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1. Introduction

Let us consider the dilated functions gg(x) = Rinw(%), R > 0, of a nonnegative integrable function ¢ defined on R" such
that f ¢ = 1.1t is well known that the study of the a.e. convergence and the convergence in the [’ norm of the averages
Prf =f * g to f as R — O is related to the behavior of the maximal operator M, f (X) = supg. If| * @r(X).

When ¢(x) = ¢%(x) = Cuo (1 — [X|00)* Xo0,1)(X), Where X = (X1, ..., Xn), [X|oo = MaXi<i<p [Xi], =1 < a < 0,and G, o
is such that [ ¢® = 1, we have
2n+acn o

Pef (x) = PEF(x) = / 050 Ry
Q(x,R

lQ(x, R)|T+e/n
where Q(x, R) = [x; — R, x1 + R] X --- X [x, — R, x, + R], d(y, 9Q (x, R)) is the distance in the infinity norm from y to the
boundary of Q (x, R) and |E| is the Lebesgue measure of the set E. These averages are called Cesaro-« averages. The maximal
operator associated to these averages is (essentially)

Mf (x) = sup [fFd(y, 9Q(x, R)* dy.

o |
k>0 1Q(x, R/ Jo e r

If« = 0, M{ is the centered Hardy-Littlewood maximal operator which is simply denoted by M¢. The non-centered
Hardy-Littlewood maximal operator is Mf (x) = supycq @ fQ If )| dy, where the supremum is taken over all the cubes Q
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such that x € Q (throughout the paper, a cube will be a cube with sides parallel to the axis). The non-centered version of
the Cesaro-o maximal operator is given by
1
Mqf (x) = sup 7/ [FId(y, 9Q)* dy.
* xeQ |Q|1+a/n Q

The operators M and M€ are pointwise equivalent. Classical results assert that M and M€ are of weak type (1, 1) and of strong
type (p,p), 1 < p < +o0o, with respect to the Lebesgue measure. The characterizations of the boundedness of M¢ (M) in
weighted spaces are well-known (see [1] and [2]).

It follows from the results in [3] that MS, —1 < « < 0, is of restricted weak type (]_%a, p%a) and, consequently, it is of
1

strong type (p, p) forp > ; v with respect to the Lebesgue measure. It is not clear if M, and M are pointwise equivalent for
a # 0. Therefore, the boundedness of M, cannot be obtained from the corresponding result for M. However, the weighted
inequalities for M, are equivalent to the corresponding one for M, (see [4]). We shall state below the results obtained in [4].
In order to state them, we introduce definitions and notations.

A non-negative measurable function (a weight) w satisfies A, o, —1 < @ < 0,1 < p < +00, and we write w € Ap 4, if
there exists C > 0 such that

1/p ) / 10 )
Apa (/ w(y) dy) (f w7 (y)d(y, 3Q)*P dy) < clo*t,
Q Q

for every cube Q, where p’ is the conjugate exponent of p. Observe that A, o = A, is the Muckenhoupt A, class. We recall
that w satisfies A, if there exists C > 0 such that Mw(x) < Cw(x) for a.e. x. By definition, A; g is A. It is clear that A, , C Ap.

Consequently, if w € A, , and w is not the function zero a.e. then w and w7 are locally integrable and 0 < w, w7 < 0o
a.e. Other property is in the following theorem (Corollary 3.4 in [4]).

Theorem 1 ([4]).Let —1 <« < 0,1 < p < 400, and let w be a weight on R". If w satisfies Ap o, then there exists s € (1, p)
such that w satisfies Ab 4

The weighted weak LP-norm of a measurable function f is defined by ||f [|p.co () = Supy-g Alw({x € R" : [f(X)| > k})]%
1

and P (w) = {f : [flwow) < oo}, where w(E) = [, w. The weighted [P-norm of f is [If lpw) = (fpn [fIPw)? and
P(w) = {f : lIfllpaw) < oo}. The following result (see [4]) characterizes the weighted weak and strong type inequalities
for M{ and M,,.

Theorem 2 ([4]). Let w be a weightonR", 1 < p < coand —1 < « < 0. Let S, be either M, or MS. The following conditions
are equivalent.

(@) w € Apa-

(b) Thereis C > 0 such that ||Sef .oy < CIIf lpw) for all f € LP(w).

(c) Thereis C > 0 such that ||Sef lip(w) < Cllf lpqwy for all f € LP(w).

From this result, it is easy to prove that for all f € [P(w) with w € A, ,, the averages P§f converge to f a.e. and in the
[’ (w)-norm as R — 0.

The restricted weak type inequalities require other classes of weights. A weight w satisfies RA, o, 1 < p < 400, if there
exists C > 0 such that

RApo (/ w>p </ XeWd(y, 3Q)“dy> <clQ|™w (/ Xsw)p (3)
Q Q Q

for all cubes Q and all measurable sets E. It was proved (see [5]) that RA, o = RA, characterizes the restricted weak type for
M.

Theorem 4 ([4]). Let w be aweightonR", 1 < p < ooand —1 < o < 0. Let S, be either M, or MS. The following conditions
are equivalent.
(a) w € RAp .
1
(b) Thereis C > 0 such that ||Se xgllp-oow) < Cllxellr@w) = (w(E))? for every measurable set E.

