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HIGHLIGHTS 

• Microplastics (PE -MPs) and tetrabromobisphenol A (TBBPA) exposure 

inhibited AChE in tadpoles. 

• The mixture of  TBBPA + PE-MPs increased CbE, GR and ALP activities, and 

CHOL levels in tadpoles. 

• PE-MPs and TBBPA increased thyroid hormone levels in tadpoles. 

• PE-MPs and TBBPA + PE-MPs generated mechanical changes in the intestinal 

walls of tadpoles. 

• The mixture of TBBPA + PE-MPs increased melanomacrophage number in the 

liver of tadpoles.   
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Polyethylene microplastics (PE-MPs), a whitish thermoplastic polymer with numerous 

applications, is one of the materials most widely used in the industrial sector, whereas 

tetrabromobisphenol A (TBBPA) is a brominated flame retardant. The aim of this study 

was to analyze the effects of PE-MPs and TBBPA on Rhinella arenarum tadpoles at the 

laboratory scale. Tadpoles were chronically exposed (30 days) to four treatments: PE-

MPs (60 mg L-1), TBBPA (10 µg L-1), their mixture (PE-MPs +TBBPA), and 

dechlorinated water as negative control (CO). Biomarkers of enzymatic activity 

(acetylcholinesterase, AChE; carboxylesterase, CbE; glutathione reductase, GR; and 

glutathione-S-transferase, GST), hepatic physiological alteration (alkaline phosphatase; 

ALP activity, and cholesterol; CHOL level), and endocrine disruption through thyroid 

hormone (T4) levels were assessed.  In addition, intestine and liver were 

histomorphologically evaluated. AChE activity in tadpoles was significantly inhibited 

after exposure to PE-MPs and TBBPA with respect to CO. In addition, CbE, GR, and 

ALP activities showed higher values in the mixture of PE-MPs + TBBPA treatment than 

in CO, whereas CHOL level was higher in TBBPA and PE-MPs + TBBPA treatments 

than in CO. GST activity did not show significant differences between treatments and 

CO. T4 levels increased significantly in all treatments with respect to CO. The intestinal 

structure of tadpoles exposed to PE-MPs and PE-MPs + TBBPA showed signs of 

mechanical damage. The intestinal wall of tadpoles under PE-MPs, TBBPA and PE-MPs 

+ TBBPA treatments was thicker than that of CO individuals. The analysis of liver 

histology demonstrated the hepatotoxicity caused by PE-MPs + TBBPA. This study 

provides quantitative evidence of the harmful effects of PE-MPs, TBBPA and their 

mixture on enzymatic and hormonal activities, and histological evidence of intestinal wall 

hypertrophy and liver damage of R. arenarum tadpoles.  

Keywords: anuran tadpoles, biomarkers, polyethylene microplastics, TBBPA 
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1. Introduction 

    Both marine and freshwater environments receive a large amount and variety of 

pollutants of anthropogenic origin. The omnipresence of plastic waste at the global scale 

represents an environmental threat that has received increasing public attention in recent 
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decades (Shruti et al., 2021). Since plastics are currently considered one of the most 

important “technofossils”, these materials will be a long-lasting record of anthropogenic 

presence in this planet (Zalasiewicz et al., 2016).  

    Plastic pollutants are widely distributed in ecosystems in different shapes and sizes, 

such as megaplastics, macroplastics, mesoplastics, microplastics, and nanoplastics 

(Zhang et al., 2017; Thushari and Serenivathna, 2020). Since microplastics (MPs: plastic 

items between 0.1 and 5000 µm in size) are environmentally persistent materials, they 

represent a global problem mainly in freshwater environments (De Sá et al. 2018, Paul et 

al., 2020). Microplastic pollution has currently reached high levels and is widespread in 

various ecosystems (Blettler et al., 2017; Pastorino et al., 2022; Liu et al., 2022), including 

freshwater environments of the Earth's poles (Citterich et al., 2023). Moreover, the role 

of MPs as vectors of pollutants has become a topic of debate in recent years (Santos et 

al., 2021; Arienzo et al., 2021). Polyethylene (PE) is the most widely used polymer in 

plastic material production (Horton et al., 2017). Although studies of the effects of PE-

MPs on aquatic organisms have increased in the last years, the literature focusing on 

amphibians is scarce (Araújo et al., 2020a, 2021; Balestrieri et al., 2022). It has been 

recently demonstrated that PE-MPs particles can bioaccumulate in amphibians (Araújo 

and Malafaia, 2021). PE-MPs were found to cause nuclear abnormalities in erythrocytes 

(Araújo et al., 2020a), hepatotoxicity effects in the liver of Physalaemus cuvieri tadpoles 

(Araújo et al. 2020b), and alterations of the normal social and antipredator behavior of 

that species (Araújo and Malafaia, 2020). These particles were found to modify the 

metabolic activities of enzymes (e.g., glutathione -S- transferase, carboxylesterase, and 

phosphatase) in other neotropical anuran species (Attademo et al., 2022; Lajmanovich et 

al., 2022). Because of the importance of anurans in ecosystems and their position in food 
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webs, the effects of PE-MPs ingestion, accumulation, and fate in the organism could 

reveal the environmental consequences of this type of contamination over time. 

