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Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter
sweep experiment) applications. Tese applications involve a large number of resource-intensive and independent computational
tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud envi-
ronments that ofer instances of diferent VM (virtual machine) types, under a pay-per-use scheme, to execute diverse appli-
cations. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the
multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and
spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot
instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives
depends signifcantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves
considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation
of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider
three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evo-
lutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization),
which have behavioral diferences with NSGA-III. Ten, we evaluate the performance of MOEA with each of these algorithms,
considering the three optimization objectives, on four real-world PSE applications from the meteorology andmolecular dynamics
areas, considering diferent application sizes. To do that, we use the well-known CloudSim simulator and consider diferent VM
types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III
arises as the best alternative, reaching better and signifcant savings in terms of computing time (10%–17%), monetary cost (10%–
40%), and spot instance interruptions (33%–100%).

1. Introduction

Many important scientifc applications are represented by
PSE (parameter sweep experiment) [1]. A PSE application is
defned with the aim of exploring the diferent behaviors of a

determined computational model, where such behaviors are
obtained by varying the model’s parameter settings. For
example, the elastoplastic buckling behavior of a cruciform
column can be explored by executing the column’s com-
putational model many times, each of them with a diferent
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parameter setting for the model, where the model-specifc
parameters include column length and width, column
thickness, and column cross-section angle [2]. Tis partic-
ular PSE is useful in structural engineering to analyze the
stability, strength, rigidity, and earthquake susceptibility of
cruciform columns designed for diferent kinds of
structures.

In a PSE, each of the parameters can be assigned diferent
feasible values. Next, the PSE execution includes a number of
tasks equal to the number of parameter values that have been
varied in the model. Each of these tasks consists of running
the model with diferent parameter values and generating a
behavior with respect to the parameter value used. Te PSE
application results are obtained by executing all the PSE-
associated tasks.

PSE tasks are characterized by requiring a considerable
number of computer resources and computing time to
execute. Besides, PSE tasks are characterized by being totally
independent, which means they can be executed in a parallel
way. Because of this, PSEs are considered suitable for dis-
tributed infrastructures, such as those provided by public
clouds [3–5]. In this sense, by executing these applications in
cloud environments, the speedup that can be achieved is
signifcant.

Public cloud environments, such as Amazon EC2,
Google Cloud, Microsoft Azure, and IBM Cloud, ofer their
users the possibility of acquiring instances of many dif-
ferent VM (virtual machine) types under a pay-per-use
scheme to execute diverse kinds of applications. In this
regard, diferent VM types are composed of diferent
hardware and software confgurations, including CPU,
memory space, storage space, and operating systems. Be-
sides, diferent VM types have diferent monetary costs. In
addition, the monetary cost of each VM depends on the
pricing model utilized by the users to acquire the instances.
In the case of Amazon, two major pricing models exist, on-
demand and spot. Under the on-demand model, the in-
stances can be required for a predefned amount of com-
puting time at a predefned monetary cost. For the spot
pricing model [6], the instance cost is much lower than that
of the instances under the on-demand model, but varies
heavily over time according to demand. Besides, the in-
stances under the spot model are subject to interruptions
by the cloud service provider (CSP). Tese interruptions
negatively impact the application’s tasks running on the
instances, and therefore the whole application. Tus, on a
public cloud, the computing time and execution monetary
cost of an application depends on the number and type of
the acquired VMs and the pricing model used to acquire
the instances.

Considering these trade-ofs, for executing applications
in a public cloud environment, it is important to decide the
type and number of VMs to be acquired from the cloud
service provider, and the pricing model to be used for ac-
quiring the instances of each VM type. Moreover, it is
necessary to decide the schedule of the application’s tasks on
the requested instances. Tese decisions should be made so
that the computational time, the cost, and also the spot
instance interruptions are minimized. Tis problem is

treated as a multiobjective NP-hard optimization problem
[7].

In the literature, diverse cloud autoscaling strategies have
been proposed with the aim of automatically and dynami-
cally determining the VM instances to be requested from a
CSP for executing a given application in a cloud environ-
ment [8–11]. Tese approaches are mainly characterized by
scaling up and down the number of acquired instances over
time, considering the application’s workload, and scheduling
such workload on the acquired instances. However, these
approaches difer in many aspects, including the pricing
model supported (e.g., only on-demand or both on-demand
and spot), the optimization objectives considered, the op-
timization algorithms applied, and the kind of application
for which they were proposed.

As far as we know, a recent cloud autoscaling strategy
proposed to execute PSE applications is the MOEA
autoscaler [12]. MOEA autoscaler is based on the well-
known multiobjective evolutionary algorithm NSGA-II
[13], uses spot and on-demand VMs to execute the PSE
tasks of a given application, and considers optimization
objectives that are very relevant for the users to minimize
the computational time, the cost, and the spot instance
interruptions of the application’s execution. Even though
this autoscaler has achieved a good performance in relation
to the optimization objectives considered, its performance
depends signifcantly on the Pareto set (i.e., set of non-
dominated solutions) provided by the optimization algo-
rithm used. In [14], it has been shown that the performance
of this autoscaler improves considerably when the algo-
rithm NSGA-II is replaced by a more recent and well-
known multiobjective evolutionary algorithm named
NSGA-III [15]. However, the algorithm NSGA-III has
limitations in terms of the diversity of the resulting Pareto
set [16, 17], which can negatively impact the performance
of the autoscaler. Tus, the incorporation of other multi-
objective optimization algorithms into this autoscaler
could beneft its performance, and therefore, the applica-
bility of this autoscaler to complex real-world PSE
applications.

Considering the above mentioned, in this article, we
explore the incorporation of other multiobjective optimi-
zation algorithms into the autoscaler MOEA with the aim of
enhancing the performance of this autoscaler in respect of
the optimization objectives considered. Terefore, we im-
plement three new algorithms that have relevant diferences
in their behavior compared to the algorithm NSGA-III used
in [14]. Te frst algorithm is the multiobjective evolutionary
algorithm E-NSGA-III[18, 19], which has been recently
proposed in the literature in order to address the limitations
of NSGA-III and thus improve the quality (i.e., the diversity,
distribution, and convergence) of the Pareto sets generated
by NSGA-III. E-NSGA-III has been shown to be more ef-
fective than NSGA-III in terms of the quality of the Pareto
sets generated, on several NP-hard multiobjective optimi-
zation problems, including task scheduling problems in
cloud environments [18]. Based on the previously men-
tioned considerations, we consider that E-NSGA-III could
be a valuable alternative for the autoscaler MOEA.
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Te other algorithms are the multiobjective evolutionary
algorithm SMS-EMOA [20] and the multiobjective particle
swarm optimization algorithm SMPSO [21]. Te algorithm
SMS-EMOA is characterized by maximizing the hyper-
volume of the Pareto set (i.e., the convergence, diversity, and
distribution of the Pareto set) as part of the optimization
process developed by the algorithm. Te algorithm SMPSO
is characterized by controlling the generation of candidate
solutions for the Pareto set over the search space in order to
obtain a diverse and well-distributed Pareto set. As described
in [20, 21], due to the mentioned characteristics, both al-
gorithms have been shown to be more efective than well-
known multiobjective evolutionary algorithms, such as
NSGA-II, in terms of the quality of the Pareto sets obtained
on several NP-hard multiobjective optimization problems,
including scheduling problems [20, 21]. Taking into con-
sideration that these algorithms have characteristics aimed at
generating Pareto sets with high quality, it is worth analyzing
empirically the incorporation of these algorithms into the
autoscaler MOEA in order to determine if they could be a
useful alternative or not for the autoscaler.

To empirically and comparatively measure the MOEA
autoscaler performance with the three previously mentioned
algorithms, regarding the optimization objectives consid-
ered, we use four real-world PSE applications from two
diferent areas, namely, meteorology and molecular dy-
namics, and also real VM instance data from a real-world
cloud environment (i.e., Amazon EC2). Te experimental
evaluations were conducted using the well-known CloudSim
simulator [22].

Te remainder of the article is structured as shown
below. Ten, Section 2 describes the multiobjective cloud
autoscaling problem dealt with in this work and also
presents its mathematical formulation. Section 3 presents
the autoscaler MOEA in detail. Ten, Section 4 describes the
three considered multiobjective optimization algorithms. In
Section 5, the computational experiments performed in
order to evaluate the MOEA’s performance with the other
considered algorithms, and a comparative study of the
obtained results, are presented in detail. Next, Section 6
discusses related works. Finally, Section 7 concludes this
work and delineates future research lines.

2. Multiobjective Cloud Autoscaling Problem

In this paper, we address the multiobjective cloud
autoscaling problem for PSEs. A PSE application is inte-
grated with many computational tasks which are resource
intensive and also independent. Because of this, these PSEs
are considered suited for public cloud environments. Tese
environments give the possibility of acquiring instances of
many diverse VM types. Instances of diverse VM types are
set up with diferent software and hardware confgurations
and also have diferent costs. Furthermore, each type of
instance can be acquired by the users under diferent pricing
models.

Two pricing models, spot and on-demand, are consid-
ered here. For the on-demand pricing model, the instances
can be acquired by the users for a predefned amount of

computing time at a predefned monetary cost. We will refer
to instances acquired under this model as on-demand in-
stances. Ten, in the spot model, the instances’ cost is lower
than that of the on-demand instances, but varies throughout
time mainly according to demand. Tus, in order to acquire
a spot instance, a user can submit the maximum price that
he/she is willing to pay for the instance.Tis maximum price
is here referred to as the bid. Ten, while the user’s bid is
higher than or equal to the current instance cost, the instance
will be held for the user. On the other hand, if the cost of the
instance varies and exceeds the user’s bid, an interruption
takes place, and the instance is terminated. As a result, the
tasks running on the instance are terminated, which is
known as task failure. Terefore, spot instance interruptions
have a negative impact on the whole application’s execution
because canceled tasks have to be restarted later. We will
refer to acquired instances under this model as spot
instances.

Te multiobjective cloud autoscaling problem tackled
in this work involves two connected problems, as shown in
Figure 1. Te frst of these two problems is defning a
scaling plan, which determines the type and number of spot
and on-demand instances to be requested from the CSP at
the current autoscaling stage for executing the PSE ap-
plication’s tasks. Tis scaling plan also must determine the
bids to be made to the CSP in order to acquire the desired
spot instances. Te second of these two problems is
scheduling the PSE application’s tasks on the purchased
instances. Tese two problems must be addressed in order
to meet optimization objectives. In this sense, three opti-
mization objectives relevant for the users are regarded as
follows: to minimize the makespan, cost, and spot instance
interruptions.

Besides, the two problems mentioned must be addressed
every a predefned period of time throughout the PSE ap-
plication’s execution. Each one of these periods of time
throughout the PSE application’s execution is referred to as
an autoscaling stage.

Tus, at the beginning of each autoscaling stage, the
virtual infrastructure composed by the acquired instances is
updated (i.e., scaled up/scaled down) conforming to the
application’s workload (i.e., the number of the application’s
pending tasks), and such pending tasks are scheduled on the
infrastructure, in such way that the optimization objectives
are achieved.

2.1. Mathematical Formulation of the Multiobjective Cloud
Autoscaling Problem. In this section, we present the
mathematical formulation of the multiobjective cloud
autoscaling problem previously described, which was in-
troduced in [12].

