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Abstract. In this paper we prove that the variation operators of the the heat semigroup
and the truncations of Riesz transforms associated to the Schrödinger operator are bounded
on a suitable BMO type space.

1. Introduction

We consider the Schrödinger operator L defined by L = −∆ + V on Rn, n ≥ 3. Here V is a
nonnegative and not identically zero function satisfying, for some q > n/2, the following reverse
Hölder inequality:

(RHq) There exists C > 0 such that, for every ball B ⊂ Rn,( 1
|B|

∫
B

V (x)qdx
)1/q

≤ C
1
|B|

∫
B

V (x)dx.

We write V ∈ RHq when V verifies the property (RHq). Note that if V is a nonnegative
polynomial, then V ∈ RHq for every 1 < q < ∞. Also, if Vα(x) = |x|α, x ∈ Rn, Vα belongs to
RHq provided that αq > −n. Hence, Vα ∈ RHn/2 when α > −2, and Vα ∈ RHn if α > −1.

Harmonic analysis operators derived from Schrödinger differential operators (Riesz trans-
forms, maximal operators associated with heat and Poisson semigroups for L , Littlewood-Paley
g-functions, fractional integrals,...) have been extensively studied in the last years. The papers of
Zhong [36] and Shen [29] can be considered as starting points. In [29] and [36] Riesz transforms
in the Schrödinger setting were studied on Lp-spaces. The behavior on Lp of other operators
related to L have been investigated in [5], [19], [25], [26] and [32], among others.

Dziubanski and Zienkiewicz introduced appropriate Hardy spaces associated with L (see [14],
[15], and [16]). A function f ∈ L1(Rn) is said to be in HL

1 (Rn) if and only if WL
∗ (f) ∈ L1(Rn),

where
WL
∗ (f) = sup

t>0
|WL

t (f)|,

and WL = {WL
t }t>0 denotes the heat semigroup generated by −L .

The dual space of HL
1 (Rn) was investigated in [13]. This dual space, denoted by BMOL (Rn),

was characterized as the natural space of bounded mean oscillation functions in this setting. More
precisely, a function f ∈ L1

loc(Rn) is said to be in BMOL (Rn) provided that there exists C > 0
such that the following two properties are satisfied:

(i) For every x ∈ Rn and r > 0,
1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|dy ≤ C,

where, as usual, fB(x,r) = 1
|B(x,r)|

∫
B(x,r)

f(y)dy, and |B(x, r)| denotes the Lebesgue measure of
the ball B(x, r); and

(ii) For every x ∈ Rn and r ≥ γ(x),
1

|B(x, r)|

∫
B(x,r)

|f(y)|dy ≤ C.

Here, for any x, the critical radius γ(x) is defined by

γ(x) = sup
{

r > 0 : r2−n

∫
B(x,r)

V (y)dy ≤ 1
}

.
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Since V is not identically zero and V ∈ RHq with q > n/2, it follows that 0 < γ(x) < ∞. The
norm ‖f‖BMOL (Rn) of f ∈ BMOL (Rn) is defined by

‖f‖BMOL (Rn) = inf{C > 0 : (i) and (ii) hold}.

In [13] the behavior of certain maximal operators, Littlewood-Paley g functions and frac-
tional integrals on BMOL (Rn) were studied. Also, the BMOL (Rn)-boundedness of the Riesz
transforms has been analyzed in [4], [12] and [35].

Suppose that {Tt}t>0 is a family of operators defined for functions in Lp(Rn), 1 ≤ p < ∞. If
ρ > 2, the ρ-variation operator associated with {Tt}t>0, Vρ(Tt), is defined by

Vρ(Tt)(f)(x) = sup
{tj}j∈N↓0

( ∞∑
j=1

|Ttj
(f)(x)− Ttj+1(f)(x)|ρ

)1/ρ

,

where the supremum is taken over all the real decreasing sequences {tj}j∈N that converge to
zero. The operator Vρ(Tt) is related to the convergence of Tt, as t → 0+, and it estimates the
fluctuations near the origin of the family {Tt}t>0.

We consider the linear space Eρ that consists of all those real functions F defined on (0,∞)
such that

‖F‖Eρ
= sup

{tj}j∈N↓0

 ∞∑
j=1

|F (tj)− F (tj+1)|ρ
 1

ρ

< ∞,

where the supremum is taken over all the decreasing real sequence {tj}∞j=1 that converge to zero.(
Eρ, ‖ ‖Eρ

)
is a seminorm on Eρ. The variation operator Vρ(Tt) can be rewritten in the following

way
Vρ(Tt)(f)(x) = ‖Tt(f)(x)‖Eρ

.

The variation operator Vρ was introduced in the ergodic context by Bourgain [6] (see also
Jones et al. [21]). In the last years many authors have investigated the variation operator
associated to semigroups of operators and singular integrals ([7], [8], [10], [11], [18], [20], [23] and
[24]). Recently, Oberlin, Seeger, Tao, Thiele and Wright [27] have analyzed the variation norm
related to Carleson Theorem.

In a previous paper (see [2]) the authors studied the Lp-boundedness properties of the vari-
ation operators for the heat semigroup {WL

t }t>0 and the family of truncated Riesz transforms
{RL ,ε

` }ε>0, ` = 1, · · · , n, in the Schrödinger context. Here our aim is to study the behavior of
the variation operators Vρ(WL

t ) and Vρ(R
L ,ε
` ) acting on functions in BMOL (Rn). Previously,

we shall analyze the variation operators Vρ(Wt) and Vρ(Rε
`) over the classical BMO(Rn), where

{Wt}t>0 and {Rε
`}ε>0, ` = 1, 2, · · · , n, stand for the classical heat semigroup and the truncated

Riesz transforms, respectively. As usual, by BMO(Rn) we denote the well known space of
bounded mean oscillation functions in Rn. We believe that these results in the classical setting
are of independent interest.

This paper is organized as follows. In Section 2 we state our results and we also describe
a quite general procedure that allows us to prove properties concerning the operators in the
Schrödinger setting by using the corresponding results for the classical (Euclidean) context. The
proofs of the theorems are presented in Sections 3 (classical setting) and 4 (Schrödinger context).

Comment: no se si es muy cierto esto de que describimos el procedimiento gen-
eral..

Throughout this paper we denote by C a positive constant that may change from one line to
another.

2. Main results

In this section we present the main results of the paper, stated as Theorems 2.2 , 2.4 , 2.6
and 2.8 below.

As it is well known the heat semigroup {Wt}t>0 generated by −∆ is defined, for every f ∈
Lp(Rn), 1 ≤ p ≤ ∞, by

Wt(f)(x) = (4πt)−n/2

∫
Rn

e−|x−y|2/4tf(y)dy, x ∈ Rn.
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The Lp-boundedness properties of the variation operator Vρ(Wt), ρ > 2, were studied in [22,
Theorem 3.3] and [11, Theorem 1.1]. We provide here the precise statement.

Theorem 2.1. ([22, Theorem 3.3] and [11, Theorem 1.1]) If ρ > 2, the variation operator Vρ(Wt)
is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn) into L1,∞(Rn).

In [11] it was shown that the variation operator Vρ(Wt) is not bounded on L∞(Rn). In
fact, in [11, Section 5], the authors give an example of a function f ∈ L∞(Rn)) such that
Vρ(Wt)(f)(x) = ∞, a.e. x ∈ R, for every ρ > 2. As it is well known L∞(Rn) is a subset of the
space BMO(Rn) of bounded mean oscillation functions. In the next result we take care of the
behavior of Vρ(Wt) on BMO(Rn).

Theorem 2.2. Let ρ > 2. Then, if f ∈ BMO(Rn) and Vρ(Wt)f(x) < ∞, a.e. x ∈ Rn,
Vρ(Wt)f ∈ BMO(Rn) and ‖Vρ(Wt)f‖BMO(Rn) ≤ C‖f‖BMO(Rn).

For every ` = 1, · · · , n, the Riesz transform R`(f) of f ∈ Lp(Rn), 1 ≤ p < ∞, is given by

R`(f)(x) = lim
ε→0+

cn

∫
|x−y|>ε

x` − y`

|x− y|n+1
f(y)dy, a.e. x ∈ Rn,

where cn = Γ((n + 1)/2)/π(n+1)/2.
Regarding the variation operator for R`, ` = 1, . . . , n, their Lp-boundedness was investigated

in [7] and [8]. We reproduce here their precise statement.

Theorem 2.3. ([7, Theorem 1.2] and [8, Theorem A and Corollary 1.4]). Let ` = 1, . . . , n. If
ρ > 2, the variation operator Vρ(Rε

`) is bounded from Lp(Rn) into itself, for every 1 < p < ∞,
and from L1(Rn) into L1,∞(Rn).

