3.3)

This corresponds in momentum space to the identity δ = (−1)kd+1 ∗ d ∗ between the
coderivative δ (proportional to the divergence of the tensor) and the exterior derivative d
acting on forms. We remember that δ δ = 0 as a consequence of d d = 0.

In what follows all the possible structures for the polarization tensor P are studied.
This tensor must be written in terms of the metric g, the momentum p, and the Levi Civita
tensor ε. First, we consider tensors constructed using the metric alone. Let us start with
the case of 〈FF 〉 with (k|k) biforms of equal number of indices. The case of 〈GG〉 follows
in a like manner for (q|q). Antisymmetry implies that if there is a metric tensor its two
indices must belong to the two different sets of indices µ, ν, of equal size. Then, there are
exactly k metric tensors in P . After antisymmetrising on both sets of indices there is only
one possible tensor structure of this form, given by a term proportional to the generalized
Kronecker symbol

g
(k)
µ|ν =

∑
σ

sgn(σ) gµ1νσ(1) · · · gµkνσ(k) = (−1)d−1

(d− k)! ε
α
µ ενα , (3.4)

where the sum is over the permutations σ of the set (1, · · · , k), sgn(σ) is the signature of
the permutation, and gµν denotes the usual Minkowski metric in signature (+−− · · · ). For
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a polynomial of the momentum and the metric, by antisymmetry, we cannot include more
than two powers of p, nor just one momentum, because that would imply one of the metrics
has the two indices in the same antisymmetric set. With two momentum vectors and the
metric the only possible tensor structure contains a momentum on each set of indices

p · g(k+1) · p . (3.5)

Nevertheless, only one combination of (3.4) and (3.5) is closed in both indices. Since (3.5) is
the only bi-coclosed structure, the bi-closed one for P is its dual, for the appropriate order,

∗ p · g(d−k+1) · p ∗ ∼ p ∧ g(k−1) ∧ p . (3.6)

Now consider the correlator 〈FG〉, with (k|q) indices, k + q = d. The same analysis applies
if k = q = d/2 for d even. If k 6= q nothing antisymmetric can be formed with the metric
alone. With one momentum we have for k = q + 1, d = 2k − 1 odd,

g(k) · p ∼ p ∧ g(k−1) . (3.7)

This is however only closed on one side but co-closed on the other, and cannot appear in
the correlator.

Furthermore, with two or more momentum vectors, antisymmetry again does not allow
any tensor structure constructed with the metric and the momentum alone for k 6= q.
However, we can consider tensor structures containing the Levi-Civita tensor ε. These
result from the previous ones by acting with the Hodge star in one side only. The part of
Pµν containing ε has to be separately bi-closed. We then have to go through the previous
tensor structures and check whether they are closed on one side and co-closed on the other.
The only possible bi-closed structure is obtained by dualising (3.6) when p2 = 0, as in such
a case we get

∗ p · g(d−k+1) · p ∼ p · g(k+1) · p ∗ . (3.8)

This can always appear in 〈FG〉. It can also appear in 〈FF 〉 or 〈GG〉 when k = q = d/2.
When including the Levi-Civita tensor, a new posibility linear in the momentum emerges

for the correlator 〈FF 〉. This is recovered by dualising (3.7) on one side

∗ g(d−k) ∧ p ∼ p ∧ g(k−1)∗ ∼ ∗ p · ε ∗ . (3.9)

This can only appear when d is odd and d = 2k − 1. In d = 3 represents the case of the
Maxwell-Chern-Simons field.

In summary, for the generic case where k 6= q and k 6= (d+ 1)/2, the most general form
of the correlators in Kallen-Lehmann form is

〈F (x)F (0)〉 =
∫ ∞

0
ds (aF δ(s) + ρF (s))

∫
ddp

(2π)d−1 θ(p
0) δ(p2 − s) eipx P (k)(p) , (3.10)

〈G(x)G(0)〉 =
∫ ∞

0
ds (aG δ(s) + ρG(s))

∫
ddp

(2π)d−1 θ(p
0) δ(p2 − s) eipx P (q)(p) , (3.11)

〈F (x)G(0)〉 =
∫

ddp

(2π)d−1 θ(p
0) δ(p2) eipx (P (k)∗̃)(p) , (3.12)

〈G(x)F (0)〉 =
∫

ddp

(2π)d−1 θ(p
0) δ(p2) eipx (∗P (k))(p) , (3.13)
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where the operator ∗̃ is defined from the original Hodge dual as ∗̃ = (−1)kq∗. The Kallen-
Lehmann functions have to be real because of commutativity at spatial distances and
the fact that fields are real. Here, we have singled out the massless parts of the spectral
densities for 〈FF 〉 and 〈GG〉 with the real coefficients aF and aG. Also, we have chosen
the normalization of (3.6) as

P
(k)
µ|ν ≡

(−1)k−1

(k − 1)! g
(k) γ
µ|α g

(k)
ν|βγ p

α pβ . (3.14)

This allows us to obtain a useful identity for the dual of P (k) at both sides

∗ P (k)∗̃ = P (q) + (−1)q g(q) p2 . (3.15)

Interestingly, the correlator 〈F (x)G(0)〉 can only be proportional to a unique term in
momentum space with support p2 = 0, eq. (3.8), which we have written in the form (3.12).
This cannot be zero because the flux commutator has to be a number, and its vacuum
expectation value does not vanish. We have chosen to normalize the coefficient to one. This
correlator can only have a massless contribution, and therefore it is scale covariant, and
satisfies the massless equation of motion

� 〈F (x)G(0)〉 = 0 . (3.16)

The non-compact form symmetry forces the particular form of this two-point function that
cannot renormalize. The fact that it obeys the free massless equation of motion contains
the essence of the proof that the theory has a free massless sector. It is well known that a
field φ whose two point function with itself satisfies the Klein Gordon equation also satisfies
the equation at the operator level, �φ(x) = 0. The linear equation of motion for the field
implies the field is free. See below and appendix C. However, the Klein Gordon equation for
the correlator of two different fields such as (3.16) does not imply the operator equation, nor
that the fields are free. For example, we could write F = F0 + F1 and G = G0 +G1, with
F0 = ∗G0 free, and F1, G1 having zero two point functions between themselves and with
the free fields. In this case we still have a free sub-sector of the theory, which is responsible
for the non zero mixed two point function, and the non-compact form-symmetry. It is
a natural expectation that this is the case in general. In the following we deal with the
“filtering” of the fields to obtain their free part.

As mentioned before, there are two special cases to consider. When k = q = d/2 the
structures of 〈FF 〉 and 〈GG〉 can appear in 〈FG〉 and 〈GF 〉 and viceversa. We write the
new form of the correlators as in (3.10)–(3.14) plus new terms

〈F (x)F (0)〉 = · · ·+ bF

∫
ddp

(2π)d−1 θ(p
0) δ(p2) eipx (P (k)∗̃)(p) , (3.17)

〈G(x)G(0)〉 = · · ·+ bG

∫
ddp

(2π)d−1 θ(p
0) δ(p2) eipx (P (k)∗̃)(p) , (3.18)

〈F (x)G(0)〉 = · · ·+
∫ ∞

0
ds (c δ(s) + ρ̃(s))

∫
ddp

(2π)d−1 θ(p
0) δ(p2 − s) eipx P (k)(p) , (3.19)

〈G(x)F (0)〉 = · · ·+
∫ ∞

0
ds (c δ(s) + ρ̃(s))

∫
ddp

(2π)d−1 θ(p
0) δ(p2 − s) eipx P (k)(p) . (3.20)
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The new term in the 〈FF 〉 and 〈GG〉 correlators obeys that [P (k)∗̃]µ|ν = (−1)k−1[P (k)∗̃]ν|µ.
Combining this with spatial conmmutativity requires that bF , bG = 0 if k is even. In the
other cases it just imply that the Kallen-Lehmann functions are real.

Similarly, from (3.9), in the case of d = 2k − 1 there is an additional possibility for the
two-point function 〈FF 〉

〈F (x)F (0)〉 = · · ·+ ik−1
∫ ∞

0
ds ρCS(s)

∫
ddp

(2π)d−1 θ(p
0) δ(p2 − s) eipx (∗ p.ε ∗̃) , (3.21)

where the factor ik−1 has been added to keep ρCS(s) real.

3.2 Flux commutators

As described above the linked flux commutators (2.2) are numerical and do not depend on
the geometric form of the linked loops ΓF , ΓG. This can be verified by using the crossed
correlator (3.12) in the expression for the flux commutator and integrating over the regions
bounded by the loops ΓF , ΓG. See appendix D for a explicit derivation.

