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a b s t r a c t

The study of the almost everywhere convergence of the product of m Cesàro-α averages
leads to the characterization of the boundedness of the associated multi(sub)linear
maximal operator. We characterize weighted weak type and strong type inequalities
for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez,
R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the
multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222–1264.]. We also study
the restricted weak type inequalities which are of particular interest in our case (they were
not considered by Lerner et al.).
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1. Introduction

Let us consider the dilated functions ϕR(x) =
1
Rn ϕ( x

R ), R > 0, of a nonnegative integrable function ϕ defined on Rn such
that


ϕ = 1. It is well known that the study of the a.e. convergence and the convergence in the Lp norm of the averages

PRf = f ∗ ϕR to f as R → 0 is related to the behavior of the maximal operatorMϕ f (x) = supR>0 |f | ∗ ϕR(x).
When ϕ(x) = ϕα(x) = Cn,α(1 − |x|∞)αχQ (0,1)(x), where x = (x1, . . . , xn), |x|∞ = max1≤i≤n |xi|, −1 < α ≤ 0, and Cn,α

is such that


ϕα
= 1, we have

PRf (x) = Pα
R f (x) =

2n+αCn,α

|Q (x, R)|1+α/n


Q (x,R)

f (y)d(y, ∂Q (x, R))α dy,

where Q (x, R) = [x1 − R, x1 + R] × · · · × [xn − R, xn + R], d(y, ∂Q (x, R)) is the distance in the infinity norm from y to the
boundary of Q (x, R) and |E| is the Lebesgue measure of the set E. These averages are called Cesàro-α averages. The maximal
operator associated to these averages is (essentially)

Mc
α f (x) = sup

R>0

1
|Q (x, R)|1+α/n


Q (x,R)

|f (y)|d(y, ∂Q (x, R))α dy.

If α = 0, Mc
α is the centered Hardy–Littlewood maximal operator which is simply denoted by Mc . The non-centered

Hardy–Littlewood maximal operator isMf (x) = supx∈Q
1

|Q |


Q |f (y)| dy, where the supremum is taken over all the cubes Q
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such that x ∈ Q (throughout the paper, a cube will be a cube with sides parallel to the axis). The non-centered version of
the Cesàro-α maximal operator is given by

Mα f (x) = sup
x∈Q

1
|Q |1+α/n


Q

|f (y)|d(y, ∂Q )α dy.

The operatorsM andMc are pointwise equivalent. Classical results assert thatM andMc are ofweak type (1, 1) and of strong
type (p, p), 1 < p ≤ +∞, with respect to the Lebesgue measure. The characterizations of the boundedness of Mc (M) in
weighted spaces are well-known (see [1] and [2]).

It follows from the results in [3] that Mc
α , −1 < α ≤ 0, is of restricted weak type ( 1

1+α
, 1

1+α
) and, consequently, it is of

strong type (p, p) for p > 1
1+α

with respect to the Lebesguemeasure. It is not clear ifMα andMc
α are pointwise equivalent for

α ≠ 0. Therefore, the boundedness ofMα cannot be obtained from the corresponding result forMc
α . However, the weighted

inequalities forMα are equivalent to the corresponding one forMc
α (see [4]). We shall state below the results obtained in [4].

In order to state them, we introduce definitions and notations.
A non-negative measurable function (a weight) w satisfies Ap,α , −1 < α ≤ 0, 1 < p < +∞, and we write w ∈ Ap,α , if

there exists C > 0 such that

Ap,α :


Q

w(y) dy
1/p 

Q
w1−p′

(y)d(y, ∂Q )αp
′

dy
1/p′

≤ C |Q |
1+ α

n ,

for every cube Q , where p′ is the conjugate exponent of p. Observe that Ap,0 = Ap is the Muckenhoupt Ap class. We recall
that w satisfies A1 if there exists C > 0 such thatMw(x) ≤ Cw(x) for a.e. x. By definition, A1,0 is A1. It is clear that Ap,α ⊂ Ap.
Consequently, ifw ∈ Ap,α andw is not the function zero a.e. thenw andw1−p′

are locally integrable and 0 < w,w1−p′

< ∞

a.e. Other property is in the following theorem (Corollary 3.4 in [4]).

Theorem 1 ([4]). Let −1 < α ≤ 0, 1 < p < +∞, and let w be a weight on Rn. If w satisfies Ap,α , then there exists s ∈ (1, p)
such that w satisfies A p

s ,α .

The weighted weak Lp-norm of a measurable function f is defined by ∥f ∥Lp,∞(w) = supλ>0 λ[w({x ∈ Rn
: |f (x)| > λ})]

1
p

and Lp,∞(w) = {f : ∥f ∥Lp,∞(w) < ∞}, where w(E) =

E w. The weighted Lp-norm of f is ∥f ∥Lp(w) =


Rn |f |pw

 1
p and

Lp(w) = {f : ∥f ∥Lp(w) < ∞}. The following result (see [4]) characterizes the weighted weak and strong type inequalities
forMc

α and Mα .

Theorem 2 ([4]). Let w be a weight on Rn, 1 < p < ∞ and −1 < α ≤ 0. Let Sα be either Mα or Mc
α . The following conditions

are equivalent.

(a) w ∈ Ap,α .
(b) There is C > 0 such that ∥Sα f ∥Lp,∞(w) ≤ C∥f ∥Lp(w) for all f ∈ Lp(w).
(c) There is C > 0 such that ∥Sα f ∥Lp(w) ≤ C∥f ∥Lp(w) for all f ∈ Lp(w).

From this result, it is easy to prove that for all f ∈ Lp(w) with w ∈ Ap,α , the averages Pα
R f converge to f a.e. and in the

Lp(w)-norm as R → 0.
The restricted weak type inequalities require other classes of weights. A weight w satisfies RAp,α , 1 ≤ p < +∞, if there

exists C > 0 such that

RAp,α :


Q

w

 1
p


Q
χE(y)d(y, ∂Q )αdy


≤ C |Q |

1+ α
n


Q

χEw

 1
p

(3)

for all cubes Q and all measurable sets E. It was proved (see [5]) that RAp,0 = RAp characterizes the restricted weak type for
M .

Theorem 4 ([4]). Let w be a weight on Rn, 1 ≤ p < ∞ and −1 < α ≤ 0. Let Sα be either Mα or Mc
α . The following conditions

are equivalent.

(a) w ∈ RAp,α .

(b) There is C > 0 such that ∥SαχE∥Lp,∞(w) ≤ C∥χE∥Lp(w) = (w(E))
1
p for every measurable set E.

As before, it is easy to prove that if w ∈ RAp,α then the averages Pα
R f converge to f almost everywhere for all f ∈ Lp,1(w)

as R → 0, where Lp,1(w) = {f : ∥f ∥Lp,1(w) =
1
p


∞

0 λ1/pw({x ∈ Rn
: |f (x)| > λ}) 1

λ
dλ < ∞}.

Remark 5. We point out that we can only have non-trivial restricted weak-type inequalities if p ≥ 1/(1 + α) (the proof is
as the proof in Theorem 8, the multilinear case, in Section 3). It follows from Theorem 1 that if there is a non-trivial function
in Ap,α , α ≠ 0, then p > 1/(1 + α).
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Let us fix a natural number m > 1. Let us take real numbers pi and αi, i = 1, . . . ,m, pi > 1 and −1 < αi ≤ 0. Let

fi ∈ Lpi(wi) with wi ∈ Api,αi . Then, limR→0
m

i=1 P
αi
R fi =

m
i=1 fi a.e. and in the Lp(ν)-norm, where ν =

m
i=1 w

p
pi
i and

1
p =

m
i=1

1
pi
. The conditions wi ∈ Api,αi are sufficient to obtain that

m
i=1 Mαi satisfies the following (multilinear) weighted

strong type inequality:
m

i=1 Mαi(fi)

Lp(ν)

≤ C
m

i=1 ∥fi∥Lpi (wi).