By using transference methods Gillespie and Torrea ([18, Theorem B]) obtained dimension
free Lp(Rn, |x|αdx) norm inequalities, for every 1 < p < ∞ and −1 < α < p − 1, for variation
operators of the Riesz transform R`, ` = 1, . . . , n. Using the idea developed in the proof of [18,
Lemma 1.4], we are able to analyze the behavior of the operators Vρ(Rε

`) on the space BMO(Rn).
First notice that for ` = 1, · · · , n, f ∈ BMO(Rn) and ε > 0, the integral

∫
|x−y|>ε

f(y) y`−x`

|y−x|n+1 dy

may be non-convergent. Indeed, for instance, the function f(x) = 1
log(x+2)χ(0,∞)(x), x ∈ R, be-

longs to L∞(R) ⊂ BMO(R) but the limit limN→∞
∫

ε<|x−y|<N
f(y)
x−y dy does not exist, for any

x ∈ R and ε > 0. However, it is clear that, for every 0 < ε < η,
∫

ε<|x−y|<η
|f(y)|
|x−y|n dy < ∞ for

any x ∈ Rn. Therefore, in this situation, the operators Vρ(Rε
`) can be defined on BMO(Rn) in

the obvious way, that is, by replacing R
εj

` (f)(x)−R
εj+1
` (f)(x) by

∫
εj+1<|x−y|<εj

f(y) y`−x`

|y−x|n+1 dy,
` = 1, · · · , n and j ∈ N. Let us mention that in [10, Theorem B] it was proved that for f ∈ L∞(R)
and ρ > 2 then either Vρ(Hε)(f)(x) = ∞, a.e. x ∈ R, or Vρ(Hε)(f)(x) < ∞, a.e. x ∈ R, where
H denotes the Riesz transform on R, that is, the Hilbert transform. Moreover, as it can be seen
in [10, Section 1], if f(x) = sgn(x), x ∈ R, then Vρ(Hε)(f)(x) = ∞, a.e. x ∈ R.

In the next result we establish the behavior of the variation operator Vρ(Rε
`) for functions in

BMO(Rn).

Theorem 2.4. Let ` = 1, . . . , n and ρ > 2. Then, if f ∈ BMO(Rn) and Vρ(Rε
`)(f)(x) < ∞,

a.e. x ∈ Rn, Vρ(Rε
`)(f) ∈ BMO(Rn) and ‖Vρ(Rε

`)f‖BMO(Rn) ≤ C‖f‖BMO(Rn).

We turn now to the Schrödinger operator setting. Let us denote by {WL
t }t>0 the heat

semigroup associated with L . For every t > 0, they can be written in integral form

WL
t (f)(x) =

∫
Rn

WL
t (x, y)f(y)dy, f ∈ L2(Rn).

Even though we do not have an explicit formula for the kernels WL
t (x, y), many properties are

known and can be encountered, for instance, in [13].
Lp-boundedness properties of the variation operator Vρ(WL

t ) were studied in [2]. We repro-
duce here the exact result.

Theorem 2.5. ([2, Theorem 1.1]). Let V ∈ RHq where q > n/2 and let ρ > 2. Then, the
variation operator Vρ(WL

t ) is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from
L1(Rn) into L1,∞(Rn).

Our next result shows the behavior of the variation operator Vρ(WL
t ) on BMOL (Rn).
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Theorem 2.6. Let V ∈ RHq where q > n/2 and let ρ > 2. Then, the variation operator
Vρ(WL

t ) is bounded from BMOL (Rn) into itself.

Let ` = 1, · · · , n. The Riesz transform RL
` is defined by

RL
` (f) =

∂

∂x`
L −1/2f, f ∈ C∞

c (Rn),

where C∞
c (Rn) denotes the space of smooth functions with compact support in Rn. Here, the

negative square root L −1/2 of L is defined in terms of the heat semigroup by

L −1/2(f)(x) =
1√
π

∫ ∞

0

WL
t (f)(x)t−1/2dt.

Fractional powers of the Schrödinger operator L have been studied in [3].
In [2, Proposition 1.1] it was proved that RL

` can be extended to Lp(R)n) as the principal
value operator

(1) RL
` (f)(x) = lim

ε→0+

∫
|x−y|>ε

RL
` (x, y)f(y)dy, a.e. x ∈ Rn,

where
RL

` (x, y) = − 1
2π

∂

∂x`

∫
R
(−iτ)−1/2Γ(x, y, τ)dτ, x, y ∈ Rn, x 6= y,

Comment: No habria que explicar que es esta funcion Γ(x, y, τ) ?

provided that
(i) 1 ≤ p < ∞, and V ∈ RHn;
(ii) 1 < p < p0, where 1

p0
= 1

q −
1
n , and V ∈ RHq, n/2 ≤ q < n.

Moreover, RL
` is bounded from Lp(Rn) into itself when 1 < p < ∞ and from L1(Rn) into

L1,∞(Rn), provided that V ∈ RHn. Also, RL
` is bounded from Lp(Rn) into itself when 1 < p <

p0 and V ∈ RHq, with n/2 ≤ q < n ([29, Theorem 0.5 and 0.8]).
The formal adjoint operator RL

` of RL
` defined by

RL
` (f)(x) = lim

ε→0+

∫
|x−y|>ε

RL
` (y, x)f(y)dy, a.e. x ∈ Rn,

is bounded from Lp(Rn) into itself when p′0 < p < ∞ and V ∈ RHq, with n/2 ≤ q < n, where
as usual p′0 denotes the exponent conjugated to p0. In the case that V ∈ RHn it is bounded for
1 < p < ∞ and it also maps L1(Rn) into L1,∞(Rn).

By defining the truncated Riesz transforms RL ,ε
` , ε > 0, in the natural way, the Lp-boundedness

properties for the variation operator Vρ(R
L ,ε
` ) were established in [2].

Theorem 2.7. ([2, Theorem 1.2]. Let ` = 1, · · · , n. Assume that ρ > 2. Then, the variation
operator Vρ(R

L ,ε
` ) is bounded

(i) from Lp(Rn) into itself, 1 < p < ∞, and from L1(Rn) into L1,∞(Rn), provided that
V ∈ RHn.

(ii) from Lp(Rn) into itself, when 1 < p < p0, where 1
p0

= 1
q −

1
n , and V ∈ RHq, n/2 ≤ q < n.

If f ∈ BMOL (Rn) and ` = 1, · · · , n, the limit in (1) exists for a.e. x ∈ Rn (see [2]). Thus,
the Riesz transforms RL

` are defined by (1) in BMOL (Rn). As it was remarked earlier, the
situation is quite different in the classical case.

In the next result we describe the behavior on BMOL (Rn) of the variation operators associ-
ated with the Riesz transforms RL

` and their adjoints.

Theorem 2.8. Let ρ > 2 and let ` = 1, · · · , n. If V ∈ RHq where q ≥ n, then the variation op-
erator Vρ(R

L ,ε
` ) is bounded from BMOL (Rn) into itself. Also, the variation operator Vρ(R

L ,ε
` )

is bounded from BMOL (Rn) into itself, provided that V ∈ RHq where q > n/2.

Note that there is a remarkable difference between the results in the classical and in the
Schrödinger settings. In the latter, the operators are defined in the whole BMOL (Rn), while in
the classical case it is necessary to impose an additional "finiteness hypothesis". This fact was
observed by the first time in [13].
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In order to analyze operators in the Schrödinger context on BMOL (Rn) we shall use some
ideas developed in [13] and we will again exploit that the Schrödinger operator L = −∆ + V ,
where V ∈ RHq, with q > n/2, is actually a nice perturbation of the Laplacian operator −∆.

Throughout the proof of the results that we have just stated, the following properties will
play an important role.

According to [13, Proposition 2.14] it is possible to choose a sequence {xk}∞k=1 ⊂ Rn, such
that if Qk = B(xk, γ(xk)), k ∈ N, the following properties hold:

(i) ∪∞k=1Qk = Rn;
(ii) For every m ∈ N there exist C, β > 0 such that, for every k ∈ N,

card {l ∈ N : 2mQl ∩ 2mQk 6= ∅} ≤ C2mβ .

Also, from [13, p. 346, after Lemma 9], for any operator H and f ∈ BMOL (Rn), Hf ∈
BMOL (Rn) provided that there exists a positive constant C such that, for every k ∈ N,

(ik) 1
|Qk|

∫
Qk
|H(f)(x)|dx ≤ C||f ||BMOL (Rn), and

(iik) Hf ∈ BMO(Q∗
k) and ||Hf ||BMO(Q∗

k) ≤ C||f ||BMOL (Rn). Here BMO(Q∗
k) denotes the

usual BMO-space over Q∗
k.

Moreover, we have that

‖Hf‖BMOL (Rn) ≤ M‖f‖BMOL (Rn),

where the constant M > 0 depends only on the constant C.
Note that if the property (ik) above holds for every k ∈ N, then |H(f)(x)| < ∞ for almost

every x ∈ Rn. This fact is quite different from what happens in the classical Euclidean case (see
Theorem 2.2 and Theorem 2.4 [1]).