The case k = q = d/2 may contain additional terms in the mixed two point func-
tion (3.19). This new term cannot change the flux commutator though. The reason is that
the form of P (k) is proportional to (3.6) and this implies these new terms8 are the double
exterior derivative (in different coordinates) of a (k − 1|q − 1) biform that we call K(x, y)

〈F (x)G(y)〉 = · · ·+ dx dyK(x, y) . (3.22)

We can see these doubly exact terms cannot change the value of the commutator in two
ways. First we can insert them directly in the expression for the flux commutator and verify
its vanishing even when the fluxes are non trivially linked. See appendix D for an example
of this calculation. Another way is to change to the Euclidean correlators. These are non
singular except at the coincidence points. Take a k-dimensional disk ΣF with boundary
ΓF at x0 = 0 and a q-dimensional disk ΣG at y0 = 0 with boundary ΓG. The boundaries
ΓF and ΓG are simply linked to each other. Without changes the fluxes we can deform
ΣF moving the points to the future in Euclidean time such as to form a new surface Σ+

F

with the same boundary ΓF at x0 = 0. In an analogous way we form Σ−F deforming the
surface to the past. Let the time like Euclidean vector be τ̂ = (1, 0. · · · , 0). The euclidean
expression for the expectation value of the commutator is

〈[ΦF ,ΦG]〉 = lim
ε→0

(∫
Σ+
F+ε τ̂

∫
ΣG
〈F (x)G(y)〉 −

∫
Σ−F−ε τ̂

∫
ΣG
〈F (x)G(y)〉

)
. (3.23)

It is immediate that the contribution of a doubly exact term like the one in (3.22) vanishes.
This is because, since this is exact in x and y, we get an expression where the integration
is on the boundaries ΓG and ΓF ± ετ̂ . These two terms are continuous in the ε→ 0 limit
since only involve distant correlations, and cancel each other in the limit. This is not the
case for the term (3.12) which is exact in any of its variables but not on both at the same

8Physically, these type of terms correspond to the correlation between additive line operators, which,
whether linked or not, ought to commute due to microcausality.
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time. This term can be integrated over ΣG to give an harmonic non exact form in Rd − ΓG
which contributes non trivially to the commutator (3.23).

Viewed in the light of the euclidean calculation (3.23), the commutator of fluxes appears
as a topological invariant for two intersecting surfaces of dimensions k and q, k + q = d,
one closed, Σ+

F ∪ Σ−F , and another open ΣG. This is called the Kronecker index for the
surfaces, and the 〈FG〉 correlator is the “linking number” bi-form that allows to write this
topological invariant as a double integral. See [10], chapter 33.

3.3 Positivity

In a unitary theory, the correlators of the form 〈FF 〉 must be positive semidefinite∫
ddx ddy φ∗(x) 〈F (x)F (y)〉φ(y) ≥ 0 . (3.24)

This must be valid for all possible test functions φ(x). Therefore for each p we have that

φ̂∗(p)P (k)(p) φ̂(p) ≥ 0 , (3.25)

which leads to the tensor structure in momentum space to be positive semidefinite. This
is true for P (k)

µν as defined in (3.14). It can be easily checked by setting p in the time
direction. For p2 = 0 positivity of this matrix follows because it is the limit of a positive
semidefinite matrix.

Moreover, the positivity constraints apply separately to the massless delta functions and
the remaning Kallen-Lehmann measures ρF (s) and ρG(s) appearing in (3.10) and (3.11). By
choosing a smearing in (3.25) with p2 6= 0, the positivity of the correlators 〈FF 〉 and 〈GG〉
imply ρF (s) and ρG(s) are positive measures in [0,∞). Further, for tempered distributions
ρF (s), ρG(s) have to be at most of a polynomial increase at infinity. The positivity of the
terms including a massless delta functions follows from positivity in the IR limit where
these make the only remaining contribution. In this context, we recover that the constants
multiplying the delta functions must obey aF , aG ≥ 0.

For this particular case, the positivity of the combined correlator matrix adds a new
constraint only for p2 = 0. We have conveniently chosen the normalization of (3.14) so that
P (q)(p) = ∗P (k)(p) ∗̃ when p2 = 0 . See eq. (3.15). Therefore, the correlator matrix for such
case writes (

aF P
(k) P (k) ∗̃

∗P (k) aG ∗ P (k) ∗̃

)
. (3.26)

The requirement is that (3.26) should be a positive semidefinite matrix. Then, it follows
that positivity for p2 = 0 gives

aF aG ≥ 1 . (3.27)

In particular, this further restrict aF and aG to be non-zero, meaning that aF , aG > 0. This
result, combined with the specific form of the correlators (3.10) and (3.11), imply that the
theory has a massless particle.

We are left to analyze the special cases. When k = q = d/2 the correlators have the
additional terms described in (3.17)–(3.20). For the massive part, we still have ρF , ρG ≥ 0.
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For the p2 = 0 sector, if k is even, we get aF , aG ≥ 0 and aFaG ≥ 1+c2. On the other hand,
if k is odd we have that 0 ≤ |bF | ≤ aF and 0 ≤ |bG| ≤ aG, and the combined correlator
matrix shields that aFaG + bF bG ≥ 1 + c2. Note that the combination of both restrictions
in each case imply the existence of a massless particle.

In the case d = 2k − 1, the two-point function 〈GG〉 remains unchanged and we still
recover ρG(s) ≥ 0. However, for 〈FF 〉 defined by (3.21), we can check that

0 ≤ |ρCS(s)| ≤
√
s ρF (s) . (3.28)

This forces ρCS(s) to vanish for s = 0 and does not alter the inequality (3.27) or the results
obtained for the p2 = 0 sector.

4 Scale invariant form-symmetries

We now analyse form-symmetries in scale invariant theories. We start by showing that if
the form-symmetry is non-compact, then the fields generating such a symmetry must be
free and massless. Then, we study the more general case of a single conserved form field,
and classify different possibilities.

4.1 Non-compact form-symmetries

Consider the case of the non-compact form symmetry generated by the form fields F and
G in a scale invariant theory. Let the dimensions of F and G be ∆F and ∆G respectively.
This is achieved by spectral densities

ρF (s) ∼ s∆F−d/2−1 , ρG(s) ∼ s∆G−d/2−1 . (4.1)

The fact that these must be integrable measures implies the unitarity bounds

∆F ,∆G ≥ d/2 . (4.2)

In the specific case of dimension d/2 saturating the unitarity bound, the spectral measure
has to be replaced by δ(s) instead of s−1 because this latter is non integrable at s = 0. On
the other hand, the correlators (3.12)–(3.13) require that

∆F + ∆G = d . (4.3)

This gives ∆F = ∆G = d/2, saturating the unitarity bound, and having spectral measure
δ(s). Then, the two point functions satisfy �x〈F (x)F (y)〉 = 0. From here, by the standard
argument that

〈�F (x)|�F (y)〉 = 0→ �F (x)|0〉 = 0→ �F (x) = 0 , (4.4)

we get free equations of motion for the field (see e.g. [11]). As it is well known this implies
the field is free. There are several proof of this fact. The references can be found in the
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appendix C where we also give a simple alternative proof based on properties of harmonic
functions. The fields can be normalized such as F = ∗G.9

Another way to arrive at this conclusion is to use a theorem by Buchholz and Freden-
hagen which implies that for a scale invariant theory a massless particle is a free particle [12].
It is precisely the free particle content of the theory the responsible for the δ(s) terms in the
spectral functions, in particular for the 〈FG〉 function that is necessary for the non-compact
form-symmetry.

4.2 A continuous form-symmetry in the scale invariant case

In this section we analyse the more general case of a single scale invariant (continuous)
form-symmetry generated by the form field H with h indices. We use another letter for
this field to not confuse it with the more general analysis with F,G above and below.
This analysis not strictly necessary for the purposes of this paper, mainly focused on the
non compact case, but we want to highlight that even if only scale invariance is invoked
many of the features that follow from conformal invariance appear from the analysis of the
generalized symmetry.

It turns out that the scaling dimension ∆H of this field must be either d/2 or h for
h ≥ d/2. The reason is quite simple. If ∆H 6= h the non local operators eiα

∫
Σ dσH have a

parameter α that scales non trivially with scaling transformations. This means the non
local classes of these operators (the charge of the form-symmetry labeled by α) change
under scaling. As the classes are non invariant under a continuous symmetry group, as
shown in [7], the form symmetry must be non-compact. Then, there is a continuous dual
form-symmetry, say generated by H̃ with d−h indices. As we have seen, the only form that
the correlator of H and H̃ has the necessary term to produce constant flux commutators
is that both fields have the free dimension d/2. Another way to say this is that the flux
operators ΦH ,ΦH̃ , generating the form-symmetry transformations, must have commutator
i. The scale invariant transformation of parameter λ multiplies one of the fluxes by λ∆H−h

and then the other must transform with exponent h−∆H . This gives a scaling dimension
∆H̃ = d−∆H , and one of the two is incompatible with the unitarity bound except in the
free case, where both are equal to d/2. Then, we also have the possibility of ∆H = h, for
h > d/2. In this case, the form-symmetry is invariant under scaling, but it cannot be a
non-compact symmetry as there cannot be a dual form with dimension d − h < d/2. It
must then be a compact U(1) symmetry.