As before, it is easy to prove that if w € RA, , then the averages Pgf converge to f almost everywhere for all f € P (w)
asR — 0,where IP'(w) = {f : If | p.1() = !l)fowxl/lﬂw({x ER": |f(x)| > A} 1 dr < o0},

Remark 5. We point out that we can only have non-trivial restricted weak-type inequalities if p > 1/(1 + «) (the proof is
as the proof in Theorem 8, the multilinear case, in Section 3). It follows from Theorem 1 that if there is a non-trivial function
inA, o, o #0,thenp > 1/(1 + ).
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Let us fix a natural number m > 1. Let us take real numbers p; and «;,i = 1,...,m,p; > land —1 < «; < 0. Let
p

fi € IPi(w;) with w; € Ay, o Then, limg_o [T™, P&'f; = T[], f ae. and in the [?(v)-norm, where v = []™, w” and

% =y, ﬁ. The conditions w; € Ay, o, are sufficient to obtain that [ ], My, satisfies the following (multilinear) weighted

strong type inequality: || [T, Mq, () “w(v) < CTTE, Wfillpi cup -
The maximal operator associated to [ ], Py'f; is, up to a constant,

m

ME(F)(x) = sup

1
B / ) 1(dy, 9Q(x, R)™ dy,
R=0i_1 [Q(x, R)|"T 7 Jowm

wheref =(fi,...,fm)and a = (a1, ..., am). Since M, (f) < ]_[?;] M, (f;) it is reasonable to think that weaker conditions
on the weights would imply the boundedness of M, in the weighted space. In this way we reach to the aim of this article:
to characterize the weights for which we have restricted weak type, weak type and strong type inequalities for M_. We
follow the ideas in [6] where the authors studied the case @ = 0 = (0, ..., 0), that is, the multi(sub)linear version of
the Hardy-Littlewood maximal operator M€ := Mg This operator is used in [6] “to obtain a precise control on multilinear
singular integral operators of Calderén-Zygmund type”. The results in [6] are used in [7] to study the convergence of ergodic
multilinear averages. The study of M in this paper will be useful to study the Cesaro-o ergodic multilinear averages,
extending the study in [7].

2. Statement of the main results

We collect in the next theorem some of the main results in [6]. The space [ (wq) X --- X [Pm(w,,) will be denoted by

Hirll LPi(wy).

m 1

Theorem 6 (see [6]). For i = 1,...,m,let 1 < p; < oo and let p be such that % = > o Let w; be weights and

vi = [T, w”?. The following statements are equivalent.

(i) There is C such that ||Mc(f)||,p,oo(%) < CTIE, Wfillpi cup) (f € T, L7 (wy)).
(ii) w € Ap, that is, there exists C > 0 such that for all cubes Q

IR AN L
—_— w —_— i ! SC7
<|Q|/Q”) H(quw )

_o\ Up;
where (@ fQ wil p‘) is understood in the case p; = 1 as (ess inf .o w;i(x)) ™.
If pi > 1foreveryi, thgn (i) and (ii) are equivalent to the following.
(iif) There is C such that | M (F)llpwg) < C Ty IWillpscuy (F € TTi L2 (i),

Ap is related to Muckenhoupt A, conditions in the following way (see [6]):

- 1-p} .
W E A & vy €Ay, and  w; p'eAmpé, i=1,...,m, (7)
1-p} . .
where w; i e Ay in the case p; = 1is understood as wil/m € A;.
1
Our aim is to extend this theorem to the Cesaro maximal operator M. This extension is not straightforward. We explain
in the next few lines one of the difficulties that appear in the study of M.

The results in Theorem 6 are stated for the noncentered multilinear Hardy-Littlewood maximal operator M (f )X) =
SUDyeq ]—[;":1 ﬁ fQ lfi(y)| dy. Since M and M€ are pointwise equivalent, it is clear that the boundedness in (i) and (iii) is
equivalent to the corresponding ones for .M. The pointwise equivalence of .M and M€ makes easier some parts of the proof.
However that is not the situation when we work with the Cesaro maximal operators. Therefore, we have to work harder
to obtain the condition on the weights from the boundedness of M. For future reference, we define the non-centered
multilinear version of the Cesaro maximal operator by

- m 1
M (F)(x) = sup]_[ — /Q [iI(d(y, 3Q))“ dy.
i=1

XeQ i_ |Q|1+%
The restricted weak-type inequalities are relevant for the case a # 0. These inequalities were not studied in [6] for
a = 0 but the proof in this case is easy. Since the proof for arbitrary & exemplifies the difference indicated above, we start

our study of Mz and M, characterizing the restricted weak-type weighted inequalities. To state our first main result we
introduce some notation: given m measurable sets E;, we denote (xg,, ..., Xg.) DY Xi-
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Theorem 8. Foreachi=1,...,mlet -1 <a; <0, & =01+ -+ am 1 <p; < ooandletpbesuchthat%:Z{”:] I7li'

IJ
Let w; be weights and vy = ]_[, ] w '. The following statements are equivalent.

(i) Thereis C > 0 such that | Mg (XE)”]_PDO(VW) < C]_[l_1 | XE; | pi (wy) for all measurable sets E;, i =1, ..., m.
(ii) There is C > O such that || M (XE)IILpoc(vw) < C]_[ —1 1 Xg; | pi (wy) for all measurable sets E;, i =1, ..., m.
(iii) W € RA; 5, that is, there is C > 0 such that

1

p M 1 m pli
W o i )d s aQ)md <C (/ ; i)
(/Qv ) H<|Q|H" /QXE(.V (0% }’) ll:! QXEIU

for all cubes Q and all measurable setsE;,i =1, ..., m.

If vy is not 0 a.e. and statement (iii) holds then p; > - for all i.

—1+

As we have already said, this theorem is new even in the case & = 0. However, we remark that it is not very difficult
to see that (i) < (iii). The proof of (i) = (iii) is straightforward. To prove (iii) = (ii) we follow the ideas in [6] but we
have to use that (iii) implies that v satisfies the doubling condition (this is not necessary when a = 0 because in this case
it suffices to estimate ,M(f) = M°). The stronger difficulty appears when a # 0 in the proof of (ii) = (iii) since we cannot
use that Mz and M are pointwise equivalent. In particular, as in [4], we establish the implication proving that (ii) implies
certain conditions of one-sided nature.

Our next step is the characterization of the weak type inequalities.

Theorem 9. Fori = 1,...,mlet =1 < & <0,& = a1+ -+ &, & = & — @, 735 < pi < 0c. Let p be such that
5= 21 5 Let wybe Wezghts and vy, = [, w?/”. The following statements are equivalent.

(i) There is C such that || Mz (f)||ww(uu) < CTTi; Wfillpi cuyy (fi € L7 ().