3. Proof of Theorems 2.2 and 2.4

In this section we show our results about the behavior of the variation operator for the classical
heat semigroup and Riesz transforms on BMO(Rn).

3.1. Proof of Theorem 2.2. Let ρ > 2. Assume that f ∈ BMO(Rn) and Vρ(Wt)(f)(x) < ∞,
a.e. x ∈ Rn. Let B = B(x0, r0), with x0 ∈ Rn and r0 > 0. We write

f = (f − fB)χB∗ + (f − fB)χ(B∗)c + fB = f1 + f2 + f3.

Note that this type of decomposition allows us to see that Wt(|f |) < ∞. According to Theorem
2.1, we have

(2)
∫

Rn

|Vρ(Wt)(f1)(x)|2 dx ≤ C

∫
B∗
|f(x)− fB |2 dx ≤ C|B|‖f‖2BMO(Rn).

In particular this means that Vρ(Wt)(f1)(x) < ∞, a.e. x ∈ Rn. Moreover, since {Wt}t≥0 is
Markovian, Vρ(Wt)(f3) = 0. Then, using the hypothesis, we may choose x1 ∈ B(x0, r0) such
that Vρ(Wt)(f2)(x1) < ∞.

If Eρ denotes the space introduced in Section 1, we can write

(3)
1
|B|

∫
B

|Vρ(Wt)(f)(x)− Vρ(Wt)(f2)(x1)| dx

=
1
|B|

∫
B

∣∣∣‖Wt(f)(x)‖Eρ
− ‖Wt(f2)(x1)‖Eρ

∣∣∣ dx

≤ 1
|B|

∫
B

‖Wt(f)(x)−Wt(f2)(x1)‖Eρ
dx

=
1
|B|

∫
B

‖Wt(f1)(x) + Wt(f2)(x)−Wt(f2)(x1)‖Eρ
dx

≤ 1
|B|

∫
B

‖Wt(f1)(x)‖Eρ
dx +

1
|B|

∫
B

‖Wt(f2)(x)−Wt(f2)(x1)‖Eρ
dx.

Therefore, according to (2) we get

(4)
1
|B|

∫
B

‖Wt(f1)(x)‖Eρ
dx ≤

(
1
|B|

∫
B

|Vρ(Wt)(f1)(x)|2 dx

) 1
2

≤ C‖f‖BMO(Rn).
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Also, Minkowski inequality and [11, p. 91] lead to

(5)
1
|B|

∫
B

‖Wt(f2)(x)−Wt(f2)(x1)‖Eρ
dx

=
1
|B|

∫
B

∥∥∥∥∫
Rn

Wt(x, y)f2(y)dy −
∫

Rn

Wt(x1, y)f2(y)dy

∥∥∥∥
Eρ

dx

≤ C
1
|B|

∫
B

∫
Rn

‖Wt(x, y)−Wt(x1, y)‖Eρ
|f2(y)|dydx

≤ C

|B|

∫
B

∫
(B∗)c

|x− x1|
|x− y|n+1

|f(y)− fB |dydx

≤ C
r0

|B|

∫
B

∫
(B∗)c

1
(|y − x0| − |x0 − x|)n+1

|f(y)− fB |dydx

≤ C
r0

|B|

∫
B

∞∑
k=1

∫
2kr0≤|y−x0|<2k+1r0

1
(|y − x0| − |x0 − x|)n+1

|f(y)−fB |dydx

≤ C
∞∑

k=1

1
2k

1
(2kr0)n

∫
|y−x0|<2k+1r0

|f(y)− fB |dy ≤ C‖f‖BMO(Rn).

In the last inequality we have used the well known property (see [34, VIII, Proposition 3.2])

1
|2mB|

∫
2mB

|f(y)− fB |dy ≤ Cm‖f‖BMO(Rn), m ∈ N.

>From (3), (4) and (5) we conclude that

1
|B|

∫
B

|Vρ(Wt)(f)(x)− Vρ(Wt)(f2)(x1)| dx ≤ C‖f‖BMO(Rn).

Thus, we have proved that Vρ(Wt)(f) ∈ BMO(Rn).

Remark 3.1. After a careful reading of the proof of Theorem 2.2 we can deduce the following
result that will be useful in the proof of Theorem 2.6.

Proposition 3.1. Let ρ > 2 and A be a set of decreasing real sequences converging to zero.
Assume that

Vρ,A (Wt)(f)(x) = sup
{tj}j∈N∈A

( ∞∑
j=1

|Wtj (f)(x)−Wtj+1(f)(x)|ρ
)1/ρ

< ∞, a.e. x ∈ Q,

where Q is a ball in Rn. Suppose that f ∈ BMO(Rn) and B is a ball contained in Q. If we
define f2 = (f − fB)χ(B∗)c and choose x1 ∈ B such that Vρ,A (Wt)(f2)(x1) < ∞, then there is a
constant C > 0 independent of A such that for any ball B

1
|B|

∫
B

‖Wt(f)(x)−Wt(f2)(x1)‖Eρ,A dx ≤ C‖f‖BMO(Rn),

where, for a function h : (0,∞) 7→ C, ‖h‖Eρ,A means

‖h‖Eρ,A = sup
{tj}j∈N∈A

( ∞∑
j=1

|h(tj)− h(tj+1)|ρ
)1/ρ

.

3.2. Proof of Theorem 2.4. Let ρ > 2. Assume that f ∈ BMO(Rn) and that Vρ(Rε
`)(f)(x) <

∞, a.e. x ∈ Rn. To see that Vρ(Rε
`)(f) ∈ BMO(Rn) we extend to Rn the technique developed

in the proof of [18, Lemma 1.4].
Let B = B(x0, r0) be a ball in Rn. As above, we decompose f setting f = f1 + f2 + f3, where

f1 = (f − fB)χB∗∗ , f2 = (f − fB)χ(B∗∗)c and f3 = fB . According to Theorem 2.3, we have

(6)
∫

Rn

|Vρ(Rε
`)(f1)(x)|2dx ≤ C

∫
B∗∗

|f(x)− fB |2dx ≤ C|B|‖f‖2BMO(Rn).

Then, Vρ(Rε
`)(f1)(x) < ∞, a.e. x ∈ Rn. Moreover, Vρ(Rε

`)(f3) = 0. Then, we can choose x1 ∈ B
such that Vρ(Rε

`)(f2)(x1) < ∞.



VARIATION OPERATORS ON BMO IN THE SCHRÖDINGER SETTING 7

If Eρ denotes the space defined in Section 1, by (6) we can write

(7)
1
|B|

∫
B

|Vρ(Rε
`)(f)(x)− Vρ(Rε

`)(f2)(x1)| dx

≤ 1
|B|

∫
B

∣∣‖Rε
`(f)(x)‖Eρ

− ‖Rε
`(f2)(x1)‖Eρ

∣∣ dx

≤ 1
|B|

∫
B

‖Rε
`(f)(x)−Rε

`(f2)(x1)‖Eρ
dx

≤ 1
|B|

∫
B

‖Rε
`(f1)(x)‖Eρ

dx+
1
|B|

∫
B

‖Rε
`(f2)(x)−Rε

`(f2)(x1)‖Eρ
dx

≤ C‖f‖BMO(Rn) +
1
|B|

∫
B

‖Rε
`(f2)(x)−Rε

`(f2)(x1)‖Eρ
dx

Denoting R`(z) = cn
z`

|z|n+1 , z = (z1, · · · , zn) ∈ Rn \ {0}, we have that

(8) ‖Rε
`(f2)(x)−Rε

`(f2)(x1)‖Eρ
≤ A1(x) + A2(x), x ∈ B,

where, for every x ∈ B,

A1(x) =

∥∥∥∥∥
∫
|x−y|>ε

(R`(x− y)−R`(x1 − y))f2(y)dy

∥∥∥∥∥
Eρ

and

A2(x) =
∥∥∥∫

Rn

(
χ{ε<|x−y|}(y)− χ{ε<|x1−y|}(y)

)
R`(x1 − y)f2(y)dy

∥∥∥
Eρ

.