    The use of additives during plastic production has increased in the last few years 

(Malkoske et al., 2016; Ríos et al., 2023). The ecological impact of exposure to different 

PE-MPs particles and their additives and the consequences of their toxicity have still not 

been fully explored. The virgin polymer is treated with chemical additives to improve 

physical and chemical characteristics, such as elasticity, UV- and fire-resistant, durability, 

and color (Horton et al., 2017; Sajjad et al., 2022). Hence, final plastic products contain 

plastic additives of concern for human health, including phthalates, bisphenols, and flame 

retardants (Galloway, 2015). Tetrabromobisphenol A (2,2,6,6 - tetrabromo-4,4-

isopropylidenediphenol (TBBPA) is a brominated flame retardant used to increase 

temperature resistance of plastic material often exposed to heat sources (Zhou et al., 

2020). It is considered highly contaminating to the environment and is mainly used in 

electronic devices such as TV sets, computers, laser printers, video displays, copying 

machines (Kitamura et al., 2005), manufacturing TBBPA-based products, e-waste 

recycling, and disposal sites. TBBPA is massively used (41,352 tons in 2016; 

WorldAnalytics, 2019) and has been detected in a variety of environments worldwide 

(Huang et al., 2014; McAvoy et al., 2016; Malkoske et al., 2016; Zhou et al., 2020). The 

toxic effects of TBBPA have been investigated in different organisms, such as microalgae 

(Zhang et al., 2022), shrimps (Ríos et al., 2023), and fish (Kiuper et al., 2007; Chan and 

Chan, 2012; Jarema et al., 2015; Yu et al., 2023). The effects of MPs and TBBPA on 

amphibian tadpoles have been poorly studied compared to those on mammals (Zhou et 

al., 2014; Dong et al., 2021). Since populations of amphibians are in decline, efforts to 

mitigate the main causes of this global phenomenon require more studies of this emergent 

contaminant (Green et al., 2020).  
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Vertebrates have antioxidant enzymes, including glutathione reductase (GR) and 

glutathione -S- transferase (GST) (Attademo et al., 2021). These enzymes are involved in 

the detoxification and biotransformation of many xenobiotics and in the defense against 

oxidative stress (Potega, 2022). Furthermore, carboxylesterase (CbE) enzymes catalyze 

the hydrolysis of a wide range of carboxylic esters, including different xenobiotics. In 

mammals, CbEs and acetylcholinesterase (AChE) are involved in important physiological 

processes (Lian et al., 2018) as well as in the activation of prodrugs and pesticides (Ross 

et al., 2006), and phthalate metabolism (Ozaki et al., 2017). Alkaline phosphatase (ALP) 

is a glycoprotein present in the outer layer of the cell membrane. Alkaline phosphatase is 

widespread in different body tissues; it has low substrate specificity and catalyzes the 

hydrolysis of phosphate esters. Alkaline phosphatase activity is an indicator of the general 

well-being of organisms and is involved in the detoxification of xenobiotics in 

hepatocytes (Banaee, 2020). 

    Total lipids include cholesterol (CHOL), phospholipids, and triglycerides. Lipids 

are the main energy reserve and are transported through the blood as CHOL and 

triglycerides. Hyperglycemic hormones accelerate the degradation of triglycerides into 

free fatty acids through lipolysis. These hormones also allow the passage of fatty acids 

into the blood and therefore increase free fatty acids. If lipolysis is inhibited, CHOL 

accumulates and its content in circulation increases. High CHOL concentration could be 

due to the transport of lipids from the site of synthesis for further use or to lipid 

accumulation and storage (Vaseem and Banerjee, 2013).  

    On the other hand, the thyroid hormones T3 (triiodothyronine) and T4 (thyroxine) 

play a key role in metabolism, growth, osmoregulation, acclimation, and development in 

many vertebrates (Brown, 1997; Heijlen et al., 2014). These hormones are affected by 

phthalates, bisphenols, and TBBPA (Jagnytsch et al., 2006; Veldhoen et al., 2006; Horie 
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et al., 2023; Ríos et al., 2023). In anurans, these hormones are key in metamorphosis and 

larval development. 

   The aim of this experiment was to analyze the effects of PE-MPs and TBBPA, and 

their mixture, on Rhinella arenarum tadpoles at the laboratory scale. This is the first study 

to evaluate the effect of those contaminants on this anuran species. Biomarkers of 

enzymatic activity (ACHE; CbE; GST, and GR), hepatic physiological alteration (ALP 

activity and CHOL level), and endocrine disruption through T4 levels were assessed.  

Histomorphological features of the intestine and liver were considered to identify the 

possible effects of the studied pollutants. We used scanning electron microscopy (SEM) 

to identify the possible MP uptake and/or accumulation and the effect on the digestive 

system of tadpoles. We hypothesized that the ingestion of PE-MPs and TBBPA might 

lead to an accumulation of particles on the intestinal walls, affecting enzyme activities 

and causing hepatic alterations, as well as hormonal and morphological changes. 