(ii) There is C such that ||-M (f)||LP°°(v,,,) < CTTE, Wfillpiuy (fi € LPH(wi)).
(iii) W € Ay, that is, there exists C > 0 such that for all cubes Q

/
1/p;

1 Ve m 1 , ,
(— f v@) [T\ — / wi)'dy, 0Q) "y | <,
1Ql Jo i1 1490 Jo
Q|
"‘il’,{ / o ;o .
where (|Q|71= fQ wi(y)Pid(y, 9Q)%Pidy)/Pi in the case p; = 1 (consequently, «; = 0) is understood as
(essinf yeqwi(x)) ™.
(iv) The following conditions hold.
(a) vy GAm
(b) wil_p" cA - foralli=1,..., mand
l m
(©) w" € Amy; o, foralli=1,...,m wherer; = (m — 1)p; + 1.

If vy is not 0 a.e. and (iii) holds then p; > for alli such that o; # 0.

1
1+

To prove the theorem we follow the ideas in [6], except when we work with the centered multilinear maximal operator.
To prove (ii) = (iii) we have to show (ii) = (iv) = (iii). As in the first theorem, for the implication (ii) = (iv) we prove
that (ii) 1mp11es conditions of one-sided nature.

When & = 0 then conditions (b) and (c) in statement (iv) are equivalent because, for 1 < g < co,u € A; & u=7 e Ay
Therefore, when o = 0 the equivalence between (iii) and (iv) is nothing but the equivalence (7).

Ifm=1(p=p,w =wand & = ), the conditions in (iv) yield v; = w € Ay, w'? € Ay o = Ay and w € A, . Since
Ap.« C Ap, they are equivalent to vy = w € A, , (statement (iv) is statement (a) in Theorem 2).

The following theorem shows that «j ; also characterizes the weighted strong type inequalities for the multilinear
maximal Cesaro operators.

Theorem 10. Fori = 1,...,m,let —1 < «; < 0 and 1+
statements are equivalent.

(i) There is C such that | Mz (Pl < C [Ty Wfillicuy G € L% (wi)).

(ii) There is C such that || M¢ (f)IILp(Uw) <C ]_[l 1 Willipi oy (Fi € LPH(wy)).
(iii) W € Ap 5.

% < Di < oo Let p, w; and vy be as in Theorem 9. The following
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The main tool to prove this theorem is the characterization of the weak type and the following openness property of the
condition A 5.

Theorem 11. For i = 1,...,m, let oy, p;, p, w; and vy be as in Theorem 10. If w € Ap 5 then there exists r > 1 such that

%>, = oD € (=1.0lforalli=1,....m and i € Aj ;.

Notice that if § = % and gq; are the coordinates of g then q; < p; foralli.If m > 1then 8; < «; and we have that
WE Ajg => W € g 5 for some g and some B such that g; < p; and B; < «;; this is an improvement of the result in [6] in

the casea = 6 where this implication was proved with B =0.We point out that our argument in the proof of Theorem 11
is not the same as the corresponding result in [6]. When m = 1, the above theorem gives the result proved in [4]: if w € A, o
then there exists r > 1such thatw € Ap .

Throughout the paper, if 1 < p < oothenp’isits conjugate exponent and the letter C is used to denote positive constants
whose values may change from line to line.

3. Proof of Theorem 8
First of all we give a result about the weights w; and v;,.

Proposition 12. Foreachi = 1, ..., m, let p;, p, w; and vy be as in Theorem 8. Then there exists C > 0 (we can take C = 2™)
such that for each measurable set E of finite measure we can choose measurable subsets G, ..., G, C E such that C|G;| > |E]|,

1
i=1,...,mand [, (fc,-wi>pi EC(fEul;,)zli.

Proof. For any measurable set F of finite measure and any A > 0, let A?,F = {x € F : wij(x) < Avy(x)}. Notice that there
exists A such that |A};| > J|F|.
Let us fix any measurable set E of finite measure. Let F; = E and Ay = inf{A : |A’}qF1 | > %|F1 |}. It is clear that A; > 0. Let

f1 be such that 21 < y1q < 2q. Then |A§}F]| > || and |A{} | < 3IFi| Let F = Fy \ A} . Clearly |Fy| > 3|Fi| = 3IE|.

Let A, = inf{% : |AS ;| > 3|F,|} and let up be any number such that 2 < p, < Ay;then |A;fF2 > 1|F| > ;|E| and

|AY2. | < 1|F,|. We continue in this way choosing sets F;, numbers A; and u;, i = 1,...,m — 1, such that |Fj| > =< |E|,
2,F 2 2i—1
|Aﬁfﬁ,| > LIEL 1AL | < IR and & < i < A Let Fyy = Fyyg \ Ayl . Notice that [F| > 3|Fn_1| > 5i|E|. Let us take
G = A?}i fori =1,...,m— 1and G, = F;. Clearly |G;| > zim|E| foralli = 1, ..., m. By the definition of the sets G; we
have

wi(X) < Ajvg(x), x€G,i=1,...,m—1. (13)

For G, we have the following inequality:

m—1 Pm
wn () < [ [0 P vi (0, x € Gp. (14)
i=1

P
In fact, since F, = ﬂ?:ll (E \Af}i) we have that wi(x) > uvy (), for x € F, and i # m. Consequently, vz = [, w" >
p o

P Py
T8 i) vy Pm=1 wrm and (14) follows. Putting together (13) and (14) we obtain

1 1 1
Pi ml o\ i 2 P
o) =<1 (3) T/, )
[(Le)" =<l TI(]
1 1
1_ 1 p P
< 2°¢ Pm(/v,;) §2m_1</v,;)> . O
E E

To prove (ii) = (iii) in Theorem 8, we introduce some classes of weights.

