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ABSTRACT: Real-time optimization (RTO) is widely used in industry to improve the steady-state performance of a process
using the available measurements, reacting to changing prices and demands scenarios and respecting operating, contractual, and
environmental constraints. Traditionally, RTO has used nonlinear continuous formulations to model the process. Mixed-integer
formulations have not been used in RTO, because of the need of a fast solution (on the order of seconds or a few minutes), and
because many discrete decisions, such as startups or shutdowns, are taken with less frequency in a scheduling layer. This work
proposes the use of disjunctions in RTO models, listing a series of examples of discrete decisions (different to startups or
shutdowns) that can be addressed by RTO. Two model adaptation approaches (the two-step approach and the modifier
adaptation strategy) are revised and modified to make them suitable for RTO with discrete decisions. Some common techniques
used in RTO (such as filtering the optimal inputs) are also analyzed and adapted for a formulation with disjunctions. The
performance of RTO with disjunctions is shown by a case study in which a generic process is optimized. The results show that
the performance of a process can be improved by RTO with discrete decisions. The system converges to the vicinity of the real
plant optimum when constraints gradients are corrected, even under structural and parametric mismatch.

1. INTRODUCTION

The performance of industrial processes can be continuously
improved with the use of computer-aided tools. Among these
tools, real-time optimization (RTO) makes use of the online
available measurements to maximize a process performance index,
while accounting for operative, environmental and contractual
constraints under changing scenarios. The results from RTO can
be sent directly to the control systemor as targets to amodel-based
predictive control system.
In most cases, RTO makes use of a model to find the optimal

process operating point. According to two recent reviews,1,2 the
steps followed in an RTO cycle are steady-state detection,3,4 data
validation (which may include data reconciliation5,6), model
adaptation, and performance optimization.
A key step in RTO is the model adaptation7 with the available

measurements, as a way to reduce the structural and parametric
mismatch between the real plant and the model. The way the
model is adapted is an important feature of an RTO approach, as
it impacts on the feasibility and optimality of the results. Because
of this, several adaptation strategies have been developed.
The two-step approach8 is the most common adaptation

strategy in industrial applications. It solves two optimization
problems: the first one is an error minimization to update model
parameters, and the second one is the maximization of the
performance index using those updated parameters. This strategy
requires a large number of parameters and a special model
structure to converge to the real plant optimum.9 Nevertheless,
these requirements are rarely met in practice.
Modif ier adaptation10 eliminates the error minimization step

by resorting to the addition of correction terms (modif iers) in
constraints and objective function. The correction terms can
be updated using an exponential filter.11 When constraints
are updated only with a bias,12 the strategy is called constraint
adaptation.13,14 If gradient modifiers are also added, the strategy
has the property to match a real plant Karush−Kuhn−Tucker

(KKT) point, upon convergence.9 A recent work shows that,
for modifier adaptation schemes, if the plant model is built
using convex approximations the model adequacy is enforced
(i.e., upon convergence, the system will match a real plant local
minimum).15 The use of gradient correction terms was first
proposed with the ISOPE technique.16,17

Direct input strategies18,19 emulate the structure of a control
system with a set-point that implies that the plant operates at its
optimum point. For example, the KKT conditions of the problem
can be defined as the target or setpoint to follow.
Modifier adaptation, ISOPE and direct input strategies require

the estimation of gradients, which is not a trivial task; several
techniques have been developed.20,21 Recent publications22−24

have proposed the use of weighted regressions of past data to
estimate gradients. Dynamic data can also be used to estimate
steady-state gradients.25

The results from performance optimization can be validated
before being applied to the real plant,26 or filtered with a so-called
input f ilter.27 The input filter can be designed to guarantee
feasibility upon certain conditions.28

All the aforementioned references use nonlinear continuous
models for RTO. Mixed-integer nonlinear programming
(MINLP) or generalized disjunctive programming (GDP)
formulations generally have not been used in RTO, for two
main reasons. The first one is that RTO requires a fast solution
(on the order of seconds or a few minutes) and problems
involving discrete variables are more complex to solve. The
second is that many discrete decisions, such as start-up or
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shutdown of pieces of equipment, cannot be properly
addressed with a single-period optimization formulation,
and therefore they are reserved to the scheduling optimization
layer, which is performed with a lower frequency, in com-
parison to RTO.
However, the evolution of processing capacity, as well as

the development of more efficient MINLP and logic-based
algorithms, can make problems of a typical size used in RTO
(hundreds of variables and constraints, and a few discrete
decisions) solvable in the time required by this application.
Recent works show industrial applications of MINLP
optimization updating the model and prices with real-
time data,29−32 although they do not include any study of the
plant−model mismatch and the strategies to adapt the
model.
This work addresses the inclusion of certain types of

disjunctions in RTO problems. In addition, it will show how
discrete decisions that do not involve startups or shutdowns can
appear in an industrial plant and may be addressed by RTO. For
example, complex economic contracts, disjoint operative
regions, piecewise functions or dual control11 constraints may
require a formulation with disjunctions or discrete variables.
The authors have introduced this problem in a recent work,
which presents RTO with disjunctions for a heat and power
system.33