As was previously detailed, each autoscaling stage starts
every a predefned period of time throughout the PSE ap-
plication’s execution. Tus, it is necessary to solve the
multiobjective cloud autoscaling problem related to each of
the autoscaling stages. In this sense, the mathematical for-
mulation introduced in [12] models the multiobjective cloud
autoscaling problem to be solved at each autoscaling stage.
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We present below the parameters, decision variables,
objectives, and constraints that are utilized in this mathe-
matical formulation to model the multiobjective autoscaling
problem to be solved at the beginning of each autoscaling
stage. It is worth mentioning that these parameters, decision
variables, objectives, and constraints are presented here as
they were presented in [12].

2.1.1. Parameters. Te parameters considered in each
autoscaling stage, and their meaning, are shown in Table 1.

2.1.2. Decision Variables. At the beginning of each
autoscaling stage, it is necessary to decide the scaling plan to
be applied in the stage.Terefore, the scaling plan is depicted
as a tuple X with the following three components: X= (xod,
xs, and xb), where the components xod and xs contain the
decision variables defned to represent the type and number
of on-demand and spot instances that will be requested from
the CSP for the present stage of autoscaling. In addition, the
component xb contains the decision variables defned to
represent the bids to be made to the CSP in order to acquire
the desired spot instances. Te components of this tuple X,
and the decision variables contained in them, are described
below in detail.

Te frst component xod is a vector (xod
1 , xod

2 , . . . xod
n ),

where each xod
i is an integer decision variable, which rep-

resents the number of on-demand instances of type i that
will be requested from the CSP for the present stage of
autoscaling. For each variable xod

i , there is a constraint about
the range of possible values (Section 2.1.4, Equation (6)).

Ten, the second component xs is a vector (xs
1, xs

2, ..., xs
n),

where each xs
i is an integer decision variable, which rep-

resents the number of spot instances of type i that will be
requested from the CSP for the present stage of autoscaling.

For each variable xs
i , there is a constraint about the range of

possible values (Section 2.1.4, Equation (6)).
Finally, the third component xb is a vector

(xb
1, xb

2, . . . , xb
n), where each xb

i is an integer decision vari-
able, which represents the bid to be made to the CSP in order
to acquire the spot instances of type i for the present stage of
autoscaling. For each variable xb

i , there is a constraint about
the range of possible values (Section 2.1.4, Equation (8)).

2.1.3. Optimization Objectives. Given T, which refers to the
pending tasks set of the application at the beginning of the
present stage of autoscaling, the problem related to this stage
involves determining the scaling plan X (i.e., the values for
the decision variables in (xod, xs, xb)) which minimizes the
makespan, the monetary cost, and the spot instance inter-
ruptions. Tis problem is defned by Equation (1), which
includes the three optimization objectives considered
(Equations (2)–(5)). Besides, this problem is subject to
several constraints (Equations (6)–(9)).

min (makespan(X), cost(X), interruptionImpact(X)).

(1)

Te term makespan (X) refers to the estimated com-
puting time of running the tasks in T on the detailed in-
stances in the components xod and xs of the scaling plan X. In
order to estimate such computing time, the well-known
scheduling algorithm ECT (earliest completion time) [23] is
applied. Tis algorithm is as follows: for each task t in T, this
algorithm frst estimates the completion time of task t on
each one of the instances detailed in the components xod and
xs of the scaling plan X. After that, this algorithm schedules
the task t to the instance that, in principle, might ensure the
earliest completion time and fnally records the estimated
start time and duration of the task t on such an instance.
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Figure 1: Multiobjective cloud autoscaling problem addressed.
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Once the estimated start time and duration of each task in T
have been recorded, the algorithm estimates the term
makespan(X) by applying (2). In the following equation,
ST(t, xod, xs) refers to the start time recorded by the algo-
rithm for the task t, and d(t, xod, xs) refers to the duration
recorded by the algorithm for the task t.

makespan(X) � max
t∈T

ST t, x
od

, x
s

􏼐 􏼑 + d t, x
od

, x
s

􏼐 􏼑􏽮 􏽯 − min
t∈T

ST t, x
od

, x
s

􏼐 􏼑􏽮 􏽯.

(2)

Ten, the term cost(X) refers to the monetary cost of
acquiring the instances detailed in the components xod and
xs of the scaling plan X for the duration of the current
autoscaling stage. Te term cost(X) is determined by (3). In
this equation, xod

i refers to the on-demand number of in-
stances of type i depicted in xod and pricei refers to the
monetary cost of one on-demand instance of type i for the
duration of the current autoscaling stage. Ten, xis refers to
the spot number of instances of type i depicted in xs, and xb

i

refers to the bid detailed in xb for acquiring one spot instance
of type i.

cost(X) � 􏽘
n

i�1
x

od
i × pricei + x

s
i × x

b
i . (3)

Finally, the term interruptionImpact(X) refers to the
possible impact of spot instance interruptions when T’s tasks
are executed, conforming to the spot number of instances
detailed in xs, and their corresponding bids detailed in xb.
Considering that the interruptions depend on the variation
of the monetary cost of the spot instances over time, re-
garding the bids made by the user for the spot instances, it is
not possible to anticipate if, or when, interruptions will
happen. Because of this, a function that computes the
probability of interruption occurrences, regarding distinct
bids, is utilized to defne the term interruptionImpact(X).
Te term interruptionImpact(X) is defned by equation (4),
where xs

i × vCPUi is the total number of virtual CPUs of the
spot instances of type i, and Pi(xb

i ) refers to the probability
of interruption given the bid for the spot instances of type i.

Te probability function Pi(·) for the spot instances of
type i is computed by considering the number of times an
interruption occurs for a predefned number of bid levels
though a history of spot prices.Tis function of probability is
defned by equation (5).

In equation (5), Sij � s
(1)
ij , · · · , s

(m)
ij􏽮 􏽯 is the jth of w series

of time stamped spot prices obtained from the historical data

for the VM type i (see Section 5.2 for more details about the
historical data regarded in our experiments). Later, the
equation calculates the number of series in which at least one
value is greater than the bid price xb

i .

interruptionImpact(X) � 􏽘
n

i�1
x

s
i × vCPUi × Pi x

b
i􏼐 􏼑, (4)

Pi x
b
i􏼐 􏼑 �

1
w

Sij ∃s
(k)
ij ∈ Sij, s

(k)
ij >x

b
i

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 1≤ k≤m. (5)

2.1.4. Constraints. Equations (6)–(9) defne the constraints
considered as part of the cloud autoscaling problem related
to the current autoscaling stage.

Equation (6) defnes constraints about the number of in-
stances to be required from the CSP for each VM type i, for the
present autoscaling stage. In this equation, Xmin

i is the mini-
mum possible instances number of type i. In this respect, Xmin

i

is defned by the instances number of type i that are running at
least one task scheduled in an earlier autoscaling stage. In this
sense, it is necessary to mention that if an instance is executing
tasks scheduled in earlier autoscaling stages, the instance will
continue executing these tasks in the present autoscaling stage.
Te term Xmax

i is the maximum possible instances number of
type i, and is defned by the instances number of type i available
in the cloud environment at the present autoscaling stage. Tis
number is determined by the CSP.

X
min
i ≤x

od
i + x

s
i ≤X

max
i . (6)

Equation (7) defnes a constraint about the minimum
number of instances indicated in the scaling plan X for the
current autoscaling stage. In this respect, at least one in-
stance must be indicated for such a stage. In this equation,
considered instances are instances that are running tasks
scheduled in preceding autoscaling stages, and new instances
to be included in X.

􏽘
n

i�1
x

od
i +x

s
i ≥ 1. (7)

Equation (8) defnes constraints about the bid to bemade
to the CSP for acquiring the spot instances of each VM type i
for the current autoscaling stage. In this equation, Scurrent Pr icei

Table 1: Mathematical formulation parameters.

Parameter Meaning
T Set of application’s pending tasks at the beginning of the present autoscaling stage
I Set of VM types available in the cloud environment for the present stage
N Number of VM types available in the cloud environment for the present stage
Xmin

i Minimum number of instances to be requested from the CSP for the VM type i, at the present autoscaling stage
Xmax

i Maximum number of instances to be requested from the CSP for the VM type i, at the present autoscaling stage
Pricei Monetary cost of 1 on-demand instance of type i for the duration of the present stage
Scurrent Pricei Current cost of 1 spot instance of type i for the duration of the present stage
B Total monetary budget for the present stage
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is the current (actual) cost of the spot instances of type i, and
the bid xb

i must be at least Scurrent Pr icei . Ten, the term pricei is
the monetary cost of the on-demand instances of type i, and
the bid xb

i must be at most pricei.

S
current Pr ice
i ≤ x

b
i ≤ pricei. (8)

Equation (9) defnes a constraint about the total mon-
etary cost of the scaling plan X. Tis cost must be lower than
or equal to a given monetary budget B. Tis budget might
represent, for instance, available monetary credits granted by
the CSP to execute applications (AWS credits how to:
https://www.parkmycloud.com/blog/aws-credits/) or a
threshold imposed by the user on the amount of money to
invest.

cost(X)≤B. (9)

3. Multiobjective Cloud Autoscaler MOEA

Te multiobjective cloud autoscaler MOEA was introduced
recently in [12], for addressing the multiobjective cloud
autoscaling problem described in Section 2. Tus, this
autoscaler considers that, for executing the tasks of a given PSE
application on the VM instances available in a public cloud
environment, it is necessary to develop a sequence of diferent
autoscaling stages. Each of these autoscaling stages starts every
predefned period of time and implies a diferent multiobjective
autoscaling problem. In this sense, the autoscaler considers that
every autoscaling stage starts each hour since theminimumunit
of time to acquire a VM instance in Amazon EC2 is one hour.

Because of the factors above mentioned, the autoscaler
MOEA develops an iterative process until all the tasks in-
herent to the PSE application are executed. In this process,
each iteration is related to a diferent autoscaling stage and
involves developing three sequential phases for solving the
problem related to the autoscaling stage. In the frst phase,
the autoscaler applies the algorithm NSGA-II to get an
approximation of the optimal Pareto set of scaling plans
feasible for the stage. In the second phase, the autoscaler
selects one scaling plan from the Pareto set provided by the
frst phase. Finally, in the third phase, the autoscaler applies
the selected scaling plan and, after that, schedules the tasks
on the VM instances acquired according to such a plan.

Te iterative behavior of the autoscaler MOEA is shown
in Figure 2, and the phases of each iteration are described
below in detail.

3.1. First Phase: Applying a Multiobjective Optimization
Algorithm. In this phase, the autoscaler MOEA considers the
multiobjective autoscaling problem concerning the present
autoscaling stage. Ten, the autoscaler applies a multi-
objective optimization algorithm to obtain an approximation
of the optimal Pareto set for the problem. Tis means a set of
feasible scaling plans with distinct trade-ofs among the three
optimization objectives considered as part of the problem.

Regarding the algorithm applied by the autoscaler
MOEA, the well-known multiobjective evolutionary algo-
rithm NSGA-II [13] is applied. Via this algorithm, a Pareto

set of solutions is obtained, where each of the solutions
encodes a feasible scaling plan and the solutions have dif-
ferent trade-ofs among the optimization objectives con-
sidered. In this algorithm, each solution is encoded as
described in Section 4.1.1.

It is worth mentioning that in this article, we explore the
incorporation of other algorithms to develop this frst phase.
In this respect, we consider the algorithms E-NSGA-III
[18, 19], SMS-EMOA [20], and SMPSO [21]. In addition, we
consider the algorithm NSGA-III used in [14] as a reference
for comparison purposes. Tis is because in [14], it has been
shown that the performance of the autoscaler MOEA im-
proves considerably when the algorithm NSGA-II is
replaced by this algorithm NSGA-III. Te main character-
istics of the considered algorithms are described in Section 4.