Definition 15. For eachi = 1,...,m, let o4, @, p;, p, w; and v; be as in Theorem 8. It is said that w satisfies RAi& 0
k=1, ...,n,ifthere exists C > 0 such that

1 m i
b @ i
RA- ., : @ d(y. Q)% dy ) < ClQ|™* ¥ / i) 10
pak (/l; ’ ) zl:! </VkﬁEi v y) @l D < VieEj ’ "



196 A.L. Bernardis et al. / ]. Math. Anal. Appl. 397 (2013) 191-204

for all cubesQ = Q(z,R),z = (z4, ..., zy), and all measurable sets E;,i = 1, ..., m, where
U= Kz, ) N {y 1 yi > 2}, Vie= Kz, N {y -y < 2} (17)
and K (z, R) = {y €Q@R:lyi—zl <lw—zlji=1....n}.

The class RAp &k is defined analogously changing the roles of Uy and V4.

Notice that if m = 1 then RA; 5 coincides with the class RA, := RAp o introduced in (3). If m = 1 then the classes RA* Sk

will be simply denoted by RA;,(. We notice that it follows from the results in [4] that

n
RA, = [(RAT,NRA, ). p=1. (18)
k=1
Taking into account these notations, we have the following result.

Proposition 19. Let p;, p, w;, and vy be as in Definition 15. Let RAp a = ﬂk 1(RAP ax ;f& PR w e RNA;,@ then vz € RApm.

Proof. Let Q be any cube and let E be any measurable set. Assume that w € RA;,,&. Clearly w € R~AI-J’5. Therefore, for
k=1, ...,n, and for each family of measurable sets E;,i = 1, ..., m, we have that

(/U ) [TEnv=clar H(/V Ew,)p", (20)
k i=1 kMEj

i=1
ENU <C m ,-pfi. 21
(/ ) g| d < ClQ H(ﬁmw) (21)

By Proposition 12 with E = E N V} and taking E; = G; in (20) we have that

1 1
mp mp
(f o) wova=cai(f w)”.
Uk ViNE

fork =1, ..., m.In asimilar way, Proposition 12 with E = E N Uy and (21) give

1 1
mp mp
</ vw) |E O Ukl ECIQI</ Vzb) -
Vi UkNE

Therefore, vy € (- ](RAmpk ) and then, by (18), v;, € RAp,. O

=

D=

mp k

Remark 22. It is clear that if v; € RA,, then vy is an Ay, weight, so it is doubling. As a consequence, or taking E = Uy and
E = Vj in the definition of RA,p, we get that v;(Q) < Cvg(Ui) and v3(Q) < Cvg (V).

The following lemma shows the relationship between the one-sided conditions RA ak and RAﬂ & With the general
condition RA; 5 (see (iii) in Theorem 8). This lemma is a key result in the proof of Theorem 8.

Lemma 23. Let p;, p, w;, and vy be as in Definition 15. Then RAM =RA;5.

Proof. It is obvious that RA; 5 C RAAM because the sets Uy, Vi, C Q.Let w € RNA;,@ and let us see that w € RA; . Assume
first that @ is equal to (0, ..., &j, .. ., 0), that is, all the numbers «; are zero, except possibly the one in the place j. It follows
from Proposition 19 and Remark 22 that there exists C > 0 such that for all cubes Q and every k = 1, ..., n, we have
vi(Q) < Cvy;(Uy) and vy (Q) < Cvy (Vi), where Uy and V, are the sets associated to the cube Q in Definition 15.

We have to prove that w € RA; 5, that is, there exists a constant C > 0 such that for all cubes Q and all measurable sets
Ej,i: 1,...,m,

(/ va,)p (/ Xg; WAy, E)Q)"fdy) ]_[ ENQ| < clQ™7 H(/ U)i)pi.
Q i=1,i#j i=1 Ei

We estimate the left hand side in the following way:

(/ v) (/ X500, BQ)"fdy> [T ol = Z(/ %)p
Q i=1,i#j k=1 Q

+Z</ v@)p(/ PERLI 8Q)“fdy) H ENQ|=1+II.
k=1 \WQ

i=1,i#j

( / X5 (0)d(y, 9Q)° dy) ﬂ EN Q|

i=1,i#j
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We shall only estimate I since II is estimated in a similar way. It will suffice to obtain the estimate for each term in the sum
of I. We shall do it for k = 1 and without loss of generality we assume j = 1. Let Q be a cube such that forally € Uj,
d(y,9Q) = d(y, 9Q), |Q| is comparable to |Q | and Q C Uy, where Uy is the set U, associated to Q (see the figure below).

Q

Uy

Uy

Then, since d(y, Q) = d(y, 3Q), forally € Uy,

(/ v@)” (/ 1, A0, 3Q)“1dy> [[Enal < </ v) (ﬁ X0 A, aé)“ldy) [TEnal
Q Uy i=2 Q Uy i=2

If \71 is the set V;_associated to a we have vj, (a) < Cvjy (\71) by the doubling property of v;. This inequality and the
assumption w € RA; z give

; m ’ iy ) T 5
( / vw) < f Xe, A, BQ)‘”dy> [JEENalI=<c < f va;) ( f~ Xein d(y, 9Q)* dy) [TIEN@NU
Q Uy i=2 Vi Uy i=2
m & wp i
<l I1 (/~ XEmQM)p <ce™ ] (/ XE,-wi>p :
Q

i=1 \WUi i=1
This proves the lemma in the particular case @ = (0, .. ., aj, ..., 0).
We prove now the general case. Let us fix a cube Q and sets E1, . . ., E,. By Proposition 12 applied to the set E = Q there
exist subsets Gy, . .., Gy such that
m 1 1
. Pi b
CIGl>1Ql, i=1,...,m, and H(/w) §C</v,;,> : (24)
i=1 Gi Q
Since w € R7\;,ﬁ then w € R7\5,5,j, where ; = (0, ..., qj, ..., 0) for all j. By what we have already proved we have that

NE= RAp ;. For fixed j, we apply that w E RAp 5; in the cube Q and with the sets E{ = G;ifi # jand E]] = E;. Then we obtain

v (@) (/ X0, 3Q)“fdJ/> [ I6nal =cior# (/
Q

1
- 1
i m B
w) TL([ )"
i=1,ij E i=1,ij \YGi

j
for some constant independent of j and the sets. Multiplying these inequalitiesonj = 1, ..., m we have
m m m m-—1 - m % m mp—’l]
v3(Q)P (I_[/ X5 Wd(y, BQ)“fdy) (1‘[|Gi|) <cQm™ ] (/ wj) [1 </ wi) :
j=1YQ i=1 Ej i=1 \YGi

j=1
Then, the lemma follows from (24) and the last inequality. O
Now we are ready to prove the characterization of the restricted weak type weighted inequalities for (.