By using Minkowski inequality and well known properties of the function R`(z) we get

A1(x) ≤
∫

Rn

|R`(x− y)−R`(x1 − y)||f(y)− fB |χ(B∗∗)c(y)dy

≤ C
∞∑

k=2

∫
2kr0≤|x0−y|≤2k+1r0

|x− x1|
|x− y|n+1

|f(y)− fB |dy

≤ C
∞∑

k=1

1
2k

1
(2kr0)k

∫
2k+1B

|f(y)− fB |dy

≤ C‖f‖BMO(Rn), x ∈ B.(9)

In order to analyze A2 we split, for every j ∈ N, the integral there in four terms as follows.
Let {εj}∞j=1 be a real decreasing sequence that converges to zero. It follows that

(10)
∫

Rn

∣∣χ{εj+1<|x−y|<εj}(y)− χ{εj+1<|x1−y|<εj}(y)
∣∣ |R`(x1 − y)||f2(y)|dy

≤ C

(∫
Rn

χ{εj+1<|x−y|<εj+1+r0}(y)χ{εj+1<|x−y|<εj}(y)| 1
|x1 − y|n

|f2(y)|dy

+
∫

Rn

χ{εj<|x1−y|<εj+r0}(y)χ{εj+1<|x−y|<εj}(y)
1

|x1 − y|n
|f2(y)|dy

+
∫

Rn

χ{εj+1<|x1−y|<εj+1+r0}(y)χ{εj+1<|x1−y|<εj}(y)
1

|x1 − y|n
|f2(y)|dy

+
∫

Rn

χ{εj<|x−y|<εj+r0}(y)χ{εj+1<|x1−y|<εj}(y)
1

|x1 − y|n
|f2(y)|dy

)
= C(Aj

2,1(x)+Aj
2,2(x)+Aj

2,3(x)+Aj
2,4(x)), x ∈ B and j ∈ N.

Observe that if x ∈ B, then Aj
2,m(x) = 0, when m = 1, 3 and j ∈ N and r0 ≥ εj+1. Also, if

x ∈ B, then Aj
2,m(x) = 0, when m = 2, 4 and j ∈ N and r0 ≥ εj .

Let j ∈ N. Since 4
3 |x− y| ≥ |x1 − y| ≥ 3

4 |x− y|, y /∈ B∗∗ and x ∈ B, Hölder inequality leads
to

Aj
2,1(x) ≤ C

(∫
Rn

χ{εj+1<|x−y|<εj}(y)
1

|x− y|ns
|f2(y)|sdy

) 1
s

v
1
s′
j+1, x ∈ B,
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Aj
2,2(x) ≤ C

(∫
Rn

χ{max{εj+1, 3
4 εj}<|x−y|<εj}(y)

1
|x− y|ns

|f2(y)|sdy

) 1
s

v
1
s′
j , x ∈ B,

Aj
2,3(x) ≤ C

(∫
Rn

χ{εj+1<|x1−y|<εj}(y)
1

|x1 − y|ns
|f2(y)|sdy

) 1
s

v
1
s′
j+1, x ∈ B,

and

Aj
2,4(x) ≤ C

(∫
Rn

χ{max{εj+1, 3
4 εj}<|x1−y|<εj}(y)

1
|x1 − y|ns

|f2(y)|sdy

) 1
s

v
1
s′
j , x ∈ B.

Here 1 < s < ∞ and s′ = s
s−1 , and vj = (εj+r0)n−εn

j , j ∈ N. Note that vj ≤ C max{r0, εj}n−1r0,
j ∈ N, for a certain C > 0.

We define the set A = {j ∈ N : r0 < εj}. We have that

Comment: tal vez la notacion no sea buena ya que se uso para otra cosa en la
Proposicion 3.1

Aj
2,1(x) ≤ C

v
1/s′

j+1

ε
(n−1)/s′

j+1

(∫
Rn

χ{εj+1<|x−y|<εj}(y)
|f2(y)|s

|x− y|n+s−1
dy

)1/s

≤ Cr
1/s′

0

(∫
Rn

χ{εj+1<|x−y|<εj}(y)
|f2(y)|s

|x− y|n+s−1
dy

)1/s

,

for every x ∈ B and j + 1 ∈ A . In a similar way we can see that

Aj
2,2(x) ≤ Cr

1/s′

0

(∫
Rn

χ{εj+1<|x−y|<εj}(y)
|f2(y)|s

|x− y|n+s−1
dy

)1/s

, x ∈ B and j ∈ A ,

Aj
2,3(x) ≤ Cr

1/s′

0

(∫
Rn

χ{εj+1<|x1−y|<εj}(y)
|f2(y)|s

|x1 − y|n+s−1
dy

)1/s

, x ∈ B and j + 1 ∈ A ,

and

Aj
2,4(x) ≤ Cr

1/s′

0

(∫
Rn

χ{εj+1<|x1−y|<εj}(y)
|f2(y)|s

|x1 − y|n+s−1
dy

)1/s

, x ∈ B and j ∈ A .

Hence, we get ∞∑
j=1

|Aj
2,1(x) + Aj

2,2(x)|ρ
1/ρ

≤ C

 ∑
j+1∈A

|Aj
2,1(x)|ρ +

∑
j∈A

|Aj
2,2(x)|ρ

1/ρ

≤ C

∑
j∈N

(∫
Rn

χ{εj+1<|x−y|<εj}(y)
|f2(y)|s

|x− y|n+s−1
dy

)ρ/s

r
ρ/s′

0

1/ρ

≤ C

(∫
Rn

|f2(y)|s

|x− y|n+s−1
dy

)1/s

r
1/s′

0

≤ C

( ∞∑
k=1

1
(2kr0)n

∫
|x0−y|<2k+1r0

|f(y)− fB |sdy
1

2k(s−1)

)1/s

≤ C||f ||BMO(Rn), x ∈ B.(11)

In a similar way we get

(12)

 ∞∑
j=1

|Aj
2,3(x) + Aj

2,4(x)|ρ
1/ρ

≤ C||f ||BMO(Rn), x ∈ B.

From (10), (11) and (12) we infer that

(13) A2(x) ≤ C||f ||BMO(Rn), x ∈ B.
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Altogether (7), (8), (9) and (13) imply that

(14)
1
|B|

∫
B

|Vρ(Rε
`)(f)(x)− Vρ(Rε

`)(f2)(x1)|dx ≤ C||f ||BMO(Rn).

Thus, we have proved that Vρ(Rε
`)(f) ∈ BMO(Rn).

By proceeding as in the above proof we can establish the following result that will be useful
in the sequel.

Proposition 3.2. Let a > 0 and ` = 1, 2, ..., n. We define, for every ε > 0 and f ∈ L1
loc(Rn),

Rε
`,a(f)(x) =

∫
ε<|x−y|<a

x` − y`

|x− y|n+1
dy.

Then, if ρ > 2 Vρ(Rε
`,a)(f) ∈ BMO(Rn), provided that f ∈ BMO(Rn).

Note that Vρ(Rε
`,a)(f)(x) < ∞, a.e. x ∈ Rn, for every f ∈ BMO(Rn) and ` = 1, · · · , n. Indeed,

let f ∈ BMO(Rn) and i = `, · · · , n. Suppose that m ∈ N. Since Vρ(Rε
`,a)(f) ≤ Vρ(Rε

`)(f) and
f ∈ L2

loc(Rn), according to Theorem 2.3, we have that∫
B(0,m)

Vρ(Rε
`,a)(f)(x)dx ≤

∫
B(0,m)

Vρ(Rε
`,a)(fχB(0,m+a))(x)dx

≤
∫

B(0,m)

Vρ(Rε
`)(fχB(0,m+a))(x)dx

≤
√

m
(∫

B(0,m)

(Vρ(Rε
`)(fχB(0,m+a))(x))2dx

)1/2

≤
√

m
(∫

B(0,m+a)

|f(x)|2
)1/2

< ∞.

Comment: La primera desigualdad me parece igualdad. En las dos ultimas me
parece que en lugar de

√
m va mn/2.

Hence, Vρ(Rε
`,a)(f)(x) < ∞, a.e. x ∈ B(0,m).

4. Proof of Theorems 2.6 and 2.8

In this section we establish the boundedness in BMOL (Rn) of the variation operators for the
heat semigroup and Riesz transforms in the Schrödinger setting.

4.1. Proof of Theorem 2.6. Let ρ > 0. Assume that f ∈ BMOL (Rn). Our goal is to show
that Vρ(WL

t )(f) satisfies the properties (ik) and (iik), for every k ∈ N.
Fix k ∈ N. We first prove (ik), that is, there exists C > 0, independent of k ∈ N, such that

1
|Qk|

∫
Qk

|Vρ(WL
t )(f)(x)|dx ≤ C.

We decompose WL
t (f) as follows

WL
t (f)(x) = HL

k,t(f)(x) + LL
k,t(f)(x), x ∈ Rn and t > 0,

where
HL

k,t(f)(x) = WL
t (f)(x)χ{t>γ(xk)2}(t), x ∈ Rn and t > 0,

and
LL

k,t(f)(x) = WL
t (f)(x)χ{0<t≤γ(xk)2}(t), x ∈ Rn and t > 0.

Comment: Aqui arriba me parece mas claro decir que esta descomposicion se hace

para x ∈ Qk. Me suena raro hacerla para cualquier x ∈ Rn. Lo mismo diria para la
pagina 15. En caso de hacerlo asi en la desigualdad que sigue aqui abajo (it is clear
that...)habria que poner la variable x y agregar para x ∈ Qk.