3.2. Second Phase: Selecting the Best Solution. In this phase,
MOEA chooses one solution from the Pareto set obtained by
the frst phase for solving the multiobjective autoscaling
problem inherent to the current autoscaling stage.

Concretely, the autoscaler chooses the solution of the
Pareto set that is able to minimize the distance to an ideal
solution. Tis means fnding a solution that achieves
makespan, cost, and interruption probability values equal to
0. To calculate how distant Pareto solutions to the ideal
solution are, the autoscaler utilizes the recognized L2-norm
metric. By using this metric, the autoscaler analyzes si-
multaneously the makespan, monetary cost, and interrup-
tion probability of all solutions in the Pareto set and is able to
consider the trade-of between the optimization objectives of
each solution. To calculate the makespan, monetary cost,
and interruption probability of all the solutions of the Pareto
set, the autoscaler uses Equations (2)–(4), respectively.

3.3. Tird Phase: Acquiring VM Instances and Scheduling
Tasks on Tem. In this phase, the autoscaler MOEA con-
siders the solution chosen in the second phase, with the aim
of determining the virtual infrastructure that will be required
from the CSP to execute the tasks in T. Notice that T
concerns the application’s pending tasks, which were set at
the beginning of the present autoscaling stage, as we de-
scribed in Section 2.1.1.

Concretely, the autoscaler requests the on-demand in-
stance number indicated in the solution for each VM type in
I. Besides, the autoscaler requests the spot instance number
indicated in the solution for each VM type in I, while
detailing the associated bid indicated in the solution for the
spot instances. Note that I is the set of available VM types in
the cloud, as mentioned in Section 2.1.1.

Once the autoscaler acquires the requested instances
from the CSP, it schedules the T’s tasks on such instances. To
do that, the autoscaler utilizes the scheduling algorithm
ECT, which was mentioned in Section 2.1.3.

4. Multiobjective Optimization Algorithms

As detailed in Section 3, the autoscaler MOEA applies a
metaheuristic multiobjective optimization algorithm in the
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frst phase of each iteration with the aim of solving the
autoscaling problem related to each iteration, which involves
three optimization objectives (i.e., minimizing the make-
span, monetary cost, and spot instance interruptions). In this
respect, metaheuristic algorithms are aimed at exploring the
solution space of a given optimization problem with two or
more optimization objectives, possibly in confict, for an
approximation to the optimal Pareto set that includes all the
nondominated solutions corresponding to the multi-
objective optimization problem. Tese solutions are char-
acterized by outperforming all the other solutions in the
solution space in at least one of the optimization objectives.
Tus, the metaheuristics are able to provide a near-optimal
Pareto set that contains solutions with very distinct trade-
ofs among the optimization objectives [24, 25].

In the autoscaler MOEA, the algorithm is utilized for
obtaining a Pareto set of candidate scaling plans with very
distinct trade-ofs among the optimization objectives. Ten,
the autoscaler selects and applies one scaling plan from the
Pareto set obtained by the algorithm. Tus, the better this
algorithm is regarding the quality of the Pareto set provided
(i.e., diversity, distribution, and convergence to the optimal
Pareto set), the better the selected scaling plan could be (i.e.,
the closer the selected scaling plan could be to the ideal
scaling plan), which would impact positively on the per-
formance of the autoscaler in relation to the optimization
objectives. In this regard, as was reported in [14], the per-
formance of this autoscaler greatly improves when the al-
gorithm NSGA-II utilized in the frst phase is replaced by a
more recent and well-known multiobjective evolutionary
algorithm named NSGA-III [15]. However, the algorithm
NSGA-III has limitations with respect to the diversity of the
resulting Pareto set [16, 17, 26], which can negatively impact
the performance of the autoscaler. Tus, the incorporation

of other algorithms into the frst phase of this autoscaler
could beneft its performance and, therefore, its applicability
to complex real-world PSE applications.

Considering the arguments explained above, we propose
analyzing the incorporation of other algorithms into the frst
phase of the autoscaler MOEAwith the aim of enhancing the
performance of this autoscaler in relation to the considered
optimization objectives. Regarding this, we take into account
three known algorithms that have relevant behavioral dif-
ferences with the algorithm NSGA-III used in [14]. Note
that, given the analysis reported in [14], the autoscaler
MOEA with this algorithm NSGA-III is considered here as a
baseline. One of the three considered algorithms is the
multiobjective evolutionary algorithm E-NSGA-III [18, 19].
Te other two considered algorithms are the multiobjective
evolutionary algorithm SMS-EMOA [20], and the multi-
objective particle swarm optimization algorithm SMPSO
[21]. Te main characteristics of these three algorithms, as
well as the main characteristics of the algorithm NSGA-III
used in [14], are presented below.

4.1. Algorithm NSGA-III. Te algorithm NSGA-III [15] is a
variant of the algorithm NSGA-II [13]. NSGA-III is char-
acterized by using a survival selection process that considers
a set of reference points with the aim of preserving diversity
as well as an even distribution of the Pareto set.

In the NSGA-III-based autoscaler utilized in [14], the
frst step is generating an initial population with a given
number s of solutions. Each one of these solutions depicts a
feasible scaling plan and is encoded as described in Section
4.1.1. To generate the s encoded solutions, the random-based
process described in Section 4.1.1 is used. Once the initial
population is created, the algorithm goes through a number
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Figure 2: Autoscaler MOEA.
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of iterations until a predefned termination criterion is
reached. In each iteration t, the algorithm starts randomly
selecting s/2 pairs of solutions from the present population,
named Pt. Ten, the algorithm applies the crossover process
SBX (Simulated Binary Crossover) to each of the pairs of
solutions, under a crossover probability named Pc, and also
under a crossover distribution index named Dc, for gener-
ating s new solutions. Ten, the algorithm applies the
mutation process PM (polynomial mutation) to each of the s
new solutions, under a mutation probability named Pm, and
a mutation distribution index named Dm. Tus, the algo-
rithm generates an ofspring population with s solutions.

After the algorithm generates the ofspring population,
this population is joined with the current population,
obtaining a combined population C with 2∗s solutions.
Ten, the algorithm chooses s solutions from C in order to
generate a new population Pt+1 for the following iteration. To
choose these s solutions from C, the algorithm frst calculates
the nondomination level of each solution in C and then
groups the solutions in C depending on their non-
domination levels. Tese groups are ordered as (Gl, G2, . . .)
from the one with the best level to the one with the worst
level. Ten, to compose the new population Pt+1, this al-
gorithm incorporates each group into this population, one at
a time, considering the order of the groups, until the Pt+1 size
is equal to s or exceeds s. If the Pt+1 size is equal to s, the
following iteration begins at Pt+1. Otherwise, if the Pt+1 size
exceeds s, then the last group Gl incorporated into Pt+1 is
reduced. Concretely, the solutions from group Gl to group
Gl-1 are incorporated into population Pt+1, and then the k
solutions remaining are selected from group Gl, where k �

s − |Gl ∪ . . . ∪Gl− 1|.
To choose the k solutions remaining from group Gl, a

selection process is used by the algorithm, which considers a
set of reference points. Tis process begins with defning
reference points that are set evenly and widely distributed on
the normalized hyperplane related to the considered opti-
mization objectives. Tese objectives are detailed in Section
2.1.3. After that, this process focuses on selecting solutions
from Gl that are related to these reference points. Tereby,
this process encourages the choice of diverse and evenly
distributed solutions, preserving both the diversity and the
even distribution of the population Pt+1.

In relation to the termination criterion used by the al-
gorithm to stop the iterations, this criterion is achieving a
predefned number of evaluations (i.e., a predefned number
of generated solutions). When this criterion is achieved, this
algorithm supplies the Pareto set inherent to the population
of the last iteration as the obtained result.

4.1.1. Encoding of Solutions. Te algorithm NSGA-III uti-
lizes the same solution encoding as the algorithm NSGA-II
mentioned in Section 3.1. Tis encoding of solutions is
described below.

Each one of the solutions is encoded as a vector with as
many positions as 3× n, considering that n is the number of
types of available VMs in the cloud environment for the
present stage, as detailed in Section 2.1.1. Te positions [1, n]

of this vector specify the number of on-demand VMs to be
purchased for each one of the n types. Such positions have
integer values ranging between the minimum possible
number of on-demand VMs to be requested and the
maximum number of available on-demand VMs for each
one of the n types. Subsequently, the positions [n+ 1, 2× n]
of this vector specify the number of spot VMs to be pur-
chased for each one of the n types. Such positions have
integer values ranging between the minimum possible
number of spot VMs to be requested and the maximum
number of available spot VMs for each one of the n types.
Lastly, the positions [(2× n) + 1, 3× n] of this vector specify
the bid to be made for the spot VMs of each one of the n
types. Such positions have real values ranging between the
present spot price and the on-demand price for each of the n
types. It is worth mentioning that this vector is similar to the
tuple X= (xod, xs, and xb) described in Section 2.1.2 to
represent a scaling plan.

To generate the encoded solutions for the initial pop-
ulation of the algorithm, we used a process based on ran-
domness. In order to create each encoded solution, this
process behaves as follows: frst, the process considers the
number n of VM types and creates an empty vector with
3× n positions. Ten, the process defnes the values for the
positions [1, n] of this vector. In this respect, for each one of
the VM types i (i� 1, . . ., n), this process randomly selects an
integer value between the minimum possible number of on-
demand instances to be requested and the maximum on-
demand VMs number available for the type i and copies the
selected value in the position i of this vector. Ten, the
process defnes the values for the positions [n+ 1, 2× n] of
this vector. In this sense, for each one of the VM types i, this
process randomly selects an integer value between the
minimum spot VM number to be requested and the max-
imum spot VMs number available for the type i, and copies
the selected value in the position (n+ i) of this vector. Fi-
nally, the process defnes the values for the positions
[(2× n) + 1, 3× n] of this vector. Specifcally, for each one of
the VM types i, this process randomly selects a real value
between the present price of the spot VM and the price of the
on-demand VM for the type i, and copies the selected real
value in the position ((2× n) + i) of this vector.

Once the values of all the positions of the vector are
defned, the process develops an additional analysis in order
to decide if these values are accepted or must be redefned.
Specifcally, the process analyzes the total number of in-
stances to be acquired (i.e., the sum of the values in the
positions [1, 2× n]), to guarantee that at least 1 instance will
be acquired. Moreover, the process analyzes the total cost of
the instances to be acquired to guarantee that the total cost
will be lower than or equal to the total monetary budget for
the current stage. When the total number of instances to be
acquired is greater than or equal to 1, and the total cost is less
than or equal to the total monetary budget, the values de-
fned for the positions are accepted. Otherwise, if the total
number of instances to be acquired is less than 1, or if the
total cost is higher than the total monetary budget, the
process defnes new possible values for the positions of the
vector, and after that, it performs the additional analysis
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previously described. In this way, the process generates
feasible encoded solutions for the initial population of the
algorithm.

4.2. Algorithm E-NSGA-III. E-NSGA-III [18, 19] is a recent
extension of the algorithmNSGA-III and has been presented
in the literature with the aim of improving the diversity,
distribution, and convergence of the Pareto sets generated by
NSGA-III. E-NSGA-III is characterized by including a
number of extreme solutions within the initial population,
for enhancing the diversity and well-distribution of the
Pareto set.