The two-step and modifier adaptation strategies, suitable for
nonlinear continuous problems, are extended to make them
capable of dealing with discrete decisions. This includes deciding
which parameters or modifiers will be updated on each RTO
cycle, depending on the values of discrete variables in the plant at
that moment; this also includes which past data will be used for
gradient estimation, which is dependent on the values of
discrete variables in the past. The use of input filter and other
common practices in RTO (such as fixing a maximum change
in some variables, or adding a convexif ying term27 in the objec-
tive function) can lead to suboptimal solutions or infeasibilities
if disjunctions are present. Because of this, new bounds
for the input filter are defined, and a reformulation of the
strategies for maximum changes and convexifying terms is also
presented.
This paper is organized as follows: Section 2 briefly introduces

Generalized Disjunctive Programming (GDP). Section 3
presents five types of disjunctions that can appear in an RTO
system. Section 4 presents the RTO problem to solve and shows
how different adaptation strategies can be used with GDP/
MINLP problems. Section 5 shows the convergence and feasibi-
lity problems with some strategies used traditionally in RTO
(limiting the maximum change, filtering the optimal inputs), and
proposes a modification of these strategies to make them suitable
for problems with discrete variables. Section 6 presents and
discusses a case study: it consists of the RTO of a generic system
formed by three processes with structural plant/model mis-
match. Finally, the Conclusions section (section 7) summarizes
the main results of this work.

2. GENERALIZED DISJUNCTIVE PROGRAMMING

When discrete and continuous variables are present, an op-
timization problem can often be formulated using General-
ized Disjunctive Programming (GDP).34 This formulation
consists of modeling using algebraic constraints, logic dis-
junctions, and logic propositions. Its general structure can be
stated as
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where f is a continuous function of continuous variables x; global
inequality constraints gG(x) ≤ 0 must always be satisfied. Each
disjunction d ∈ D is formed by Nd terms, related by the logical
operator OR. Each term i ∈ Nd is characterized by the Boolean
variable zid; if zid = true, the constraints gid(x) ≤ 0 must be
satisfied, and the fixed cost cd is equal to γid. Logical propositions
Ω(z) = true are constraints that are function of the Boolean
variables z (with z being the vector of all variables zid).

35

Once the model is formulated as a GDP problem, it can be
transformed to a MINLP problem, using big-M or convex hull
reformulations.36 This way, the problem can be solved with any
of theMINLP solvers currently available. Logic-based algorithms
have also been developed, which exploit the particular structure
of GDP problems.37,38

GDP was applied with success in the areas of process synthesis
and planning/scheduling optimization. In the following sections
of this work, the application of GDP for real-time optimization is
detailed formally and illustrated with examples.

3. TYPICAL DISJUNCTIONS IN RTO

In process operation optimization, disjunctions are usually
related to startups or shutdowns of process units or pieces of
equipment. As mentioned in the Introduction section, real-time
optimization may not include startups or shutdowns; these
decisions can be addressed more properly in a multiperiod
strategy, which can account for transition constraints (warm-up
periods, minimum times between startups and shutdowns,
penalization of the number of changes).39 However, there are
several aspects of the processthe control strategy, the model,
and the RTO implementationthat can require discrete or
binary decisions, and therefore they can be modeled using GDP.
The following subsections describe some disjunctions that can

be part of a RTO optimization problem.
3.1. Piecewise Functions. Piecewise functions can be

included in the optimization problem in order to model the
behavior of the process (or the control strategy) with different
functions in different operative regions:
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where p indicates the active piece (1 to np), gp is the function
active in piece p, and up

L is the lower bound for each piece p.
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3.2. Economic ContractsPenalties in the Objective
Function. If the objective function is the cost (or the profit), it
may include fixed costs or penalties that apply under certain
conditions. A fixed penalty can be included, for example, in a
power purchase contract if power exceeds a maximum value;
emissions can be penalized with fixed costs if they override the
legal limit. These fixed costs need to be modeled with discrete
variables or disjunctions.
Complex contracts included in the objective function can also

be modeled by piecewise functions of similar nature to those
referred to in section 3.1.
3.3. Disjoint Operating Regions. Depending on the

structure of the control system, there may be disjoint feasible
regions in the system to optimize. For example, a valve that can
either be opened from 5% to 100% or fully closed can be
modeled with a disjunction. Operative decisions can also include
rules indicating not to operate within a certain region for safety or
reliability reasons.
3.4. Dual RTO. Modifier adaptation RTO (described later

in section 4.2.2) requires the estimation of the real plant cost
and constraints gradients. When this estimation is based on data
from past RTO cycles, additional constraints are often added
to the cost optimization, so that the new optimal inputs are
useful for the experimental gradient calculation. These
constraints bound the error generated by noise and by first-
order truncation,10 and they allow evaluating the gradient in all
directions.40