To summarize, a closed form-field H in a scale invariant theory must be in one of the
following mutually exclusive possibilities:10

a) H is a free field with dimension ∆H = d/2, generating a non-compact form symmetry
together with its corresponding dual field ∗H.

9The parity odd term in d = 2k − 1 cannot appear at the fix point, and the power counting for the case
k = q = d/2 is not altered.

10We are assuming an additive net can be defined for causal regions based on the t = 0 surface, such that
the form-symmetry can be properly defined. This explicitly eliminates generalized free fields. It is enough
the theory contains a stress tensor, but could hold more generally.
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b) H has dimension ∆H = h with h > d/2, generating a continuous but compact U(1)
form symmetry.

c) H is an exact form field, namely, it is a total derivative H = dφ with φ a gauge
invariant field, not generating a form symmetry.

In the last case the field is closed, but it does not produce a form-symmetry because the
fluxes are local on the boundary. Still, the case h = 1 can be a form-symmetry in the case
where the dual symmetry is a global symmetry and the symmetry transformation acts as
φ→ φ+ const for the scalar field φ. This can only be a free massless scalar field φ, and it
is already covered in the case a).

The previous reasoning did not involve conformal symmetry, but only arguments about
Haag duality violation that imply the existence of dual generalized symmetries. However, it
is interesting to analyze the implications of conformal invariance without appealing to the
idea of Haag duality defects.11

A primary h-form field H has unitarity bound ∆H ≥ max(h, d−h) [15–18]. It is closed
only for ∆H = h ≥ d/2, when it saturates the unitarity bound. Conversely, it is co-closed
for ∆H = d− h, h ≤ d/2. The only free case is for even d with h = d/2. Out of these cases,
the closed field cannot be primary. In this case, we have to analyse if it can be a descendant
field, that is, a derivative of a primary field. A derivative can add an index to the field,
in which case only one derivative is allowed because the fields are antisymmetric. That is,
we should have H = dφ. Another possibility would be that Hµ = ∂α1 · · · ∂αnφµα1···αn for a
primary field φµα1···αn antisymmetric in the indices µ and symmetric in the α’s. However,
this cannot be closed because such primary fields do not obey conservation equations unless
at the unitarity bound, and in such a case the divergence is zero [18]. The third and last
possibility would be that H = δφ for an antisymmetric primary φ. Conservation implies φ
is free, and that implies the number of indices in φ is d/2, and that δφ = 0. Therefore for a
CFT the result is the same as above, with the addition that case a) can only happen for
h = d/2. Summarizing, if we have a conformal fix point with a non-compact form symmetry,
it can only correspond to the theory of two free primary forms of dimension d/2 (as in the
Maxwell field for d = 4) or the free Goldstone boson case.

Returning to the general case, it is important that the form-symmetries of cases a) and
b) happen not to be saturated. Equivalently, we cannot have arrived at a topological limit
in which unitary non local operators have expectation value 1 or 0. These cases can only be
the result of a limit, but never be produced by actual operators existing in the theory. For
example, take a region R with the topology of a Sk−1 × T with T being a compact subset
of Rd−k+1. Then, we can form the unitary operator

W (q) = ei q
∫
ω(x)H(x) , (4.5)

where q is the charge of the non local class, ω(x) is a smearing function such that

δω(x) = J(x) , J(x) = 0 if x /∈ R . (4.6)
11See [13, 14] for similar analysis in the conformal case.
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This warrants that W (q) is an operator localized in R in the sense that it commutes with
local operators outside of R. To have charge q we need to normalize the flux of J on a
section S as of R ∫

S
J = 1 . (4.7)

The expectation value of this unitary operator is bounded as 0 < |〈0|W (q)|0〉| < 1. It
cannot be equal to 1 because in that case W (q)|0〉 = |0〉 by Cauchy Schwartz inequality.
By Reeh-Schlieder theorem if (W (q)− 1)|0〉 = 0 for a local operator then W (q) = 1, which
is not the case. In the same way it cannot be 〈0|W (q)|0〉 = 0 for all q. If that where the
case, as W (q) cannot annihilate the vacuum, it must convert it into an orthogonal unit
vector |q〉. It would follow that all the |q〉 are orthogonal to each other for the continuous
parameter q, what is impossible.

This has an interesting implication in any theory in which there is a closed field F (not
necessarily associated with any non-compact symmetry). In that case, either the field is a
total derivative F = dφ, or the UV fix point contains Haag duality defects. That is, Haag
duality defects cannot become topological at the UV. This is in contrast to the cases of
non continuous sectors, as the case of asymptotically free Yang Mills theories where the
discrete generalized symmetry becomes saturated at the UV [8].

5 Renormalization group flow

In this section we prove that a theory with non-compact form-symmetries has a massless
free sector. Such results descend from the scale invariant proof presented in section 4.1 via
arguments concerning the renormalization group flow. Therefore, to proceed, we will be
making the usual assumption that a UV complete theory has a UV scale invariant fix point,
and that the full theory arises from the UV fix point by perturbing it away from criticality.
For our interest in the present problem, in fact, we need to assume less structure, basically
that there is a UV scale invariant fix point, and that to quantum fields in this fix point
corresponds quantum (Wightman) fields in the complete theory, and viceversa. As the
details of the expected relation between the UV fix point and the QFT are rarely spelled out,
we endeavor to be more precise in what follows. In this scenario we analyse constraints over
the full QFT arising from the existence of a UV fix point with a non-compact form-symmetry.
Though the existence of a scale invariant fix point is an assumption in this paper, we note
that this has been proved under the condition of a phase space property that restricts the
increase of the number of degrees of freedom at high energies [19].

5.1 Assumptions about the RG flow and the UV limit

Since the existence of a completion, or a UV limit of the theory, is quite central to our
arguments, we are going to be explicit about the assumptions involved in this idea. We
describe the QFT and its UV fix point by the collection of their Wightman fields. We
assume the UV fix point is a scale invariant theory.
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Let ϕ be a field. We assume there is always a ∆ > 0 such that12

lim
λ→0

λα〈ϕ(λx)ϕ(0)〉 = 0 , ∀ α > ∆ , (5.1)

lim
λ→0

λα|〈ϕ(λx)ϕ(0)〉| =∞ , ∀ α < ∆ . (5.2)

Then for such a field ϕ we say it has asymptotic dimension ∆. In a scale invariant theory
this coincides with the scaling dimension for irreducible fields. We assume, both for the
UV fix point and the QFT, that the linear space of fields with dimension less than any
∆ is finite dimensional and that the fields are in finite dimensional representations of the
Lorentz group. This is a necessary condition for many usual requirements of a QFT, for
example having a finite partition function.

To proceed, regarding the relation between the full QFT and its UV fix point we will
be making the following assumptions:
1) For each ϕ of the QFT there is a function Zϕ(λ) and a field ϕ0 of the UV fix point (we
call ϕ0 the UV limit of ϕ), unique up to normalization, such that

lim
λ→0
〈Zϕ(λ)ϕ(λx1) · · ·Zϕ(λ)ϕ(λxn)〉 = 〈ϕ0(x1) · · ·ϕ0(xn)〉 . (5.3)

The functions Zϕ(λ) are highly non unique but their asymptotic limit is quite restricted. In
particular

lim
λ→0

λ−α Zϕ(λ) = 0 , if α < ∆ , (5.4)

lim
λ→0

λ−α Zϕ(λ) =∞ , if α > ∆ , (5.5)

where ∆ is the scaling dimension of ϕ0. Form this it follows that ϕ0 has a unique scaling
dimension and spin representation which coincide with the asymptotic dimension and spin
of ϕ. We write this field mapping (up to normalization) M(ϕ) = ϕ0, or simply ϕ → ϕ0.
This mapping is generally many to one because from a linear combination of fields in the
QFT, only the highest dimension component survives in the limit. It also follows that for
an irreducible non zero combination of derivatives of ϕ, that for short we write ∂ϕ, and
such that ∂ϕ0 6= 0, we haveM(∂ϕ) = ∂ϕ0, where Z∂ϕ(λ) = λZϕ(λ). If ∂ϕ = 0 the same
holds for ϕ0, namely ∂ϕ0 = 0.
2) There is a linear basis B0 of the fields at the UV theory, having definite spin and scaling
dimension, and a basis B for the fields of the QFT, such that for each of the fields ϕ0 ∈ B0
there is a unique (up to normalization) N (ϕ0) = ϕ ∈ B, such thatM(ϕ) =M(N (ϕ0)) = ϕ0.
The physical idea behind this assumption is that irreducible fields in the UV fix point (in a
certain basis in the case of degenerate spectrum) generate fields in the QFT once the theory
is perturbed away from the fix point. From this it follows that for each ∆̃ > 0, the fields
in N ({ϕ0 ∈ B0,∆ϕ0 < ∆̃}) form a linear basis for all fields in the QFT with asymptotic
dimension less than ∆, and the dimensions of the two spaces is the same. It is expected that
any ϕ→ ϕ0 leads to a ϕ0 ∈ B0, excepting degeneracies due to symmetries. More generally,
for such ϕ→ ϕ0, where ϕ0 is decomposed linearly into a subset ϕi0 ∈ B0, the field ϕ can be

12See the remark about this point on appendix E.
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decomposed linearly into the elements φi of B associated to ϕi0 plus, eventually, fields with
lower or equal dimension. Combining with the first assumption, we ask that correlation
functions obey

lim
λ→0
〈Zϕi1 (λ)ϕi1(λx1) · · ·Zϕin (λ)ϕin(λxn)〉 = 〈ϕi10 (x1) · · ·ϕin0 (xn)〉 . (5.6)

3) For any ϕ0 ∈ B, with N (ϕ0) = ϕ, and any non zero irreducible field formed
from the derivatives of ϕ0, that for short we call ∂ϕ0, we assume that ∂ϕ0 ∈ B0 and
N (∂ϕ0) = ∂ϕ ∈ B.