Te general behavior of the algorithm E-NSGA-III is
similar to that of NSGA-III. In the two algorithms, the frst
step is generating an initial population with a given number s
of solutions. Each of these solutions encodes a feasible
scaling plan and is encoded as described in Section 4.1.1. To
generate the s encoded solutions, the random-based process
described in Section 4.1.1 is utilized. After that, in each of the
iterations, these two algorithms use sequentially the cross-
over process SBX and mutation process PM on pairs of
solutions randomly chosen from the current population, to
create an ofspring population containing s solutions. Ten,
both algorithms combine the current population and of-
spring population and apply the same selection process for
determining which solutions from this combined population
will constitute the population for the following iteration.
Tese algorithms also utilize the same termination criterion
to stop their iterations. Nevertheless, these algorithms are
diferent with respect to the generation of the initial
population.

In NSGA-III, the initial population is randomly gen-
erated by using the random-based process described in
Section 4.1.1. Unlike this, the initial population in E-NSGA-
III is generated as follows: frst, a random population is
generated using the random-based process previously
mentioned. Ten, a number of extreme solutions are in-
cluded in this randomly generated population. An extreme
solution refers to a solution having an optimal value re-
garding one of the optimization objectives considered, re-
gardless of the values corresponding to the other
optimization objectives considered. E-NSGA-III incorpo-
rates one extreme solution per optimization objective
considered. Te incorporation of these extreme solutions to
the random population has been proposed for guiding the
algorithm to generate more diverse and better distributed
nondominated solutions, and thus obtain Pareto sets with
better diversity and distribution [18, 19].

4.2.1. Extreme Solutions Defned. As described in Section
2.1.3, three optimization objectives are considered here.
Tus, we have included three extreme solutions within the
initial population of E-NSGA-III. Specifcally, we have in-
cluded one extreme solution regarding the minimization of
the makespan, one extreme solution regarding the mini-
mization of the monetary cost, and one extreme solution
regarding the minimization of the interruption probability.

Te extreme solution defned with respect to the min-
imization of the makespan has an optimal makespan. Tis
solution proposes acquiring the maximum number of on-
demand instances allowed for the VM type with the highest
processing capacity. When the instances detailed in this
solution are considered, each of the tasks in T (i.e., tasks to be
executed) is assigned to a diferent on-demand instance of
the mentioned type. Tus, an optimal makespan is obtained.

Figure 3(b) shows the extreme solution regarding the
minimization of the makespan for the example case pre-
sented in Figure 3(a). In this case, VM type 2 has the highest
processing capacity. Tus, the extreme solution proposes to
acquire the highest on-demand instance number permitted
for VM type 2 (i.e., 10 on-demand instances). Ten, the 8
tasks in the set T are scheduled on the on-demand instances
proposed by the solution via the algorithm ECT. As de-
scribed in Section 2.1.3, the algorithm ECTassigns each task
to the instance that, in principle, might ensure the earliest
completion time. Tus, each of the 8 tasks in T is assigned to
a distinct on-demand instance of VM type 2, guaranteeing
the optimal makespan.

Te extreme solution defned in respect of the mini-
mization of the cost has an optimal monetary cost. Tis
solution proposes to acquire only one spot instance of the
VM type at the lowest monetary cost for spot instances.
Besides, the bid proposed by the solution for acquiring this
spot instance is equal to the minimum allowed bid for the
spot instances of the mentioned type (i.e., the monetary cost
of the spot instances of the mentioned type). Note that on-
demand instances are not considered in building this ex-
treme solution since these are more expensive than spot
instances for each VM type.

Figure 3(c) shows the extreme solution regarding the
minimization of the monetary cost for the example case
presented in Figure 3(a). In this case, VM type 1 has the
lowest monetary cost for spot instances. Tus, the extreme
solution proposes to acquire one spot instance of the VM
type 1, and also proposes the minimum bid allowed to
acquire this spot instance (i.e., the monetary cost of one spot
instance of the VM type 1). When the spot instance pro-
posed by the extreme solution is considered, the tasks within
the set T are sequentially scheduled on this instance.

Te extreme solution defned with respect to the min-
imization of the interruption probability has an optimal
interruption probability. Tis solution proposes acquiring
only on-demand instances for all the VM types. Specifcally,
this solution proposes a possible number of on-demand
instances for each of the VM types. In addition, this solution
proposes not to acquire spot instances for any of the VM
types. Recall that, in contrast to the spot instances, the on-
demand instances are not subject to interruptions.Tus, this
solution has an optimal interruption probability.

Figure 3(d) shows the extreme solution regarding the
minimization of the interruption probability for the example
case presented in Figure 3(a). For each of the four VM types
in this case, the extreme solution proposes a possible number
of on-demand instances. Specifcally, for each of the VM
types, the number of on-demand instances proposed by the
solution is higher than (or equal to) theminimum number of
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Figure 3: Continued.

10 Scientifc Programming



on-demand instances permitted and lower than (or equal to)
themaximal number of on-demand instances permitted. For
instance, for the VM type 1, the solution proposes 1 on-
demand instance, which is higher than 0 (i.e., the minimum
number of on-demand instances permitted for the VM type
1) and lower than 10 (i.e., the maximal number of on-de-
mand instances permitted for the VM type 1). Figure 3(d)
illustrates a schedule of the tasks within the set T for the
instances proposed by the solution.

4.3. Algorithm SMS-EMOA. SMS-EMOA [20] uses a sur-
vival selection process led by the nondominated sorting
combined with the hypervolume metric, for preserving
diversity as well as distribution of the Pareto set.

In the frst step, SMS-EMOA creates a random initial
population with a given number s of solutions. Each of the
solutions encodes a feasible scaling plan, encoded as de-
scribed in Section 4.1.1. To generate the s encoded solutions,
the random-based process described in Section 4.1.1 is used.

After the algorithm generates the initial population, it
follows a number of iterations until the termination criterion
is achieved. In each iteration t, this algorithm applies the
operator SBX and the operator PM to a pair of solutions
chosen randomly from the current population named Pt,
which generates a new solution. After that, the algorithm
applies the selection process to determine if the new solution
will be included in the next population Pt+1 for the following
iteration. In this respect, if the newly-created solution im-
proves the hypervolume, it is added to the next population.

Te selection process begins by joining the s solutions in
Pt with the newly-created solution. After that, the process
analyzes the nondomination level of each one of these s+ 1
solutions, and groups these solutions according to their
nondomination levels. Ten, these groups are sorted as
G1, · · · G2, · · · Gv􏼈 􏼉, from the one with the best level to the one
with the worst level. Ten, the process takes one solution
from the group with the worst level Gv, with the aim of
obtaining the s solutions that will constitute the population

Pt+1. Specifcally, the process takes out the solution xi that
belongs toGv andminimizes equation (10), considering i� 1,
. . ., |Gv|.

In equation (10), S (Gv) refers to the hypervolume of Gv,
and S (Gv– {xi}) refers to the hypervolume of (Gv– {xi}).
Ten, the value of ΔS (xi, Gv) measures the contribution of
solution xi to the hypervolume of its group Gv.Terefore, the
selection process considers the contribution of each of the
solutions in Gv to the hypervolume and then maintains the
solutions that maximize it.

In relation to the termination criterion utilized by the
algorithm to stop the iterations, this algorithm uses the same
criterion as the algorithm NSGA-III. Once this criterion is
achieved, this algorithm supplies the Pareto set corre-
sponding to the population of the last iteration, as the result
obtained.

∆S xi, Gv( 􏼁 � S Gv( 􏼁–S Gv– xi􏼈 􏼉( 􏼁. (10)

4.4. Algorithm SMPSO. SMPSO [21] is an extension of the
known OMOPSO algorithm. SMPSO is characterized by
using a process aimed at constraining the velocity factor
utilized for updating the solutions of the population, in order
to preserve diversity and the distribution of the solutions.

In this algorithm, the frst step implies creating a random
initial population with a given number s of solutions. Each of
the solutions encodes a feasible scaling plan, encoded as
described in Section 4.1.1. To generate the s encoded solu-
tions, the random-based process described in Section 4.1.1 is
used. Besides, each solution has an initial velocity factor
associated, and also an initial memory associated. Te
memory is used to store the updates to the solution over
time. Te second step implies creating a leader archive that
initially contains all nondominated solutions belonging to
the initial population.

Once the algorithm generates the initial population and
also the leaders archive, the algorithm develops a number of
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Figure 3: Extreme solutions for an example case.
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iterations until the termination criterion is achieved. In each
iteration t, this algorithm starts updating the velocity factor
of each one of the s solutions into the current population
named Pt. In this sense, the current velocity factor of each
solution j (j� 1,. . .,s) is updated considering the distance
between j and the best solution in the memory of j and also
the distance between j and the best solution reached by the
algorithm until the iteration t. Ten, the algorithm applies a
constriction process on the velocity factor of each solution j
to avoid very high/low values for this velocity factor and thus
avoid upper/lower bound values for the variables of the
solution, which favors the generation of diverse solutions.
Subsequently, the algorithm updates each solution j con-
sidering the constrained velocity factor of the solution. In
this respect, the algorithm updates the values of the variables
of each solution j by adding the constrained velocity factor of
the solution to the current values of the variables. For a
detailed description of the equations utilized by this algo-
rithm to update and constraint the velocity factor and update
each solution, we refer to [21].

Ten, the algorithm applies the mutation operator PM
on each updated solution j under a given mutation prob-
ability named Pm and under a given mutation distribution
index named Dm. After that, the algorithm evaluates each of
the obtained solutions and updates the memory of each of
the solutions for the following iteration. Moreover, this
algorithm updates the leader archive for the next iteration
with the aim of preserving the nondominated solutions
generated throughout the search process.

Te termination criterion used by the algorithm to stop
the iterations is the same as NSGA-III. After this criterion is
achieved, the leaders archive of the last iteration is returned
by the algorithm.

5. Computational Experiments

To comparatively analyze the performance of the autoscaler
MOEAwith each of the four analyzed algorithms, NSGA-III,
E-NSGA-III, SMS-EMOA, and SMPSO, we carried out
extensive computational experiments via simulation, which
are presented in this section.

First, we describe the four real-world PSEs used in the
experiments. Ten, we present the diferent VM types uti-
lized (on-demand and spot) and their specifcations. After
that, the experimental setting considered for carrying out the
experiments is detailed. Finally, we report and analyze in
detail the results achieved by these experiments.

5.1. PSE Applications. Next, the subsections describe four
real-world applications from the molecular dynamics and
meteorology areas. We also describe how we derived, from
these applications, the PSE tasks considered in the simulated
experiments.

5.1.1. Melting Process of Gold Nano-Clusters (MPG).
Melting process of gold nano-clusters: studies the thermo-
dynamics of the melting transition in Au (gold) nano-
clusters with 1,985 to 180,313 atoms as spheres of diferent

radius centered at the origin of the face-centered cubic
crystal structure (FCC) lattice [27]. Tis study contributes to
the understanding of the melting process of gold, a material
that has been used in diferent technological and biomedical
applications [28]. Te executions were performed using the
Molecular Dynamics software LAMMPS [29] with the
embedded atom model (EAM) interaction potential, used in
other works as well [30]. Te only parameter that changes in
the parametric study is the radius of the spheres. Each PSE
task has one sphere of Au atoms with a given radius, with a
total of 1,985 atoms for the smallest sphere and 180,313 for
the biggest sphere. Between all the executions, a total of 3,473
tasks were generated. Figure 4 shows snapshots of the
melting process with 1,985 atoms, colored by their coor-
dination number. Tis analysis represents the number of
neighbors atoms any particular atom has in a given radius
around it. With a radius of 3.3 Lennard Jones units, red
atoms have 12 neighbors and blue atoms have 5 neighbors.

Te study focuses on analyzing where the transition
takes place, or the “melting step,” by identifying and de-
scribing the amounts of the following two types of atoms:
SPL (solid-phase-like) and LPL (liquid-phase-like). Te
energy and entropy change in this melting step were set as
functions of the number of atoms. Tis energy change with
temperature allows us to quantify the amount of atoms in
SPL and the transition to LPL atoms and to model the
melting step in each size of nano-clusters.