Real-time optimization that includes these extra constraints
is called dual RTO or dual control,11 because it follows two
objectives: cost minimization and generation of useful points for the
gradient estimation problem. The additional constraints generate
two disjoint feasible regions at both sides of the hyperplane defined
by the last nu points in the space of the inputs (where nu is the
number of inputs of the system). A new disjunction can be included
in the RTO problem at each RTO cycle k:
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where the additional Boolean variable zdual is used to select one of
the feasible regions constrained by functions e+ and e−. The only
continuous variables in this disjunction are the future inputs u,
while the current inputs uk and the past inputs uk−1...uk−nu+1 are
parameters that define the feasible regions.
The usual practice with nonlinear models is to solve the NLP

problem for each region, and then to apply the best feasible
solution. If disjunctions are used for other purposes in the model,
dual control can also be included as a disjunction, in order to
solve the entire problem in a single GDP or MINLP model.
3.5. Minimum Changes. An RTO implementation may be

expected to avoid excessive variability. In other cases, some of the
inputs may bemanually modified by operators, whowill probably
not want to apply small movements in process inputs. For these
situations, RTO can include a constraint on the minimum
absolute value of the change allowed in certain process inputs u,
which can alternatively keep their current values:
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If the dual control constraints of section 3.4 are also included,
the current operating point is infeasible. Moreover, the

hyperplane determined by the last nu points is not part of
the feasible region. Although this is not incompatible with the
disjunction of eq 4, an input will not be allowed to stay on the
same point for more than nu RTO cycles.
To demonstrate this intuitive fact, consider the hyperplane

that contains the last nu points, defined by equation aT·u = d,
where a and d are constant coefficients. These coefficients can be
obtained by solving the following equation:

··· · = ·− − − du u u a 1[ ]k k k nu1 1 T
(5)

Because the constraints of eq 3 have been applied in previous
RTO cycles, uk does not belong to the hyperplane defined by
vectors (uk−1, ..., uk−nu), and, consequently, it does not belong to
the subspace defined by (uk−1, ..., uk−nu−1). Similarly, uk−1 does
not belong to the subspace defined by (uk−2, ..., uk−nu−1), and the
same conclusion can be obtained for the rest of the vectors
forming the matrix of eq 5. Therefore, this matrix is of rank nu
and eq 5 can be solved.
Suppose that element u1 has the same value in the past nu

cycles, i.e., u1
k = u1

k−1 = .... = u1
k−nu−1. Then, the first row of the

matrix of eq 5 can be subtracted from all of the other rows, and
the following system of equations is obtained:
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Since this system was obtained by linear combination of rows
from eq 5, which was of rank nu, eq 6 has a unique solution, i.e.,
a2 = a3 = ··· = anu = 0. Therefore, the hyperplane defined by the
last nu points is

=u u k
1 1 (7)

which is the last disjunction of last term of the disjunction of eq 4,
for i = 1. Since dual control forces u to be outside the mentioned
hyperplane, this option is infeasible and the system will be forced
to select between the two other alternatives of eq 4. The same
can be demonstrated for any other element ui of vector u.

4. REAL-TIME OPTIMIZATION INCLUDING
DISJUNCTIONS
4.1. Problem Statement. A real-time optimization problem

including disjunctions can be stated as follows:
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where u are the process inputs, y the process outputs, and z the
logic variables corresponding to the nd disjunctions. “Global”
equality and inequality constraints (hG and gG respectively) are
valid, regardless of which disjunction terms are active (i.e., which
variables zid are true). In contrast, hid and gid are only valid if zid is
true. Ω are the logical constraints.
The real functionality of the process outputs, with respect

to the inputs, cannot be known in practice. Instead of this, a
process model is available to predict (approximately) functions
hG and hid:

θ

θ θ

≈ =

∨
≈ =

∈
∈

⎡
⎣⎢

⎤
⎦⎥

h

z
d D

y u f y u

h y u f y u

( , ) ( , , ) 0

( , ) ( , , , ) 0
,

G G G

i N

id

id id G idd (9)

where θG and θid are adjustable parameters. The process states
(commonly named as x) appear implicitly in eq 9 and they will
not appear explicitly along this work for the sake of simplicity.
4.2. Adaptation Strategies. 4.2.1. Two-Step Approach.

The adjustable parameters can be estimated at the beginning
of each RTO cycle k using measured outputs yk:
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A common practice to reduce the effect of noise in the
variance of the estimated parameters is to filter the results using
the values from previous cycles. Among the filtering techniques,
the exponential filter is widely used. An implementation for

mixed integer real-time optimization can be of the following
form:
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where θG
f,k and θid

f,k are the filtered updated parameters, KG and
Kid are filtering matrices, and IG and Iid are identity matrices of
consistent dimension.
The optimization problem to be solved is therefore formulated

as follows:
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4.2.2. Modifier Adaptation. Modifier adaptation techniques
avoid the first optimization step for parameter estimation.
Instead of this, they keep the model parameters constant,
adapting the model constraints with a bias, and correcting the
cost and model gradients at RTO cycle k as follows:
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where βG
k are the global constraint modifiers, λG

k the global
constraint gradient modifiers, and λQ

k the cost gradient modifier.
βid
k and λid

k are the constraint modifiers and gradient modifiers
corresponding to term i∈Nd, d ∈D. The superindex real is used
for the true gradient obtained from process data. The outputs
obtained using the process model are expressed as y(uk,θ). The
global constraint and cost gradient modifiers are used for a linear
correction around the current inputs uk; instead, for gradient
modifiers in disjunctions, λid

k , the linear correction is built around

inputs uid
ref, which are only updated to the current inputs when the

Boolean variable zid
k = true.