The maximal operator associated to
m

i=1 P
αi
R fi is, up to a constant,

Mc
α⃗(f⃗ )(x) = sup

R>0

m
i=1

1

|Q (x, R)|1+
αi
n


Q (x,R)

|fi(y)|(dy, ∂Q (x, R))αi dy,

where f⃗ = (f1, . . . , fm) and α⃗ = (α1, . . . , αm). Since Mc
α⃗
(f⃗ ) ≤

m
i=1 Mαi(fi) it is reasonable to think that weaker conditions

on the weights would imply the boundedness of Mc
α⃗
in the weighted space. In this way we reach to the aim of this article:

to characterize the weights for which we have restricted weak type, weak type and strong type inequalities for Mc
α⃗
. We

follow the ideas in [6] where the authors studied the case α⃗ = 0⃗ = (0, . . . , 0), that is, the multi(sub)linear version of
the Hardy–Littlewood maximal operator Mc

:= Mc
0⃗
. This operator is used in [6] ‘‘to obtain a precise control on multilinear

singular integral operators of Calderón–Zygmund type’’. The results in [6] are used in [7] to study the convergence of ergodic
multilinear averages. The study of Mc

α⃗
in this paper will be useful to study the Cesàro-α ergodic multilinear averages,

extending the study in [7].

2. Statement of the main results

We collect in the next theorem some of the main results in [6]. The space Lp1(w1) × · · · × Lpm(wm) will be denoted bym
i=1 L

pi(wi).

Theorem 6 (see [6]). For i = 1, . . . ,m, let 1 ≤ pi < ∞ and let p be such that 1
p =

m
i=1

1
pi
. Let wi be weights and

νw⃗ =
m

i=1 w
p/pi
i . The following statements are equivalent.

(i) There is C such that ∥Mc(f⃗ )∥Lp,∞(νw⃗) ≤ C
m

i=1 ∥fi∥Lpi (wi) (f⃗ ∈
m

i=1 L
pi(wi)).

(ii) w⃗ ∈ Ap⃗, that is, there exists C > 0 such that for all cubes Q
1

|Q |


Q

νw⃗

1/p m
i=1


1

|Q |


Q

w
1−p′

i
i

1/p′
i

≤ C,

where


1
|Q |


Q w

1−p′
i

i

1/p′
i
is understood in the case pi = 1 as (ess inf x∈Qwi(x))−1.

If pi > 1 for every i, then (i) and (ii) are equivalent to the following.
(iii) There is C such that ∥Mc(f⃗ )∥Lp(νw⃗) ≤ C

m
i=1 ∥fi∥Lpi (wi) (f⃗ ∈

m
i=1 L

pi(wi)).

Ap⃗ is related to Muckenhoupt Ap conditions in the following way (see [6]):

w⃗ ∈ Ap⃗ ⇔ νw⃗ ∈ Amp and w
1−p′

i
i ∈ Amp′

i
, i = 1, . . . ,m, (7)

where w
1−p′

i
i ∈ Amp′

i
in the case pi = 1 is understood as w

1/m
i ∈ A1.

Our aim is to extend this theorem to the Cesàro maximal operator Mc
α⃗
. This extension is not straightforward. We explain

in the next few lines one of the difficulties that appear in the study of Mc
α⃗
.

The results in Theorem 6 are stated for the noncentered multilinear Hardy–Littlewood maximal operator M(f⃗ )(x) =

supx∈Q
m

i=1
1

|Q |


Q |fi(y)| dy. Since M and Mc are pointwise equivalent, it is clear that the boundedness in (i) and (iii) is

equivalent to the corresponding ones for M. The pointwise equivalence of M and Mc makes easier some parts of the proof.
However that is not the situation when we work with the Cesàro maximal operators. Therefore, we have to work harder
to obtain the condition on the weights from the boundedness of Mc

α⃗
. For future reference, we define the non-centered

multilinear version of the Cesàro maximal operator by

Mα⃗(f⃗ )(x) = sup
x∈Q

m
i=1

1

|Q |
1+ αi

n


Q

|fi(y)|(d(y, ∂Q ))αi dy.

The restricted weak-type inequalities are relevant for the case α⃗ ≠ 0⃗. These inequalities were not studied in [6] for
α⃗ = 0⃗ but the proof in this case is easy. Since the proof for arbitrary α⃗ exemplifies the difference indicated above, we start
our study of Mα⃗ and Mc

α⃗
characterizing the restricted weak-type weighted inequalities. To state our first main result we

introduce some notation: givenm measurable sets Ei, we denote (χE1 , . . . , χEm) by χ⃗E⃗ .
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Theorem 8. For each i = 1, . . . ,m, let −1 < αi ≤ 0, ᾱ = α1 + · · · + αm, 1 ≤ pi < ∞ and let p be such that 1
p =

m
i=1

1
pi
.

Let wi be weights and νw⃗ =
m

i=1 w

p
pi
i . The following statements are equivalent.

(i) There is C > 0 such that ∥Mα⃗(χ⃗E⃗)∥Lp,∞(νw⃗) ≤ C
m

i=1 ∥χEi∥Lpi (wi) for all measurable sets Ei, i = 1, . . . ,m.
(ii) There is C > 0 such that ∥Mc

α⃗
(χ⃗E⃗)∥Lp,∞(νw⃗) ≤ C

m
i=1 ∥χEi∥Lpi (wi) for all measurable sets Ei, i = 1, . . . ,m.

(iii) w⃗ ∈ RAp⃗,α⃗ , that is, there is C > 0 such that
Q

νw⃗

 1
p m

i=1


1

|Q |
1+ αi

n


Q

χEi(y)d(y, ∂Q )αidy


≤ C

m
i=1


Q

χEiwi

 1
pi

for all cubes Q and all measurable sets Ei, i = 1, . . . ,m.

If νw⃗ is not 0 a.e. and statement (iii) holds then pi ≥
1

1+αi
for all i.

As we have already said, this theorem is new even in the case α⃗ = 0⃗. However, we remark that it is not very difficult
to see that (i) ⇔ (iii). The proof of (i) ⇒ (iii) is straightforward. To prove (iii) ⇒ (ii) we follow the ideas in [6] but we
have to use that (iii) implies that νw⃗ satisfies the doubling condition (this is not necessary when α⃗ = 0⃗ because in this case
it suffices to estimate Mc

0⃗
= Mc). The stronger difficulty appears when α⃗ ≠ 0⃗ in the proof of (ii) ⇒ (iii) since we cannot

use that Mα⃗ and Mc
α⃗
are pointwise equivalent. In particular, as in [4], we establish the implication proving that (ii) implies

certain conditions of one-sided nature.
Our next step is the characterization of the weak type inequalities.

Theorem 9. For i = 1, . . . ,m, let −1 < αi ≤ 0, ᾱ = α1 + · · · + αm,αi = ᾱ − αi, 1
1+αi

≤ pi < ∞. Let p be such that
1
p =

m
i=1

1
pi
. Let wi be weights and νw⃗ =

m
i=1 w

p/pi
i . The following statements are equivalent.

(i) There is C such that ∥Mα⃗(f⃗ )∥Lp,∞(νw⃗) ≤ C
m

i=1 ∥fi∥Lpi (wi) (fi ∈ Lpi(wi)).
(ii) There is C such that ∥Mc

α⃗
(f⃗ )∥Lp,∞(νw⃗) ≤ C

m
i=1 ∥fi∥Lpi (wi) (fi ∈ Lpi(wi)).

(iii) w⃗ ∈ Ap⃗,α⃗ , that is, there exists C > 0 such that for all cubes Q
1

|Q |


Q

νw⃗

1/p m
i=1

 1

|Q |
1+

αip
′
i

n


Q

wi(y)1−p′
id(y, ∂Q )αip′

idy

1/p′
i

≤ C,

where (|Q |
−1−

αip
′
i

n

Q wi(y)1−p′

id(y, ∂Q )αip′
idy)1/p

′
i in the case pi = 1 (consequently, αi = 0) is understood as

(essinf x∈Qwi(x))−1.
(iv) The following conditions hold.

(a) νw⃗ ∈ Amp, ᾱ
m
,

(b) w
1−p′

i
i ∈ A

mp′
i,
αi
m
, for all i = 1, . . . ,m and

(c) w
1
ri
i ∈ Ampi

ri
,
αi
m
, for all i = 1, . . . ,m, where ri = (m − 1)pi + 1.