  

2. Materials and methods   

2.1. Study species and experimental design 

Rhinella arenarum is a common anuran species present in wetlands, agroecosystems, 

and riparian and urban areas of the neotropical countries Argentina, Brazil, Bolivia, 

Uruguay, and Paraguay. This species is listed as "not threatened" in the Red List of 

Amphibians of Argentina (Vaira et al., 2012). Surface R. arenarum egg strings of several 

oviposition events (50 cm per string) were collected from small temporary ponds situated 

in the natural floodplain of the Paraná River (31° 11′ 31″ S, 60° 9′ 29″ W). The collection 

site was considered unpolluted in previous studies (Attademo et al., 2022; Lajmanovich 

et al 2022). Collection was authorized by the Ministry of Environment of the Province of 

Santa Fe (File N° 02101-0026248-0), Argentina. Eggs were immediately transported in 
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dechlorinated tap water (DTW) to the laboratory, and acclimated to12-h light/dark cycle 

at 24 ± 2 °C (Attademo et al., 2022). Embryos were kept under these conditions in a 

communal aquarium and fed boiled lettuce until the start of the bioassay, when they were 

at premetamorphic development stages (Gosner stage 27-29, Gosner 1960). 

The ecotoxicity bioassay was performed in a set of 1-L glass aquaria under controlled 

laboratory conditions (Lajmanovich et al., 2022). Treatment groups (N= 10 individuals 

per treatment, in triplicate) were: i) control tadpoles (tadpoles maintained in DTW), and 

tadpoles exposed to ii) PE-MPs (60 mg L-1), iii) TBBPA (10 µg L-1), and iv) a mixture of 

TBBPA + PE-MPs. Tadpoles were randomly selected from an aquarium and those with 

external morphological abnormalities or erratic movements were removed from the 

experiment. Solutions were renewed every 7 days for 30 days. Tadpoles were treated 

following the standardized protocols for laboratory experiments of the American Society 

of Ichthyologists and Herpetologists (2004). Specimens were euthanized using a solution 

of 0.1% tricaine methane sulfonate (MS-222), following the Institutional Animal Care 

and Use Committee of the FBCB-UNL (Res. CD N: 388/06) and the bioassay procedures 

followed ARRIVE guidelines (Kilkenny et al., 2010).  

Polyethylene microplastics (PE-MPs; CAS number 9002-88-4, 40-48 µm particle size, 

density 0.9215 - 166 0.9255 gm L-1; purity > 99%) and TBBPA (CAS number79-94-7 

97% lot#MKCM2562 purity > 97%) were purchased from Sigma-Aldrich. Firstly, a 

primary solution was prepared (500 mg L−1) and stored in the freezer at - 20 °C until the 

moment of preparing the aquarium water. The primary solution was used to spike the 

aquarium water (10 µg L−1) every 7 days. To verify the correct dosage, TBBPA 

concentration in the aquarium weekly were measured by direct UHPLC-MS/MS analysis. 

(Table 1 supplementary data). 
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 The PE-MPs concentration (60 mg L-1) used for the study was previously tested 

in amphibian tadpoles (Attademo et al. 2022; Lajmanovich et al. 2022) and was suggested 

as a realistic pollution scenario (Anbumani and Kakkar, 2018). This selected particle size 

(40 - 48 µm) is within the range of sizes of items naturally consumed by wild amphibian 

species (Lajmanovich, 1994). The TBBPA concentration used was 10 µg L-1, according 

to findings of Liu et al. (2018), who reported that the most serious case of TBBPA 

pollution in China was found in samples of lake water containing TBBPA at 

concentrations from 5 to 10 µg L-1.   

2.2. Biomarkers  

2.2.1. Samples homogenization  

    To determine the activity of enzymes (AChE, CbE, GR, GST, and ALP) as well as 

CHOL levels after 30 days of control and xenobiotic exposure, 10 tadpoles per treatment 

were individually weighed (g) and homogenized (1:10, w/v) in ice-cold 25 mM sucrose, 

20 mM Tris-HCl buffer (pH = 7.4) with 1 mM EDTA, using a polytron tissue grinder. 

Another pool of 10 individuals was homogenized after 30 days to determine T4 levels, 

following the same protocol. The homogenates were then centrifuged at 10,000 rpm at 4 

± 1°C for 15 min, and stored at - 80°C until the analysis of biomarkers.  

2.2.2. B-esterases and stress oxidative enzymes  

Total protein (TP) concentration was determined using the Biuret method (Kingbley, 

1942). Activity of AChE was determined calorimetrically following the procedure of 

Ellman et al. (1961). The activity of AChE was expressed as nmol min-1 mg-1 TP (total 

protein).  
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Activity of CbE was measured using 1-naphthyl acetate (1-NA) as substrate. Briefly, 

the hydrolysis of 1-NA was determined according to Gomori (1953) and adapted by 

Bunyan and Jennings (1968). The activity of CbE was expressed as nmol min-1 mg-1 TP.  