Though these are assumptions implicit in the idea of a UV limit theory, it would be
important to have a derivation of these properties from a more general standpoint. Though
we will not deal with this investigation here, we note that progress in mathematical studies
of QFT in the last decades help to delineate the contours of this standard lore assumptions.
For the benefit of the reader, we briefly review part of this progress and relevant references
in appendix E.

5.2 Filtering at the UV

Let us analyse the different possibilities for the UV limits F0, G0 of the fields F,G. These
satisfy dF0 = dG0 = 0. Let us start from the simplest possible scenario in which the
form-symmetry is generated at the UV by the limit fields F0, G0. As discussed in section 4
this implies both fields have dimension d/2. The correlations of these UV fields will be
proportional to the δ(p2) in momentum space. The requirement that the linking term in
〈FG〉 is not erased by the renormalization implies that the renormalization functions have a
limit ZF ∼ λd/2 Z0

F , ZG ∼ λd/2 Z0
G, with finite Z0

F , Z
0
G. Using the notation of (3.10)–(3.13),

we get for the coefficients of the normalized tensor structures for p2 = 0 in the matrix
correlator of F0, G0: (

(Z0
F )2 (aF +

∫
ds ρF ) Z0

F Z
0
G

Z0
F Z

0
G (Z0

G)2 (aG +
∫
ds ρG)

)
. (5.7)

Let us further simplify the scenario by assuming there is no degeneracy at the scaling
dimension and spins of F0, G0. Therefore F0 and G0 can be normalized such that F0 = ∗G0,
and the coefficients of the above matrix are all equal to one. From this we get a zero
determinant, leading to (

aF +
∫
ds ρF

) (
aG +

∫
ds ρG

)
= 1 . (5.8)

However, positivity in the infrared limit implies aF aG ≥ 1, eq. (3.27). This and the
positivity of ρF and ρG implies

ρF = 0 , ρG = 0 . (5.9)

This gives correlation functions obeying the massless Klein Gordon equation, and a free
theory. It is not difficult to realize that following the same calculation, the slightly more
complicated case of k = q = d/2, where there can be mixed terms in the correlator matrix
such as (3.17)–(3.20), leads again to free fields.
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Another way to say this is that as F0 = ∗G0 and this is the unique non degenerate
field at that dimension and spin, the fields N (F0) ∼ F and N (∗G0) ∼ ∗N (G0) ∼ ∗G are
proportional to each other. This gives

dF = d ∗ G = 0 ⇒ δ G = 0 ⇒ �G = (d δ + d δ)G = 0 , (5.10)

and the same is true for F from dG = 0.
We can consider the more general case in which the dimensions d/2 and the spins of

F,G at the UV are degenerate, but still have finite renormalizations. In this case we get a
decomposition

F = F̃ + F1 , G = G̃+G1 . (5.11)

The fields F̃ and G̃ are responsible for the form-symmetry at the UV,13 and can then
be chosen such that F̃ = ∗ G̃. The fields F̃ , F1, G1 are free and uncorrelated at the UV.
If F1 and G1 were correlated at the UV we would have a component F1 = ∗G1 that
could be absorbed into the definitions of F̃ and G̃. We still have dF = dF̃ + dF1 = 0,
dG = dG̃ + dG1 = 0, but the individual fields F̃ , G̃, F1, G1 could be non closed outside
the fix point. It certainly results in a highly tuned scenario. But the positivity analysis
along the same lines as the calculation above gives again a free result. The details of this
calculation are given in appendix F.

It rests to analyse the case when at least one of the fields have infinite renormalization.
With this we mean the integral of the spectral measure is divergent,

∫
ds ρ(s) =∞. In this

case the two point function is more singular than the free one, and it is not difficult to see
that Z(λ) has to go to zero faster than the one corresponding to a free field:

lim
λ→0

Z(λ)λ−d/2 = 0 . (5.12)

In particular, we will then have

lim
λ→0

ZF (λ)ZG(λ)λ−d = 0 . (5.13)

In this case the scaled fluxes

Φλ
F = ZF (λ)

∫
ΣF

F (λx) = ZF (λ)λ−k
∫
λΣF

F (x) −→
λ→0 ΦF0 =

∫
ΣF

F0(x) , (5.14)

Φλ
G = ZG(λ)

∫
ΣG

G(λx) = ZG(λ)λ−q
∫
λΣG

G(x) −→
λ→0 ΦG0 =

∫
ΣG

G0(x) , (5.15)

are conserved and (a smeared version of them) have finite expectation values 〈Φ2
F0
〉, 〈Φ2

G0
〉,

in the UV limit. However, the commutator goes to zero at the UV since

[Φλ
F ,Φλ

G] = i ZF (λ)ZG(λ)λ−d → 0 . (5.16)

In other words, the UV fields F0, G0 are closed, but their mixed correlation function does
not contain the linking number term. The reason is that such term does not renormalize in
the QFT as shown previously, and it is erased by renormalization in the UV theory.

13More precisely, their UV limits F̃0 and G̃0 are responsible for the form-symmetry.
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If the UV field F0 = dφ0 is exact, we have a field φ→ φ0 in the QFT. It follows that
dφ is a component of F . We can simply eliminate this component and redefine F → F − dφ.
The new field is still closed, and still generates the same non-compact form-symmetry,
because this cannot be changed by the addition of the exact field. This way we eliminate
the possibility that F0 is (physically) exact at the UV. The same happens for G0.

On the other hand, if F0, G0 are not exact, they generate non trivial form-symmetries
in the UV theory, and these form symmetries are not dual to each other. We can define the
scaling non-local unitary flux operators, in analogy with (4.5)–(4.7) as

W λ(q) = ei q ZF (λ)
∫
ddx ω(x)F (λx) , (5.17)

where δω = J has support on a fixed topologically non contractible region R, with unit
charge, see eq. (4.7). The weak limit of this non-local operator yields a non local operator
based on R, with charge q in the UV theory

lim
λ→0

W λ(q) = W 0(q) = ei q
∫
ddx ω(x)F0(x) . (5.18)

Therefore, by the general analysis described in [5, 6] and reviewed above, there must be
dual operators T 0(g) with non saturated expectation values, and commutation relations

W 0(q)T 0(g) = ei q g T 0(g)W 0(q) . (5.19)

These T 0(g) are generated by the dual form field ∗F0 in case the UV is free, otherwise
the operators T 0(g) are of discrete charges g ∈ 2πn, if we choose the U(1) group to be for
q ∈ [0, 1). In either scenario, out of the fix point, the W λ(q) are genuine non-local operators
of the theory. Then, for finite small regions, as λ → 0, there must be a set of operators
T λ(g) satisfying (5.19) with W λ(q) in the full theory too, and such that their expectation
values converge to the ones of T 0(g).

We could search the operators T λ(g) among the ones generated by fluxes of G, but
this is impossible. If we try to keep the commutator of the two non local operators fixed as
λ→ 0, in analogy with (5.17) we have to take an operator of the form

T λ(g) = ei g Z
−1
F (λ)Z−1

G (λ)λd
∫
ddx ω̃(x)ZG(λ)G(λx) ∼ ei g (Z−1

F (λ)Z−1
G (λ)λd)

∫
ddx ω̃(x)G0(x) .

(5.20)
This leads to a scaling of the flux of G that is too little suppressed to produce an operator
with non zero expectation value in the limit.

This means the duality defects of the theory form a group larger group, R × U(1)
or larger, instead of just R. Then F is a mixing of generators of two (or more) form-
symmetries. Therefore, we can reset our definition of F extracting the component of
larger renormalization (larger scaling dimension if there are more than one different scaling
dimensions). It is clear that because there is a finite number of independent fields in the
UV in a range of dimensions, the process can be continued until we get an F with finite
renormalization, showing there must be a free sector of the theory.