If νw⃗ is not 0 a.e. and (iii) holds then pi > 1
1+αi

for all i such that αi ≠ 0.

To prove the theoremwe follow the ideas in [6], except when we work with the centered multilinear maximal operator.
To prove (ii) ⇒ (iii) we have to show (ii) ⇒ (iv) ⇒ (iii). As in the first theorem, for the implication (ii) ⇒ (iv) we prove
that (ii) implies conditions of one-sided nature.

When α⃗ = 0⃗ then conditions (b) and (c) in statement (iv) are equivalent because, for 1 < q < ∞, u ∈ Aq ⇔ u1−q′

∈ Aq′ .
Therefore, when α⃗ = 0⃗ the equivalence between (iii) and (iv) is nothing but the equivalence (7).

If m = 1 (p⃗ = p, w⃗ = w and α⃗ = α), the conditions in (iv) yield νw⃗ = w ∈ Ap,α , w1−p′

∈ Ap′,0 = Ap′ and w ∈ Ap,α . Since
Ap,α ⊂ Ap, they are equivalent to νw⃗ = w ∈ Ap,α (statement (iv) is statement (a) in Theorem 2).

The following theorem shows that Ap⃗,α⃗ also characterizes the weighted strong type inequalities for the multilinear
maximal Cesàro operators.

Theorem 10. For i = 1, . . . ,m, let −1 < αi ≤ 0 and 1
1+αi

< pi < ∞. Let p, wi and νw⃗ be as in Theorem 9. The following
statements are equivalent.

(i) There is C such that ∥Mα⃗(f⃗ )∥Lp(νw⃗) ≤ C
m

i=1 ∥fi∥Lpi (wi) (fi ∈ Lpi(wi)).
(ii) There is C such that ∥Mc

α⃗
(f⃗ )∥Lp(νw⃗) ≤ C

m
i=1 ∥fi∥Lpi (wi) (fi ∈ Lpi(wi)).

(iii) w⃗ ∈ Ap⃗,α⃗ .
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The main tool to prove this theorem is the characterization of the weak type and the following openness property of the
condition Ap⃗,α⃗ .

Theorem 11. For i = 1, . . . ,m, let αi, pi, p, wi and νw⃗ be as in Theorem 10. If w⃗ ∈ Ap⃗,α⃗ then there exists r > 1 such that
pi
r > 1, βi = αi

1+r(m−1)
m ∈ (−1, 0] for all i = 1, . . . ,m, and w⃗ ∈ A p⃗

r ,β⃗
.

Notice that if q⃗ =
p⃗
r and qi are the coordinates of q⃗ then qi < pi for all i. If m > 1 then βi < αi and we have that

w⃗ ∈ Ap⃗,α⃗ ⇒ w⃗ ∈ Aq⃗,β⃗ for some q⃗ and some β⃗ such that qi < pi and βi < αi; this is an improvement of the result in [6] in
the case α⃗ = 0⃗, where this implication was proved with β⃗ = 0⃗. We point out that our argument in the proof of Theorem 11
is not the same as the corresponding result in [6]. Whenm = 1, the above theorem gives the result proved in [4]: ifw ∈ Ap,α
then there exists r > 1 such that w ∈ A p

r ,α .
Throughout the paper, if 1 < p < ∞ then p′ is its conjugate exponent and the letter C is used to denote positive constants

whose values may change from line to line.

3. Proof of Theorem 8

First of all we give a result about the weights wi and νw⃗ .

Proposition 12. For each i = 1, . . . ,m, let pi, p, wi and νw⃗ be as in Theorem 8. Then there exists C > 0 (we can take C = 2m)
such that for each measurable set E of finite measure we can choose measurable subsets G1, . . . ,Gm ⊂ E such that C |Gi| ≥ |E|,

i = 1, . . . ,m, and
m

i=1


Gi

wi

 1
pi

≤ C


E νw⃗

 1
p .

Proof. For any measurable set F of finite measure and any λ > 0, let Aλ
i,F := {x ∈ F : wi(x) ≤ λνw⃗(x)}. Notice that there

exists λ such that |Aλ
i,F | > 1

2 |F |.
Let us fix any measurable set E of finite measure. Let F1 = E and λ1 = inf{λ : |Aλ

1,F1
| > 1

2 |F1|}. It is clear that λ1 > 0. Let

µ1 be such that λ1
2 < µ1 < λ1. Then |Aλ1

1,F1
| ≥

1
2 |F1| and |Aµ1

1,F1
| ≤

1
2 |F1|. Let F2 = F1 \ Aµ1

1,F1
. Clearly |F2| ≥

1
2 |F1| =

1
2 |E|.

Let λ2 = inf{λ : |Aλ
2,F2

| > 1
2 |F2|} and let µ2 be any number such that λ2

2 < µ2 < λ2; then |Aλ2
2,F2

| ≥
1
2 |F2| ≥

1
4 |E| and

|Aµ2
2,F2

| ≤
1
2 |F2|. We continue in this way choosing sets Fi, numbers λi and µi, i = 1, . . . ,m − 1, such that |Fi| ≥

1
2i−1 |E|,

|Aλi
i,Fi

| ≥
1
2i

|E|, |Aµi
i,Fi

| ≤
1
2 |Fi| and

λi
2 < µi < λi. Let Fm = Fm−1 \ Aµm−1

m−1,Fm−1
. Notice that |Fm| ≥

1
2 |Fm−1| ≥

1
2m |E|. Let us take

Gi = Aλi
i,Fi

for i = 1, . . . ,m − 1 and Gm = Fm. Clearly |Gi| ≥
1
2m |E| for all i = 1, . . . ,m. By the definition of the sets Gi we

have

wi(x) ≤ λiνw⃗(x), x ∈ Gi, i = 1, . . . ,m − 1. (13)

For Gm we have the following inequality:

wm(x) <

m−1
i=1

(µi)
−

pm
pi νw⃗(x), x ∈ Gm. (14)

In fact, since Fm =
m−1

i=1


E \ Aµi

i,Fi


we have that wi(x) > µiνw⃗(x), for x ∈ Fm and i ≠ m. Consequently, νw⃗ =

m
i=1 w

p
pi
i >m−1

i=1 (µi)
p
pi ν

p
p1

+···+
p

pm−1
w⃗

w
p
pm
m and (14) follows. Putting together (13) and (14) we obtain

m
i=1


Gi

wi

 1
pi

≤ C
m−1
i=1


λi

µi

 1
pi

m
i=1


Gi

νw⃗

 1
p

≤ 2
1
p −

1
pm


E
νw⃗

 1
p

≤ 2m−1


E
νw⃗

 1
p

. �

To prove (ii) ⇒ (iii) in Theorem 8, we introduce some classes of weights.

Definition 15. For each i = 1, . . . ,m, let αi, ᾱ, pi, p, wi and νw⃗ be as in Theorem 8. It is said that w⃗ satisfies RA−

p⃗,α⃗,k,
k = 1, . . . , n, if there exists C > 0 such that

RA−

p⃗,α⃗,k :


Uk

νw⃗

 1
p m

i=1


Vk∩Ei

d(y, ∂Q )αi dy


≤ C |Q |
m+

ᾱ
n

m
i=1


Vk∩Ei

wi

 1
pi

(16)
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for all cubes Q = Q (z, R), z = (z1, . . . , zm), and all measurable sets Ei, i = 1, . . . ,m, where

Uk = Kk(z, R) ∩ {y : yk ≥ zk}, Vk = Kk(z, R) ∩ {y : yk ≤ zk} (17)

and Kk(z, R) = {y ∈ Q (z, R) : |yj − zj| ≤ |yk − zk|, j = 1, . . . , n}.
The class RA+

p⃗,α⃗,k is defined analogously changing the roles of Uk and Vk.