It is clear that

(15) Vρ(WL
t )(f) ≤ Vρ(HL

k,t)(f) + Vρ(LL
k,t)(f).
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Let {tj}j∈N be a decreasing sequence that converges to zero. Suppose that jk ∈ N is such
that tjk+1 ≤ γ(xk)2 < tjk

. We can write( ∞∑
j=1

|HL
k,tj

(f)(x)−HL
k,tj+1

(f)(x)|ρ
)1/ρ

≤
jk−1∑
j=1

|WL
tj

(f)(x)−WL
tj+1

(f)(x)|+ |WL
tjk

(f)(x)|

≤
jk−1∑
j=1

∣∣∣ ∫ tj

tj+1

∂

∂t
WL

t (f)(x)dt
∣∣∣+ |WL

tjk
(f)(x)|

≤
∫ ∞

γ(xk)2

∫
Rn

∣∣∣ ∂

∂t
WL

t (x, y)
∣∣∣|f(y)|dydt + sup

t≥γ(xk)2
|WL

t (f)(x)|

= Ω1,k(f)(x) + Ω2,k(f)(x), x ∈ Rn.

Hence

(16) Vρ(HL
k,t)(f) ≤ Ω1,k(f) + Ω2,k(f).

According to [13, Theorem 6], we get

(17)
1
|Qk|

∫
Qk

|Ω2,k(f)(x)|dx ≤ 1
|Qk|

∫
Qk

sup
t>0

|WL
t (f)(x)|dx ≤ C‖f‖BMOL (Rn).

By using [13, (2.11)], since γ(x) ∼ γ(xk), when x ∈ Qk, we obtain

Ω1,k(f)(x) ≤ C

∫ ∞

γ(xk)2

∫
Rn

|f(y)|
t1+n/2

e−c|x−y|2/t
(
1 +

t

γ(xk)2
)−1

dydt

≤ C

∫ ∞

γ(xk)2

1
t1+n/2

(
1 +

t

γ(xk)2
)−1(∫

|x−y|<
√

t

+
∞∑

m=0

∫
√

t2m≤|x−y|<
√

t2m+1

)
|f(y)|

(
1 +

|x− y|√
t

)−1−n

dydt

≤ C

∫ ∞

γ(xk)2

1
t1+n/2

(
1 +

t

γ(xk)2
)−1 ∞∑

m=0

1
2m(1+n)

∫
|x−y|<2m

√
t

|f(y)|dydt, x ∈ Qk.

Moreover, by [13, Lemma 2], it follows
∞∑

m=0

1
2m(1+n)tn/2

∫
|x−y|<2m

√
t

|f(y)|dy

≤
∑

m∈N, 2m
√

t≤γ(x)

1
2m(1+n)tn/2

∫
|x−y|<2m

√
t

|f(y)|dy +
∑

m∈N, 2m
√

t>γ(x)

1
2m(1+n)tn/2

∫
|x−y|<2m

√
t

|f(y)|dy

≤ C‖f‖BMOL (Rn)

( ∑
m∈N, 2m

√
t≤γ(x)

1
2m

(
1 + log

γ(x)
2m
√

t

)
+
∑
m∈N

1
2m

)

≤ C‖f‖BMOL (Rn)

(
1 + log

√
t

γ(xk)

)
, t ≥ γ(xk)2 and x ∈ Qk.

Then,

Ω1,k(f)(x) ≤ C

∫ ∞

γ(xk)2

(
1 +

t

γ(xk)2
)−1(

1 + log
√

t

γ(xk)

)dt

t
‖f‖BMOL (Rn)

≤ C

∫ ∞

1

(1 + log(u))
du

u(1 + u)
‖f‖BMOL (Rn)

≤ C‖f‖BMOL (Rn), x ∈ Qk.

Hence, we obtain

(18)
1
|Qk|

∫
Qk

Ω1,k(f)(x)dx ≤ C‖f‖BMOL (Rn).

By combining (16), (17) and (18) we get

(19)
1
|Qk|

∫
Qk

Vρ(HL
k,t)(f)(x)dx ≤ C‖f‖BMOL (Rn).
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Here C > 0 does not depend on k.
We now decompose f as follows

f = fχQ∗
k

+ fχ(Q∗
k)c = f1 + f2,

where Q∗
k = 2Qk.

It is clear that

(20) Vρ(LL
k,t)(f) ≤ Vρ(LL

k,t)(f1) + Vρ(LL
k,t)(f2).

By proceeding as above we get

Vρ(LL
k,t)(f1)(x) ≤ C

(
sup

{tj}j∈N↓0

( ∑
j∈N, tj≤γ(xk)2

|WL
tj

(f1)(x)−WL
tj+1

(f1)(x)|ρ
)1/ρ

+ sup
0<t≤γ(xk)2

|WL
t (f1)(x)|

)
≤ C(Vρ(WL

t )(f1)(x) + WL
∗ (f1)(x)), x ∈ Rn.

Since WL
∗ and Vρ(WL

t ) are bounded operators from L2(Rn) into itself (see Theorem 2.1) it
follows that

1
|Qk|

∫
Qk

Vρ(LL
k,t)(f1)(x)dx ≤

( 1
|Qk|

∫
Rn

Vρ(LL
k,t)(f1)(x)2dx

)1/2

≤ C
( 1
|Qk|

∫
Q∗

k

|f(x)|2dx
)1/2

.

Then, from [13, Corollary 3], we deduce that

(21)
1
|Qk|

∫
Qk

Vρ(LL
k,t)(f1)(x)dx ≤ C‖f‖BMOL (Rn).

On the other hand, we can write

Vρ(LL
k,t)(f2)(x) ≤

∫ γ(xk)2

0

∫
(Q∗

k)c

∣∣∣ ∂

∂t
WL

t (x, y)
∣∣∣|f(y)|dydt + sup

0<t≤γ(xk)2
|WL

t (f2)(x)|

= Ω3,k(f)(x) + Ω4,k(f)(x), x ∈ Rn.(22)

According to [13, (2.7)], for certain C, c > 0, we get

(23)
∫ γ(xk)2

0

∫
(Q∗

k)c

∣∣∣ ∂

∂t
WL

t (x, y)
∣∣∣|f(y)|dydt

≤
∫
|x−y|>γ(xk)

∫ γ(xk)2

0

∣∣∣∣ ∂

∂t
WL

t (x, y)
∣∣∣∣ dt|f(y)|dy

≤ C

∫
|x−y|>γ(xk)

|f(y)|
∫ γ(xk)2

0

e−c|x−y|2/t

tn/2+1
dtdy

≤ C

∫ γ(xk)2

0

1
tn/2+1

∞∑
j=0

∫
2jγ(xk)<|x−y|≤2j+1γ(xk)

|f(y)|
(

t

|x− y|2

)(n+1)/2

dydt

≤ C

∫ γ(xk)2

0

1√
t

∞∑
j=0

1
(2jγ(xk))n+1

∫
|x−y|≤2j+1γ(xk)

|f(y)|dydt

≤ C
∞∑

j=0

1
2j(2jγ(xk))n

∫
|xk−y|≤2j+3γ(xk)

|f(y)|dy ≤ ˙C||f ||BMOL (Rn), x ∈ Qk.

Then, by (23),
1
|Qk|

∫
Qk

Ω3,k(f)(x)dx ≤ C||f ||BMOL (Rn).

Moreover, since |f | ∈ BMOL (Rn), [13, Theorem 6] implies that
1
|Qk|

∫
Qk

Ω4,k(f)(x)dx ≤ 1
|Qk|

∫
Qk

WL
∗ (|f |)(x)dx ≤ C||f ||BMOL (Rn).
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Hence, we conclude that

(24)
1
|Qk|

∫
Qk

Vρ(LL
k,t)(f2)(x)dx ≤ C||f ||BMOL (Rn).

By combining (21) and (24) we deduce

(25)
1
|Qk|

∫
Qk

Vρ(LL
k,t)(f)(x)dx ≤ C||f ||BMOL (Rn).

Finally, (15), (19) and (25) imply that
1
|Qk|

∫
Qk

Vρ(WL
t )(f)(x)dx ≤ C||f ||BMOL (Rn).

Note that C > 0 does not depend on k.
Thus property (ik) is completely proved.
Now, we are going to prove assertion (iik). Assume that B = B(x0, r0) ⊂ Q∗

k, with x0 ∈ Rn

and r0 > 0. Our purpose is to check that

(26)
1
|B|

∫
B

|Vρ(WL
t )(f)(x)− cB |dx ≤ C||f ||BMOL (Rn),

for a certain constant cB , and with C > 0 independent of k and B. To this end we decompose
WL

t as follows

(27) WL
t (f) = HL

k,t(f) + (LL
k,t(f)− Lk,t(f)) + Lk,t(f), t > 0,

where HL
k,t and LL

k,t are defined as above, and

Lk,t(f) = Wt(f)χ{0<t≤γ(xk)2}(t), t > 0.