The modifiers can be smoothed using an exponential filter, as
is indicated in section 4.2.1. The expressions are not shown here
to avoid repetition; they can be obtained in a straightforward way
from eq 11.
Once the modifiers are calculated with eq 13, the corrected

objective function and constraints are obtained as follows:
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The adapted RTO problem can then be formulated as follows:
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where the additional disjunction zdual generates the two disjoint
feasible regions by constraints e+ and e−, described in section 3.4.
The gradient modifier update in disjunctions d can lead to more
dual constraints, based on the current and past values of the
inputs uid

ref. If this happens, each disjunction d can be reformulated
adding a disjunction inside of it, defined by the Boolean variable
zid,dual:
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Equation 16 shows a possible structure of disjunctions in a dual
modifier adaptation strategy; a detailed study of dual strategies is
beyond the scope of this work.
As mentioned in section 3.4, it can be remarked that dual

constraints only appear when gradient estimation is performed
using data from the steady states reached after each RTO cycle. If
other methods are used for gradient estimation,21,25 these
constraints may not be necessary or should be formulated in a
different way.
A variant of the modifier adaptation strategy modifies only the

equations of the model that are not known with certainty, and
estimates each gradient only with respect to a subset of the inputs
or a linear combination of them.24 The interested reader is

referred to Supporting Information to find an extension of this
strategy when disjunctions are present.

4.3. Modifier Adaptation of Piecewise Functions. If the
piecewise function given by eq 2 has C0 continuity, the
adaptation strategy must keep this property. In the simplest
case, a biasing (constraint adaptation) strategy should add the
same bias to all the pieces of the function. If a linear (gradient)
modifier is included in the current piece (i.e., the piece
corresponding to the current operating point), two options are
possible: either (i) use the same value of the gradient modifier to
all the pieces, or (ii) change the constraint modifier in the other
pieces to keep C0 continuity.
The condition for C0 continuity in the limit of two pieces is
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As the original model was also C0 continuous,

=+ + +g u g u( ) ( )p p p p1
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Therefore, eq 17 implies
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(19)

Once the constraint and gradient correction terms, βpactk
k and λpactk

k

respectively, have been updated for the active piece pact
k , using eq

13, the modifiers for all of the other pieces can be updated using
the following procedure:
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5. REVISION AND REFORMULATION OF COMMON
RTO PRACTICES

The adaptation strategies presented in section 4.2 generate a
model that can be trusted only in the vicinity of the current
operating point (defined by the input set uk). If the new point
uk+1 falls in a region where the adapted model is unable to predict
the plant values accurately, the application of these inputs to the
plant can result in constraint violations or worsening of the
objective function.
In practice, many RTO applications apply a strategy to keep

the next point uk+1 in the valid region around uk. Some strategies
modify the optimization problem by adding constraints that limit
the maximum change in input values, or by penalizing this change
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in the objective function. Another approach, known as input
f ilter, solves the optimization problem to find a new optimum u*,
and then selects the new point by doing a step in the direction of
(u* − uk).
These strategies cannot be applied directly to an RTO system

with disjunctions. An extension to each of these strategies (changes
in the optimization problem and input filter) is proposed and
discussed in the next subsections.
5.1. Input Changes Constrained or Penalized in the

Optimization Problem. A common practice in RTO is to limit
the change in process inputs by adding a constraint in the optimi-
zation problem:2

− Δ ≤ ≤ + Δu u u u uk k
max max (21)

Brdys and Tatjewski27 proposed a convexifying term that is
added to the objective function in order to penalize changes
(and, additionally, to make the objective function strictly convex
if the rest of the terms are linear). The convexifying term CT is
defined as

ρ= || − ||C u uk
T

2
(22)

where ρ is a parameter selected by the user. Smaller values
of ρ allow larger changes in the inputs, while bigger values
of ρ produce more robust results but a slower convergence.
Some dual control implementations can also limit the maxi-

mum change in process inputs by setting feasible regions with
bounds in noise and truncation errors in gradient estima-
tion.11,40

If the RTO model includes disjunctions which involve fixed
costs or disjoint feasible regions, these strategies may affect the
convergence to the real plant optimum (and even to the model
optimum). This can be shown through a simple example. The
following optimization problem is solved:

γ= − +f xmin 10 0.4 (23)

subject to

γ γ
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It is assumed that eq 23 is a perfect model (i.e., it describes the
system to optimize without structural or parametric mismatch).
The initial point is x0 = 8.
A constraint in the maximum change is added, as proposed

by eq 21:

− ≤ − ≤x x1 1k (24)

Alternatively, the following convexifying term is added to the
objective function, as proposed by eq 22:

= −C x x0.3( )k
T

2
(25)

The optimal solution of eq 23 is (x = 5, f = 8). It can be said that
an RTO system using eq 23 converges to the optimum in one
cycle (there is no mismatch and the result is not filtered). If
constraint of eq 24 is included, the system converges within
two cycles to a local optimum (x = 10, f = 10). If eq 25 is added to
the objective function, the system converges to the same local
optimum within four RTO cycles. Figure 1 illustrates these
results.