– 19 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
5

6 Discussion

Lagrangian formulations of neutral electrodynamics, such as non-linear electrodynamics
(e.g Born-Infeld) or a photon magnetically coupled to a neutron field, and also low energy
effective theories of Goldstone modes, are all non-renormalizable. In this article we have
explored the question of whether such class of theories can be UV completed, or else the
non-renormalizable behavior is pointing to some deeper features. To approach this problem
we have first observed that this class of theories is better defined by their generalized
symmetries. In particular they all share the same structure of generalized symmetries,
namely non-compact form-symmetries, as properly defined in the main text. In term of
these symmetries the question becomes: can a UV complete theory with non-compact
form-symmetries be interacting? The analysis described in the main text shows this is
not possible, and that UV completing interacting neutral electrodynamics or interacting
Goldstone modes must necessarily involve breaking these symmetries. This must be due to
the existence of charged operators at a certain energy scale, that would violate the closeness
of the form fields, or make them ill defined. Since the form-symmetries are well defined
at the classical level, see appendix A, this obstruction can be seen as a new form of a
quantum anomaly.

An important question naturally arises: at which energy scale do the electric and/or
magnetic charges appear in the spectrum and destroy the generalized symmetry? If a
perturbative Lagrangian formulation is at our disposal, like the one described in the
introduction (1.1), it is natural to expect that an upper bound to the mass of these
predicted charged particles is given by the appropriate dimensionful couplings appearing in
the Lagrangian. But actually there is no specific reason to expect saturation of this bound,
and indeed in the Standard model the associated particles appear at scales much below the
bound. It would be convenient to develop a direct method for computing these masses from
the infrared effective theory. These masses might be expected to show up in the structures
of the correlators of the dual conserved form-fields generating the form-symmetry. We
have performed preliminary explorations in perturbation theory and tentatively concluded
that the symmetry is preserved in a Feynman diagramatic expansion of the effective model.
Further work is required to answer this question.

The problem considered in this article was motivated and solves one of the conjectures
described in [7]. As explained in such reference, the present proven conjecture, together with
another conjecture concerning the existence of local Noether currents in certain particular
scenarios, strongly expands the scope of the Weinberg-Witten theorem [20]. In particular,
if both conjectures are true, any QFT with a low energy graviton field is automatically free.
This rules out potential QFT’s of quantum gravity without a stress tensor. The results of
this article then motivate the consideration of the conjecture concerning Noether currents
described in [7].

On a different standpoint, our results might potentially contribute to the understanding
of the completeness principle in quantum gravity [6, 21–23]. This principle states that
associated with any low energy gauge field on a gravity theory we have a maximum set
of electric/magnetic charges consistent with the Dirac quantization condition. These set
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of charges completely break the generalized symmetry associated with the gauge field. A
simple mechanism proving this conjecture in the context of AdS-CFT was provided in [6].
In this article we have seen a partially similar phenomenon purely in a QFT scenario.
Intuitively, in higher derivative theories with generalized symmetries we expect charges to
appear as we climb the energy spectrum. Since gravity is essentially a higher derivative
theory at the perturbative level, we might expect that arguments in the direction of the
present article might help to understand the necessary appearance of charges in quantum
gravity. More importantly, in consonance with the first problem mentioned above, we should
be able to understand the energy scales at which these new particles appear.
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A Classical interacting theories with non-compact k-form symmetry

In this appendix we define non-compact k-form symmetries in classical field theory and
show no contradictions arise for interacting models. These symmetries are anomalous in
the sense that these models cannot exist at the quantum level.

Our definition of k-form symmetry requires the analysis of localization of observables
and of commutation relations. In the classical theory observables are represented by
functions in phase space and commutation relations by Poisson brackets. This forces a
canonical formalism but we also need a space-time description to localize observables. This
is accomplished by the covariant phase space formalism [24–26].

The starting point is an action S with local Lagrangian in terms of fields. The theory
may have gauge symmetries but the action is gauge invariant. The Lagrangian can include
higher derivative terms, and anti-commuting fermion fields can also be treated [26]. We
follow the compact notation of de Witt [25] and call φi to the fields, where the index i
includes space-time coordinates. The variation of the action vanishes on the solutions of
the equations of motion, and this is written

δS

δφi
≡ S,i =̇ 0 . (A.1)

The symbol =̇ means an equation valid on the solution of the equations of motion.
Consider a gauge invariant functional A of the fields with compact support sup(A)

in spacetime. This support is the set of points such that the functional depends on the
field values at those points. This functional has two different roles. First it can be used
to perturb the action. Second, evaluated on the solutions of the equations of motion the
functional A has the interpretation of an element of the phase space of the theory. Given an
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element of the phase space of the theory A as a gauge invariant functional of the solutions
of the equations of motion we can produce a gauge invariant functional on the fields that is
unique up to terms proportional to the equations of motion themselves. This ambiguity
will not be relevant in what follows.

If we perturbe the action with S → S + εA, the change in solutions obey, to linear
order in ε, the equations

S,ij δAφj =̇− A,i . (A.2)

S,ij is a local differential operator that depends on the fields if the Lagrangian is not quadratic.
The solution of (A.2) is not unique. There are solutions of the homogeneous equation
S,ij δφj=̇0 because they are infinitesimal gauge transformations around the background
fields (solutions of the equations of motion), and there are also solutions of the homogeneous
equation because there are physical linearized perturbations δφj that propagate in the
background from past to future. One may consider special solutions obeying retarded and
advanced boundary conditions

δ±Aφi = 0 for x ∈ I±(sup(A)) , x /∈ sup(A) , (A.3)

where I±(X) is the future and past of X. This does not eliminate gauge redundancy but
the change in physical gauge invariant observables turns out to be also gauge invariant,
defining the new phase space element

δ±A B ≡ B,i δ
±
Aφi . (A.4)

Notice that, taking aside gauge invariance, the advanced and retarded solutions are unique
because the solution and all its derivatives vanish in the past or future.

We have the reciprocity relations δ±A B = δ∓B A. The Peierls/Poisson bracket is defined
as

{A,B} = δ−A B − δ
+
A B = δ−A B − δ

−
B A = δ+

B A− δ
−
B A . (A.5)

This bracket obeys the usual relations, including the Jacobi property.
If two observables are space-like separated we have {A,B} = 0. This requires some

qualification in the case of higher derivative Lagrangians, because the advanced and retarded
perturbation moves in the background field of any solution of the equations of motion. So
we have to check that this background does not enlarge the light cones for the propagation
of the perturbation. This is an independent causality constraint for the classical non linear
theory that we have to assume. For the Lagrangians (1.1) and (1.5) this was studied in [27].
The result is that the classical theories are causal if the coefficients of the non linear terms
satisfy certain positivity constraints.

Once we have a covariant phase space, a classical form-symmetry can be defined in
analogy with the quantum case [5]. Suppose we have a gauge invariant closed k-form
F . As discussed in section 2, a flux ΦF =

∫
ΣF F constructed with F commutes with all

observables O, having a topologically trivial support, and spatially separated from the
boundary ΓF = ∂ΣF . This is because we can deform ΣF such as to be spatial from O. For
k = d−1 we have to ask this property as an independent condition. This form-field produces
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a form-symmetry only when F is not the exterior derivative of a gauge invariant k− 1 form.
Otherwise ΦF can be written as an integral over ΓF and is not a non local operator.

Suppose now that we have closed k and d− k forms F and G. Take the phase space
flux elements ΦF , ΦG, over surfaces with boundaries ΓF and ΓG, linked to each other,
and assume the fluxes do not commute. In this case, it is automatic that these represent
form-symmetries because the forms cannot be exact in the gauge invariant space. As
described in section 2, if we move the boundaries ΓF and ΓG, keeping them linked and
space-like separated, the Poisson bracket {A,B} cannot change. This is because the change
in each of the variables is an integral of observables spatially separated from the other.
Therefore, we can deform the boundaries keeping them linked and keeping the commutator
invariant. In particular we can move ΓF and ΓG far away together. Then {A,B} has to
commute with any phase space element, and has to be a number, which can be normalized
to 1. Then there is a form symmetry associated to the Abelian non-compact group R.

Suppose we have this situation for a theory where the Lagrangian has a free term that
already displays the non-compact form symmetry, and an interacting term that does not
ruin this dual form symmetries. To be concrete consider

L = −1
4

(
F 2 + µ

2 (F 2)2
)
, (A.6)

with Fµν = ∂µAν − ∂νAµ as usual. We can change this Lagrangian to

L = −1
4

(
F 2 + µ(x)

2 (F 2)2
)
, (A.7)

where µ(x) depends on the coordinates, is constant in a region Λ of space-time, and zero
sufficiently far in space and time. The equation of motion is

∂ν
(
Fµν(1 + µ(x)F 2)

)
= 0 . (A.8)

Therefore, we have two gauge invariant closed two forms

Fµν , ∗ (Fµν(1 + µ(x)F 2)) . (A.9)

We can apply the above reasoning to show that linked fluxes by these two forms have a
constant commutator. This commutator can in particular be evaluated at spatial infinity
where µ(x) = 0, giving us the same commutator as in Maxwell theory. The same commutator
holds in the region where µ(x) = µ. We can then take the limit where µ(x) = µ in all
space-time. We see the addition of terms to the Lagrangian that do not contain charges, and
consequently cannot destroy the conservation of one of the closed forms, will only deform
the expression of the form, and must keep the commutator fixed. Hence, these classical
models exhibit non-compact form symmetries and are interacting.