Activity of GST was determined by method described by Habig et al. (1974) and adapted 

for mammal serum GST activity by Habdous et al. (2002).  

The activity of GST was expressed as nmol min-1 mg-1 TP. GR activity was assessed 

following the method of Ramos-Martínez et al. (1983), and was expressed as nmol min-1 

mg-1 TP.  

2.2.3 Physiological endpoints   

2.2.3.1. ALP activity, CHOL and T4 levels  

The levels of ALP activity were determined using commercially available kits 

(Wiener Lab®), according to the producer’s instructions and standardized procedures 

(Attademo et al., 2022). The enzymatic activity was expressed in Units mg-1 of TP.

 CHOL level was determined using a similar procedure to that used for ALP 

activity, and was expressed in milligrams (Units mg-1 of TP).  

 Total T4 level was determined using enzyme-linked electrochemical luminescent 

immunoassay (ECLIA) kits (COBAS®, Roche Diagnostics, IN, USA), according to the 

manufacturer's instructions. The detection limit for T4 was 0.42 ng g-1 (Attademo et al., 

2021). 

2.3. Histological analysis of intestinal tract and liver, and Scanning Electron Microscopy 

(SEM) method 

At the end of the assay, the whole bodies of two tadpoles per treatment, fixed in 

10% formalin solution, were processed according to the conventional procedures for 
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histological analysis of the liver and intestinal tract. Samples were dehydrated in an 

ethanol series, impregnated in a butyl alcohol-paraffin mixture, embedded in paraffin, 

serially sectioned at 3-4 μm, and mounted on slides pretreated with silane (3-amino-

propyltriethoxysilane; Sigma Chemical, St Louis, MO, USA). For final observation, 

samples were routinely stained with hematoxylin and eosin (H & E), according to De 

Souza Santos et al. (2014). The sections were observed under a Leica DM500 optical 

microscope equipped with a Leica ICC50HD digital camera. Four micrographs (x40 

magnification) of three intestinal tract sections were analyzed per treated and control 

tadpole. In each micrograph, the thickness of the intestinal wall was measured using 

ImageJ software according to Romero Arauco et al. (2007), with several modifications. 

The histological appearance of the intestine was evaluated and compared between control 

and exposed individuals.  

 In addition, the melanomacrophages (MMs) were counted in whole hepatic tissue 

from two non-consecutive histological sections per individual using the Image J software. 

The sections were also observed under the microscope to identify other histological 

alterations (Cakici, 2015; Sayed and Younes, 2016).   

Thus, intestinal fragments of three treated and three control tadpoles were fixed in 

10% formalin solution to scan for microplastics. The tissues were prepared for SEM 

analysis following the standardized method, which consisted of dehydration in increasing 

concentration of acetone solution (12.5, 25, 50, 75, 100%), drying at a critical point, and 

gold plating (Goldstein, 1992). Observations were performed under a JEOL JSM-5800 

LV scanning electron microscope. 

2.4 Data analysis  

Data normality and homogeneity of variance were evaluated using Kolmogorov-

Smirnov and Levene's tests, respectively. The activities of enzymes (AChE, CbE, GR, 
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GST, and ALP) as well as CHOL and T4 levels were compared between control and 

treated (PE-MPs; TBBPA or mixture of TBBPA + PE-MPs) tadpoles using Kruskal-

Wallis (KW) and Dunn post-hoc tests (Zar, 1999). For the analysis of intestinal wall 

thickness and MM number contrast among treatments, ANOVA and Tukey’s multiple 

comparison a posteriori test was performed. Values are expressed as mean ± standard 

error. All statistical analyses were performed using Infostat (Universidad Nacional de 

Córdoba, Argentina). The level of significance used was p <0.05. 

 

3. Results 

3.1. B-esterase and stress oxidative enzymes 

AChE activity was significantly inhibited (KW = 9.79, p = 0.02; Fig. 1) in tadpoles 

exposed to PE-MPs (15.09 ± 1.91) and TBBPA (16.54 ± 0.88) with respect to control 

tadpoles (21.88 ± 1.51). In contrast, tadpoles exposed to TBBPA + PE-MPs showed 

increased activity of CbE (26.41 ± 0.91, KW = 14.42, p = 0.002, Fig. 2) and GR (0.32 ± 

0.03, KW = 9.12, p = 0.02, Fig. 3) with respect to control tadpoles (CbE= 18.44 ± 0.95, 

GR= 0.24 ± 0.01). GST did not show significant differences among treatments (KW = 

5.91, p = 0.11, Fig. 4).  

  

3.2. ALP activity, and CHOL and T4 levels  

The activity of ALP significantly increased (KW = 14.42, p = 0.002; Fig 5) in the 

tadpoles exposed to TBBPA + PE-MPs (1.92 ± 0.10) with respect to control (1.32 ± 0.15). 