To avoid these suboptimal solutions, the constraint in the
maximum changes or the penalty can be included only if the
optimal value and the current value of the disjunction are the
same (i.e., if z = zk). A change in disjunctions can be penalized
with a fixed cost as a way to do the change only if the model
predicts a significant benefit by doing it. For example, eq 26 can
be written for a convexifying cost constraint:
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where g1 and g2 are the constraints that are valid if z = true and if
z = false, respectively. π1 and π2 are the fixed costs that penalize a
change in z from true to false and from false to true, respectively.
In the example of eq 23, adding the disjunction of eq 26, the
RTO system converges to the optimum in one iteration if the
penalizing costs π1 and π2 are <2; otherwise, it converges to the
local optimum.

5.2. Input Filter. As mentioned, another common practice in
RTO is known as input f iltering. The optimal results u* obtained
from solving the optimization problem at cycle k are filtered with
the purpose of gaining robustness and helping the convergence
to the real plant optimum:

= + · * − ≤ ≤+ K Ku u u u( ) 0 1k k k1
(27)

Bunin et al.28 have proposed upper bounds for the filtering gain
K, which are based on Lipschitz constants of the constraints and
ensure feasibility for RTO with continuous problems.
If disjunctions are present in the RTO model, input filtering

can lead to suboptimal or infeasible solutions. This undesired
behavior can appear when disjunctions include fixed costs or
generate disjoint feasible regions, as is analyzed in the following
paragraphs.

Figure 1. Convergence using maximum change constraints and
convexifying terms.
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When disjoint feasible regions are present (see section 3.3),
the input filter can lead to inputs outside the feasible region. For
example, consider the following problem:

= −f xmin ( 4)2
(28)

subject to
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A starting point of x0 = 8 and an input filter ofK = 0.4 are selected.
Figure 2 shows the evolution of x and f. It can be observed that
four intermediate points are infeasible.

If the constraints are hard (i.e., temporary violations are not
tolerated), the input filter must not allow this violation.
Considering a disjunction that generates disjoint feasible
regions:
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Upper and lower bounds in the input filter can be obtained for
convex constraints:
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where DU is the subset of constraints that generate disjoint
feasible regions. If constraints are convex, for zd

k = true and zd* =
false:
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Equation 32 implies that
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(33)

At the same time,
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Equation 34 implies that

+ * + ≤ ∀ ≤ ≤K K Ku u ug ( ( )) 0 1d
k k

U d1 ,
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(35)

A similar proof can be obtained for zd
k = false and zd* = true to

show that all values of K greater than KU,d
min or lower than KU,d

max are
feasible for the constraints contained in disjunction d.
As result of eqs 30 and 31, the following condition can be

obtained for K:

≤ ∨ ≥K K K K( ) ( )U d U d,
max

,
min

(36)

Equation 36 provides two possible ranges for K. If the option
(K ≤ KU,d

max) is always selected, the system may get stuck in one
value of the disjunction, while the optimization results are
indicating that the optimum can be achieved by changing the
value of the disjunction. If the option (K ≥ KU,d

min) is always
selected, it can lead to a less-robust solution. A practical criterion
to select between the two options is to use a maximum ratio rmax
for KU,d

min/KU,d
max. For a single disjunction d:

≤ ≤

≥

K K r K K

K K

IF ( / ) THEN

ELSE

U d U d U d

U d

,
min

,
max

max ,
max

,
min

(37)

Figure 2 shows the evolution obtained by setting rmax = 10. It can
be observed that the RTO system never selects an input that falls
in the infeasible region.
When the disjunctions include fixed costs, an RTO system

with an input filter can converge to a suboptimal operating
point. An example of this behavior can be shown by solving
eq 23 and applying the results with an input filter K < 1.
Figure 3 shows the results for K = 0.6. The optimal inputs x*
after each cycle k are always the real optimal input (x = 5), but
the filtering strategy prevents the system from reaching this
point.

Figure 2. Input filter and disjoint feasible regions.
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From a theoretical point of view, the example shown in
Figure 3 converges to the maximum possible value of the objective
function. In practice, after a certain number of iterations, xk will
be close enough to x = 5 (for example, x8 = 5.001), and it could
then be assumed that the cost is the optimal ( f = 8).
Nevertheless, the path followed until reaching the optimum
leads to an increase in the objective function after each RTO
cycle, and thus the value of the objective function can be worse
than the starting point for several cycles (which, in the context of
RTO, can demand several hours).