Because of Groenewold’s theorem [28] no reasonable mapping of classical phase space
to Hilbert space operators respecting the non linear structure and giving a representation
of Poisson brackets is possible. Because of that, quantization requires further structures
such as required by geometric quantization, deformation quantization, or the path integral.
Anomalies get in there, and in the present case we have seen there is no corresponding
quantum model to these classical ones.
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A.1 Compact case

In this short section we look more closely into what happens when one of the symmetries
is compact. Let us think in the case of a broken continuous symmetry giving place to a
Goldstone boson for concreteness. The Lagrangian

L = 1
2(∂ψ)(∂ψ)∗ − λ

4 (|ψ|2 − v2)2 (A.10)

has a broken U(1) symmetry. Writing ψ = (v + σ) eiφ we get

L = 1
2 (∂σ)2 + 1

2 (∂φ)2 (v + σ)2 − λ

4 (σ2 + 2v σ)2 . (A.11)

This looks like we have a non-compact symmetry with dual closed 1-form ∂µφ and (d− 1)-
form ∗ ((∂µφ) (v + σ)2), as dictated by the equations of motion. However, φ is only defined
up to multiples of 2π. Both currents are invariant under the shift φ→ φ+ 2π. In the full
theory we can only smear ei

∫
α(x)φ(x) with

∫
α(x) = n an integer. This implies we cannot

form the fluxes of ∂µφ along a line with arbitrary coefficients. In the classical theory this
means only quantized fluxes are allowed and it does not represent an ordinary form field. In
the quantum theory this means the field φ or ∂µφ are not Wightman fields (the same holds
for σ). In the path integral they can be represented as fields provided it is also summed
over topologically non equivalent contributions for the amplitudes, where the field φ goes
to 2πn at infinity rather than to zero. So the Lagrangian (A.11) is not telling the theory
because we have a hidden prescription for the path integral that has to be added. However,
the current that is conserved because of the equations of motion is simply

((∂µφ) (v + σ)2) ∼ i(ψ ∂µψ∗ − ψ∗∂µψ) , (A.12)

which is a good candidate to represent a Wightman field.

B Biforms and notation

The tensor structure of the two-point function of form fields are described by biforms. These
can be represented by tensors with two pairs of antisymmetric indexes. In this appendix, we
will set the notation for a (k|q) biform T with two multi-indexes µ, ν. Note that µ stands
for the first set of k antisymmetric indexes µ1, µ2, . . . , µk, while ν describes the following
q antisymmetric indexes ν1, ν2, . . . , νq. Namely, we can write[

T
]
µ|ν ≡

[
T
]
µ1µ2 ... µk|ν1ν2 ... νq

. (B.1)

A nice explicit example of a biform is the generalized metric g(k) introduced in (3.4). This
is a (k|k) biform obtained by the contraction of two antisymmetric Levi-civita tensors as

g
(k)
µ|ν ≡

(−1)d−1

(d− k)! ε
α
µ ενα = (−1)d−1

(d− k)! ε
α1···αd−k

µ1µ2 ... µk εν1ν2 ... νkα1···αd−k . (B.2)

In general, the usual differential geometry operations can act on either of the two set of
indexes. By writing the operation on the left side of T we denote that the operation acts
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on the first k indexes labeled by µ. For instance, the wedge product p ∧ T where pα is the
momentum vector yields the (k + 1|q) bifom given by

[
p ∧ T

]
µ|ν = 1

k! g
(k+1)
µ |αρ p

α T ρν ≡
1
k! g

(k+1)
µ1µ2 ... µkµk+1 |αρ1ρ2 ... ρk

pα T ρ1ρ2 ... ρk
ν1ν2 ... νq . (B.3)

On the other hand, if the operator is on the right side of T , it acts on the second q indexes
labeled by ν. In this case the wedge product produces a (k, q + 1) biform

[
T ∧ p

]
µ|ν = 1

q! g
(q+1)
ν | ρα T

µ
ρ p

α ≡ 1
q! g

(q+1)
ν1ν2 ... νqνq+1 | ρ1ρ2 ... ρqα

T ρ1ρ2 ... ρq
µ1µ2 ... µk pα . (B.4)

The same ideas can be extended for other operators. The dot product acting on the left
p · T produces a (k − 1, q) biform while T · p gives a (k, q − 1) biform[

p · T
]
µ|ν = pα Tαµ|ν ≡ pα Tαµ1µ2 ... µk−1|ν1ν2 ... νq . (B.5)[

T · p
]
µ|ν = Tµ|να p

α ≡ Tµ1µ2 ... µk|ν1ν2 ... νq−1α p
α. (B.6)

In addition, the Hodge dual yields a (d− k, q) or a (k, d− q) biform respectivelly

[
∗ T

]
µ|ν = 1

k! εµρ T
ρ
ν ≡

1
k! εµ1µ2 ... µd−kρ1ρ2 ... ρk T

ρ1ρ2 ... ρk
ν1ν2 ... νq , (B.7)

[
T ∗

]
µ|ν = 1

q! T
ρ

µ ερν ≡
1
q! T

ρ1ρ2 ... ρq
µ1µ2 ... µk ερ1ρ2 ... ρqν1ν2 ... νd−q . (B.8)

With this normalization and the metric in signature (+,−− . . .) we have that[
∗ ∗T

]
µ|ν = (−1)(k−1)(d−1) [T ]

µ|ν ,
[
T ∗ ∗

]
µ|ν = (−1)(q−1)(d−1) [T ]

µ|ν . (B.9)

It will be useful to define the operator ∗̃ acting on the right side as

[
T ∗̃

]
µ|ν = (−1)q(d−q)

[
T ∗

]
µ|ν = 1

q! T
ρ

µ ενρ ≡
1
q! εν1ν2 ... νd−qρ1ρ2 ... ρq T

ρ1ρ2 ... ρq
µ1µ2 ... µk .

(B.10)

C A field satisfying the Klein Gordon equation is free

It is well known that a field satisfying a linear equation is free. For example, the case of
a scalar field satisfying the massless Klein Gordon equation �φ = 0. There are several
proofs of this fact in the literature. Free here means either that the commutator is a
c-number or that the field is Gaussian having n point functions satisfying Wick’s theorem
(all truncated n point functions with n > 2 vanish). Both of these properties are equivalent
for a Wightman field, and characterize generalized free fields [29]. The massive case was
treated first in [30]. The massless case was proved in [31], including the subtler case of d = 2,
where the statement applies to chiral vector fields. This last work proves the commutator
has to be a c-number from support properties of the correlation functions in momentum
space and the spectrum condition. The same conclusion follows from the result [32] stating
that if the support of a field in momentum space does not contain a neighborhood of a
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spatial point then the field is a generalized free field. Indeed, the equation of motion implies
the field has support on the null cone (a mass shell for the massive case) in momentum
space. More recently, the theorem has been revisited in [33], where the emphasis is in
properties of the propagation of hyperbolic equations and an algebraic description.

In this appendix we show that a simple proof follows from properties of harmonic
functions in the Euclidean version of the theory. Let us first think in a scalar field for
simplicity. The Euclidean correlator S(x, y1, · · · , yn) is a real analytic function of x except
at the points y1, · · · , yn. It is also a harmonic function in this domain because of the
equations of motion �φ = 0. It also falls to zero at infinity and diverges at most as a power
near y1, · · · , yn [34]. By the general expression of a harmonic function in Rd − {y1, · · · , yn}
we have a decomposition in the different singular terms for each yi having the form [35]

S(x, y1, · · · , yn) =
n∑
i=1

r∑
m=0

qm,i[x− yi]
|x− yi|2m+d−2 . (C.1)

The qm,i are harmonic homogeneous polynomials of degree m in the coordinates of x− yi
whose coefficients can depend on the points yj 6= yi, and r is a positive integer. This
decomposition essentially follows from the uniqueness of harmonic functions once the
behaviour at the boundary and at the singular points has been fixed.

If we use this expression for x→ x+a, yi → yi+a, in the limit |a| → ∞, it follows from
the clustering property of correlators that r = 0 and q0,i = S(y1, · · · , ŷi , · · · , yn) , where
ŷi is an omitted variable. We have normalized the two point function to be |x− y|−(d−2).
This gives us the Gaussianity

S(x, y1, · · · , yn) =
n∑
i=1

S(y1, · · · , ŷi , · · · , yn)
|x− yi|d−2 . (C.2)

For harmonic fields of arbitrary spin representation and d > 2 Gaussianity follows in
the same line. A decomposition analogous to (C.1) holds for the massive case in terms
of elementary solutions of the Euclidean Klein Gordon equation which are singular at a
single point. Then, the same derivation can be also extended to fields obeying massive
linear equations.