5.1.2. Granular Mechanics Simulations (GMS). Granular
mechanics studies the behavior of aggregates of silica (SiO2)
grains during collisions. Te study allows for the analysis of
complex properties of dust interactions with relevance in
astrophysics for planet formation, cometary comae, and
debris discs [31]. Te simulation consisted of a projectile
aggregate striking a larger immobile target aggregate both
are formed by grains of silica. A parameter sweep was
performed by modifying several initial conditions, resulting
in 50 diferent tasks (not all combinations of parameters
were executed). Te modifed parameters were eight impact
velocities (5, 2.5, 1, 0.75, 0.5, 0.25, 0.1, and 0.05m/s), three
flling factors (0.15, 0.25, and 0.35), and three diferent sizes
of projectile and target (small, med and big) [32]. Te
combination of the three diferent sizes of projectile and
target, with the three flling factors, produces diferent
amounts of grain with each combination.

(i) Size small with a 0.15 flling factor has 11,200
grains

(ii) Size small with a 0.25 flling factor has 18,785
grains

(iii) Size small with a 0.35 flling factor has 26,206
grains

(iv) Size med with a 0.15 flling factor has 31,087 grains
(v) Size med with a 0.25 flling factor has 51,910 grains
(vi) Size med with a 0.35 flling factor has 72,353 grains
(vii) Size big with a 0.15 flling factor has 51,888 grains
(viii) Size big with a 0.25 flling factor has 86,734 grains
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(ix) Size big with a 0.35 flling factor has 120,894 grains

Te tasks were executed using the molecular dynamics
software LAMMPS [29]. Figure 5 shows a slice of the center
of the sample in fve moments of the collision study, the
color scale represents the velocity in the Z axis of the
projectile and the target.Tis simulation employs a fll factor
of 0.35, and the initial velocity of the projectile is m/s.

5.1.3. Frost Prediction Application (FPA). Predicting frost is
a topic of special interest to mitigate damage in diferent
parts of the world [33]. Because frost phenomena occur
every year, farmers provide their farms with heathers,
sprinklers, and wind turbines as defense methods to min-
imize crop damage. In turn, these methods are set in op-
eration alarm systems, which perform on-feld data
acquisition through the use of weather stations, thermom-
eters, and Wireless Sensor Networks (WSNs) [34]. Partic-
ularly, WSNs are composed of low-cost devices called sensor
nodes, and thus larger areas can be covered. Tis advantage
is important for the study of frosts because depending on the
terrain characteristics (e.g., the existence of vegetation and
proximity to mountains), the phenomenon could or could
not occur. It has been observed in the farms that depending
on the characteristics of the land, the phenomenon occurred
in some hectares and not in others.

For performing a frost prediction, the FPA implements
the Snyder and Melo–Abreu method [35] on data from a
WSN and weather stations (temperature and humidity) and
computes dew points on those days that radiation frosts
occurred. Besides, temperature, humidity and dew points
must have been registered 2 hours after sunset on the pre-
diction day. In this work, for simulating a frost prediction,
temperature, and humidity data have been sensed by WSNs
and weather stations instrumented in some felds of the
Province of Mendoza, Argentina. Concretely, 40 farms were
instrumented, each with 10 to 1,000 sensor nodes,
depending on the farm’s size. Historical temperature values,
humidity values, and dew points of 50 days where frosts
occurred were considered to make the prediction in each of
the farms. Te 50-day historical data must match the same
month in which the prediction is performed. Historical data
was provided by the National Oceanic and Atmospheric
Administration (https://www.noaa.gov/). Terefore, the
FPA was run with data from diferent sensor nodes, gen-
erating 40 FPA tasks.

5.1.4. Weather Research and Forecasting (WRF). An at-
mospheric system is described by a weather prediction
model [36] through mathematical equations that model
physical conservation laws. Te model is confgured in a
computational 3D mesh-grid consisting of several thousand
horizontal and vertical direction points. Te higher the
model resolution, the denser the computational grid spacing.
According to the Earth’s coverage, weather models can be
classifed as global or regional.

Ten,Weather Research and Forecasting (WRF) [37] is a
mesoscale numerical weather prediction application used for
researching atmospheric and operational forecasting. Te
system is useful for many large-scale meteorological ap-
plications. WRF performs simulations based on atmospheric
conditions.

Forecast computation starts with the known boundary
conditions on the Earth’s surface at the atmosphere’s upper
boundary and an initial state based on observations of the
current weather. Ten, the equations are computed for each
time step at each point of the grid of the 3D model until the
forecast is completed.Terefore, for obtaining a forecast, the
atmospheric data are obtained in real time from a server that
holds the data of the last 15 days and that comes from
diferent meteorological stations. Te downloaded data is
preprocessed to flter the domain area of interest where to
perform the forecast, and moreover, static information on
the specifc soil conditions for that interest zone (grasslands,
mountainous areas, etc.) is added. Once the atmospheric
data is preprocessed, the forecasting is performed through
the WRF model. Solving the WRF equations that compose
the model requires large computing capabilities, therefore, it
is necessary to have powerful servers.

Te execution times have been measured by performing
a three-day forecast for central Argentina. Te parent do-
main (highest resolution domain) where the data was
downloaded has grid cells with a grid spacing of 5 km (1 km)
consisting of 105 (151) grid-points in the west-east direction
and 151 (171) grid-points in the north-south direction. Te
WRF model was run in parallel, and a total of 50 WRF tasks
were generated to perform the previously described
prediction.

For evaluating the performance of the autoscaler MOEA
against four algorithms, diferent instances of the obtained
real base task set comprising 50, 40, and 50 tasks for the
GMS, FPA, and WRF were executed to obtain more tasks,
i.e., 30, 100, and 300 tasks. In the particular case of MPG,
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Figure 4: Melting process of Au nano-clusters.
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which is composed of a greater number of tasks, we have
restricted the number to 30, 100, and 300 tasks as with the
other applications.

5.2. VM Types. During the experiments, we considered the
on-demand instance specifcations shown in Table 2. Te
frst column presents the diferent instance types considered.
Te instance characteristics were set up as the real Amazon
Elastic Compute Cloud (EC2) instances. Ten, columns 2, 3,
and 4 show the number of virtual CPUs (vCPU) available for
each of the instance types, the relative computing power of
the instance considering all its virtual CPUs (ECUtot), and
the relative performance of each of the CPUs (ECU), re-
spectively. Finally, the last column shows the price in US
dollars (USD) per hour of computation. Instance-type-wise,
we aimed at providing diferent price and performance
confgurations.

On the other hand, for the spot instances, we used the
history of Amazon EC2 spot prices for the US-west region
(Oregon) considered in [12, 14]. Te period corresponds to
the months between March 7th and June 7th of 2016. Te
interruption probabilities were computed using data from
the frst two months. Specifcally, we computed how many
times a 1-hour sliding window showed spot prices greater
than the bid values. Ten, the data pertaining to June 2016
was kept for the experiments presented in Subsection 5.4 as
the spot price variations over the course of the simulation.
Te use of the data in such a way allows us to evaluate
MOEA, ignoring completely the future evolution of spot
prices, as occurs in practice.

5.3. Experimental Setting. We considered the autoscaler
MOEA with the algorithm NSGA-III [14] as a reference for
comparison purposes, as mentioned in Section 4. Ten, we
incorporated the algorithms E-NSGA-III, SMS-EMOA, and
SMPSO into the autoscaler MOEA. Tus, we obtained four
variants of this autoscaler, which difer regarding the
multiobjective optimization algorithm used. For simplicity,
these variants will be referred to as being detailed in Table 3.

We run each of the four variants of the autoscaler MOEA
on each of the applications and sizes presented in Section 5.1,
considering the utilization of on-demand and spot instances
of the VM types presented in Section 5.2. Considering that
these variants are based on nondeterministic algorithms,

each variant was run several times (i.e., 30 times) on each of
the applications and sizes to obtain reliable statistical results.
For each of the runs, we record the value corresponding to
each of the three optimization objectives considered as part
of the multiobjective cloud autoscaling problem.

Te runs of the four variants of the applications were
developed using the well-known CloudSim simulator [22].
CloudSim is one of the simulators usually used in the lit-
erature in order to develop computational experiments
related to scheduling and resource assignment problems in
cloud environments.

To run the variant MOEA-NSGA-III, we utilized the
parameter setting suggested in [15] for the algorithmNSGA-
III. Moreover, we established the number of evaluations of
the algorithm NSGA-III since there is no generic suggestion
for this parameter in [15]. Note that this parameter refers to
the termination criterion utilized by the algorithm to stop its
execution. Specifcally, the algorithm will stop its execution
once the given number of evaluations (i.e., generated so-
lutions) is reached.Te parameter setting used for NSGA-III
is detailed in Table 4.

Given that the variant MOEA-NSGA-III is considered a
reference for comparison purposes, and that it is necessary
to guarantee a fair comparison of the four variants, to
run the variants MOEA-E-NSGA-III, MOEA-SMS-EMOA,
and MOEA-SMPSO, the parameters of the algorithms
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Figure 5: Collision of aggregates of silica (SiO2).

Table 2: On-demand instance specifcations corresponding to
instances used in the evaluation.

VM type vCPU ECUtot ECU Price (USD)
t2.micro 1 1 1 0.013
m3.medium 1 3 2 0.07
c3.2xlarge 8 28 3.5 0.42
r3.xlarge 4 13 3.25 0.35
m3.2xlarge 8 26 3.25 0.56

Table 3: Variants of the autoscaler MOEA.

Variant of the autoscaler MOEA Name of the variant
MOEA with NSGA-III MOEA-NSGA-III
MOEA with E-NSGA-III MOEA-E-NSGA-III
MOEA with SMS-EMOA MOEA-SMS-EMOA
MOEA with SMPSO MOEA-SMPSO
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E-NSGA-III, SMS-EMOA, and SMPSO were set with the
same values used for NSGA-III. It is necessary to mention
that E-NSGA-III has the same parameters as NSGA-III.
Tus, the parameter setting used for E-NSGA-III is detailed
in Table 4. In the case of SMS-EMOA, this algorithm does
not use reference points like NSGA-III, and so does not have
the parameter number of reference points utilized by NSGA-
III. However, SMS-EMOA utilizes the same crossover and
mutation operators as NSGA-III. In the case of SMPSO, this
algorithm does not utilize reference points like NSGA-III,
and besides, does not use a crossover operator like NSGA-
III. Tus, SMPSO does not have the parameters number of
reference points, Pc, and Dc used by NSGA-III. However,
SMPSO uses the same mutation operator as NSGA-III. In
addition, this algorithm uses the parameter named leaders
archive size, which was set to the value of the parameter
Population size, as suggested in [21]. Te parameter settings
utilized for SMS-EMOA and SMPSO are detailed in Tables 5
and 6.

5.4. Experimental Results. In Tables 7 and 8, we show the
obtained results from the performed experiments regarding
the three optimization objectives considered as part of the
cloud autoscaling problem addressed. In these tables, col-
umn 1 presents the names of the PSE applications used in
these experiments. Column 2 indicates the sizes considered
for the applications in these experiments, where size refers to
the number of tasks in the application, considering one task
per parameter setting of the application. Column 3mentions
the four variants of the autoscaler MOEA, which were
evaluated in these experiments. Recall that each variant was
run several times (i.e., 30 times) on each application and size.
Columns 4 and 5 show the average makespan and monetary
cost obtained by each variant for each application and size.
Column 6 details the average number of task failures ob-
tained by each variant for each application and size, where
task failures are associated with spot instance interruptions.
Later, column 7 shows the average (Euclidean) L2-norm
metric which trades of makespan, monetary cost, and the
number of task failures.