Tadpoles in the TBBPA treatment (17.04 ± 0.55) exhibited the highest CHOL levels (KW 

= 14.22, p = 0.002; Fig. 6), followed by tadpoles treated with TBBPA + PE-MPs (16.73 

± 0.57) and control tadpoles (11.68 ± 0.72). 
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T4 levels were significantly higher in R. arenarum tadpoles exposed to MP, TBBPA, 

and TBBPA + PE-MPs (KW = 11.34, p = 0.01, Fig. 7) than in control tadpoles (7.30 ± 

0.11).   

  

3.3. SEM and histological analysis of intestine  

PE-MPs were present in the intestine of the tadpoles exposed to PE-MPs and 

TBBPA + PE-MPs treatments (Fig. 8 B-D), and absent in tadpoles under control and 

TBBPA treatments, as observed in SEM images (Fig. 8 A). The histological structure of 

the intestine was normal in the tadpoles of the control treatment (Fig. 9 A). The intestinal 

wall was composed of a homogeneous mucosa epithelium of normal cell shape (Fig. 9 

A). The intestinal structure of tadpoles exposed to PE-MPs and TBBPA + PE-MPs 

treatments showed highly irregular arrangement and shape of cells of the mucosa 

epithelial layer (Fig. 9 B, D). The epithelial layer was partially damaged by PE-MPs (Fig. 

9 B, D). However, in tadpoles exposed to TBBPA treatment, mucosal cells of the 

intestinal wall structure showed moderately irregular arrangement and shape (Fig. 9 D, 

E). Melanocytes were also observed in the mucosa epithelial cells of TBBPA and TBBPA 

+ PE-MPs treated tadpoles (Fig. 9 F). The intestinal wall of individuals under PE-MPs, 

TBBPA, and TBBPA + PE-MPs was thicker than that of control individuals (F=113.37, 

p=0.0001). However, no significant differences were observed among the individuals 

exposed to PE-MP, TBBPA, and TBBPA + PE-MPs treatments (Tukey’s Test p ≥ 0.05).       

                       

3.4. Histological analysis of liver 

The number of liver MMs increased with respect to control only in tadpoles 

exposed to TBBPA + PE-MPs treated tadpoles (H=8.58, p=0.03, Fig. 10 A). The liver of 

tadpoles exposed to TBBPA and TBBPA + PE-MPs showed a high level of hepatocyte 
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vacuolization and congestion (Fig. 10 B, C), whereas a low level of vacuolization was 

observed in MP-treated and control tadpoles (Fig. 10 B).  

  

4. Discussion  

The present study provides evidence of the effects of exposure to PE-MP particles, 

alone or in combination with TBBPA, on a neotropical tadpole, Rhinella arenarum, using 

biochemical, physiological and histological biomarkers. The findings of this study 

highlight the importance of using different biomarker screening methods to characterize 

the ecotoxicity of these pollutants (Rochman and Hoellein, 2020). The metabolic analysis 

of the studied enzymes (Attademo et al., 2022) and of important metabolic parameters 

such as ALP and CHOL, and the histological analysis, suggest alterations of physiological 

condition of individuals.  

  Significant inhibition of AChE was observed in treated tadpoles (under both PE-MPs 

and TBBPA) with respect to control tadpoles, whereas in the mixture treatment (TBBPA 

+ PE-MPs) the activity of this enzyme was lower than in control, but without significant 

differences. Inhibition of AChE results in an accumulation of acetylcholine, leading to 

continuous and excessive stimulation of the nerve/muscle fibers (Minier et al., 2008). 

Treatment with a glufosinate-based herbicide in a mixture with MP inhibited AChE 

activity in Scinax squalirostris tadpoles (Lajmanovich et al., 2022). The authors 

suggested spontaneous interactions between the herbicide and polyethylene MPs 

(Lajmanovich et al., 2022).  

Likewise, exposure to PE-MPs and TBBPA inhibited AChE activity in a decapod 

crustacean (Ríos et al., 2023). On the other hand, CbE acts as a hydrolase, catalyzing the 

hydrolysis of a wide variety of compounds, including plastic additives such as phthalates 

and TBBPA (Solé et al., 2022). Similarly, CbE hydrolyzes the surface chains of 
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polystyrene and polyethylene (Kawai et al., 2019; Lajmanovich et al., 2022). The 

increased CbE activity detected in the tadpoles exposed to TBBPA + PE-MPs might be 

related to the enzyme hydrolytic capacity to degrade PE-MPs and TBBPA. It has been 

reported that several plastic additives (e.g., TBBPA) and other plasticizers are chemically 

bound to the polymer (Hermabessiere et al., 2019). In addition, MPs act as “Trojan 

horses”, carrying other environmental contaminants (Schell et al. 2022) and be released -

probably driven by the activity of the CbE- into the organism’s gut. However, further 

research is needed.  