Notice that if m = 1 then RAp⃗,0⃗ coincides with the class RAp := RAp,0 introduced in (3). If m = 1 then the classes RA±

p⃗,0⃗,k

will be simply denoted by RA±

p,k. We notice that it follows from the results in [4] that

RAp =

n
k=1

(RA+

p,k ∩ RA−

p,k), p ≥ 1. (18)

Taking into account these notations, we have the following result.

Proposition 19. Let pi, p,wi, and νw⃗ be as in Definition 15. Let RAp⃗,α⃗ :=
n

k=1(RA
−

p⃗,α⃗,k ∩RA+

p⃗,α⃗,k). If w⃗ ∈ RAp⃗,α⃗ then νw⃗ ∈ RApm.

Proof. Let Q be any cube and let E be any measurable set. Assume that w⃗ ∈ RAp⃗,α⃗ . Clearly w⃗ ∈ RAp⃗,0⃗. Therefore, for
k = 1, . . . , n, and for each family of measurable sets Ei, i = 1, . . . ,m, we have that

Uk

νw⃗

 1
p m

i=1

|Ei ∩ Vk| ≤ C |Q |
m

m
i=1


Vk∩Ei

wi

 1
pi

, (20)


Vk

νw⃗

 1
p m

i=1

|Ei ∩ Uk| ≤ C |Q |
m

m
i=1


Uk∩Ei

wi

 1
pi

. (21)

By Proposition 12 with E = E ∩ Vk and taking Ei = Gi in (20) we have that
Uk

νw⃗

 1
mp

|E ∩ Vk| ≤ C |Q |


Vk∩E

νw⃗

 1
mp

,

for k = 1, . . . ,m. In a similar way, Proposition 12 with E = E ∩ Uk and (21) give
Vk

νw⃗

 1
mp

|E ∩ Uk| ≤ C |Q |


Uk∩E

νw⃗

 1
mp

.

Therefore, νw⃗ ∈
n

k=1(RA
+

mp,k ∩ RA−

mp,k) and then, by (18), νw⃗ ∈ RAmp. �

Remark 22. It is clear that if νw⃗ ∈ RAmp then νw⃗ is an A∞ weight, so it is doubling. As a consequence, or taking E = Uk and
E = Vk in the definition of RAmp, we get that νw⃗(Q ) ≤ Cνw⃗(Uk) and νw⃗(Q ) ≤ Cνw⃗(Vk).

The following lemma shows the relationship between the one-sided conditions RA+

p⃗,α⃗,k and RA−

p⃗,α⃗,k with the general
condition RAp⃗,α⃗ (see (iii) in Theorem 8). This lemma is a key result in the proof of Theorem 8.

Lemma 23. Let pi, p, wi, and νw⃗ be as in Definition 15. Then RAp⃗,α⃗ = RAp⃗,α⃗.

Proof. It is obvious that RAp⃗,α⃗ ⊂ RAp⃗,α⃗ because the sets Uk, Vk ⊂ Q . Let w⃗ ∈ RAp⃗,α⃗ and let us see that w⃗ ∈ RAp⃗,α⃗ . Assume
first that α⃗ is equal to (0, . . . , αj, . . . , 0), that is, all the numbers αi are zero, except possibly the one in the place j. It follows
from Proposition 19 and Remark 22 that there exists C > 0 such that for all cubes Q and every k = 1, . . . , n, we have
νw⃗(Q ) ≤ Cνw⃗(Uk) and νw⃗(Q ) ≤ Cνw⃗(Vk), where Uk and Vk are the sets associated to the cube Q in Definition 15.

We have to prove that w⃗ ∈ RAp⃗,α⃗ , that is, there exists a constant C > 0 such that for all cubes Q and all measurable sets
Ei, i = 1, . . . ,m,

Q
νw⃗

 1
p


Q
χEj(y)d(y, ∂Q )αj dy

 m
i=1,i≠j

|Ei ∩ Q | ≤ C |Q |
m+

αj
n

m
i=1


Ei

wi

 1
pi

.

We estimate the left hand side in the following way:
Q

νw⃗

 1
p


Q
χEj(y)d(y, ∂Q )αj dy

 m
i=1,i≠j

|Ei ∩ Q | =

n
k=1


Q

νw⃗

 1
p


Uk

χEj(y)d(y, ∂Q )αj dy
 m

i=1,i≠j

|Ei ∩ Q |

+

n
k=1


Q

νw⃗

 1
p


Vk
χEj(y)d(y, ∂Q )αj dy

 m
i=1,i≠j

|Ei ∩ Q | = I + II.
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We shall only estimate I since II is estimated in a similar way. It will suffice to obtain the estimate for each term in the sum
of I . We shall do it for k = 1 and without loss of generality we assume j = 1. Let Q be a cube such that for all y ∈ U1,
d(y, ∂Q ) = d(y, ∂Q ), |Q | is comparable to |Q | and Q ⊂ U1, where U1 is the set U1 associated toQ (see the figure below).

Then, since d(y, ∂Q ) = d(y, ∂Q ), for all y ∈ U1,
Q

νw⃗

 1
p


U1

χE1(y)d(y, ∂Q )α1dy
 m

i=2

|Ei ∩ Q | ≤


Q νw⃗

 1
p


U1

χE1∩Q (y)d(y, ∂Q )α1dy
 m

i=2

|Ei ∩ Q |.

If V1 is the set V1 associated to Q we have νw⃗(Q ) ≤ Cνw⃗(V1) by the doubling property of νw⃗ . This inequality and the
assumption w⃗ ∈ RAp⃗,α⃗ give

Q
νw⃗

 1
p


U1

χE1(y)d(y, ∂Q )α1dy
 m

i=2

|Ei ∩ Q | ≤ C


V1 νw⃗

 1
p


U1

χE1∩Q (y)d(y, ∂Q )α1 dy
 m

i=2

|Ei ∩ Q ∩ U1|

≤ C |Q |
m+

α1
n

m
i=1


U1

χEi∩Qwi

 1
pi

≤ C |Q |
m+

α1
n

m
i=1


Q

χEiwi

 1
pi

.

This proves the lemma in the particular case α⃗ = (0, . . . , αj, . . . , 0).
We prove now the general case. Let us fix a cube Q and sets E1, . . . , Em. By Proposition 12 applied to the set E = Q there

exist subsets G1, . . . ,Gm such that

C |Gi| ≥ |Q |, i = 1, . . . ,m, and
m
i=1


Gi

wi

 1
pi

≤ C


Q
νw⃗

 1
p

. (24)

Since w⃗ ∈ RAp⃗,α⃗ then w⃗ ∈ RAp⃗,α⃗j , where α⃗j = (0, . . . , αj, . . . , 0) for all j. By what we have already proved we have that
w⃗ ∈ RAp⃗,α⃗j . For fixed j, we apply that w⃗ ∈ RAp⃗,α⃗j in the cube Q and with the sets E j

i = Gi if i ≠ j and E j
j = Ej. Then we obtain

νw⃗(Q )
1
p


Q

χEj(y)d(y, ∂Q )αj dy
 m

i=1,i≠j

|Gi ∩ Q | ≤ C |Q |
m+

αj
n


Ej

wj

 1
pj m

i=1,i≠j


Gi

wi

 1
pi

,

for some constant independent of j and the sets. Multiplying these inequalities on j = 1, . . . ,m we have

νw⃗(Q )
m
p


m
j=1


Q

χEj(y)d(y, ∂Q )αjdy


m
i=1

|Gi|

m−1

≤ C |Q |
m2

+
ᾱ
n

m
j=1


Ej

wj

 1
pj m

i=1


Gi

wi

m−1
pi

.

Then, the lemma follows from (24) and the last inequality. �

Now we are ready to prove the characterization of the restricted weak type weighted inequalities for Mc
α⃗
.

Proof of Theorem 8. The implication (i) ⇒ (ii) is obvious. To prove (ii) ⇒ (iii) it will suffice to see that w⃗ ∈ RAp⃗,α⃗ =n
k=1


RA−

p⃗,α⃗,k ∩ RA+

p⃗,α⃗,k


.