Suppose that cB = ‖hB‖Eρ for some function h. Then, we can write

|Vρ(WL
t )(f)(x)− cB | = |‖WL

t (f)(x)‖Eρ − ‖hB‖Eρ |
≤ ‖WL

t (f)(x)− hB(t)‖Eρ

≤ ‖HL
k,t(f)(x) + (LL

k,t(f)(x)− Lk,t(f)(x)) + Lk,t(f)(x)− hB(t)‖Eρ

≤ ‖HL
k,t(f)(x)‖Eρ + ‖LL

k,t(f)(x)− Lk,t(f)(x)‖Eρ + ‖Lk,t(f)(x)− hB(t)‖Eρ

Therefore, (26) will be proved if we are able to show the following three inequalities:
(A1) 1

|B|
∫

B
‖HL

k,t(f)(x)‖Eρdx ≤ C||f ||BMOL (Rn);
(A2) 1

|B|
∫

B
‖LL

k,t(f)(x)− Lk,t(f)(x)‖Eρdx ≤ C||f ||BMOL (Rn); and
(A3) 1

|B|
∫

B
‖Lk,t(f)(x)− hB(t)‖Eρ

dx ≤ C||f ||BMOL (Rn),

for a certain function hB : (0,∞) 7→ C, and a constant C > 0 independent of k and B.
According to (16) we have

Vρ(HL
k,t)(f) ≤ Ω1,k(f) + Ω2,k(f).

By proceeding as above we get

(28) |Ω1,k(f)(x)| ≤ C||f ||BMOL (Rn), x ∈ Q∗
k.

Moreover, by [13, (5.4)],

(29) |Ω2,k(f)(x)| ≤ C||f ||BMOL (Rn), x ∈ Q∗
k.

Then, from (28) and (29), (A1) holds.
To establish (A2) we firstly observe that

Vρ(LL
k,t − Lk,t)(f)(x) ≤

∫ γ(xk)2

0

∫
Rn

∣∣∣ ∂

∂t
(WL

t (x, y)−Wt(x, y))
∣∣∣|f(y)|dydt

+ sup
0<t≤γ(xk)2

|WL
t (f)(x)−Wt(f)(x)|

= Ω5,k(f)(x) + Ω6,k(f)(x), x ∈ Rn.

By [13, (5.5)] we get

(30) Ω6,k(f)(x) ≤ C||f ||BMOL (Rn), x ∈ Q∗
k.
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The perturbation formula ([13, (5.25)]) allows us to write

∂

∂t

(
Wt(x, y)−WL

t (x, y)
)

=
∫

Rn

V (z)WL
t/2(x, z)Wt/2(z, y)dz

+
∫ t/2

0

∫
Rn

V (z)
∂

∂t
WL

t−s(x, z)Ws(z, y)dzds

+
∫ t

t/2

∫
Rn

V (z)WL
t−s(x, z)

∂

∂s
Ws(z, y)dzds

=
3∑

j=1

Kj(x, y, t), x, y ∈ Rn and t > 0.

According to [13, (2.3) and (2.8)], we get

|K1(x, y, t)| ≤ Ct−n

∫
Rn

V (z)e−
|x−z|2+|z−y|2

4t dz

≤ Ct−n/2e−
|x−y|2

16t

∫
Rn

V (z)t−n/2e−
|x−z|2

8t dz

≤ Cγ(x)−δt−1+(δ−n)/2e−
|x−y|2

16t , x, y ∈ Rn and 0 < t < γ(xk)2.

Here and in the sequel δ represents a positive constant.
Moreover, by using [13, (2.7) and (2.8)], since t/2 < t − s < t when 0 < s < t/2, it follows

that

|K2(x, y, t)| ≤ C

∫ t/2

0

∫
Rn

V (z)
1

(t− s)1+n/2
e−c

|x−z|2
t−s

1
sn/2

e−
|z−y|2

4s dzds

≤ C

∫ t/2

0

∫
Rn

V (z)
1

t1+n/2
e−c

|x−z|2
t

1
sn/2

e−
|z−y|2

4s dzds

≤ C
1

t1+n/2
e−c

|x−y|2
t

∫ t/2

0

∫
Rn

V (z)
1

sn/2
e−c

|z−y|2
s dzds

≤ C
1

t1+n/2
e−c

|x−y|2
t

∫ t/2

0

s−1+δ/2

γ(y)δ
ds

≤ γ(y)−δt−1+(δ−n)/2e−c
|x−y|2

t , x, y ∈ Rn and 0 < t < γ(xk)2.

By proceeding in a similar way we obtain

|K3(x, y, t)| ≤ Cγ(y)−δt−1+(δ−n)/2e−c
|x−y|2

t , x, y ∈ Rn and 0 < t < γ(xk)2.

Hence, since γ(x) ∼ γ(y) ∼ γ(xk) provided that |x− y| ≤ γ(xk) and x ∈ Q∗
k, we conclude that

∣∣∣ ∂

∂t

(
WL

t (x, y)−Wt(x, y)
)∣∣∣ ≤ Cγ(y)−δt−1+(δ−n)/2e−c

|x−y|2
t , x ∈ Q∗

k, |x−y| ≤ γ(xk) and 0 < t < γ(xk)2.

Therefore for some constants C, c > 0 we get

Ω5,k(f)(x) ≤ C

∫ γ(xk)2

0

tδ/2−1

γ(xk)δ

∫
Rn

e−c|x−y|2/t

tn/2
|f(y)|dydt

≤ C

∫ γ(xk)2

0

tδ/2−1

γ(xk)δ

∞∑
j=0

e−c22j

tn/2

∫
|x−y|≤2j

√
t

|f(y)|dydt

≤ C

∫ γ(xk)2

0

tδ/2−1

γ(xk)δ

∞∑
j=0

2jne−c22j

(2j
√

t)n

∫
|x−y|≤2j

√
t

|f(y)|dydt, x ∈ Q∗
k.
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Moreover, by [13, Lemma 3.14], since γ(x) ∼ γ(xk), x ∈ Q∗
k,

∞∑
j=0

2jne−c22j

(2j
√

t)n

∫
|x−y|≤2j

√
t

|f(y)|dy

=
∑

j∈N, 2j
√

t≤γ(x)

2jne−c22j

(2j
√

t)n

∫
|x−y|≤2j

√
t

|f(y)|dy+
∑

j∈N, 2j
√

t>γ(x)

2jne−c22j

(2j
√

t)n

∫
|x−y|≤2j

√
t

|f(y)|dy

≤ C||f ||BMOL (Rn)

 ∑
j∈N, 2j

√
t≤γ(x)

2jne−c22j

(
1 + log

γ(x)
2j
√

t

)
+

∑
j∈N, 2j

√
t>γ(x)

2jne−c22j


≤ C||f ||BMOL (Rn)

(
γ(xk)√

t

)ε

, x ∈ Q∗
k and 0 < t < γ(xk)2,

where ε ∈ (0, δ).
With this estimate we have that

(31) Ω5,k(f)(x) ≤ C||f ||BMOL (Rn)

∫ γ(xk)2

0

tδ/2−1−ε/2

γ(xk)δ−ε
dt ≤ C||f ||BMOL (Rn), x ∈ Q∗

k.

Putting together (30) and (31), we infer (A2).

Comment: Se podria hacer notar que de hecho para A1 y A2 se probo algo mas
fuerte, esto es, que la norma infinito del integrando estaba acotada por el miembro
derecho ya que despues para la riesz adjunta lo necesitamos, ver pag. 17 de esta
version

Next we notice that by (27) it follows that

Vρ(Lk,t)(f) ≤ Vρ(WL
t )(f) + Vρ(HL

k,t)(f) + Vρ(LL
k,t − Lk,t)(f).

By proceeding as in the proof of (ik) we get∫
Q∗

k

Vρ(WL
t )(f)(x)dx < ∞.

Then, Vρ(WL
t )(f)(x) < ∞, a.e. x ∈ Q∗

k.
From (30) and (31) we deduce Vρ(LL

k,t − Lk,t)(f)(x) < ∞, a.e. x ∈ Q∗
k. Also, by (28) and

(29), Vρ(HL
k,t)(f)(x) < ∞, a.e. x ∈ Q∗

k.
Hence, Vρ(Lk,t)(f)(x) < ∞, a.e. x ∈ Q∗

k. We consider the following decomposition of f

f = (f − fB)χB∗ + (f − fB)χ(B∗)c + fB = f1 + f2 + f3,

where B∗ = 2B.
Note that

Vρ(Lk,t)(f1)(x) ≤ C
(

sup
{tj}j∈N, tj≤γ(xk)2

( ∞∑
j=1

|Wtj
(f1)(x)−Wtj+1(f1)(x)|ρ

)1/ρ

+ sup
0<t≤γ(xk)2

|Wt(f1)(x)|
)

≤ C(Vρ(Wt)(f1)(x) + W∗(f1)(x)).