Glutathione S-transferase (GST) plays a role in phase II of biotransformation, 

catalyzing the conjugation of electrophilic substrates and protecting the cells against the 

oxidative stress caused by xenobiotics (van der Oost et al., 2003). Therefore, the increase 

or decrease of GST activity is an indicator of a defense mechanism of tadpoles against 

free radicals, particularly in the natural environment (e.g., Attademo et al., 2014). In this 

study, at 30 days of exposure to PE-MPs and TBBPA, no change in this enzyme was 

observed; one of the causes of non response in chronic exposure could be habituation to 

the long-term conditions (Rich and Romero, 2005).  Probably, the reaction occurred 

earlier and by the end of the assay, it was no longer noticeable. In this context, 

Lajmanovich et al. (2022) found that 48-h exposure to PE-MPs in amphibian larvae 

(Scinax squalirostris) produced significant changes in GST. Likewise, Ríos et al. (2023) 

showed that the mixture of both xenobiotics (PE-MPs and TBBPA) at environmental 

relevant concentration inhibits GST activity in the freshwater shrimp Palaemonetes 

argentinus at 96 h of exposure. The antioxidant system of PE-MPs -exposed organisms 

has shown diverse responses, which varied from induction through reduction to non-

significant changes, depending on MP size, type, and concentration, as well as on the 

tissues and species studied (D'Costa, 2022). 
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Glutathione reductase (GR) increased in R. arenarum during 30 days of exposure to 

the mixture of PE-MPs and TBBPA. GR is an essential enzyme that recycles oxidized 

glutathione back to the reduced form, and plays a fundamental role in the cellular control 

of reactive oxygen species (Couto et al., 2016). The measured levels of GR indicate that 

PE-MPs and TBBPA affected the enzyme performance in terms of antioxidant response; 

therefore, this enzyme seems to be a suitable biomarker to evaluate the emerging plastic 

contamination in aquatic ecosystems. 

Reactive oxygen species can attack polyunsaturated fatty acids through oxidation 

processes and lead to lipid peroxidation. High-density lipoprotein (HDL) is also known 

to help clear CHOL from extra hepatic tissues. Hence, a decrease in HDL caused by 

TBBPA could be due to lipid peroxidation, with the consequent increase in circulating 

CHOL levels (Javed et al., 2017). Zhu et al. (2022) suggest that bisphenol A (BPA) caused 

a rise in Apolipoprotein A1 (ApoA1: is the major component of HDL), and consequently 

a fall in plasmatic CHOL levels of the fish Goby cyprisrarus exposed to BPA. In contrast 

to these findings, we found that TBBPA activates oxidative stress through the enzyme 

GR (Fig. 3) and would oxidize HDL, causing an increase in CHOL levels in exposed 

tadpoles. Although both animal models, fish and tadpoles, have gill respiration, tadpoles 

also breathe through their permeable skin, which means they have more uptake routes for 

xenobiotics, making them more sensitive to xenobiotics in the water. 

However, CHOL showed significant increases in mice exposed to BPA (Moghaddam 

et al., 2015). The discrepancy of these findings with previous findings would be due to 

the different mixtures tested in the present investigation; therefore, further studies 

incorporating HDL and other markers of oxidative stress should be conducted. 

 In this study, the significant increase in ALP activity caused by the mixture 

(MP+TBBPA treatment) compared to the values from the control suggests 
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hepatotoxicity. Similarly, higher ALP levels were observed in the fish Nile tilapia 

exposed to BPA than in the control group (Hamed and Abdel-Tawwab, 2017). TBBPA 

is a brominated form of bisphenol A (BPA), a compound known to have numerous 

endocrine-disrupting effects in wildlife and lab organisms. The high similarities of these 

brominated chemicals to other well-known toxic environmental contaminants such as 

DDTs and PCBs are a great concern for environmental and human/animal health 

(Kodavanti and Loganathan, 2019). Attademo et al. (2022) observed a decrease of ALP 

activity in PE-MPs-treated tadpoles and suggested damage of the immune system. An 

increase or decrease in ALP could be related to the presence of environmental stressors 

(Revel et al., 2020). The ingestion of TBBPA + PE-MPs may lead to change in the 

physiological responses.  

The levels of T4 hormone were higher in all the treatments evaluated than in the 

control. Different studies demonstrated the toxic effects of PE-MPs and TBBPA in 

zebrafish Danio rerio (Kiuper et al., 2007; Godfrey et al., 2017; Liu et al., 2018, Yu et 

al., 2023), in other vertebrates (Siracusa et al. 2018; Yu et al. 2019) and in invertebrates 

(Ríos et al., 2023). The effect of TBBPA on the thyroid hormone (TH) system has been 

previously investigated (Yu et al., 2019). TH action at the cellular level is highly 

conserved across vertebrate species (Heimeier and Shi, 2010). Overall, TBBPA affects 

the hypothalamic-pituitary-thyroid axis, influencing the function of the thyroid gland 

(Zhou et al., 2020). TH is the most important hormone in amphibian metamorphosis 

(Denver et al., 2002). Many chemical, physical and biological stressors may affect the 

endocrine system in amphibian larvae. An increase in T4 levels was observed in 

crustaceans only after 96-h acute exposure to a mixture of PE-MPs and TBBPA (Ríos et 

al., 2023). Veldhoen et al. (2006) found that low levels of TBBPA may accelerate anuran 

metamorphosis through an agonistic action of TH and enhance TH-mediated gene 
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expression. Jagnytsch et al. (2006) also found that a high TBBPA concentration inhibited 

larval development in Xenopus leavis, suggesting endocrine disruption. Future studies 

should assess the effects of exposure to theses xenobiotics on anuran development.  