A possible solution for this problem is to define a minimum
allowed change in the inputs when the optimal value of a Boolean
variable associated with a disjunction, zd*, is different to its current
value, zd

k. If the filtered inputs generate a step ∥K·(u* − uk)∥
which is lower than the minimum allowed change, δd, then the
Boolean variable zd is forced to change its value.
First, for each disjunction considered as that of eq 29 (but

not necessarily generating disjoint feasible regions), the maxi-
mum value of the filtering constant K that makes zd

k+1 = zd
k is

calculated as

=K Karg maxd
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If the change in u for Kd
max is lower than the minimum step δd

(selected as an adjustable parameter), then zd is forced to be the
optimal zd*:
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Having this result, a minimum value of K can be selected for each
disjunction d:
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(40)

Then, a lower bound can be set for the input filter K:

≥K Kmax( )
d

d
min

(41)

In eq 40, it can be remarked that if there is no change in the
Boolean variable zd or if the δd criterion is not fulfilled, then the
value of Kd

min is 0 for the corresponding disjunction d.
Applying the δd criterion to the example given by eq 23, with a

default value of K = 0.6, the system converges to the optimum
within three RTO cycles if the minimum allowed change δ is set
to 1.
If eqs 36 and 41 are combined, taking into account all the

disjunctions generating disjoint feasible regions, it is possible to
obtain a set VK of possible values of K:

= ∧ ≥ ∧ ≤ ∨ ≥
∈ ∈

V K K K K K K K{ / ( ) (( ) ( ))}K
d D

d
d D

U d U d
min

,
max

,
min

U

(42)

The criterion of eq 37 must be extended to be applied to the set VK.
The interested reader is referred to the Supporting Information in this
article to determine a possible extension of this criterion.
The bounds proposed in eq 37 may be in conflict with other

limits for the input filter that have been formulated in recent
publications for nonlinear, continuous RTO.28 At the same time,
logical constraints among Boolean variables (eq 1) can reduce
the size of the set VK even more. Therefore, the problem of using
the input filter when discrete decisions are involved should be
investigated further.

6. CASE STUDY
The application of real-time optimization to systems that include
discrete decisions is shown through a case study consisting of a
generic system that includes three processes modeled by simple
equations.
As usual in RTO literature,28,41 the performance of RTO

techniques is evaluated by using two models. The first model

Figure 3. Convergence problems and corrected strategy for the input
filter when fixed costs are present.
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(hereafter called the real plant) represents the real system. It is
used to simulate the plant behavior, to evaluate the actual cost
obtained by optimization and to provide the real outputs (called
measurements) to the RTO system. The second model, called the
RTO model, differs structurally and parametrically from the real
plant. It is adapted using the available measurements, and used to
find the (model) optimal set of inputs. These inputs are processed
and validated (for example with an input filter) and applied to the
real plant model, which is used to calculate the new steady state
and to provide measurements for the next RTO cycle.
The generic process with three interconnected subprocesses is

shown in Figure 4. The process input vector u is formed by the pair
of flows (F1, F2) and the measured outputs are Q1, Q2, and Q3.

The functionality of the process outputs is only known
approximately for the RTO model. Q2 is modeled as a piecewise
linear approximation. F3 can be obtained from mass balance as
the difference between F1 and F2.
Table 1 summarizes the real plant and the RTO model

functions for all outputs Q.
A penalty cost C is added to the objective function if F1 is
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The process can only operate for values of F3 lower than 33 or
greater than 37:
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A constraint is added on each RTO cycle k in order to generate
information for gradient estimation. Defining the unitary vector
d, normal to the line generated by the two past inputs:
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A disjunction is added to the optimization model:
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In order to limit the changes in the inputs, a convexifying cost
is included as proposed in section 5.1, with a penalty constant of
ρ = 0.05. This penalty cost is active only if the optimal values of
the Boolean variables of disjunctions 1 and 3 (i.e., z1 and z3) do
not change with respect to its current value. Otherwise, the
changes are not penalized:
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Two modifier adaptation strategies are applied to the system.
The first strategy is the simple but effective constraint adaptation,
which does not include gradient correction terms but only a
biasing value to correct the error between the predicted and the
real outputs. In the second strategy, constraint and constraint
gradient corrections are included, as presented in section
4.2.2.
The modifier adaptation is implemented following the

procedure proposed by Rodger and Chachuat.40 The modified
equations are the equations that predict the outputs (i.e., those
summarized in Table 1). First, the errors between the RTO
model and the real plant outputs are calculated:
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Then, in the gradient correction case, the gradients are estimated
using a Broyden update:
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Figure 4. Process of the Case Study.
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where BR is the Broyden gradient estimator.20,40 For output
Q2, the gradient is updated only for the currently active piece
of the piecewise function. Q2,1

ref and u2,1
ref are the values of Q2 and

u from the last time that piece 1 was active. Q2,2
ref and u2,2

ref are
defined similarly for piece 2. After that, the values of Q2

ref and
u2
ref are updated for the active piece:
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The gradient estimators from eq 49 are used to obtain the
gradient modifiers according to eq 13. Using the knowledge of
the system to optimize, some elements of the gradients can be
bounded or neglected.22,24 In this case study, it is already
known that output Q1 is only a function of F1, and, therefore,
the gradient with respect to F2 is set to 0. In the same way,Q2 is
only a function of F2, and the gradient with respect to F1 is
neglected in both pieces of the piecewise approximation. The
rest of the gradients elements (partial derivatives) are
bounded as
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where the maximum and minimum values are searched in the
feasible region of the RTO optimization problem.
In addition, all gradient modifiers are bounded to lie between a