Assume that (ii) holds and consider for each k = 1, . . . , n, the following non-centered multi(sub)linear maximal
operators

N −

α⃗,k f⃗ (x) = sup
x∈Uk(z,R)

m
i=1

1

|Q (z, R)|1+
αi
n


Vk(z,R)

|fi(y)|d(y, ∂Q )αi dy (25)

and

N +

α⃗,k f⃗ (x) = sup
x∈Vk(z,R)

m
i=1

1

|Q (z, R)|1+
αi
n


Uk(z,R)

|fi(y)|d(y, ∂Q )αi dy, (26)
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where Uk = Uk(z, R) and Vk = Vk(z, R) are the sets considered in Definition 15 associated to the cube Q = Q (z, R). It is easy
to see that N −

α⃗,k f⃗ (x) ≤ CMc
α⃗
f⃗ (x) and N +

α⃗,k f⃗ (x) ≤ CMc
α⃗
f⃗ (x), for all k = 1, . . . , n and all measurable function f (see the proof

of Proposition 2.3 in [4]). Then we get the inequality in (ii) for the operators N −

α⃗,k and N +

α⃗,k. In order to see that w⃗ ∈ RAp⃗,α⃗ ,
let Q = Q (z, R) be a fixed cube, and let Uk = Uk(z, R) and Vk = Vk(z, R), k = 1, . . . , n, its associated sets considered
in Definition 15. Let E1, . . . , Em be measurable sets. For each k we consider the multilinear function χ⃗E⃗k = (χEk1

, . . . , χEkm
)

with Ek
i = Ei ∩ Vk. For x ∈ Uk we have N −

α⃗,k


χ⃗E⃗k

(x) ≥

m
i=1

1

|Q |
1+

αi
n


Vk

χEki
(y)d(y, ∂Q )αidy = λ. Then, using that N −

α⃗,k

satisfies (ii),

νw⃗(Uk) ≤ νw⃗


{x : N −

α⃗,k


χ⃗E⃗k

(x) ≥ λ}


≤

C
λp

m
i=1

∥χEki
∥
p
pi,wi

.

Therefore
Uk

νw⃗

 1
p m

i=1


Vk

χEki
(y)d(y, ∂Q )αidy


≤ C |Q |

m+
ᾱ
n

m
i=1


Vk

χEiwi

 1
pi

.

Then we get that w⃗ ∈ RA−

p⃗,α⃗,k. In a similar way, using that N +

α⃗,k satisfies (ii) we obtain that w⃗ ∈ RA+

p⃗,α⃗,k. Thus w⃗ ∈ RAp⃗,α⃗ as
we wished to prove.

Finally, we prove (iii) ⇒ (i). Using the assumption (iii) we get, for every cube Q , that

m
i=1

1

|Q |
1+ αi

n


Q

χEi(y)d(y, ∂Q )αidy ≤ C
m
i=1


Q

χEiwi

1/pi 1
Q νw⃗

1/p
=

m
i=1


1

νw⃗(Q )


Q

χEi
wi

νw⃗

νw⃗

1/pi
≤

m
i=1


Mνw⃗

(χEiwiνw⃗
−1)(x)

1/pi
,

where Mνw⃗
is the Hardy–Littlewood maximal operator associated to the measure νw⃗(x)dx defined as Mνw⃗

f (x) = supx∈Q
1

νw⃗(Q )


Q |f (y)|νw⃗(y)dy.

By Proposition 19, Lemma 23 and Remark 22 we have that νw⃗ is a doubling weight. Then Mνw⃗
is of weak type (1, 1)

with respect to νw⃗ . It follows from the last inequality, Hölder’s inequality for weak-spaces [8, p.15] and the weak-type (1, 1)
inequality forMνw⃗

that

∥Mα⃗(χ⃗E⃗)∥Lp,∞(νw⃗) ≤ C
m
i=1

Mνw⃗
(χEiwiνw⃗

−1)
1/pi

Lpi,∞(νw⃗)

= C
m
i=1

Mνw⃗
(χEiwiνw⃗

−1)
1/pi
L1,∞(νw⃗)

≤ C
m
i=1

∥χEi∥Lpi (wi),

and we are done.
Finally, we are going to prove that if w⃗ is not the function zero a.e. and w⃗ ∈ RAp⃗,α⃗ then pi ≥ 1/(1 + αi). We shall prove

it for i = 1. Since w⃗ ∈ RAp⃗,α⃗ implies that w⃗ ∈ RAp⃗,β⃗ where β = (α1, 0, . . . , 0), we may assume that αi = 0 for all i ≥ 2.
There exists N such that the sets Fi,N = {x : wi(x) < N} have positive measure for all i. Let z be a Lebesgue point of the
locally integrable functions νw⃗ , wiχFi,N and χFi,N , i = 1, . . . ,m, such that νw⃗(z) ≠ 0. Without loss of generality, we may
assume that z = 0. Let Q = Q (0, R) and Eλ = Q (0, (1 − λ)R) \ Q (0, (1 − 2λ)R), 0 < λ < 1/4. Notice that if x ∈ Eλ then
d(x, ∂Q )α1 ≥ (2λR)α1 = λα1 |Q |

α1/n and C1λ ≤
|Eλ|

|Q |
≤ C2λ (C1 and C2 depend on n but they are independent of λ). Now,

keeping in mind these inequalities, we apply that w⃗ ∈ RAp⃗,α⃗ with the cube Q and the sets E1 = Eλ ∩ F1,N and Ei = Fi,N , i ≥ 2.
Then we obtain

1
|Q |


Q

νw⃗

 1
p

λ1+α1 |Q |
1
p
|Eλ ∩ F1,N |

|Eλ|

m
i=2

|Fi,N ∩ Q |

|Q |

≤ C(λ|Q |)
1
p1


1

|Eλ|


Eλ

χF1,N w1

 1
p1

m
i=2


1

|Q |


Q

χFi,N wi

 1
pi

|Q |
1
p −

1
p1 .

Notice that, for fixed λ, the family Eλ = Eλ(R) is a regular family which shrinks nicely to 0. If we let R tend to 0 we obtain

λ
1+α1−

1
p1 ≤ C . Since λ can be chosen so small as we wish, we have 1 + α1 −

1
p1

≥ 0. �
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4. Proof of Theorem 9

If αi = 0 for all i then our theorem is Theorem 6 (proved in [6]). From now on, we assume αi ≠ 0 for some iwhich implies
pi > 1 and pm > 1. We study only the casem > 1 since the case m = 1 is contained in Theorem 2.

To prove (ii) ⇒ (iii), we work with the one-sided multi(sub)linear maximal operators N −

α⃗,k and N +

α⃗,k defined in
(25) and (26). We also need to introduce the following multilinear classes of weights: for k = 1, . . . , n, it is said that
w⃗ = (w1, . . . , wm) satisfies A−

p⃗,α⃗,k if there is C > 0 such that

A−

p⃗,α⃗,k :


1

|Q |


Uk

νw⃗

1/p m
i=1

 1

|Q |
1+

αip
′
i

n


Vk

wi(y)1−p′
id(y, ∂Q )αip′

idy

1/p′
i

≤ C (27)

for all cubes Q = Q (z, R), where Uk and Vk are the sets defined in (17) (if pi = 1 then (|Q |
−1−

αip
′
i

n

Vk

wi(y)1−p′
id(y, ∂Q )αip′

i

dy)1/p
′
i is understood as (essinfVkwi)

−1). The class A+

p⃗,α⃗,k is defined changing the roles of Uk and Vk.
The following theorem contains the proof of (iii) ⇔ (iv) and shows the relationship between the multilinear classes of

weights with a family of suitable linear conditions.

Theorem 28. For i = 1, . . . ,m, let αi, ᾱ, αi, pi, wi and νw⃗ be as in Theorem 9 and assume that αi ≠ 0 for some i. Let
w⃗ = (w1, . . . , wm). Let Ap⃗,α⃗ =

n
k=1(A

−

p⃗,α⃗,k ∩ A+

p⃗,α⃗,k). Then the following statements are equivalent.

(i) w⃗ ∈ Ap⃗,α⃗ .
(ii) The following conditions hold.