    Intestinal damage after PE-MPs ingestion has been reported in different vertebrates 

(Pedá et al., 2016; Jovanovic, 2017; Stock et al., 2019; Ahrendt et al., 2020; Mbugani et 

al., 2022; Lajmanovich et al., 2022), and in invertebrates (see Law, 2017; Wang et al., 

2019). Lei et al. (2018) suggested that the effect of MP on D. rerio and C. elegans would 

depend on MP size. The ingestion of MP also exerts a functional and oxidative effect on 

organisms (Lei et al., 2018; Yu et al., 2020). Most studies available in the literature focus 

on fish species (see Hirt and Body-Malapel, 2020). Exposure of X. tropicalis tadpoles to 

polystyrene microspheres (1-10 µm) resulted in uptake and accumulation in gills and 

digestive tract after 1 h of exposure, and then elimination via feces after 6 h of exposure 

(Hu et al., 2016); however, the authors did not explain the consequences of the ingestion. 

Attademo et al. (2022) detected PE-MPs in the gut of Scinax squalirostris tadpoles after 

exposure to 60 mg L-1 of PE-MPs and warned about the potential risk of this contaminant 

to aquatic organisms. The physical damage (tissue abrasion) observed after histological 

evaluation as well as the increase in thickness of the intestinal wall in exposed individuals 

highlight the potential harmful effects of the ingestion of PE-MPs alone or mixed with 

TBBPA. Balestrieri et al. (2022) also tested two amphibian species under realistic 

contamination conditions and showed that the adverse effects of MPs depended on the 

species and that MP intake varied with MPs characteristics such as density, size, shape 

and color. Several effects of plastic ingestion have been described in different organisms, 

such as blue mussel Mytilus edulis L, in which MPs are taken up into cells and cause 

significant effects at the tissue and cellular levels (Von Moos et al., 2012). In addition, in 

juveniles of the interstitial fish Girella laevifrons, feeding with polystyrene incorporated 
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in the diet produced severe mechanical lesions in intestine as well as leukocyte infiltration 

and hyperemia (Ahrendt et al. 2020).  We hypothesize that this damage could affect the 

physiological process in the digestive system of anurans such as secretory, digestive, and 

absorptive functions. MP ingestion may also pose a risk due to chemicals related to 

plastics incorporated during manufacture or accumulated from contaminated 

environments (Law, 2017).   

Signs of hepatotoxicity –the presence of hepatocyte vacuolization and congestion 

of blood vessels– have been observed in liver of individuals after exposure to TBBPA 

and the mixture of TBBPA + PE-MPs. Similarly, Araújo et al. (2020b) detected blood 

vessel dilation, infiltration, congestion, hydropic degeneration, and other histological 

alterations in the liver of P. cuvieri tadpoles after 7 days of exposure to MPs (60 mgL-1). 

They demonstrated that the pollutant bioaccumulation in liver was correlated to different 

histopathological changes.  

The number of MMs increased in the liver of individuals exposed to the mixture 

of TBBPA + PE-MPs. This result reinforces the function of MMs in detoxification and 

indicates the detrimental effect of the co-exposure of contaminants, as occurs in the 

aquatic environment. Finally, their function in detoxification of pollutants and their role 

as contamination biomarkers in several tissues (Aguis and Robert, 2003; De Souza Santos 

et al., 2014) have been confirmed in this study.  

 

5. Conclusion 

In recent years, the concern about plastic pollution has increased, since these 

products are incorporated in biota and their effects are not fully understood. Ecotoxicity 

of PE-MPs and TBBPA on R. arenarum was found to be high in terms of biochemical 

and physiological impairments, such as inhibition of AChE; induction of CbE, GR, and 
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ALP activities; and variation in CHOL and T4 levels, respectively. Those enzymes are 

related to immunological and physiological processes, and overall tadpole fitness could 

be threatened in MP-polluted environments. The histological analysis reveals the capacity 

of PE-MPs to damage the intestine structure, producing hypertrophy. Hepatotoxicity was 

also demonstrated by the alterations of the cell arrangement and the increase in MM 

number, mainly in the TBBPA + PE-MPs treated tadpoles. The findings of this study 

suggest that the exposure to PE-MPs, TBBPA, and mainly of both pollutants together by 

anuran tadpoles potentially affects their survival, with consequences on population 

viability in the mid and long term. This phenomenon might lead to ecological death and 

local extinction of anuran populations in Pampean wetlands where the worst pollution 

scenarios can occur with high levels of contaminants concentrated in lentic aquatic 

systems as breeding ponds of amphibians.  
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Figure captions 