maximum value of 2 and a minimum value of −2.
After that, an exponential filter is applied to the modi-

fiers, according to eq 11. The filtering constants (i.e., the
elements of the diagonal of the filtering matrix) for the
gradient modifiers λ are all equal to 0.7, while the filtering
constants for constraint modifiers β are equal to 1 (no filter is
applied).
Equation 20 is used to correct the piece that is not active in

cycle k, in order to keep C0 continuity.
Once the model is adapted, the following optimization

problem is solved to estimate the optimal input set:
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The optimal inputs (F1*, F2*)
T obtained by solving eq 52 are

filtered with an initial filtering constant K = 0.6:
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Disjunction 1 includes a fixed cost; therefore, a fixed input filter
may cause the convergence problems discussed in section 4.2 and
shown in Figure 3. The strategy presented in section 4.2 is
applied, selecting the parameter value δ1 = 4. When necessary,
the minimum filtering value K1

min is calculated using eq 40.
Disjunction 3 generates two disjoint feasible regions, which

may lead to the behavior discussed in section 4.2 and shown in
Figure 2. The strategy formulated in eqs 29−37 (extended in the
Supporting Information in this work) is applied to avoid
infeasible intermediate points, and the parameter rmax is set to 10.

Table 1. Real Plant and Model Functions

Q real plant RTO model

Q1 5 exp[−(F1 − 80)/18] + 60 −18.5 + 0.98F1
Q2 0.03F2

2 + 0.04F2 − 60 −177 + 3.79F2 F2 ≤ 70
−250 + 4.84F2 F2 ≤ 70

Q3 30(F3 − 18)0.5 − 20 −46.38 + 4.08F3− 0.001[(F1− 110)2 + (F2− 80)2]
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The point (F1
0 = 110, F2

0 = 80) was selected as the initial point.
The value of the objective function computed by the real plant
model (i.e., with the true functionality of the outputs) at this
point is −31.65. The real plant optimum is (F1* = 100, F2* = 69.2),
and the optimal value of the objective function is−98.57. In order
to provide information for the initial gradient estimation, the initial
point is perturbed with small changes in F1 and F2. Then, the first
two points are (F1

1 = 110.5, F2
1 = 80) and (F1

2 = 110, F2
2 = 80.5). The

Broyden estimates are initialized with the model gradients.
Two scenarios are analyzed for each strategy. In the first, the

outputs are “measured” perfectly (i.e., without errors or noise).
In the second, Gaussian noise of mean 0 and variance 1.0 is added
to the output data before performing the adaptation step.
The RTO model and the real plant model were implemented

in GAMS42 asMINLP problems, using a big-M type formulation,
and solved using DICOPT, with XPRESS as MILP solver and
CONOPT 3 as NLP solver.43 The GAMS optimization step
for the modifier adaptation strategy involves 16 equations and 14
variables (4 binary variables). For constraint adaptation, the
MINLP model involves 14 equations and 13 variables (3 binary
variables), as disjunction 4 is not included. Disjunction 5 did not
require a binary variable to be modeled, while each of the rest of
the disjunctions required one binary variable.
The RTO systemwas solved for 40 cycles, each cycle including

the model update using measurements from the real plant model,
modifiers calculation, optimization, and input filter. Each cycle
required less than 1 s of CPU time in a 64-bit computer, with a
4-core 2.20 GHz processor and 8 GB of RAM memory.
Figures 5 and 6 show the evolution of inputs for the constraint

adaptation and the modifier adaptation strategies. Figure 5 shows

the evolution in the space of the inputs, including level curves of
the objective function. The infeasible regions are highlighted in
green. Figure 6, instead, shows the input values vs the RTO cycle

number. In these two figures, it can be observed that the
constraint adaptation strategy shows less variability in the results
and converges to a point that improves the objective function
significantly, with respect to the initial point. However, since it
does not correct gradients, it fails to converge to a KKT point of
the real plant. Instead, the full modifier adaptation strategy
converges to the vicinity of the real plant optimum. However, at
the same time, it shows more variability in the results, because of
the errors in gradient estimation.
Interestingly, the evolutions with constraint adaptation are the

same for noise-free and Gaussian noise cases. In fact, the optimiza-
tion results always select the same point, (F1 = 100, F2 = 80), which
is not achieved in one iteration, because of the input filter. In
addition, the original model without adaptation (not shown in the
figures) also finds the same optimum, showing that, in some cases,
a model without correction can identify the same active constraints
as an adapted model in RTO.
Noise-free modifier adaptation starts following a path that is

similar to that of constraint adaptation. After 6 RTO cycles, it
starts evolving toward the real plant optimum, and after 20 RTO
cycles, the values of F1 and F2 converge to the vicinity of the real
optimum. The scenario with Gaussian noise starts evolving faster
to the optimum. However, for this scenario, the process input F2
shows a high variability along the entire period under study.
Figure 7 shows the evolution of the objective function for the