(a) νw⃗ ∈ Amp, ᾱ
m
,

(b) w
1−p′

i
i ∈ A

mp′
i,
αi
m
, for all i = 1, . . . ,m where in the case pi = 1 is understood as w

1/m
i ∈ A1 and

(c) w
1
ri
i ∈ Ampi

ri
,
αi
m
, for all i = 1, . . . ,m, with ri = (m − 1)pi + 1.

(iii) w⃗ ∈ Ap⃗,α⃗ .

Proof of Theorem 28. In this proof we shall use the following lemma (see [4]). From now on, whenm = 1 the classesA−

p⃗,α⃗,k

and A+

p⃗,α⃗,k are denoted by A−

p,α,k and A+

p,α,k, respectively.

Lemma 29 ([4]). Let w be a weight on Rn and let −1 < α < 0. If 1 < p < ∞ then w satisfies Ap,α if and only if
w ∈

n
k=1


A−

p,α,k


A+

p,α,k


.

In the proof we consider the sets J = {i : pi = 1} and H = {i : pi > 1}.
(i) ⇒ (ii). Let us prove (a). Let k ∈ {1, . . . , n}. It follows from the assumptions that pm > 1 since pi > 1 for some i. By

Hölder’s inequality with exponents si =
pi(mp−1)
p(pi−1) if i ∈ H and si = +∞ if i ∈ J , we have that

Vk
νw⃗(y)1−(mp)′d(y, ∂Q )

ᾱ
m (mp)′dy =


Vk

m
i=1

wi(y)
−

p
pi(mp−1) d(y, ∂Q )

αi
p

mp−1 dy

≤ C

i∈H


Vk

wi(y)1−p′
id(y, ∂Q )αip′

idy
 p(pi−1)

pi(mp−1) 
i∈J


ess infy∈Vkwi(y)

− p
mp−1 .

Since w⃗ ∈ Ap⃗,α⃗ ⊂ A−

p⃗,α⃗,k, we get that νw⃗ ∈ A−

mp, ᾱ
m ,k

. Changing the role of the sets Uk and Vk, we also obtain that νw⃗ ∈ A+

mp, ᾱ
m ,k

for all k. By Lemma 29 we get (a). Since Ap,α ⊂ Ap for any p and α, then (a) implies that νw⃗ is doubling.
Assume pi > 1. To prove (b), it suffices to show that for all k

Ek
w

1−p′
i

i

 1
mp′i


Fk


wi(y)1−p′

i

−
1

mp′i−1 d(y, ∂Q )
αi
m (mp′

i)
′

dy
1− 1

mp′i
≤ C |Q |

1+ αi
mn , (30)

with Ek = Uk, Vk and Fk = Uk, Vk. These inequalities imply thatw
1−p′

i
i ∈ A−

mp′
i,
αi
m ,k

andw
1−p′

i
i ∈ A+

mp′
i,
αi
m ,k

for all k; consequently,

by Lemma 29 we have w
1−p′

i
i ∈ A

mp′
i,
αi
m
. We shall prove (30) with (Ek, Fk) = (Uk,Uk), being similar the proof of the case

(Ek, Fk) = (Vk, Vk). Once these inequalities have been proved, we observe that (30)with (Ek, Fk) = (Uk,Uk) implies the same

inequality forαi = 0which is equivalent tow
1−p′

i
i ∈ Amp′

i
. Therefore,w

1−p′
i

i is doubling. In particular,

Uk

w
1−p′

i
i ≤ C


Vk

w
1−p′

i
i
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and

Vk

w
1−p′

i
i ≤ C


Uk

w
1−p′

i
i . These inequalities together with (30) in the cases (Ek, Fk) = (Uk,Uk) and (Ek, Fk) = (Vk, Vk)

imply (30) with (Ek, Fk) = (Uk, Vk) and (Ek, Fk) = (Vk,Uk).
Now we prove (30) in the case (Ek, Fk) = (Uk,Uk). Observe that

Uk

w
1−p′

i
i

 1
mp′i

≤ C |Q |
−

αi
nm


Uk

wi(y)1−p′
id(y, ∂Q )αip′

idy
 1

mp′i
. (31)

On the other hand, with ri = (m − 1)pi + 1, we write

Ii =


Uk


wi(y)1−p′

i

−
1

mp′i−1 d(y, ∂Q )
αi
m (mp′

i)
′

dy
1− 1

mp′i

=


Uk

wi(y)
1
ri

m
j=1,j≠i

wj(y)
pi
pjri wj(y)

−
pi
pjri

m
j=1,j≠i

d(y, ∂Q )
αjpi
ri dy

 ri
mpi

. (32)

By Hölder’s inequality with si =
pri
pi

and sj =
pjri

(pj−1)pi
for j ∈ H , j ≠ i, and sj = +∞ for j ∈ J , we get that

Ii ≤


Uk


wi(y)

1
ri

m
j=1,j≠i

wj(y)
pi
pjri

si

dy

 ri
simpi

×


j∈H,j≠i


Uk


wj(y)

−
pi
pjri d(y, ∂Q )

αj
pi
ri

sj
dy
 ri

sjmpi 
j∈J


ess infy∈Ukwj(y)

− 1
m .

Then, since νw⃗ is a doubling weight, we have that

Ii ≤ C


Vk
νw⃗

 1
mp m

j∈H,j≠i


Uk

w
1−p′

j
j (y)d(y, ∂Q )

αjp′
j dy
 1

mp′j

j∈J


ess infy∈Ukwj(y)

− 1
m . (33)

Putting together (31), (33) and using (i) we get (30) with (Ek, Fk) = (Uk,Uk).
To prove (c), we argue as before and, consequently, we only have to prove


Uk

w
1
ri
i

 ri
mpi


Uk


wi(y)

1
ri

−
1

mpi
ri

−1 d(y, ∂Q )
αi
m (

mpi
ri

)′dy

 1
(
mpi
ri

)′

≤ C |Q |
1+ αi

nm . (34)

To prove it we use (33) (see the definition of Ii in (32)) and we obtain
Uk

w
1
ri
i

 ri
mpi

≤ |Q |
−
αi
nm


Uk

wi(y)
1
ri d(y, ∂Q )

αipi
ri dy

 ri
mpi

= |Q |
−
αi
nm Ii

≤ C |Q |
−
αi
nm


Vk

νw⃗

 1
mp m

j∈H,j≠i


Uk

wj(y)
1−p′

jd(y, ∂Q )
αjp′

j dy
 1

mp′j

×


j∈J


ess infy∈Ukwj(y)

− 1
m .

Then, using that w⃗ ∈ Ap⃗,α⃗ ⊂ A+

p⃗,α⃗,k, we obtain (34) as follows:


Uk

w
1
ri
i

 ri
mpi


Uk


wi(y)

1
ri

−
1

mpi
ri

−1 d(y, ∂Q )
αi
m (

mpi
ri

)′dy

 1
(
mpi
ri

)′

≤ C |Q |
−
αi
nm


Uk

νw⃗

 1
mp 

j∈H


Uk

wj(y)
1−p′

jd(y, ∂Q )
αjp′

jdy
 1

mp′j

×


j∈J


ess infy∈Ukwj(y)

− 1
m ≤ C |Q |

−
αi
nm |Q |

1+ ᾱ
nm = C |Q |

1+ αi
nm .
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Now we prove (b) and (c) for i ∈ J , that is w
1/m
i ∈ A1. It suffices to prove that for all cubes Q and some k

1
|Q |


Uk

w
1/m
i ≤ C ess infUkw

1/m
i . (35)

Inequality (35) implies that w
1/m
i ∈ A1 as follows: as in the proof of Lemma 23, given a cube Q there exists a cube Q such

that |Q | is comparable to |Q | and Q ⊂ Uk, where Uk is the set Uk associated toQ ; by (35)

1
|Q |


Q

w
1/m
i ≤

C
|Q |

Uk
w

1/m
i ≤ C ess infUk

w
1/m
i ≤ C ess infQw

1/m
i .