For d = 2, using complex coordinates, it is � = ∂z∂z̄. Then, for chiral operators in d = 2
CFT’s, such as currents or the stress tensor, all correlators are harmonic (holomorphic in
this case) and therefore, in accordance with (C.1), the correlation functions are meromorphic.
The singular structure of the OPE is enough to compute the full correlation functions
in closed form. See [36]. However, these correlators are not necessarily Gaussian and in
general the two point function is not enough to determine them. The novelty here is that
the coefficients of qm,i can depend on yi for d = 2, and the correlator is still harmonic in
yi, while this cannot happen in d > 2. This has the effect that there are terms in x− yi
in (C.1) such that qm,i can decay to zero in the limit |a| → ∞, making this term invisible
in the clustering limit. A chiral current is always Gaussian however.
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D Flux commutator from two-point functions

In this appendix compute the commutator between the fluxes ΦF and ΦG defined as integrals
of the form fields F and G as in (2.1). In particular, F is defined to be a k-form field, so it
can be integrated on any k-dimensional oriented surface ΣF . For this we require a map ϕF
that describes the embedding of ΣF in Rd via

ϕµF (s1, s2, . . . , sk) =
(
ϕ1
F (s1, s2, . . . , sk) , . . . , ϕdF (s1, s2, . . . , sk)

)
, (D.1)

where the variables s1, s2, . . . , sk parametrize the surface by taking values in a domain
SF ⊂ Rk. In this context, the flux is defined as the pullback of F onto SF or more explicitly

ΦF (ΣF ) =
∫
SF

dksFµ1µ2...µk

(
ϕ1
F (s1, s2, . . . , sk), . . . ,ϕdF (s1, s2, . . . , sk)

) ∂ϕµ1
F

∂s1

∂ϕµ2
F

∂s2
. . .

∂ϕµkF
∂sk

.

(D.2)
We now begin by computing the commutator of the fluxes defined over a k-dimensional

infinite spatial “square” Σ∞F and a (d− k)-dimensional one Σ∞G . We chose the coordinates
(x0, x1, . . . , xk, xk+1, . . . , xd−1) so that the surfaces are defined by

Σ∞F ≡
{
x0 = 0 , x1 ∈ (−∞, a) , x2, x3, . . . xk ∈ R , xk+1, . . . , xd−1 = 0

}
, (D.3)

Σ∞G ≡
{
x0 = 0 , x1 ∈ (b,∞) , x2, x3, . . . xk = 0 , xk+1, . . . , xd−1 ∈ R

}
. (D.4)

This leads to Σ∞F and Σ∞G being parameterized by the following maps

ϕµF =
(
0, x1, x2 . . . , xk, 0, 0, . . . , 0

)
, ϕµG =

(
0, x1, 0 . . . , 0, xk+1, xk+2, . . . , xd−1

)
.

(D.5)
Considering (D.5) in (D.2) we get that the flux of F can be computed over Σ∞F simply as

ΦF (Σ∞F ) =
∫ a

−∞
dx1

∫ ∞
−∞

dx2 . . .

∫ ∞
−∞

dxk F1 2 ... k
(
0, x1, x2 . . . , xk, 0, 0, . . . , 0

)
. (D.6)

To proceed compute the expectation value of the commutator via

〈
[
ΦF (Σ∞F ),ΦG(Σ∞G )

]
〉 =

∫
Σ∞F

∫
Σ∞G
〈F (x), G(y)〉 −

∫
Σ∞F

∫
Σ∞G
〈G(y), F (x)〉 , (D.7)

where we take into account the relevant components presented in (D.6) and its analogue for
ΦG. Considering that the required tensor structure takes the values

[P (k)∗̃]1 2 ... k 1k+1 .. d−1 = [∗P (k)]1k+1 .. d−1 1 2 ... k = (−1)k(d−k)+1 p1 p0 (D.8)

we can integrate the delta functions appearing in the integrals of the momenta p2, p2, . . . pd−1.
The resulting expression for the expectation value of the commutator is

〈
[
ΦF (Σ∞F ),ΦG(Σ∞G )

]
〉= (−1)kq+1

π

∫ a

−∞
dx1

∫ ∞
b

dy1

∫ ∞
0

dp0

∫ ∞
−∞

dp1δ(p2
0−p2

1)p1 p0 e
ip1(x1−y1)

= (−1)kq i

2π

∫ ∞
b

dy1

∫ a

−∞
dx1

∂

∂x1

∫ ∞
−∞

dp1 e
ip1(x1−y1) = i(−1)kq θ(a−b) . (D.9)
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The dependence of the result on the Heaviside function θ(a−b) represent that the commutator
is only non-vanishing when a > b. This means when the boundary of the squares are linked.
On the other hand, the sign (−1)kq is not relevant to the result as the sign of the commutator
will also change with the orientation of the surfaces. As we expect the commutator to be
always a c-number, we have for linked squares extending to infinity that[

ΦF (Σ∞F ),ΦG(Σ∞G )] = ±i . (D.10)

This result can be easily generalized to finite squares. The flux over a finite squares ΣF can
be obtained by the subtracting to the flux over Σ∞F the flux over other infinite square Σ−F
ending at x1 < b. The same can be done over a dual finite square ΣG by subtracting the
flux over Σ−G ending at x1 > a. This means that we have

ΦF (ΣF ) = ΦF (Σ∞F )− ΦF (Σ−F ) , ΦG(ΣG) = ΦG(Σ∞G )− ΦF (Σ−G) , (D.11)

where we have chosen the regions Σ−F and Σ−G in order to

[ΦG(Σ−G),ΦF (Σ−F )] = [ΦG(Σ−G),ΦF (Σ∞F )] = [ΦG(Σ∞G ),ΦF (Σ−F )] = 0 . (D.12)

This implies that the commutator computed over the linked finite squares ΣF and ΣG is
the same as the one extending to infinity. Namely,

[ΦG(ΣG),ΦF (ΣF )] = [ΦG(Σ∞G ),ΦF (Σ∞F )] = ±i . (D.13)

The same argument applies to other deformations of the geometries of ΣF and ΣG that do
not change the fact that they are linked. To sum up the commutator over linked surfaces
will always be given by [

ΦF ,ΦG] = ±i . (D.14)

It is interesting to check what happens when k = q = d/2, In this case, the commutator
have the additional terms coming from (3.19)–(3.20). We can see from (3.6) that these
extra terms will not change the commutator as they come from a double exterior derivative.
However, we can perform the actual computation for the case of infinite squares. The
relevant components now yield

[P (k)]1 2 ... k 1k+1 .. d−1 = [P (k)]1k+1 .. d−1 1 2 ... k =


p2

1 if k = 1
p2p3 if k = 2

0 if k > 2
. (D.15)

For k > 2 we trivially get zero. For k = 2 we have that replacing in (D.7) the extra term
in (3.22) writes∫

Σ∞F

∫
Σ∞G

∫
d4p

(2π)d−1 θ(p0) δ(p2)P (2)(p) (D.16)

= 1
π

∫ a

−∞
dx1

∫ ∞
b

dy1

∫
d4p θ(p0) δ(p2) p2 δ(p2) p3 δ(p3) = 0 ,
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where integrating out the delta function we get that the extra term makes no contribution
to the commutator. For k = 1 we proceed in the same way and get∫

Σ∞F

∫
Σ∞G

∫
d2p

(2π)d−1 θ(p0) δ(p2)P (1)(p) (D.17)

= 1
2π

∫ a

−∞
dx1

∫ ∞
b

dy1

∫
d2p θ(p0) δ(p2) p2

1

(
eip1(x1−y1) − e−ip1(x1−y1)

)
= 0 ,

where the zero is obtained by changing the sign of p1 in the second term. To sum up we get∫
Σ∞F

∫
Σ∞G

∫
d2kp

(2π)d−1 θ(p0) δ(p2)P (k)(p) = 0 . (D.18)

As this is true for any choice a and b, it is valid for linked or not linked squares. Taking
into account that dF = 0 and dG = 0, the surfaces can be deformed once again, meaning
that the result (D.18) holds for any choice of ΣF and ΣG.

E Renormalization group flow in AQFT

Some of the results and derivations above have required a more careful understanding
of the relation between a QFT and its UV QFT limit. During the development of this
article we have explored some literature on this subject. For the benefit of the reader
we have included in this appendix a review of such literature and their results. These
results are expressed or use elements of the algebraic approach to QFT (the Haag-Kastler
approach [37]), where the basic objects are algebras of bounded operators attached to
space-time regions. Indeed, it is reasonable to expect that, even starting from Wightman
fields, the power of the full operator content of the theory would be necessary to establish
these questions. Starting from Wightman fields [38], with minor technical changes in
the axiomatic prescription, the existence of algebras affiliated with the field operators is
warranted (see for example [39]). These small changes are justified from the physical point
of view because the basic experimental observables are bounded operators and not point like
fields. Given a theory defined in algebraic way, there is an established procedure to extract
(or recover) its Wightman fields [40–42]. For a theory generated by Wightman fields this
procedure recovers the initial fields, as well as other fields that are present in the theory.