40 RTO cycles. It can be observed that the constraint adaptation
strategy converges faster, but the final objective function value is not
the optimal value. The modifier adaptation strategy requires more
cycles to converge, but the achieved objective function value is the op-
timal. Once convergence is achieved, the objective function value is
almost constant for the noise-free case. Despite the variability in the
inputs shown by Figure 6, after RTO cycle k = 5, the objective
function value is always maintained close to its real optimal value.
The Extended Design Cost (EDC) criterion is used to com-

pare the performance of different RTO strategies. It estimates the

Figure 6. Evolution of the inputs vs RTO cycle.

Figure 5. Evolution of inputs for constraint adaptation and modifier
adaptation strategies. Initial point: (F1

0 = 110, F2
0 = 80).
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total loss of profit of the RTO approach, compared to the real
plant optimum:44

∫
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where Qr* is the actual optimal cost of the plant and Qr
k is the

actual cost at cycle k. T0 and Tf are the initial and final times
corresponding to RTO cycles k0 and kf, respectively.
Table 2 shows the EDC for all of the analyzed scenarios and

strategies, including the EDC when no optimization action is

applied (i.e., the system operates all the time with the initial input
set). The EDC is evaluated for all the cycles (i.e., from k = 0
to 40) and for k ≥ 20, which is the time when all cycles have
reached an objective function value close to their convergence
value (as it can be observed in Figure 7). The EDC for k ≥ 20
evaluates the loss of profit due to variability and to plant−model
mismatch, while the first EDC from k = 0 to k = 40 also includes
the cost of the evolution to the convergence point. It can be
observed that the performance of modifier adaptation is much
better than constraint adaptation, because of the structural

mismatch correction of the gradient modifiers. Both approaches
achieve a significant reduction in the objective function value,
and, therefore, these alternatives proved to be potentially useful
in a RTO implementation that requires the use of disjunctions or
discrete variables.
As mentioned previously, the EDC costs for noise-free and

Gaussian noise scenarios are the same with constraint adaptation,
since the evolutions are identical.
The EDC from k = 0 to k = 40 for the Gaussian noise scenario,

using modifier adaptation, is slightly lower than the noise-free
scenario. This is mainly due to the faster initial convergence.
Nevertheless, as expected, the EDC for k ≥ 20 is three times
higher for the Gaussian noise case, because of the variability in F2
that is observed in the figures.

7. CONCLUSIONS
A real-time optimization (RTO) formulation including discrete
decisions has been presented and discussed. It has been shown
that discrete events of different nature can appear in industrial
processes, even if the startup or shutdown of pieces of equipment
are not considered.
The two-step adaptation approach and two versions of the

modifier adaptation approach were reformulated to make them
suitable for problems involving discrete decisions. The
reformulation includes the selection of parameters/modifiers
to update at each RTO cycle, the exponential filtering, and the
past cycles that are used for gradient correction.
New bounds were defined for input filtering. They help to

solve two problems that can appear if disjunctions are present:
slow and expensive (in terms of the objective function)
convergence to the plant optimum, and infeasibility of the
selected inputs if disjoint regions are present. These bounds may
be in conflict with other bounds formulated in recent
publications for nonlinear, continuous RTO. Therefore, this
problem should be investigated further.
Maximum change constraints and convexifying terms may

cause a convergence to suboptimal points if the problem includes
discrete decisions. A strategy to avoid this undesired behavior
was presented and illustrated with examples.

Figure 7. Evolution of objective function for constraint adaptation and modifier adaptation strategies. Initial point: (F1
0 = 110, F2

0 = 80).

Table 2. Case Study: Extended Design Costs

EDC from k = 0
to k = 40

EDC from k = 20
to k = 40

scenario absolute relative absolute relative

no action 2676.8 100.0 1338.4 100.0
Noise-Free Scenarios

constraint adaptation 927.7 34.7 338.7 25.3
modifier adaptation 427.6 16.0 6.3 0.5

Gaussian Noise in the Data
constraint adaptation 927.7 34.7 338.7 25.3
modifier adaptation 394.3 14.7 23.4 1.7
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The case study showed that a practical implementation of RTO
with discrete decisions is certainly possible. The two analyzed
strategies (constraint adaptation and modifier adaptation) showed
a behavior similar to that of nonlinear, continuous RTO:
convergence to the real plant optimum for gradient adaptation
schemes, and less variability in results for constraint adaptation.
Both approaches proved to be suitable for an application of RTO
with disjunctions.
The CPU times required to solve an RTO cycle (i.e., to adapt

the model and to solve the optimization problem) were
satisfactory for a RTO implementation. However, the effect of
increasing the number of binary variables and the model size
must be investigated further.
If the discrete decisions addressed by RTO involve startups or

shutdowns, or constraints involving time, a multiperiod RTO
formulation may be necessary. The integration of RTO with
scheduling optimization, using a multiperiod formulation, will be
addressed in a future work.
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