To calculate the average makespan obtained by each
variant for each application and size, we have added the 30
makespan values provided by the 30 runs of each variant for
each application and size, and then we have divided the sum
result by the number of runs (i.e., 30). To calculate the
average monetary cost/average number of task failures
obtained by each variant for each application and size, we
followed a similar procedure, but we considered the 30

monetary cost values/30 values of task failures provided by
the 30 runs of each variant for each application and size.
Similarly, in order to calculate the average value for each
variant with respect to each application and size for the L2-
normmetric, we considered the 30 values provided by the 30
runs of each variant on each application and the size for this
metric.

In addition, in Tables 9 and 10, we present the values
obtained for the following metrics: average makespan RPD
(relative percentage diference), average cost RPD, and av-
erage number of task failures RPD, all three computed with
respect to MOEA-NSGA-III. Next, we describe these three
metrics.

Te average makespan RPD metric is the % diference of
the average makespan of MOEA-E-NSGA-III (or MOEA-
SMPSO, or MOEA-SMS-EMOA) regarding the average
makespan of MOEA-NSGA-III, as calculated by the formula
((mt–m)/mt)∗ 100, where mt is the average makespan of
MOEA-NSGA-III andm is the averagemakespan ofMOEA-
E-NSGA-III (or MOEA-SMPSO, or MOEA-SMS-EMOA).
If the diference is greater than zero, this means that MOEA-
E-NSGA-III (or MOEA-SMPSO, or MOEA-SMS-EMOA)
has reached a decrease in average makespan w.r.t. MOEA-
NSGA-III. If the diference is below zero, this means that
MOEA-E-NSGA-III (or MOEA-SMPSO, or MOEA-SMS-
EMOA) has achieved an increase in average makespan w.r.t.
MOEA-NSGA-III.

Table 4: Confguration for NSGA-III and E-NSGA-III

Parameter Value
Population size 92
Number of reference points 91
Number of evaluations 36800
Pc 1
Dc 30
Pm 1/15 (the length of each encoded solution is 15)
Dm 20

Table 5: Parameter setting of SMS-EMOA.

Parameter Value
Population size 92
Number of evaluations 36800
Pc 1
Dc 30
Pm 1/15
Dm 20

Table 6: Parameter setting of SMPSO.

Parameter Value
Population size 92
Number of evaluations 36800
Leaders archive size 92
Pm 1/15
Dm 20
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Table 7: Average makespan, average monetary cost, average number of task failures, and average L2-norm obtained by each variant of the
autoscaler MOEA for applications MPG and GMS. For all metrics, lower values are better values. For each application and size, bold values
are better than those obtained by MOEA-NSGA-III.

Application Size Autoscaler Makespan Cost Task failures L2-norm

MPG

30

MOEA-NSGA-III 13162.40 1.71 0.10 0.33
MOEA-SMPSO 20809.32 1. 7 0.20 0.74

MOEA-SMS-EMOA 12944.68 2.74 ∗0.00 0.57
MOEA-E-NSGA-III ∗12838.21 ∗1. 2 ∗0.00 ∗0.26

100

MOEA-NSGA-III 14971.13 4.44 ∗0.00 0.16
MOEA-SMPSO 23190.13 10.46 1.40 0.73

MOEA-SMS-EMOA 23575.42 12.23 ∗0.00 0.77
MOEA-E-NSGA-III ∗13339.48 ∗3.78 ∗0.00 ∗0.06

300

MOEA-NSGA-III 38160.13 37.45 0.60 0.67
MOEA-SMPSO ∗31377.70 ∗30.23 1.77 0. 0

MOEA-SMS-EMOA 47792.46 63.50 0. 7 0.88
MOEA-E-NSGA-III 31839.27 30.64 ∗0.00 ∗0.46

GMS

30

MOEA-NSGA-III 1074149.61 531.36 4.38 0.46
MOEA-SMPSO 1422601.27 4 6.40 4.29 0.49

MOEA-SMS-EMOA ∗1033 79.47 680.52 5.43 0.62
MOEA-E-NSGA-III 10 0 7 .97 ∗406.47 ∗2.77 ∗0.30

100

MOEA-NSGA-III 1021845.42 1731.66 13.30 0.51
MOEA-SMPSO 1382518.24 ∗1612. 1 21.44 0.72

MOEA-SMS-EMOA 1079659.30 2287.06 6.41 0.58
MOEA-E-NSGA-III ∗91 882.64 163 .1 ∗6.07 ∗0.38

300

MOEA-NSGA-III 1021592.20 5461.36 22.18 0.30
MOEA-SMPSO 1353654.86  080.4 67.25 0.52

MOEA-SMS-EMOA 1355956.14 7660.57 42.00 0.56
MOEA-E-NSGA-III ∗918339.4 ∗4613. 1 ∗14.64 ∗0.19

∗ indicate the best value. Te baseline is in italics.

Table 8: Average makespan, average monetary cost, average number of task failures, and average L2-norm obtained by each variant of the
autoscaler MOEA for applications FPA and WRF. For all metrics, lower values are better values. For each application and size, bold values
are better than those obtained by MOEA-NSGA-III.

Application Size Autoscaler Makespan Cost Task failures L2-norm

FPA

30

MOEA-NSGA-III 6925.12 0.43 ∗0.00 0.06
MOEA-SMPSO 9742.57 0.97 0.13 0.52

MOEA-SMS-EMOA 6869.20 2.06 ∗0.00 0.44
MOEA-E-NSGA-III ∗6862.83 ∗0.40 ∗0.00 ∗0.04

100

MOEA-NSGA-III 10406.34 2.13 ∗0.00 0.17
MOEA-SMPSO 17386.56 3.38 0.53 0.78

MOEA-SMS-EMOA ∗101 3.26 3.35 ∗0.00 0.29
MOEA-E-NSGA-III 10221.36 ∗1.79 ∗0.00 ∗0.13

300

MOEA-NSGA-III 12483.92 6.98 ∗0.00 0.24
MOEA-SMPSO 16138.69 10.03 1.60 0.62

MOEA-SMS-EMOA 16684.92 13.50 ∗0.00 0.71
MOEA-E-NSGA-III ∗11972.73 ∗6.34 ∗0.00 ∗0.19

WRF

30

MOEA-NSGA-III 60741.41 11.33 ∗0.00 0.93
MOEA-SMPSO 61388.53 9.98 3.07 0.96

MOEA-SMS-EMOA 62653.31 ∗6.79 ∗0.00 0.92
MOEA-E-NSGA-III ∗ 6088.10 10.02 ∗0.00 ∗0.81

100

MOEA-NSGA-III 60180.73 47.02 0.40 0.86
MOEA-SMPSO 63291.46 55.04 4.57 0.97

MOEA-SMS-EMOA 63530.41 ∗24. 1 3.33 0.88
MOEA-E-NSGA-III ∗ 8293.80 28. 3 ∗0.00 ∗0.76

300

MOEA-NSGA-III 59934.56 165.42 7.07 0.92
MOEA-SMPSO 60950.30 250.11 13.37 1.06

MOEA-SMS-EMOA 64701.56 211.23 ∗0.00 1.04
MOEA-E-NSGA-III ∗ 7 68.73 ∗111.90 ∗0.00 ∗0.79

∗ indicate the best value. Te baseline is in italics.
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Likewise, the average cost RPD and the average number
of task failures RPD metrics allow us to calculate the %
diference between the average cost and the average number
of task failures, respectively, of MOEA-E-NSGA-III (or
MOEA-SMPSO, or MOEA-SMS-EMOA) in respect of the
average cost (or the average number of tasks failures) of
MOEA-NSGA-III.

From now on, for simplicity, we will refer to the average
makespan, average monetary cost, and the average number
of task failures just as makespan, monetary cost, and a
number of task failures, respectively.

5.4.1. Results and Discussion. From the results presented in
Tables 7–10, we can mention the following: regarding the
makespan, MOEA-E-NSGA-III beat MOEA-NSGA-III in all
cases, achieving better gains (∼10%–17%) for the PSEs of the
molecular dynamics area, i.e., MPG and GMS. Furthermore,
it is important to note that for these PSEs (MPG and GMS),
in the cases in which the lowest makespan was not reached,
the obtained gain with respect to MOEA-NSGA-III is very
close to the algorithms that obtained the highest percentage
(with a diference of approximately 1.5%). Achieving a lower
makespan in the context of these PSEs not only allows results

Table 9: RPD-oriented metric values obtained for applications MPG and GMS. For all metrics, positive values represent favorable results
(savings respecting MOEA-NSGA-III).

Application Size Autoscaler Makespan RPD (%) Cost RPD (%) Task failures RPD (%)

MPG

30
MOEA-SMPSO − 58.10 8.19 − 100.00

MOEA-SMS-EMOA 1.65 − 60.23 ∗100.00
MOEA-E-NSGA-III ∗2.46 ∗11.11 ∗100.00

100
MOEA-SMPSO − 54.90 − 135.59 − 100.00

MOEA-SMS-EMOA − 57.47 − 175.45 ∗0.00
MOEA-E-NSGA-III ∗10.90 ∗14.86 ∗0.00

300
MOEA-SMPSO ∗17.77 ∗19.28 − 195.00

MOEA-SMS-EMOA − 25.24 − 69.56 5.00
MOEA-E-NSGA-III 16.56 18.18 ∗100.00

GMS

30
MOEA-SMPSO − 32.44 14.11 2.05

MOEA-SMS-EMOA ∗3.78 − 28.07 − 23.97
MOEA-E-NSGA-III 2.19 ∗23.50 ∗36.76

100
MOEA-SMPSO − 35.30 ∗6.88 − 61.20

MOEA-SMS-EMOA − 5.66 − 32.07 51.80
MOEA-E-NSGA-III ∗10.37 5.57 ∗54.36

300
MOEA-SMPSO − 32.50 6.97 − 203.20

MOEA-SMS-EMOA − 32.73 − 40.27 − 89.36
MOEA-E-NSGA-III ∗10.11 ∗15.52 ∗33.99

∗ indicate the best value.

Table 10: RPD-oriented metric values obtained for applications FPA and WRF. For all metrics, positive values represent favorable results
(savings respecting MOEA-NSGA-III).

Application Size Autoscaler Makespan RPD (%) Cost RPD (%) Task failures RPD (%)

FPA

30
MOEA-SMPSO − 40.68 − 125.58 − 100.00

MOEA-SMS-EMOA 0.81 − 379.07 ∗0.00
MOEA-E-NSGA-III ∗0.90 ∗6.98 ∗0.00

100
MOEA-SMPSO − 67.08 − 58.69 − 100.00

MOEA-SMS-EMOA ∗2.43 − 57.28 ∗0.00
MOEA-E-NSGA-III 1.78 ∗15.96 ∗0.00

300
MOEA-SMPSO − 29.28 − 43.70 − 100.00

MOEA-SMS-EMOA − 33.65 − 93.41 ∗0.00
MOEA-E-NSGA-III ∗4.09 ∗9.17 ∗0.00

WRF

30
MOEA-SMPSO − 1.07 11.92 − 100.00

MOEA-SMS-EMOA − 3.15 ∗40.07 ∗0.00
MOEA-E-NSGA-III ∗7.66 11.56 ∗0.00

100
MOEA-SMPSO − 5.17 − 17.06 − 1042.50

MOEA-SMS-EMOA − 5.57 ∗47.87 − 732.50
MOEA-E-NSGA-III ∗3.14 39.32 ∗100.00

300
MOEA-SMPSO − 1.69 − 51.20 − 89.11

MOEA-SMS-EMOA − 7.95 − 27.69 ∗100.00
MOEA-E-NSGA-III ∗3.95 ∗32.35 ∗100.00

∗ indicate the best value.
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to be obtained in less time, but knowing these makespan
reductions can allow disciplinary users to make decisions
about whether it is convenient to invest those time gains in
exploring more parameter values and thus obtaining greater
precision in their results. Ten, in the case of the PSEs of the
meteorology area (FPA, WRF), the reductions in the
makespan are very important since they allow the meteo-
rologists to speed up the processing of the results. Obtaining
the results of a prediction in less time allows farmers to make
better decisions to activate defense methods and avoid
damage if, for example, frost or some other type of harmful
phenomenon occurs for people or farms.