Proof of Theorem 8. The implication (i) = (ii) is obvious. To prove (ii) = (iii) it will suffice to see that w € R7\;,,5 =

n - +
Mk (RAﬁ,&,k n RAﬁ,&,k)'

Assume that (ii) holds and consider for each k = 1,...,n, the following non-centered multi(sub)linear maximal
operators
- m 1
NoWf () = sup 7%/ i d(y, 9Q)“ dy (25)
xelUp@R) i1 |Q(z, )| 7 Jver
and
5 m 1
Nifo = swp [|——= / i)ld(y, 8Q)% dy, (26)
xeV@R =1 [Q(z, |7 Juee.r
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where U, = Uy (z R) and V}, = Vi (z, R) are the sets con51dered in Definition 15 associated to the cube Q = Q(z, R). Itis easy
to see that N <f(x) < CM“f(x) and A kf(x) < CMCf(x) forallk =1, ..., nand all measurable function f (see the proof
of Proposition 2.3 in [4]). Then we get the inequality in (ii) for the operators N({k and Ngk. In order to see that w € R~A;,,&,
let Q = Q(z, R) be a fixed cube, and let U, = Uk(z,R) and V;, = Vi(z,R), k = 1,... ,’ n, its associated sets considered
in Definition 15. Let E4, ..., E;; be measurable sets. For each k we consider the multilinear function f(gk = (XE‘;’ e, XErkn)

with Ef = E; N V. For x € Uy we have N, (Xz) %) > []Z, ﬁ fVI Xek () d(y, 9Q)%dy = 1. Then, using that A,
QI T Tk ’
satisfies (ii),

v U0 = va (s N () 0 2 2) =

>"(‘3

m
p
H gk 15,

Therefore

(/ v'l’)p 1_[ (/ Xek (Y, 3Q)afdy) <clo™n 1_[ (/ XEiwi) i
Y i=1 Vi i=1 \JVi

Then we get that w € RAET,&.k' In a similar way, using that Najfk satisfies (ii) we obtain that w € RA;‘&’,{. Thus w € R7\;,@ as
we wished to prove.
Finally, we prove (iii) = (i). Using the assumption (iii) we get, for every cube Q, that

n 1/pi 1
1_[ |Q|1+ 7 / XE WAy, 0Q)%dy < Cl_[ (/Q )(Eiwl-) (

1/p
i=1 i=1 fQ Uﬁ))

L ] wi ]/Px m l/pl
- ,11 <V@(Q) AXEi%Ua'> = ,11 (M, (xgwivi ™) ()

where M, is the Hardy-Littlewood maximal operator associated to the measure vy (x)dx defined as M, f(X) = supycq
i3 Jo VO 0y
By Proposition 19, Lemma 23 and Remark 22 we have that vy is a doubling weight. Then M, is of weak type (1, 1)

with respect to v;. It follows from the last inequality, Holder’s inequality for weak-spaces [8, p.15] and the weak-type (1, 1)
inequality for M, that

IA

—1\11/pi
wivy ]

M (Y= 00 (1) _
” a(XE)”pr(vw) Vip IPi+%° (17 )

m
C [T My Geewivs ™%, < Cl_[ e, 191y
i=1

and we are done.
Finally, we are going to prove that if w is not the function zero a.e. and w € RA; 5 then p; > 1/(1 + «;). We shall prove

itfori = 1.Since w € RA; 5 implies thatw e RA where B = (a1, 0,...,0), we may assume that ; = O foralli > 2.
There exists N such that the sets iy = {x : w; (x) < N} have positive measure for all i. Let z be a Lebesgue point of the
locally integrable functions vy, wixg y and xgy,i = 1,...,m, such that v;(z) # 0. Without loss of generality, we may

assume thatz = 0.LetQ = Q(0,R) and E;, = Q(0, (1 — A)R) \ Q(0, (1 —2MR),0 < A < 1/4. Notice that ifx € E; then
d(x, 3Q)*1 > (2AR)* = A“1]|Q|*/" and C;A < ‘\ZI‘ < GA (Cy and G, depend on n but they are independent of ). Now,
keeping in mind these inequalities, we apply that w € RA; i with the cube Q and the sets E; = E, NFy y and E; = Fyn,i > 2.

Then we obtain

1

1 b 1|Ex NFin| 7 IFiv N Q|
5 )\,]_H)[lQ

<|Q|/Q”> =g g

i=2

1

1 /1 P12 i 11
<c@lQpm (H/ﬁ: XFy W ) 1—[<|Q|/XF,v,Nwi> Qe »1.
A

1=

Notice that, for fixed A, the family E; = E; (R) is a regular family which shrinks nicely to 0. If we let R tend to 0 we obtain

T . .
A T¥17B1 < (. Since A can be chosen so small as we wish, we have 1+ «; — i >0. O
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4. Proof of Theorem 9
If ¢; = 0O for all i then our theorem is Theorem 6 (proved in [6]). From now on, we assume «; # O for some i which implies

pi > 1and pm > 1. We study only the case m > 1 since the case m = 1 is contained in Theorem 2.
To prove (i) = (iii), we work with the one-sided multi(sub)linear maximal operators N P and QAL defined in

(25) and (26). We also need to introduce the following multilinear classes of weights: for k = 1 ,n, 1t is said that
w = (wq, ..., wn) satisfies Aﬂ ak if there is C > 0 such that
1/p!
1 Vp m 1 s S\
= ol — = P — . —b; aip;
‘Aﬁ,&,k : <|Q| /U Vw) l_[ il /\; w;i(y) d(y, 0Q)“*idy <C (27)
k i=1 |Q|]+T k

for all cubes Q = Q(z, R), where Uy and Vj are the sets defined in (17) (if p; = 1 then (|Q|‘l‘aiTpi ka wi(y)l_Pfd(y, 8Q)°‘”’1{

dy)l/p§ is understood as (essinkawf)*1 ). The class Ag"&,k is defined changing the roles of Uy and V.