Then, since W∗ and Vρ(Wt) are bounded operators from L2(Rn) into itself (see Theorem 2.1),
we obtain ∫

Q∗
k

|Vρ(Lk,t)(f1)(x)|dx ≤ C
(
|Qk|

∫
B∗
|f(x)− fB |2dx

)1/2

≤ C(|B||Qk|)1/2‖f‖BMOL (Rn) < ∞.

Hence Vρ(Lk,t)(f1)(x) < ∞, a.e. x ∈ Q∗
k.

Also, since
∫

Rn Wt(x, y)dy = 1, x ∈ Rn and t > 0, we get

Vρ(Lk,t)(f3) = |fB | < ∞, x ∈ Rn.

Therefore, we deduce that Vρ(Lk,t)(f2)(x) < ∞, a.e. x ∈ Q∗
k.

Choosing z1 ∈ B such that Vρ(Lk,t)(f2)(z1) < ∞, we define hB(t) = Lk,t(f2)(z1), t ∈ (0,∞).
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Suppose that {tj}j∈N is a real decreasing sequence that converges to zero and let jk ∈ N be
such that tjk

≤ γ(xk)2 and tjk−1 > γ(xk)2. We can write( ∞∑
j=1

∣∣∣Lk,tj (f)(x)− Lk,tj (f2)(z1)− (Lk,tj+1(f)(x)− Lk,tj+1(f2)(z1))
∣∣∣ρ)1/ρ

=
( ∞∑

j=jk

∣∣∣Wtj (f)(x)−Wtj (f2)(z1)− (Wtj+1(f)(x)−Wtj+1(f2)(z1))
∣∣∣ρ +

∣∣∣Wtjk
(f)(x)−Wtjk

(f2)(z1)
∣∣∣ρ)1/ρ

≤ C
(( ∞∑

j=jk

∣∣∣Wtj
(f)(x)−Wtj

(f2)(z1)− (Wtj+1(f)(x)−Wtj+1(f2)(z1))
∣∣∣ρ)1/ρ

+ sup
0<t≤ρ(xk)2

|Wt(f)(x)−Wt(f2)(z1)|,

and then∣∣∣‖Lk,t(f)(x)‖Eρ
− ‖hB‖Eρ

∣∣∣
≤ sup

{tj}j∈N↓0, 0<tj≤γ(xk)2
(
∞∑

j=1

∣∣∣Wtj
(f)(x)−Wtj

(f2)(z1)− (Wtj+1(f)(x)−Wtj+1(f2)(z1))
∣∣∣ρ)1/ρ

+ sup
0<t≤ρ(xk)2

|Wt(f)(x)−Wt(f2)(z1)|.

By taking into account Proposition 3.1 we obtain

Comment: tal vez convendria decir cual es la clase de sucesiones a las que se
aplica la proposicion.

1
|B|

∫
B

sup
{tj}j∈N↓0, 0<tj≤γ(xk)2

( ∞∑
j=1

∣∣∣Wtj
(f)(x)−Wtj

(f2)(z1)− (Wtj+1(f)(x)−Wtj+1(f2)(z1))
∣∣∣ρ)1/ρ

dx

≤ C‖f‖BMOL (Rn).(32)

Also, according to [13, Pages 348 and 349] it follows that

(33)
1
|B|

∫
B

sup
0<t≤ρ(xk)2

|Wt(f)(x)−Wt(f2)(z1)|dx ≤ C‖f‖BMOL (Rn).

From (32) and (33) we deduce (A3).
Note that the constant C > 0 does not depend on k and B in all the occurrences.
Thus the proof of (iik) is finished.

4.2. Proof of Theorem 2.8. Let ρ > 2. We may assume without loss of generality that
V ∈ RHq with q > n. In fact, from ([17]), reverse Hölder classes are open, i.e., if g ∈ RHs it is
also true that g ∈ RHs+ε for some ε > 0.

In order to prove that the variation operator Vρ(R
L ,ε
` ) is bounded from BMOL (Rn) into

itself, we consider, for each k ∈ N , the local operators defined as

RL
`,k(f)(x) = PV

∫
|x−y|<γ(xk)

RL
` (x, y)f(y)dy,

and

R`,k(f)(x) = PV

∫
|x−y|<γ(xk)

R`(x− y)f(y)dy.

Note that |y − xk| ≤ 3γ(xk) when x ∈ Q∗
k and |x− y| < γ(xk). Then, if f ∈ BMOL (Rn),

R`,k(f)(x) = lim
ε→0+

∫
ε<|x−y|<γ(xk)

R`(x− y)f(y)χ3Qk
(y)dy, a.e. x ∈ Q∗

k,

that is, this limit exists for almost all x ∈ Q∗
k when f ∈ BMOL (Rn). Also, RL

`,k(f)(x) is defined
for almost every x ∈ Q∗

k when f ∈ BMOL (Rn) (see [2, Proposition 1.1]).
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Let f ∈ BMOL (Rn). We are going to analyze the properties (ik) and (iik) when H =
Vρ(R

L ,ε
` ). Let k ∈ N. We can write

Vρ(R
L ,ε
` )(f) = (Vρ(R

L ,ε
` )(f)− Vρ(R

L ,ε
`,k )(f))

+ (Vρ(R
L ,ε
`,k )(f)− Vρ(Rε

`,k)(f)) + Vρ(Rε
`,k)(f)

= F1,k + F2,k + Vρ(Rε
`,k)(f).

For x ∈ Q∗
k we have

|F1,k(x)| ≤ Vρ(R
L ,ε
` −RL ,ε

`,k )(f)(x)

= sup
{εj}j∈N↓0

 ∞∑
j=1

∣∣∣∣∣
∫

εj+1<|x−y|<εj

RL
` (x, y)f(y)dy −

∫
εj+1<|x−y|<εj , |x−y|<γ(xk)

RL
` (x, y)f(y)dy

∣∣∣∣∣
ρ
1/ρ

= sup
{εj}j∈N↓0

 ∞∑
j=1

∣∣∣∣∣
∫

εj+1<|x−y|<εj ,|x−y|≥γ(xk)

RL
` (x, y)f(y)dy

∣∣∣∣∣
ρ
1/ρ

≤
∫
|x−y|>γ(xk)

|RL
` (x, y)||f(y)|dy, .

Then, according to [4, Lemma 3, (a)], since γ(xk) ≥ Mγ(x), x ∈ Q∗
k, for a certain 0 < M < 1

that does not depend on k ∈ N, it follows that

|F1,k(x)| ≤ C

∫
|x−y|>Mγ(x)

1
|x− y|n

1
1 + |x− y|/γ(x)

|f(y)|dy

≤ C
∞∑

j=0

∫
M2jγ(x)<|x−y|<M2j+1γ(x)

1
|x− y|n

1
1 + |x− y|/γ(x)

|f(y)|dy

≤ C
∞∑

j=0

1
2j

1
(2jγ(x))n

∫
|x−y|<2j+1γ(x)

|f(y)|dy ≤ C||f ||BMOL (Rn), x ∈ Q∗
k.

Also, by using [4, Lemma 3, (b)], we obtain

|F2,k(x)| ≤ Vρ(R
L ,ε
`,k −Rε

`,k)(f)(x)

= sup
{εj}j∈N↓0

 ∞∑
j=1

∣∣∣∣∣
∫

εj+1<|x−y|<εj , |x−y|<γ(xk)

(RL
` (x, y)−R`(x− y))f(y)dy

∣∣∣∣∣
ρ
1/ρ

≤
∫
|x−y|<γ(xk)

|RL
` (x, y)−R`(x− y)||f(y)|dy

≤ C

∫
|x−y|<γ(xk)

1
|x− y|n

(
|x− y|
γ(x)

)2−n/q

|f(y)|dy, x ∈ Q∗
k.

Then, using Hölder inequality and that γ(x) ∼ γ(xk) for x ∈ Q∗
k, we arrive to

|F2,k(x)| ≤ C

(∫
|x−y|<γ(xk)

|x− y|(2−n/q1−n)rdy

)1/r
1

γ(xk)2−n/q1

(∫
|x−y|<γ(xk)

|f(y)|r
′
dy

)1/r′

≤ C

(
1

γ(xk)n

∫
|x−y|<γ(xk)

|f(y)|r
′
dy

)1/r′

≤ C||f ||BMOL (Rn), x ∈ Q∗
k.