Besides, MOEA-E-NSGA-III obtained better makespan
values than MOEA-SMS-EMOA in 10 of the 12 cases (i.e.,
MPG-30, MPG-100, MPG-300, GMS-100, GMS-300, FPA-
30, FPA-300, WRF-30, WRF-100, WRF-300), and better
makespan values than MOEA-PSO in 11 of the 12 cases (i.e.,
MPG-30 and MPG-100; GMS-30, GMS-30, GMS-100, and
GMS-300 tasks; FPA-30, FPA-100, and FPA-300; and WRF-
30, WRF-30, WRF-100, and WRF-300).

In relation to the monetary cost, MOEA-E-NSGA-III
outperformedMOEA-NSGA-III in all cases, providing good
monetary cost savings (10%–25%) in 7 cases and very good
monetary cost savings (30%–40%) in 2 cases. More spe-
cifcally, the cost gains obtained by MOEA-E-NSGA-III for
each of the applications are distributed as follows: in the case
of the PSEs from the dynamic molecular area, the gains vary
between approximately (11%–18%) for MPG and between
(6%–23.5%) for GMS.Ten, in the case of themeteorological
applications, the gains obtained by MOEA-E-NSGA-III
varied between (7%–16%) for FPA and between (11%–40%)
for WRF. It is important to mention that for all these ap-
plications, cost reductions are very important since they
allow users to make decisions regarding the possibility of
acquiring more instances to execute the PSEs. Acquiring a
greater number of instances to execute this type of appli-
cation would imply greater parallelism, and, as a conse-
quence, greater reductions in the makespan could be
achieved if necessary.

From Tables 9 and 10 it can also be seen that MOEA-E-
NSGA-III has obtained much better monetary cost values
than MOEA-SMS-EMOA in 10 of the 12 cases (i.e, MPG-30,
MPG-100 and MPG-300, GMS-30, GMS-100 and GMS-300,
FPA-30, FPA-100 and FPA-300, and WRF-300), and much
better monetary cost values than MOEA-PSO in 9 of the 12
cases (i.e., MPG-30 and MPG-100, GMS-30 and GMS-300,
FPA-30, FPA-100 and FPA-300, and WRF-100 and WRF-
300).

In relation to the number of task failures, MOEA-E-
NSGA-III also reached a better performance than MOEA-
NSGA-III in 7 cases (i.e., MPG-30 and MPG-300, GMS-30,
GMS-100 and GMS-300, and WRF-100 and WRF-300), and
the same performance as MOEA-NSGA-III in the remaining
5 cases. In the aforementioned 7 cases, MOEA-E-NSGA-III
achieved very good savings regarding the number of task
failures of MOEA-NSGA-III (33%–54% in 3 cases, and 100%
in 4 cases). In addition, MOEA-E-NSGA-III signifcantly
outperformed MOEA-SMPSO in the 12 cases and had a
much better performance than MOEA-SMS-EMOA in 5

cases (i.e., MPG-300, GMS-30, GMS-100, andGMS-300, and
WRF-100). Note that the fact that failures in the execution of
tasks are reduced directly implies, as we described in the
previous paragraphs, a potential impact on the makespan of
the PSEs and their monetary cost.

Regarding the average L2-normmetric, the value reached
by MOEA-E-NSGA-III is better than that obtained by
MOEA-NSGA-III in all cases. Tis is because MOEA-E-
NSGA-III has obtained savings regarding the makespan and
monetary cost of MOEA-NSGA-III in the 12 cases. More-
over, MOEA-E-NSGA-III has obtained savings regarding
the number of task failures of MOEA-NSGA-III in 7 cases,
and the same number of task failures of MOEA-NSGA-III in
5 cases.

In addition, the values obtained by MOEA-E-NSGA-III
regarding the L2-norm metric are much better than those of
both MOEA-SMS-EMOA and MOEA-SMPSO, in all cases.
Tis is because MOEA-E-NSGA-III performed better than
MOEA-SMS-EMOA regarding the makespan and monetary
cost in 10 cases and performed better than (equal to)
MOEA-SMS-EMOA with respect to the number of task
failures in 5 (7) cases. Besides, MOEA-E-NSGA-III per-
formed better thanMOEA-SMPSO respecting the makespan
in 11 cases, the monetary cost in 9 cases, and the number of
task failures in all 12 cases.

Finally, based on the performed analysis of the results, it
can be concluded that the variant MOEA-E-NSGA-III can
be considered the best alternative to reduce the makespan,
cost, and failures inherent to the studied applications’ ex-
ecution. Te use of the variant MOEA-E-NSGA-III would
enable a positive impact on the execution of the described
PSEs since it would allow its disciplinary users to obtain the
results in less time and at a lower monetary cost, speeding up
the analysis of results for decision-making (for example,
deploying alert systems in the meteorology area).

5.4.2. Statistical Analysis. In order to determine whether the
enhancement reached by MOEA-E-NSGA-III regarding
MOEA-NSGA-III, MOEA-SMS-EMOA, and MOEA-
SMPSO is signifcant, we carried out a signifcance test based
on the obtained results in relation to the L2-norm metric,
specifcally the Mann–Whitney U test [38]. As was previ-
ously mentioned, this metric trades of the three optimi-
zation objectives. For this reason, as mentioned in [14], this
metric is suitable for carrying out the test. Regarding the
results obtained by the evaluations of the variants in relation
to the L2-norm, it is necessary to recall that each variant was
evaluated 30 times for each PSE application and size, leading
to 30 values for the L2-norm per case. Ten, we carried out
the mentioned test on the results got by MOEA-E-NSGA-III
and MOEA-SMS-EMOA in relation to each PSE and size.
Finally, we carried out such test on the results obtained by
MOEA-E-NSGA-III andMOEA-SMPSO, in relation to each
PSE and size. In all the cases, we used α= 0.001 (confdence
level). Based on the performed tests, MOEA-E-NSGA-III
achieved signifcant improvements with respect to MOEA-
NSGA-III, MOEA-SMS-EMOA, and MOEA-SMPSO, in all
the PSEs and sizes. It is necessary to mention that we
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considered the Mann–Whitney U test because the L2-norm
metric values, in any case, do not follow a normal distri-
bution, which was instead confrmed by applying the test
Shapiro–Wilk with α= 0.001.

Besides, to determine if the improvements achieved by
MOEA-NSGA-III regarding MOEA-SMS-EMOA and
MOEA-SMPSO are signifcant, we carried out a statistical
signifcance test similar to that previously described for
determining the signifcance of the enhancement achieved
by MOEA-E-NSGA-III. Specifcally, we carried out the
Mann–Whitney U test using the L2-norm metric values
obtained by MOEA-NSGA-III and MOEA-SMS-EMOA.
Ten, we carried out the mentioned test on the results got by
MOEA-NSGA-III and MOEA-SMPSO for the L2-norm
metric, with respect to each PSE and size. In these cases, we
also applied the test with α= 0.001. According to the tests
carried out, MOEA-NSGA-III reached signifcant im-
provements with respect to MOEA-SMS-EMOA in all the
applications and sizes, and reached signifcant improve-
ments with respect to MOEA-SMPSO, in 11 of the appli-
cations and sizes.

5.4.3. Computation Time Analysis. In this subsection, we
show in Table 11 the average running time (in seconds)
required by the variants MOEA-NSGA-III, MOEA-E-
NSGA-III, MOEA-SMPSO, and MOEA-SMS-EMOA, for
each PSE application and size. Moreover, Table 12 shows the
average computation time (in seconds) of each multi-
objective optimization algorithm of each variant, for each
PSE application and size.Te four variants were run on a PC
equipped with an AMD Ryzen 5 with six 2022MHz cores,
16GB of RAM, and SDD, running Manjaro. Moreover, the
four variants, including the algorithms used by them, were
implemented in Java 1.8.

As shown in Table 11, the variant MOEA-NSGA-III
required the lowest average computation time in all the PSEs
and sizes. Tis is mainly because, as shown in Table 12, the
algorithm NSGA-III used by this variant obtained the lowest
average computation time, in all the PSEs and sizes.

Te variant MOEA-E-NSGA-III required the average
computation time closest to that of MOEA-NSGA-III in all
the PSEs and sizes. Temain reason for this is that, as shown
in Table 12, the algorithm E-NSGA-III utilized by MOEA-E-
NSGA-III obtained an average computation time very close
to that of the algorithm NSGA-III in all the PSEs and sizes.
In this sense, note that, as described in Section 4.2, the
algorithm E-NSGA-III is an extension of the algorithm
NSGA-III. Tese algorithms have the same general behavior
and utilize the same crossover, mutation, and selection
processes. However, these algorithms difer regarding the
generation of the initial population. Unlike NSGA-III,
E-NSGA-III includes a number of extreme solutions in the
initial population, and these solutions are defned according
to the problem at hand.

On the other hand, the variant MOEA-SMS-EMOA
required an average computation time that exceeds signif-
icantly those of the variants MOEA-NSGA-III, MOEA-E-
NSGA-III, and MOEA-SMPSO, in all the PSEs and sizes.

Tis is because, as we presented in Table 12, the algorithm
SMS-EMOA used by MOEA-SMS-EMOA obtained an av-
erage computation time that was considerably higher than
that of the algorithms NSGA-III, E-NSGA-III, and SMPSO
in each of the PSEs and sizes. In this respect, it is necessary to
note that, as described in Section 4.3, the algorithm SMS-
EMOA bases on the hypervolume metric to select solutions.
In each iteration of this algorithm, the set of candidate
solutions to be selected is defned, and then the contribution
of each one of the candidate solutions to the hypervolume of
the mentioned set is computed. Tese calculations require a
signifcant amount of computation time and therefore afect
the total computation time of SMS-EMOA.

Based on the results presented in Tables 7–12, the variant
MOEA-E-NSGA-III achieved signifcant improvements
with respect to the variants MOEA-NSGA-III, MOEA-SMS-
EMOA, and MOEA-SMPSO in all the PSEs and sizes, re-
quiring a computation time close to that of MOEA-NSGA-
III (i.e., the variant with the lowest computation time) in all
the PSEs and sizes. Besides, MOEA-NSGA-III signifcantly
outperformed MOEA-SMS-EMOA in all the PSEs and sizes
and reached signifcant improvements regarding MOEA-
SMPSO in 11 of the PSEs and sizes.

5.4.4. Pareto Sets. As above mentioned, the variant MOEA-E-
NSGA-III achieved better performance than the other variants
MOEA-NSGA-III, MOEA-SMS-EMOA, and MOEA-SMPSO
in all the applications and sizes. Considering that these four
variants only difer regarding the multiobjective optimization
algorithm used for obtaining the Pareto set of scaling plans, we
analyzed the quality of the Pareto sets provided by each of the
algorithms utilized in these variants. Recall that, as mentioned
in Section 4, each variant applies one scaling plan extracted
from the Pareto set of the algorithm being used. Tus, the
quality of the Pareto sets provided by the algorithms impacts on
the performance of these variants.