Let us prove (35). By Hölder’s inequality with exponent pm, we have


Uk

w
1/m
i ≤


Uk

w
p
i


j∈H

w

p
pj
j

 1
mp


Uk


j∈H

w
−

p
pj(pm−1)

j

 pm−1
mp

. (36)

Let sj = (m − 1/p)p′

j , j ∈ H . Assume first that sj > 1 for all j ∈ H . Applying Hölder’s inequality with exponents sj and the

inequality d(y, ∂Q )
−αjp′

j ≤ |Q |
−

αjp
′
j

n , we obtain


Uk

w
1/m
i ≤


Uk

w
p
i


j∈H

w

p
pj
j

 1
mp 

j∈H


Uk

w
1−p′

j
j (y)d(y, ∂Q )

αjp′
j dy
 1

mp′j
|Q |

−
αj
mn . (37)

If sj0 = 1 for some j0 then pi = 1 for all i ≠ j0. Consequently, H = {j0} and inequality (37) follows from (36) since

d(y, ∂Q )
−αjp′

j ≤ |Q |
−

αjp
′
j

n (in this case we do not need to use Hölder’s inequality). By (i) and using that νw⃗ is doubling, we
obtain (35) as follows:

Uk

w
1/m
i ≤ C


Uk

w
p
i


j∈H

w

p
pj
j

 1
mp 

Uk

νw⃗

−
1
mp 

j∈I

(ess infUkwj)
1/m

|Q |

≤ C


Uk

w
p
i


j∈I,j≠i

w
p
j


j∈H

w

p
pj
j

 1
mp 

Uk

νw⃗

−
1
mp

(ess infUkwi)
1/m

|Q |

= Cess infUkw
1/m
i |Q |.

(ii) ⇒ (iii). We consider again the sets J and H . Let #(H) be the number of elements of H . Notice that

|Q |
ᾱ#(H)

nm2 +1
= C


Q
d(y, ∂Q )

ᾱ#(H)

m2 νw⃗(y)
1

m2p νw⃗(y)
−

1
m2p dy

= C

Q
d(y, ∂Q )

ᾱ

m2 d(y, ∂Q )
ᾱ(#(H)−1)

m2 νw⃗(y)
−

1
m2p

m
i=1

w

1
m2pi
i (y) dy

= C

Q

νw⃗(y)
−

1
m2p d(y, ∂Q )

ᾱ

m2

i∈H

w

1
m2pi
i (y)d(y, ∂Q )

αi
m2

i∈J

w
1
m2
i (y) dy.

By Hölder’s inequality with s0 =
m2p
mp−1 and si =

m2pi
ri

, i = 1, . . . ,m, we get

|Q |
ᾱ#(H)

nm2 +1
≤ C


Q


νw⃗(y)

−
1

m2p

s0
d(y, ∂Q )

ᾱs0
m2 dy

 1
s0

×


i∈H


Q

wi(y)
si

pim2 d(y, ∂Q )
siαi
m2 dy

 1
si 

i∈J


Q

wi(y)
si
m2 dy

 1
si

= C


Q
νw⃗(y)−

1
mp−1 d(y, ∂Q )

ᾱp
mp−1 dy

mp−1
m2p

×


i∈H


Q

wi(y)
1
ri d(y, ∂Q )

αipi
ri dy

 ri
m2pi


i∈J


Q

wi(y)
1
m dy

 1
m

.
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Raising to themth power,

1 ≤ C


1

|Q |
1+ ᾱp

n(mp−1)


Q

νw⃗(y)−
1

mp−1 d(y, ∂Q )
ᾱp

mp−1 dy

mp−1
mp

×


i∈H

 1

|Q |
1+αipi

nri


Q

wi(y)
1
ri d(y, ∂Q )

αipi
ri dy


ri

mpi 
i∈J

1
|Q |


Q

w
1
m
i . (38)

By Hölder’s inequality with si =
mpi
ri

we get

1 ≤

m
i=1


1

|Q |


Q

w
1
ri
i

 ri
mpi


1
|Q |


Q

w
−

1
pi−1

i

 1
mp′i

, (39)

where


1
|Q |


Q w

−
1

pi−1
i

 1
mp′i is understood as


ess infQwi

−1/m if pi = 1. Multiplying inequalities (38) and (39) and the result

by


1

|Q |


Q

νw⃗

 1
mp m

i=1

 1

|Q |
1+

αip
′
i

n


Q

wi(y)1−p′
id(y, ∂Q )αip′

i dy

 1
mp′i

, (40)

and using (ii) we obtain that (40) is smaller than a constant C , as we wished to prove.
Finally, the implication (iii) ⇒ (i) is obvious since Uk, Vk ⊂ Q . �

Proof of Theorem 9. (i) ⇒ (ii) is obvious. To prove (ii) ⇒ (iii) we consider the operators N −

α⃗,k and N +

α⃗,k. Since N −

α⃗,k f⃗ (x) ≤

CMc
α⃗
f⃗ (x) and N +

α⃗,k f⃗ (x) ≤ CMc
α⃗
f⃗ (x), we get that the inequality in (ii) holds for N −

α⃗,k and N +

α⃗,k. Proceeding as in Lemma 2.4
in [4] we get that w⃗ ∈ Ap⃗,α⃗ which is equivalent to w⃗ ∈ Ap⃗,α⃗ by Theorem 28.

To prove (iii) implies (i), notice that by Hölder’s inequality we get if pi > 1
Q
fi(y)d(y, ∂Q )αidy ≤


Q
f pii wi

1/pi 
Q

wi(y)
−

1
pi−1 d(y, ∂Q )αip′

idy
1/p′

i

,

and if pi = 1 (αi = 0) then

Q fi(y)d(y, ∂Q )αidy ≤


Q fiwi

 
ess infQwi

−1
. Now, by using the hypothesis we get

m
i=1

1

|Q |
1+ αi

n


Q
fi(y)d(y, ∂Q )αidy ≤ C

m
i=1


Q
f pii wi

1/pi 
Q

νw⃗

−1/p

.

It follows that Mα⃗(f⃗ )(x) ≤ C
m

i=1


Mνw⃗

(f pii wiνw⃗
−1(x))

1/pi , where Mνw⃗
is the Hardy–Littlewood maximal operator

associated to the doubling measure νw⃗(x)dx (by Theorem 28, νw⃗ ∈ Amp, ᾱ
m

⊂ Amp). Using Hölder’s inequality for weak-
spaces [8, p.15] and the weak-type (1, 1) inequality forMνw⃗

we get

∥Mα⃗(f⃗ )∥Lp,∞(νw⃗) ≤ C
m
i=1

Mνw⃗
(f pii wiνw⃗

−1)
1/pi

Lpi,∞(νw⃗)

≤ C
m
i=1

Mνw⃗
(f pii wiνw⃗

−1)
1/pi
L1,∞(νw⃗)

≤ C
m
i=1

∥fi∥Lpi (wi).

It follows from Remark 5 and w
1
ri
i ∈ Ampi

ri
,
αi
m

that mpi
ri

> 1
1+ αi

m
, αi ≠ 0, which is equivalent to pi > 1

1+αi
. �

5. Proof of Theorems 11 and 10

Proof of Theorem 11. Let w⃗ ∈ Ap⃗,α⃗ . Using Theorem 28 and Theorem 1 we get that there exists r0 > 1 such that

w
1
ri
i ∈ A mpi

r0ri
,
αi
m
. We also have w⃗ ∈ Ap⃗. By Hölder’s inequality with si =

mpi
ri

and s′i =
mpi
pi−1 ,

|Q |
r0m =

m
i=1


Q

w
1

mpi
i w

−
1

mpi
i

r0

≤

m
i=1


Q

w
1
ri
i

 r0ri
mpi


Q
w

−
1

pi−1
i

 r0
mp′i

. (41)



A.L. Bernardis et al. / J. Math. Anal. Appl. 397 (2013) 191–204 203

Since w
1
ri
i ∈ A mpi

r0ri
,
αi
m
, we have

m
i=1


Q

w
1
ri
i

 r0ri
mpi


Q
wi(y)

−
r0

mpi−r0ri d(y, ∂Q )
αipi

mpi−r0ri dy
1− r0ri

mpi
≤ C

m
i=1

|Q |
1+ αi

nm = C |Q |
m+

ᾱ
nm . (42)

Using (41), (42) and w⃗ ∈ Ap⃗ we obtain

|Q |
r0m


Q
νw⃗

 r0
mp m

i=1


Q

wi(y)
−

r0
mpi−r0ri d(y, ∂Q )

αipi
mpi−r0ri dy

1− r0ri
mpi

≤ C |Q |
r0+m+

ᾱ
nm .