The following theorem contains the proof of (iii) < (iv) and shows the relationship between the multilinear classes of
weights with a family of suitable linear conditions.

Theorem 28. For i = 1,...,m, let o;, @, ai, p,, w; and vy be as in Theorem 9 and assume that «; # O for some i. Let
w = (wy, .. wm) Let Ap @ mk:I(‘A’ﬁ ax Aﬁ a «)- Then the following statements are equivalent.
(i) w e ,A,;,,;,
(ii) The following conditions hold.

(@) vy € Amp

1-p; . . .
(b) w; MleA , &, foralli=1, ..., m wherein the case p; = 1is understood as wi”m € Ay and
mpys m

1

(c) wf" €Amy o, foralli=1,...,m withri = (m— 1)p; + 1.
(iii) @ € Apa.

Proof of Theorem 28. In this proof we shall use the following lemma (see [4]). From now on, when m = 1 the classes A« S

a,k

and .A a.x are denoted byA .k and At respectively.

Dok’

Lemma 29 ([4]). Let w be a weight on R" and let —1 < o < 0.If 1 < p < oo then w satisfies A, o if and only if
w e ﬂZ:l( pakﬂApak)

In the proof we consider the sets ] = {i : p; = 1}and H = {i : p; > 1}.
(i) = (ii). Let us prove (a). Let k € {1, ..., n}. It follows from the assumptions that pm > 1 since p; > 1 for some i. By

Hélder’s inequality with exponents s; = p;((';p U ifi € Hands; = +o0 if i € J, we have that

m
’ a ’ ___P .
f Vi)' d(y, Q)™ dy = / [Twi) 7™ T dey, aQ)“ w7 dy
Vie Vi i=1
p(pi—1)

<C ]_[ (/ wi(y)lip‘{d(y’ 8Q)a"p'{dy) pi(mp—T1) 1—[ (ess irlfyevkwi(y))_% .

ieH i€/

Since w € Ef,,a - Aﬁ a0 We get that vy € A’p Changmg the role of the sets Uy and V, we also obtain that v; € AJr Gy

for all k. By Lemma 29 we get (a). Since A, , C A for any p and «, then (a) implies that vy is doubling.
Assume p; > 1. To prove (b), it suffices to show that for all k

ol -— & e &
( / w?”")'"”" ( / (w)'#) ™" gy, 9Q)# dy) " <, (30)
Ek Fy

1-p;

withE, = Uy, Vi and F, = Uy, Vi. These inequalities imply that wi]_p" €A & ’ and w; e A" ey for all k; consequently,
mpj. g -k mpj. Gy ok
by Lemma 29 we have w 1 € A_, . We shall prove (30) with (Ex, Fx) = (Uy, Uy), being similar the proof of the case

mpl

(Ex, F) = (Vi, Vi).Once these mequalltles have been proved, we observe that (30) with (E, Fy) = (Uy, Uk) 1mp11es the same

inequality for &; = 0 which is equivalent to w e Amp/ Therefore, w " is doubling. In particular, fu i <C ka
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and ka wilfpi <C ka wilfp". These inequalities together with (30) in the cases (Ey, Fy) = (U, Uy) and (Ey, Fy) = (Vk, Vi)
imply (30) with (Ey, Fx) = (Uk, Vi) and (Ex, F) = (Vi, Up).
Now we prove (30) in the case (E, Fy) = (U, Uy). Observe that

_1 _1
(/ w"l_p;)mpifc'Q'_% ([ “""”“pgd@ﬁQ)W"'{dY)mpi' G31)
Uk Uy

On the other hand, with r; = (m — 1)p; + 1, we write

1 ~ 1- 1/
AN— o 7N/ mp;
= (/ (wi(y)l‘p") ™ d(y, Q) m ™Y dy)
Uk

Ti

PR i B e\ P
= f wi)i [] wo P we) 7 [] do, o7 dy) . (32)
Ut J=1.j J=1.ji
By Holder’s inequality with s; = ”p—r]_" and s; = (pjlirli)Pi forj e H,j #i,ands; = +oo forj € ], we get that

. om i Si Sx'rTlP:
< / wt [ wo¥ ) dy
Uk J=1j

_ P w\Y g _
x 1_[ [/ (wj(y) B d(y, aQ)a]ri> dy]} H[essinfyeukwj(y)] )
jeH j#i LY Uk

Jj€l

El

Then, since v is a doubling weight, we have that

I; §C( / uﬁ,)ﬁ I ( f w].l"’f(y)d(y,aQ)“ipf dy>m7"f]_[[ess infyeu,w;M] ™. (33)
Vi Uk

JEH. j#i i€l

IS

Putting together (31), (33) and using (i) we get (30) with (E, Fr) = (U, Uy).
To prove (c), we argue as before and, consequently, we only have to prove

& i 1 _m—%—l A By G 1+
(/u wil> /U(wi()’)r") Tod(y,0Q)™ 1 dy < C|Q| "m. (34)
k k

To prove it we use (33) (see the definition of I; in (32)) and we obtain

i T

1N mpy A 1 ipj mp; g
<[ wf) |Q[ ™ mm (/ wi(y)id(y, 0Q) i dy) = Q|7 m];
Uk Uk

1 1

@ mp m —p aip! mp]

clo|~m (f u,;,) I1 (f w;(y)' Fid(y, 8Q) ,p,dy> K
Vi jeH j#i Uk

x 1_[ [ess infyey, wj(y)]_% .