Here, 1 < r < n/(n− 2 + n/q).
Since, for i = 1, 2, Fi,k ∈ L∞(Q∗

k) and ||Fi,k||L∞(Q∗
k) ≤ C||f ||BMOL (Rn), where C does not

depend on k ∈ N, in order to see that the properties (ik) and (iik) hold for H = Vρ(R
L ,ε
` ) it is

sufficient to establish those properties for H = Vρ(Rε
`,k).
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Fix again k ∈ N. Then

Vρ(Rε
`,k)(f)(x) = sup

{εj}j∈N↓0

 ∞∑
j=1

∣∣∣∣∣
∫

εj+1<|x−y|<εj ,|x−y|<γ(xk)

R`(x− y)f(y)dy

∣∣∣∣∣
ρ
1/ρ

= sup
{εj}j∈N↓0

 ∞∑
j=1

∣∣∣∣∣
∫

εj+1<|x−y|<εj ,|x−y|<γ(xk)

R`(x− y)f(y)χQ∗∗
k

(y)dy

∣∣∣∣∣
ρ
1/ρ

≤ Vρ(Rε
`,k)(fχQ∗∗

k
)(x), x ∈ Q∗

k.

Hence, according to Theorem 2.7, (i), we have

1
|Qk|

∫
Qk

|Vρ(Rε
`,k)(f)(x)|dx ≤

(
1
|Qk|

∫
Qk

|Vρ(Rε
`,k)(fχQ∗∗

k
)(x)|2dx

)1/2

≤ C

(
1
|Qk|

∫
Q∗∗

k

|f(x)|2dx

)1/2

≤ C||f ||BMOL (Rn).(34)

Let now x0 ∈ Rn and r0 > 0 such that B = B(x0, r0) ⊂ Q∗
k. Then, by using Proposition 3.2

we can see
1
|B|

∫
B

|Vρ(Rε
`,k)(f)(x)− Vρ(Rε

`,k)(f2)(z1)|dx ≤ C||f ||BMOL (Rn).

where f2 = (f−fB)χ(B∗∗)c and z1 ∈ B is such that Vρ(Rε
`,k)(f2)(z1) < ∞. Hence, Vρ(Rε

`,k)(f) ∈
BMO(Q∗

k) and

(35) ||Vρ(Rε
`,k)(f)||BMO(Q∗

k) ≤ C||f ||BMOL (Rn).

Note that the constants C > 0 appearing in (34) and (35) do not depend on k ∈ N. Thus the
proof of the desired result is finished.

Assume now that V ∈ RHq with n/2 < q. In fact it is sufficient to consider n/2 < q < n. We
have to show that the variation operator for the adjoint Riesz transform, Vρ(R

L ,ε
` ), is bounded

from BMOL (Rn) into itself. Looking at the proof above, we notice that the properties on RL
`

needed to make the above proof work are, on one side, its boundedness on L2(Rn), which is true
by ([29, Theorem 0.5 and 0.8]), and, on the other side that the operators defined by

T1,k(f)(x) =
∫
|x−y|>γ(xk)

|RL
` (y, x)||f(y)|dy,

and

T2,k(f)(x) =
∫
|x−y|<γ(xk)

|RL
` (y, x)−R`(y − x)||f(y)|dy,

map BMOL (Rn) into L∞(Q∗
k), and that for i = 1, 2,

||Ti,k(f)||L∞(Q∗
k) ≤ C||f ||BMOL (Rn),

where C > 0 does not depend on k ∈ N.
Let k ∈ N and f ∈ BMOL (Rn). According to [29, p. 538], we have that

|T1,k(f)(x)| ≤ C

(∫
|x−y|>γ(xk)

1
|x− y|n

1
(1 + |x− y|/γ(x))α

|f(y)|dy

+
∫
|x−y|>γ(xk)

1
|x− y|n−1

|f(y)|
(1 + |x− y|/γ(x))α

∫
|y−z|< |x−y|

4

V (z)
|z − y|n−1

dzdy

)
= C(T1,1,k(f)(x) + T1,2,k(f)(x)), x ∈ Q∗

k,

where α > 0 will be chosen later large enough.
As it was shown earlier, we have

(36) ||T1,1,k(f)||L∞(Q∗
k) ≤ C||f ||BMOL (Rn),

provided that α ≥ 1.
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On the other hand, since γ(x) ∼ γ(xk) when x ∈ Q∗
k, we can write

|T1,2,k(f)(x)| ≤ C
∞∑

j=0

1
2jα(2jγ(xk))n−1

∫
2jγ(xk)<|x−y|≤2j+1γ(xk)

|f(y)|
∫

B(y,
|x−y|

4 )

V (z)
|z − y|n−1

dzdy

≤ C
∞∑

j=0

1
2jα(2jγ(xk))n−1

(∫
|x−y|≤2j+1γ(xk)

|f(y)|q
′
0dy

)1/q′0

×

(∫
Rn

∣∣∣∣∣
∫
|x−z|<2j+2γ(xk)

V (z)
|z − y|n−1

dz

∣∣∣∣∣
q0

dy

)1/q0

, x ∈ Q∗
k,

where 1
q0

= 1
q −

1
n . Then, the Lp-boundedness properties of the classical fractional integrals

([31]) lead us to

|T1,2,k(f)(x)| ≤ C||f ||BMOL (Rn)

∞∑
j=0

1
2jα(2jγ(xk))n−1−n/q′0

(∫
|x−z|<2j+2γ(xk)

|V (z)|qdz

)1/q

, x ∈ Q∗
k.

By using the properties of V and γ ([4, Lemma 1]) we obtain, for a certain µ > 0,(∫
|x−z|<2j+2γ(xk)

|V (z)|qdz

)1/q

≤ C(2jγ(xk))−n/q′2jµγ(xk)n−2, x ∈ Q∗
k.

By choosing α > 0 large enough, it follows that

|T1,2,k(f)(x)| ≤ C||f ||BMOL (Rn)

∞∑
j=0

1
2j(α+n/q0−1+n/q′−µ)

≤ C||f ||BMOL (Rn), x ∈ Q∗
k.(37)

We conclude from (36) and (37) that

||T1,k(f)||L∞(Q∗
k) ≤ C||f ||BMOL (Rn),

where C > 0 does not depend on k ∈ N.
According to [29, (5.9)] we get

|T2,k(f)(x)| ≤ C

(∫
|x−y|<γ(xk)

1
|x− y|n

(
|x− y|
γ(x)

)2−n/q

|f(y)|dy

+
∫
|x−y|<γ(xk)

1
|x− y|n−1

∫
|y−z|< |x−y|

4

V (z)
|z − y|n−1

dz|f(y)|dy

)
= C(T2,1,k(f)(x) + T2,2,k(f)(x)), x ∈ Q∗

k.

As in the proof in the first part of this theorem we have that

(38) ||T2,1,k(f)||L∞(Q∗
k) ≤ C||f ||BMOL (Rn).

Also, we can write

|T2,2,k(f)(x)| ≤ C
∞∑

j=0

∫
2−j−1γ(xk)≤|x−y|<2−jγ(xk)

|f(y)|
(2−jγ(xk))n−1

∫
|x−z|<2−j+1γ(xk)

V (z)
|y − z|n−1

dzdy

≤ C
∞∑

j=0

1
(2−jγ(xk))n−1

(∫
|x−y|<2−jγ(xk)

|f(y)|q
′
0dy

)1/q′0

×

(∫
Rn

(∫
|x−z|<2−j+1γ(xk)

V (z)
|y − z|n−1

dz

)q0

dy

)1/q0

≤ C
∞∑

j=0

1
(2−jγ(xk))n−1−n/q′0

(∫
|x−z|<2−j+1γ(xk)

V (z)qdz

)1/q

×

(
1

(2−jγ(xk))n

∫
|x−y|<2−jγ(xk)

|f(y)|q
′
0dy

)1/q′0

, x ∈ Q∗
k,
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where 1
q0

= 1
q −

1
n .

Since V ∈ RHq and γ(x) ∼ γ(xk), when x ∈ Q∗
k, we have ([4, Lemma 1])(∫

B(x,2−j+1γ(xk))

V (z)qdz

)1/q

≤ Cγ(xk)n/q−2, x ∈ Q∗
k.

Moreover, an argument like the one used to show [13, Lemma 2] allows us to get(
1

(2−jγ(xk))n

∫
|x−y|<2−jγ(xk)

|f(y)|q
′
0dy

)1/q′0

≤ Cj||f ||BMOL (Rn).

Then,

|T2,2,k(f)(x)| ≤ C
∞∑

j=0

j

(2−jγ(xk))n/q0−1
γ(xk)n/q−2||f ||BMOL (Rn)

≤ C||f ||BMOL (Rn), x ∈ Q∗
k.(39)

Note that n
q0
− 1 = n

q − 2 < 0.
By combining (38) and (39) we conclude that

||T2,k(f)||L∞(Q∗
k) ≤ C||f ||BMOL (Rn),

where C > 0 does not depend on k ∈ N.
Thus the proof is finished.
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