Taking r =
r0

m−(m−1)r0
and βi = αi

1+r(m−1)
m we get that −r0

pim−r0ri
= 1 − (

pi
r )′ and αipi

mpi−rir0
= βi(

pi
r )′. Then the above inequality

can be written as
Q

νw⃗

r/p m
i=1


Q wi(y)1−(

pi
r )′d(y, ∂Q )βi(

pi
r )′dy

mr
r0

−
rri
pi

≤ C |Q |
m+

β̄
n ,

where we have used mr
r0


m − r0(m − 1) +

ᾱ
mn


= m +

β̄

n . Since
mr
r0

−
rri
pi

= [(
pi
r )′]−1, we are done. �

Proof of Theorem 10. Since (i) ⇒ (ii) is trivial and by Theorem 9 we get that (ii) ⇒ (iii), we shall only prove (iii) ⇒ (i).
As in the proof of Theorem 3.7 in [6] it is enough to prove that there exists δ < 1 such that

Mα⃗(f⃗ )(x) ≤ C
m
i=1


Mνw⃗


|fi|δpiwδ

i ν
−δ
w⃗


(x)
 1

δpi . (43)

In fact, by Hölder’s inequality with exponents pi
p and the strong type ( 1

δ
, 1

δ
) inequality of Mνw⃗

with respect to the measure
νw⃗ we get

|Mα⃗(f⃗ )|pνw⃗

 1
p

≤ C

 m
i=1


Mνw⃗


|fi|piδwδ

i ν
−δ
w⃗

 p
δpi νw⃗

 1
p

≤ C
m
i=1

 
Mνw⃗

(|fi|δpiwδ
i ν

−δ
w⃗

)
 1

δ νw⃗

 1
pi

≤ C
m
i=1


|fi|piwi

 1
pi

.

Now, we shall prove (43). Let δ be such that maxi=1,...,m


1

pi(1−
1
r )+1


< δ < 1, where r is the number in Theorem 11. By

Hölder’s inequality with exponent piδ,
Q

|fi(y)|d(y, ∂Q )αidy ≤


Q

|fi|piδwδ
i ν

1−δ
w⃗

 1
δpi


Q
wi(y)

−
δ

piδ−1 νw⃗(y)
δ−1
piδ−1 d(y, ∂Q )

αipiδ
piδ−1 dy

 piδ−1
piδ

=


Q

|fi|piδwδ
i ν

1−δ
w⃗

 1
δpi

Ii.

Let λ =
1+r(m−1)

mr . It is clear that λ ∈ (0, 1) and

Ii =


Q

wi(y)
−

δ
piδ−1 νw⃗(y)

δ−1
piδ−1 d(y, ∂Q )

αiλpiδ
piδ−1 d(y, ∂Q )

αi(1−λ)δpi
δpi−1 dy

 δpi−1
δpi

.

Let si =
r(δpi−1)
δ(pi−r) . We have that si > 1 and, for later computations, 1

s′i
=

δpi(r−1)+r(δ−1)
r(piδ−1) . By Hölder inequality with exponent si

we get that

Ii ≤


Q

wi(y)
−

r
pi−r d(y, ∂Q )

βipi
pi−r dy

 pi−r
pir

IIi,

where IIi =


Q νw⃗(y)

(δ−1)s′i
δpi−1 d(y, ∂Q )

αi(1−λ)piδs
′
i

piδ−1 dy

 piδ−1
piδs

′
i
and βi = αi

1+r(m−1)
m . Now, choosing δ close to 1 such that

ti =
δpi − 1

(1 − δ)s′i(mp − 1)
> 1 and

αi(1 − λ)piδs′it
′

i

piδ − 1
> −1,
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and applying Hölder’s inequality with ti we get

IIi ≤


Q

ν
−

1
mp−1

w⃗

 (1−δ)(mp−1)
δpi

|Q |

αi(1−λ)
n +

piδ−1
piδs

′
i t

′
i .

(For subsequent computations, notice that 1
s′i t

′
i

=
1
s′i

−
(1−δ)(mp−1)

piδ−1 .) Putting together the above estimates and using that
νw⃗ ∈ Amp we get that

m
i=1


Q

|fi(y)|d(y, ∂Q )αidy ≤ C
m
i=1


1

νw⃗(Q )


Q

|fi(y)|δpiwi(y)δνw⃗(y)1−δdy
 1

δpi

×

m
i=1


Q

wi(y)
−

r
pi−r d(y, ∂Q )

βipi
pi−r

 pi−r
pir


Q
νw⃗

 1
p m

i=1

|Q |

(1−δ)mp
δpi

+
αi(1−λ)

n +
piδ−1
piδs

′
i t

′
i .

Then, using Theorem 11 we get

1

|Q |
m+

ᾱ
n

m
i=1


Q

|fi(y)|d(y, ∂Q )αidy ≤ C
m
i=1


1

νw⃗(Q )


Q

|fi|δpiwδ
i ν

1−δ
w⃗

 1
δpi

×


|Q |

−m−
ᾱ
n |Q |

m
r +

β̄
nr |Q |

(1−δ)m
δ |Q |

ᾱ(1−λ)
n

m
i=1

|Q |

piδ−1
piδs

′
i t

′
i


.

Since the last factor is 1 we are done. �

6. Remarks and examples

We start establishing some properties of the linear classes Ap,α . Assume that p(1+α) > 1. Applying Hölder’s inequality,
it is easy to see that Aq ⊂ Ap,α for 1 < q < p(1 + α). Using that w ∈ Ap ⇒ Ap−ε we have Ap(1+α) ⊂ Ap,α . Other interesting
relation is that w ∈ A1 ⇒ w ∈ RA 1

1+α
,α
. We can also see that a power weight

w(x) = |x|β ∈ Ap,α ⇔ −n < β < p(n + α) − n ⇔ |x|β ∈ Ap(1+ α
n ). (44)

These properties in the one-sided case can be found in [9].

Example 45. We work in R (n = 1) with m = 2. We assume that p⃗, α⃗ satisfy the assumptions on Theorem 9. Let
w1(x) = |x|γ1 and w2(x) = |x|γ2 . We are going to determine the conditions on γ1 and γ2 to have w⃗ ∈ Ap⃗,α⃗ or, equivalently,

(a) νw⃗ ∈ A2p, ᾱ
2
, (b) w

1−p′
i

i ∈ A
2p′

i,
αi
2
, for i = 1, 2 and (c) w

1
ri
i ∈ A 2pi

ri
,
αi
2
, for i = 1, 2, where ri = pi + 1. Using (44), w⃗ ∈ Ap⃗,α⃗

if and only if the following relations hold: −1 <
p
p1

γ1 +
p
p2

γ2 < 2p + p(α1 + α2) − 1, −p1 − 1 − p1α2 < γ1 < p1 − 1,
−p2 − 1 − p2α1 < γ2 < p2 − 1, −p1 − 1 < γ1 < p1 + p1α1 − 1 and −p2 − 1 < γ2 < p2 + p2α2 − 1.

Let p1 = 2, p2 = 4, p = 4/3, α1 = −1/3, α2 = −1/2.

(1) If γ1 = −1, γ2 = 0 then w⃗ ∈ Ap⃗,α⃗ but w1 ∉ Ap1,α1 . Therefore, Mα⃗ applies Lp1(w1) × Lp2(w2) into Lp(νw⃗) but Mα1 is not
bounded in Lp1(w1).

(2) If γ1 = −1 = γ2 then (b) and (c) are satisfied but (a) is not satisfied.
(3) If γ1 = 1/3, γ2 = −11/3 + ε, ε small, then (a) and (b) are satisfied but (c) is not satisfied (the second condition in (c) is

satisfied).

Notice that in this example (a) and (c) imply (b).
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