Jj€l

IA

IA

Then, using that w € ,X;,@ C A;‘T,&,k- we obtain (34) as follows:

i 1
N PN af ey G
<f wﬁ) (/ () 1‘10’,3Q)’"(”)dy>
Uk Uk

1 1
<clol~m (/ v,;J> ' [ (/ w )" d(y., 8Q)“fpfdy> "
Uy Uk

jeH

_1 @ & o
x [ [ess infyey,wy)] ™ < ClQI~m Q| = || .
Jjel
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Now we prove (b) and (c) fori € J, that is w:/m € A;. It suffices to prove that for all cubes Q and some k
1 w]/m

— /™ < Cess infy,w, ™. (35)
|Q| Uk

Inequality (35) implies that w e A as follows: :as in the proof of Lemma 23 given a cube Q there exists a cube Q such
that |Q| is comparable to |Q| and QC Uk. where Uk is the set U associated to Q by (35)

1l / < 5 Jo,wi'™ = Cessinfgw™ < Cessinfow; ™

Let us prove (35). By Holder’s inequality with exponent pm, we have

pm—1

1 1% mip N p-(prifl) "
[ ([omef) () on
U Uk i Uk jeH

jeH

Lets; = (m — 1/p)p]f,j € H. Assume first that s; > 1 for allj € H. Applying Holder’s inequality with exponents s; and the
, a;pl
inequality d(y, 3Q) %% < |Q|f%, we obtain

L 1
m AN 1-9] wrl o \ ™
/u u' = (fu wfﬂwﬁ) H(/,, w; " @)d(y, 1Q)" dY> 7 lqIm. (37)
k k j j k

jeH jeH
If sj, = 1 for some jo then p; = 1for alli # j,. Consequently, H = {jo} and inequality (37) follows from (36) since
, a-p’.
d(y, 9Q) i < |Q|*# (in this case we do not need to use Hélder’s inequality). By (i) and using that v is doubling, we

obtain (35) as follows:

1

2\ ™ ~m
/1.1 w:/m <C (/u wawﬁ) </U v,;,) H(ess infy, w;) /™ |Q|
k k j k j

<
jeH jel
1
N ™
<cC /wf7 1_[ wfl_[wjf /v,;J (ess infy,w) /™|Q|
Ue  jelj#i  jeH Uk

= Cess infy, w; 1/m Q.
(i) = (iii). We consider again the sets | and H. Let #(H) be the number of elements of H. Notice that

CECI ) 1 —1
Qe " = C/ d(y,9Q) m vy (y)mrvy(y) mrdy
Q

= ¢ [ a0 000 d 00" v 0 T o)y

i=1

/vw(y) " d(y, 9Q) Hw"‘"' Wy, 3Q) ot l_[w'"z () dy.

ieH i€/

2 .
By Hélder’s inequality with sy = % ands; = ™2 i=1,..., m, weget

a#H) __1\% a5 %
|Q| nm? < C (/ (Vﬂ)(y) mzp) d(V’ aQ) m? dy)
Q

x l_[[/ ) d(y, 9Q)  d ]l_[[f w,'(y)i'?dy}
ieH igf LYQ
mp—1

__1 _ap m2p
=C (/ vip (y) m=1d(y, 9Q) -1 dJ’>
Q

<[] ( f w)tdy.00) dy) 11 [ [ wio dy}
Q

ieH ief
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Raising to the mth power,

mp—1
1 @ "
1<c (H/ va ()T d(y, 9Q) T dy)
1g|Famn Ja
1 1 a@ipi mTI
<1 —= [ w»7dy.90) 7 ay / (38)
ier \ |Q|"Tm e icj |Q|

By Hélder’s inequality with s; = '"r—f" we get

m /1 Ny
, — R 39
U(m/ ) (|Q|/Qw‘ ) 39

1
I e B
where <ﬁ fQ w; pi- ) " is understood as (ess ianw,-) ym if p; = 1. Multiplying inequalities (38) and (39) and the result
by

mpl{

(i / vw)ﬁﬁ — / i)y, 00" dy | (40)
|Q| Q i=1 |Q|l+ Q

and using (ii) we obtain that (40) is smaller than a constant C, as we wished to prove.
Finally, the implication (iii) = (i) is obvious since Uy, V, C Q. O

Proof of Theorem 9. (i) = (ii) is obvious. To prove (ii) = (iii) we consider the operators V| P and .A/gk Since N~ kf x) <

CMﬂf(x) and M- kf(x) < CMCf(x) we get that the inequality in (ii) holds for ¥, and CAA . Proceeding as in Lemma 2.4

in [4] we get that w € ,A 5.a which is equivalent to w € ;5 by Theorem 28.
To prove (iii) implies (i), notice that by Hélder’s inequality we get if p; > 1

_ 1/pi e , 1/p}
/ﬁ(y)d(y’ )y = <fﬁ'plw"> </ wi(y) Pimtd(y, 8Q)“"‘°"dy> .
Q Q Q

and if p; = 1 (o; = 0) then fQﬁ(y)d(y, 0Q)%dy < (fQﬁwi) (ess ianwi)_] . Now, by using the hypothesis we get

[l oo soro el ([rw) " ([ )"
il Jo =1 \Jo ¢

1

It follows that Mz(F)(x) < CT~, [M,, (fip"w,‘vgﬁl(x))]l/p", where M, is the Hardy-Littlewood maximal operator
associated to the doubling measure v (x)dx (by Theorem 28, v; € Amp,g C App). Using Hélder’s inequality for weak-

spaces [8, p.15] and the weak-type (1, 1) inequality for M. we get

v< (fpl w;v ]1/131

Lpi’oc(‘)ﬁ;)

m
<cC H M (Prwvs ™ %) = € ﬂ Wil -
i=

1

It follows from Remark 5 and w," € Amp; o that m?’ > 1+1°"' , o # 0, which is equivalent to p; > H%
room m 1