 

 
 

 

Fig. 1 Acetilcholinesterase activity (AChE, nmol min−1 mg−1 TP) in Rhinella arenarum 

control tadpoles (CO), tadpoles treated with 60 mg L-1 of microplastics (PE-MPs), 10 µg 

L-1 of tetrabromobisphenol A (TBBPA) and their mixture (TBBPA+ PE-MPs) at 30 days 

of exposure. Boxes indicate the median, the 25th and 75th percentiles (box edges), and 

whiskers indicate the range. * p< 0.05 compared with the control 
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Fig. 2 Carboxylesterase activity with 1-naphthyl acetate substrate (CbE nmol min−1 mg−1 

TP) in R. arenarum control tadpoles (CO), tadpoles treated with 60 mg L-1 of 

microplastics (PE-MPs), 10 µg L-1 of tetrabromobisphenol A (TBBPA), and their mixture 

(TBBPA + PE-MPs) at 30 days of exposure. Boxes indicate the median, the 25th and 75th 

percentiles (box edges), and whiskers indicate the range. * p< 0.05 compared with the 

control 
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Fig. 3 Glutathione reductase activity (GR nmol min−1 mg−1 TP) in R. arenarum control 

tadpoles, tadpoles treated with 60 mg L-1 of microplastics (PE-MPs), 10µg L-1 of 

tetrabromobisphenol A (TBBPA) and their mixture (TBBPA + PE-MPs) at 30 days of 

exposure. Boxes indicate the median, the 25th and 75th percentiles (box edges), and 

whiskers indicate the range. * p< 0.05 compared with the control 
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Fig. 4 Glutathione-S-transferase activity (GST nmol min−1 mg−1 TP) in R. arenarum 

control tadpoles, tadpoles treated with 60 mg L-1 of microplastics (PE-MPs), 10 µg L-1 of 

tetrabromobisphenol A (TBBPA) and their mixture (TBBPA + PE-MPs) at 30 days of 

exposure. Boxes indicate the median, the 25th and 75th percentiles (box edges), and 

whiskers indicate the range. *p< 0.05 compared with the control 
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Fig. 5 Alkaline phosphatase activity (ALP U mg−1 TP) in R. arenarum control tadpoles, 

tadpoles treated with 60 mg L-1 of microplastics (PE-MPs), 10 µg L-1 of 

tetrabromobisphenol A (TBBPA) and their mixture (TBBPA + PE-MPs) at 30 days of 

exposure. Boxes indicate the median, the 25th and 75th percentiles (box edges), and 

whiskers indicate the range. * p< 0.05 compared with the control 
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Fig. 6 Cholesterol level (CHOL U mg−1 PT) in R. arenarum control tadpoles, tadpoles 

treated with 60 mg L-1 of microplastics (PE-MPs), 10 µg L-1 of tetrabromobisphenol A 

(TBBPA) and their mixture (TBBPA + PE-MPs) at 30 days of exposure. Boxes indicate 

the median, the 25th and 75th percentiles (box edges), and whiskers indicate the range. * 

p< 0.05 compared with the control 
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Fig. 7 Thyroid hormone (T4 U ng g−1) in R. arenarum control tadpoles, tadpoles treated 

with 60 mg L-1 of microplastics (PE-MPs), 10µg L-1 of tetrabromobisphenolA (TBBPA) 

and their mixture (TBBPA + PE-MPs) at 30 days of exposure. Boxes indicate the median, 

the 25th and 75th percentiles (box edges), and whiskers indicate the range. * p< 0.05 

compared with the control 
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Fig. 8 Transverse scanning electron microscope images of the intestine of tadpoles. Detail 

of intestine of control individual (A); and detail of intestine of tadpoles treated with PE-

MPs at low (B) and high magnification (C); detail of intestine of tadpoles treated with 

TBBPA + PE-MPs showing the presence of MPs (D). References: Polyethylene 

microplastic (MP), intestinal wall (IW). 
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Fig. 9 Histological images of intestine of R. arenarum tadpoles in different treatments. 

Intestine of control tadpole (A), intestine of tadpoles treated with PE-MPs (B), TBBPA + 

PE-MPs (C and D) and TBBPA (E, F). References: microplastic (PE-MPs), mucosal 

epithelial cells (MEC), intestinal wall (IW), melanocytes (asterisk). 
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Fig. 10 Analysis of the liver of R. arenarum tadpoles. Melanomacrophage number in liver 

expressed as mean±standar deviation in different treatments. The different letters above 

the bars indicate significant differences between groups (p<0.05) (A); histological 

microphotographs of liver (H&E) from control, PE-MPs and TBBPA + PE-MPs   (B, C, 

and D respectively) treatments. References: hepatocyte (H), melanomacrophage (black 

circle), hepatocyte vacuolization (head arrow). B: 40x, scale bar: 20 µm; C,D: 100x, scale 

bar: 10 µm.  
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