The idea of the renormalization group can be made precise in the algebraic context
through the idea of scaling algebras [43]. This also defines a UV limit theory. In general
this limit may not be unique, or may be classical, in the sense that all operators commute.
Examples of what goes “wrong” can be constructed using generalized free fields (GFF).
This is defined by its two point function. As happens for any field, the polynomial grow of
the two point function in momentum space forces that there is a ∆ such that (5.1) holds [34].
But (5.1) and (5.2) do not necessarily hold for the same ∆. It is possible to design a
Kallen-Lehmann spectral function for the correlator of the GFF such that its short distance
behavior oscillates between different scaling dimensions and never actually converges.

To control the behavior of the limit theory, and eliminate these cases, it is necessary
to introduce a phase space condition limiting the growth of the number of degrees of
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freedom at high energies. Several phase space conditions have been introduced in the
algebraic context. One such phase space condition, “uniform compactness”, ensures a
unique dilatation invariant QFT limit [19]. Another “microscopic phase space condition”
have been introduced in [42], and it was proved that under this condition there exists a
finite number of fields of finite spin with scaling dimensions below any fixed number ∆ [44].
The global internal (broken or unbroken) and space-time symmetries of the QFT are kept
in the scaling limit, and analogues of the renormalization functions Zϕ(λ) of (5.3) can be
obtained [44]. The phase space condition is strong enough to allow for an operator product
expansion of the fields [45].

In conclusion, a great deal of the assumptions of the present paper regarding the UV
limit follow from phase space conditions that roughly speaking restricts the growth of the
number of degrees of freedom in the UV. For example, it is enough that this growth is
bounded above by the one of a finite number of free fields in a finite number of space-time
dimensions ≥ d. However, the matching with our requirements is not complete. For example,
ref. [44] only proves that the number of independent ϕ0 of the UV fix point with scaling
dimension below some ∆ is less than or equal to the number of linearly independent fields
ϕ of the QFT below the same dimension.

F UV filtering of fields with finite renormalization

In this appendix we consider the UV filtering in the case where there are more than one field
in the UV with the same spin and scaling dimension d/2. Namely, if all the renormalizations
are finite we can decompose the fields F and G as

F = F̃ + F1 , G = G̃+G1 , (F.1)

we can choose the fields F̃ and G̃ to obey F̃ = ∗ G̃ and therefore in they IR their two-point
functions must include a term such as (3.12)–(3.13).

Now we will restrict ourselfs to the study of the correlators of F̃ , F1. The more general
expression for the two-point functions involving only F̃ and F1 that respects the conservation
of F as dF = dF̃ + dF1 = 0 are given by

〈F̃ (x)F̃ (0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(aδ(s)+ρ0(s)) P (k) +(−1)ksρ1(s)g(k)] ,

〈F1(x)F1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(bδ(s)+ρ2(s)) P (k) +(−1)ksρ1(s)g(k)] , (F.2)

〈F̃ (x)F1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(cδ(s)+ρ3(s)) P (k) −(−1)ksρ1(s)g(k)] ,

where ρ1(s) appears in the three correlators such that dF = 0, namely

〈F̃ (x)dF (0)〉 = 0 , 〈F1(x)dF (0)〉 = 0 . (F.3)

It will be interesting to see what constraints are imposed by the postivity of the
correlators. For 〈F̃ F̃ 〉 and 〈F1F1〉 the positivity in the IR only reach the coefficient of the
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delta functions and therefore we get a ≥ 0, and b ≥ 0. However, at higher energies the
positivity of the massive part implies that the Kallen-Lehmann functions obey

0 ≤ ρ1(s) ≤ ρ0(s) , 0 ≤ ρ1(s) ≤ ρ2(s) . (F.4)

Furthermore, the positivity of the combined correlator matrix between F̃ and F1 yields the
useful inequalities

a b ≥ c2 , ρ0(s)− 2ρ1(s) + ρ2(s)±
√

[ρ0(s)− ρ2(s)]2 + 4[ρ1(s) + ρ3(s)]2 ≥ 0 . (F.5)

The last inequality has to be understood as a positivity of a matrix of measures functions.
The fact that F̃ = ∗ G̃, fixes the correlation functions involving G̃ and F̃ or F1. This

along with dG = 0 implies that the two-point functions are constrained to be

〈G̃(x)G̃(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(aδ(s)+ρ0(s)) P (q)+(−1)qs [ρ0(s)−ρ1(s)]g(q)] ,

〈G1(x)G1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(dδ(s)+ρ4(s)) P (q)+(−1)qs [ρ0(s)−ρ1(s)]g(q)] ,

〈G̃(x)G1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(eδ(s)+ρ5(s)) P (q)−(−1)qs [ρ0(s)−ρ1(s)]g(q)] ,

〈F̃ (x)G̃(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(aδ(s)+ρ0(s)) P (k)∗̃+(−1)dksρ1(s)ε

]
, (F.6)

〈F1(x)G̃(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(cδ(s)+ρ3(s)) P (k)∗̃−(−1)dksρ1(s)ε

]
,

〈F̃ (x)G1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(eδ(s)+ρ5(s)) P (k)∗̃−(−1)dks [ρ0−ρ1+ρ5](s)ε

]
,

〈F1(x)G1(0)〉=
∫ ∞

0
ds

∫
ddpeipx

(2π)d−1 θ(p
0)δ(p2−s)

[
(f δ(s)−[ρ0+ρ3+ρ5]) P (k)∗̃+(−1)dks [ρ0−ρ1+ρ5]ε

]
.

Note that the positivity in the IR limit implies that f ≥ 0 , ad ≥ e2 , and bd ≥ f2.
Moreover, the positivity of single correlators 〈G̃G̃〉 and 〈G1G1〉 is analogous to (F.4). The
mixed correlator matrix of G̃ and G1, in analogy with (F.5), gives the new constraint

− ρ0(s) + 2ρ1(s) + ρ4(s)±
√

[ρ0(s)− ρ4(s)]2 + 4[ρ0(s)− ρ1(s) + ρ5(s)]2 ≥ 0 . (F.7)

The straight forward computation of the two point function 〈FG〉, using (F.6), picks
up only a massless contribution. This is

〈F (x)G(0)〉 = 〈F̃ (x)G̃(0)〉+ 〈F1(x)G̃(0)〉+ 〈F̃ (x)G1(0)〉+ 〈F1(x)G1(0)〉

= (a+ c+ e+ f)
∫

ddp

(2π)d−1 e
ipx θ(p0) δ(p2 − s)P (k)∗̃ (p) . (F.8)

Since this correlator does not renormalize, in the UV 〈FG〉UV is equivalent to 〈F̃ G̃〉IR,
which implies that

c+ e+ f = 0 . (F.9)

In addition, we ask that the fields F1 and G1 are uncorrelated to F̃ in the UV . Meaning
that we have 〈F̃F1〉UV, 〈F̃G1〉UV = 0, or

c+
∫ ∞

0
ρ3(s) ds = 0 , e+

∫ ∞
0

ρ5(s) ds = 0 . (F.10)
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The last UV requirement is that F1 and G1 are not correlated in such a limit. This implies
no loss of generality, as if they were correlated we would have a component F1 = ∗G1 that
could be absorbed into the definitions of F̃ and G̃. The fact that 〈F1G1〉UV = 0 gives

f −
∫ ∞

0
(ρ0(s) + ρ3(s) + ρ5(s)) ds = 0 . (F.11)

Replacing (F.9) and (F.10) in (F.11) we get
∫
ds ρ0(s) = 0. In light of (F.4), this means

that ρ0(s) = 0 and, also, ρ1(s) = 0. Then, the constraints (F.5) and (F.7) imply that
ρ3(s), ρ5(s) = 0, as well as c, e, f = 0. The final form of the non-vanishing correlators
outside the UV is

〈F̃ (x)F̃ (0)〉 =
∫

ddp

(2π)d−1 e
ipx θ(p0) δ(p2)P (k) (F.12)

〈G̃(x)G̃(0)〉 =
∫

ddp

(2π)d−1 e
ipx θ(p0) δ(p2)P (q) (F.13)

〈F̃ (x)G̃(0)〉 =
∫

ddp

(2π)d−1 e
ipx θ(p0) δ(p2)P (k)∗̃ (F.14)

〈F1(x)F1(0)〉 =
∫ ∞

0
ds

∫
ddp

(2π)d−1 e
ipx θ(p0) δ(p2 − s) (b δ(s) + ρ2(s)) P (k) (F.15)

〈G1(x)G1(0)〉 =
∫ ∞

0
ds

∫
ddp

(2π)d−1 e
ipx θ(p0) δ(p2 − s) (d δ(s) + ρ4(s)) P (q) (F.16)

where we have also fixed a = 1. This leads to F̃ and G̃ being free massless fields that are
related with the form symmetry by (F.14). Also, the Hilbert space generated by these fields
is in tensor product to the one generated by F1 and G1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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