5. Proof of Theorems 11 and 10

Proof of Theorem 11. Let & € ;5. Using Theorem 28 and Theorem 1 we get that there exists i > 1 such that
1

w," € Amy . We also have W € . By Holder’s inequality with s; = mf"' and s} = p’?f"

rori’m L

rori

m Ao _aNeoom N L\
|Q|rom — 1_[ </ wimpl w; mm) < l_[ (f win) </ w; pi— > i ] (41)
i=1 Q i=1 Q Q
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1
Since w € Amp; o, We have

TOTI m
n i :”OTE __To oipj _:"0712 U e -
I1 / w] / wiy) T d(y, 0Q) e dy) = c [l =l (42)
i=1 Q Q i=1

Using (41), (42) and w € A we obtain

LI 1_Toti
mp I ap; mp; &
Qe (f va,) [ (/ wily) T d(y, 8Q) ™07 dy) S =l
Q i=1 Q
Taking r = m and B; = «; M we get that r;_r‘;or 1— (k) and mp"“”; = = Bi(E)". Then the above inequality

can be written as

mr __ITj

r/p m Piy/ To T Bi
(/ ”"‘) 1 (Jo m)'=#'aw. 904 ay)* 7 < claims,
Q i=1
where we have used T—Or (m —ro(m—1)+ %) =m-+ g Since T—Or — %" = [(%)’]‘1, we are done. 0O

Proof of Theorem 10. Since (i) = (ii) is trivial and by Theorem 9 we get that (ii) = (iii), we shall only prove (iii) = (i).
As in the proof of Theorem 3.7 in [6] it is enough to prove that there exists § < 1 such that

M) < c]"[ s (PPwfvz®) o] (43)

In fact, by Hoélder’s inequality with exponents % and the strong type (%, %) inequality of M, with respect to the measure
Vi we get

(fm&(?npv@)f [/li o (FPOwivs )];;,,WT

[t o] sefi (o)

i=1

Now, we shall prove (43). Let § be such that max;_; } < § < 1, where r is the number in Theorem 11. By

----- P
Hélder's inequality with exponent p;8,

pié—1

EL @p;d pid
me(md(y,aQ)“fdy < (/Q filPPw) v~ 5) (/w(y) T g, () T d(y, Q) T 1dy)

— |f'|pi6 8 1 5 i I
- 0 1 Wi Vg t

Let A = M=D ¢ i clear that A € (0, 1) and

a;jAp;d a;(1=1)8p; (S’:SXTTI
Ii= (f wi(y) =T Vi (y)m 1d(y 9Q) P Td(y, Q) AT dy)
Lets; = ra(f;"fl) We have that's; > 1 and, for later computations, l, = W. By Holder inequality with exponent s;
i Si i
we get that

i—T
pir

r ﬂii
< (/ wiy) AT d(y, aQ)szfdy) I,
Q

pio—1

(8- aj(1-2)p;8s]

p,éslf
where II; = (fQ vy (y) P T T d(y,0Q) T dy) and B; = O‘iw- Now, choosing § close to 1 such that

Spi— 1 (1= L)pidsit!
ti = pl/— >~ 1 and M > _‘1’
(1= 29)s;(mp —1) pid — 1
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and applying Holder’s inequality with t; we get

(1=8)(mp—1) ) 5 "
7m171 T O‘I(]n”‘)+p':7l/

i< (| vy"™ Ql O

Q

(For subsequent computations, notice that /[/ =

l 1

1 _ (A=9ump-1)

7 3T .) Putting together the above estimates and using that
i 1

Vi, € Amp We get that
l_[/ i) ld(y. 9Q)*dy < CH( f ) 1P wi ()P v (v) '~ )
i=1Q — w(Q)

i=1

pi—1r 1
m o Bini. DI p M (11— b)mp+a,(1 A)+ -1
x l_[(f wi(y) vrrd(y,a@ﬂrf) (/ ) [T s

i=1

Then, using Theorem 11 we get

- Id, 0Q)%dy < ] | ‘“‘S>?i
|m+ /If(y)I(y Q)dy < H(w(Q)/[f wiv!

i=1
pio—1

m
_a (- A)m a(l A) Y
< (1™ F1aF #1015 1 T 101

i=1

Since the last factor is 1 we are done. O
6. Remarks and examples

We start establishing some properties of the linear classes A, . Assume that p(1+ o) > 1. Applying Holder’s inequality,
it is easy to see that A; C Ay, for 1 < g < p(1 + ). Using that w € A, = A,_, we have Ay(14a) C Ap .. Other interesting
relationisthatw € Ay = w € RA% « We can also see that a power weight

+a

wx) =X’ €Apa & —n<p<ph+a)—nsx’ chye. (44)

These properties in the one-sided case can be found in [9].

Example 45. We work in R (n = 1) with m = 2. We assume that p, & satisfy the assumptions on Theorem 9. Let

w1 (x) = [x]”1 and w,(x) = |x|"2. We are going to determme the conditions on y; and y; to have w € 3 ; or, equivalently,

(a) vy eA2 (b)wl o €A, ,a,,forl =1,2and (c )w € Ay o, fori = 1,2, wherer; = p; + 1. Using (44), W € A; 5
Pi:2 T2

if and only ifthe following relations hold: —1 < E% + Eyz <2p+plr+ar) —1,—p1 — 1 —proa < y1 < p1— 1,

—p2—l1—-pou<y<pp—lL-pi—1l<yi<pit+pier—land—p, — 1 <y, <pr+proz — 1.
letpr =2,pp =4,p=4/3, 01 = —1/3,a2 = —1/2.

(1) If y1 = —1,y, = Othen W € w4j 5 but wy & Ap, o,. Therefore, My applies LP1 (w1) x LP2(w,) into LP(vy) but My, is not
bounded in [P (w4).

(2) If y1 = —1 = y, then (b) and (c) are satisfied but (a) is not satisfied.

(3) Ify; = 1/3,» = —11/3 + ¢, & small, then (a) and (b) are satisfied but (c) is not satisfied (the second condition in (c) is
satisfied).

Notice that in this example (a) and (c¢) imply (b).
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