We focus on the sets generated by the algorithms during
the frst autoscaling stage. Tis is due to the fact that for each
of the PSEs and sizes, this is the simulation window where all
variants approach exactly the same multiobjective optimi-
zation problem, and the algorithms of these variants provide
Pareto sets to solve this problem. Tereby, it is a fair
comparison. During each of the subsequent autoscaling
stages, the variants typically approach diferent optimization
problems, which are defned considering the PSE’ tasks
execution state and also the virtual infrastructure state.

We used the well-known hypervolume metric [39],
which is usually utilized in the literature to evaluate and
compare Pareto sets.Tis metric calculates the volume of the
objective space dominated by a given Pareto set and
quantifes (a) how close this set is to the optimal Pareto set
and (b) how well solutions in the set are distributed con-
sidering the objective space. It is necessary to mention that,
in order to apply this metric, we considered that the volume
of the objective space is bounded by the worst possible value
of each of the considered optimization objectives.

Table 13 presents the average hypervolume of the Pareto
sets provided by E-NSGA-III, NSGA-III, SMS-EMOA, and
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SMPSO, during the frst autoscaling stage, for each of the
PSEs and sizes. As shown in Table 13, the algorithm
E-NSGA-III has reached an average hypervolume value
higher than those reached by the other three algorithms for
each of the PSEs and sizes. Tis means that the Pareto sets
provided by the algorithm E-NSGA-III are better than those
of the other three algorithms in terms of both optimal Pareto
set proximity and distribution of the scaling plans. Because
of this, the variant MOEA-E-NSGA-III has been able to
select and apply better scaling plans, and therefore out-
perform the other three variants, in all the PSEs and sizes.

6. Related Work

Studying the autoscaling problem [40] has received signif-
icant attention in the last ten years [12, 41–45]. However,
these approaches difer in many aspects (see Table 14),
including the type of application for which they were
proposed, the optimization algorithms implemented, if both
the scaling and scheduling problems were considered, the
pricing model used (e.g., only on-demand, or on-demand
and spot), the optimization objectives considered, and f-
nally, the number of applications with which the approaches
were tested. Te next subsections are organized according to

the type of application considered in each surveyed work
(bag of tasks, web, or workfow application).

6.1. Bag-of-tasks (BoT) Applications. Tere are very few
works that address the autoscaling problem and that are
focused on bag-of-tasks type applications such as PSEs, and,
at the same time, exploit spot instances to save costs. Among
the surveyed works, we canmention a paper of our own [12],
where an NSGA-II-based autoscaler called MOEA was
proposed. Te MOEA autoscales such kind of instances
while reducing the makespan, monetary cost, and failures.
However, the failures are not fully avoided, and therefore,
the unexpected termination of some instances afects the
completion time of their associated tasks, since these latter
must be run in other instances. Ten, in [14], MOEA was
extended exploiting the use of NSGA-III for improving its
performance with respect to the same considered optimi-
zation objectives. As a result, the NSGA-III-based autoscaler
[14] has signifcantly outperformed the NSGA-II-based
autoscaler [12], in terms of the makespan, cost, and number
of task failures caused by the use of spot instances for two

Table 11: Average running time (seconds) of each variant of the autoscaler MOEA.

Application Size MOEA-NSGA-III MOEA-E-NSGA-III MOEA-SMPSO MOEA-SMS-EMOA

MPG
30 4 6 7 670
100 20 31 54 1767
300 110 156 258 3270

GMS
30 7 10 13 890
100 37 40 88 1571
300 210 299 352 4271

FPA
30 4 4 5 430
100 24 27 33 1221
300 80 101 244 2683

WRF
30 4 6 11 889
100 30 43 67 2277
300 129 291 337 3613

Te signifcance level of bold values given in Table 11 is α � 0.001 (signifcance level).

Table 12: Average running time (seconds) by each algorithm of
each variant of the autoscaler MOEA.

Application Size NSGA-III E-NSGA-III SMPSO SMS-
EMOA

MPG
30 3 4 7 585
100 13 17 26 1530
300 41 50 77 1872

GMS
30 2 4 5 616
100 14 15 32 1065
300 74 81 155 1784

FPA
30 3 3 4 359
100 1 16 19 1109
300 43 54 126 2278

WRF
30 2 3 5 626
100 1 20 31 1355
300  6 80 113 1421

Table 13: Average hypervolume of the Pareto sets provided by each
algorithm (frst autoscaling stage) for each of the applications and
sizes. Higher values represent better values.

Application Size NSGA-III SMPSO SMS-
EMOA E-NSGA-III

MPG
30 67 26 43 74
100 84 27 23 94
300 33 40 12  4

GMS
30 54 51 38 70
100 49 28 42 62
300 70 48 44 81

FPA
30 94 48 56 96
100 83 22 71 87
300 76 38 29 81

WRF
30 17 14 18 29
100 24 13 22 34
300 18 14 16 31

Te signifcance level of bold values given in Table 13 is α � 0.001 (sig-
nifcance level).
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diferent real PSE applications. A distinction of this article
with respect to [12, 14] is that in this work we perform the
autoscaling problem considering three new multiobjective
optimization algorithms (i.e., E-NSGA-III, SMS-EMOA,
and SMPSO), obtaining signifcant performance gains, in
particular with our adapted E-NSGA-III.

Ten, in [46], an efcient and cost-optimized sched-
uling algorithm for a BoT was proposed. Te authors have
used a particle swarm optimization (PSO) algorithm
combined with an artifcial neural network (NN) for load
balancing and predicting the price of spot instances. Te
predicted prices are validated in relation to the current
prices of spot instances, with the aim of minimizing both
the time and monetary costs. Moreover, in [47], a pop-
ulation-based approach inspired by the diferential evo-
lution algorithm (DEA) was proposed to reduce makespan
and improve load balancing. Te approach is based not
only on maintaining the diversity of the population but also
on increasing the probability of searching for approximate
optimal solutions. However, it is worth mentioning that
although in [46, 47] the authors focused on BoT applica-
tions, they address task scheduling and not autoscaling, and
besides, in [47] the authors have not considered the use of
spot instances.

Ten, in [42], the authors presented an approach for
producing elastic clusters from computer resources coming
from multiple CSPs. Concretely, the work deals with hybrid
clouds (on-premise and public clouds). Te proposed
strategy [42] exploits spot instances to reliably deliver low
execution costs. For this, a check-pointing algorithm was
implemented for periodically keeping track of tasks’ prog-
ress before the spot instance is terminated by the CSP.
Tereby, the strategy supports resuming tasks from the last
checkpoint. A study case based on the nonlinear dynamic
analysis of buildings was performed to test the performance
algorithm. On the other hand, in [43], a delay-based dy-
namic scheduling (DDS) for resource provisioning was
proposed with the aim of minimizing the monetary cost and
meeting the deadline constraint. For this, at runtime, new
instances are allocated by the DDS component, considering
the application state and estimated task execution times.
While both approaches consider independent task appli-
cations and also have monetary cost as an optimization
objective, contrary to this work, they are not based on
metaheuristics.

Finally, in earlier work, we proposed a multiobjective
intelligent autoscaler called MIA [48]. MIA is based on
NSGA-III for executing PSEs in public clouds. Its goal is to

Table 14: Relevant related works summary.

Application
type Paper Algorithm Autoscaling Pricing model Metrics Number of

applications

BoT

[12] NSGA-II Yes On-demand, spot Makespan, cost, and OOB
errors 2

[14] NSGA-III Yes On-demand, spot Makespan, cost, and OOB
errors 2

[46] PSO - NN No On-demand, spot Makespan and cost 1
[47] DEA No On-demand Makespan and load balancing 1
[42] Check-pointing No On-demand, spot Cost 1
[43] DDS No On-demand Cost 3
[48] NSGA-III Yes On-demand Makespan and cost 2

Web

[49] Cost-efcient and fault
tolerant Yes On-demand, spot Availability, cost, and RT 1

[50] RLPAS Yes On-demand CPU utilization, RT, and
throughput 3

[45] RHAS Yes On-demand Cost, RT, and QoS 2

[51] ML based on reactive and
proactive Yes On-demand Broker proft and cost 1

[52] NN—LR Yes On-demand RT and cost 3

Workfows

[53] SIAA Yes On-demand, spot Makespan, cost, and task
failures 4

[54] Online cost-efcient
scheduling No On-demand, spot Cost 4

[55] Dynamic approach No On-demand, spot Cost, reliability, and fault
tolerance 1

[41] Dynamic autoscaling based on
EDF Yes On-demand Cost 3

[56] Scaling frst Yes On-demand Cost 3
[57] Dynamic approach Yes On-demand Makespan and cost 1

[58] NSGA-II Yes On-demand and
spot

Makespan, cost, and OOB
errors 4
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minimize makespan and monetary costs, but, unlike this
work, it does not consider the use of spot instances.

6.2. Web Applications. In this subsection, we describe the
approaches that focus on cloud-hosted web applications.
Among the works that, like our proposal, consider the use of
spot instances, we can mention the ones proposed in
[49, 50]. In [49], the goal is to achieve high availability and
minimize both the monetary cost and response time (RT),
even when the CSP unexpectedly fnalizes some spot in-
stances. Specifcally, a cost-efcient autoscaling and a fault-
tolerant algorithm for further overprovisioning the same
resource capacity by the use of another spot instance type
were implemented. Accordingly, an application can tolerate
some instances of fnalization and remain fully provisioned.
On the other hand, in [50], a reinforcement learning-based
strategy called RLPAS was proposed to automatically scale
the virtual infrastructure in a cloud. Te goal consisted of
minimizing response time and maximizing resource utili-
zation and throughput. Concretely, RLPAS allows learning
the cloud environment’s resource state in parallel where
there are heterogeneous and fuctuating workloads.

Tere are other works that only consider on-demand
instances. In [45], a robust hybrid auto-scaler (RHAS) was
proposed to reduce monetary costs and response time. Te
objective is to estimate the needed resources for horizontal
scaling depending on the incoming workloads. Moreover,
[51] presents a machine learning (ML)-based proactive al-
gorithm combined with a reactive algorithm for scaling re-
sources according to user’s demands. Te strategy, based on a
price model, aims at both maximizing broker’s proft and
minimizing the user’s costs. Besides, the combined strategy
explores the scale-up condition that, in an autoscaling en-
vironment that is purely reactive, is used to rent more in-
stances. Ten, in the work presented in [52], an autoscaler
called MLscale was proposed. Te autoscaler does not require
much knowledge of the application or manual tuning.
MLscale uses NN to build the model of the application’s
performance in an onlinemode andmultiple linear regression
(LR) for predicting the state of the postscaling system. Besides,
MLscale can accurately model the response time while
minimizing the cost of resources for web applications. All the
approaches presented in [45, 49–52] were focused on Web
applications, where the requirements of individual tasks are
much lighter than the PSEs considered in our article.

6.3. Workfows. Regarding works that consider workfows
and applications and the use of spot instances, we can
mention the work presented in [53], where a heuristic-based
autoscaler was proposed for minimizing the makespan. Te
autoscaler, called SIAA, is subject to budget constraints, and
the main distinction regarding our article is that in [53] the
monetary cost was not taken into account and, moreover,
was based on a heuristic. Another relevant work is [54],
where a cost-efcient scheduling strategy for executing
workfows was proposed. Tis strategy is subject to deadline
constraints, and workfow tasks are scheduled on the spot
instances. Ten, in the work presented in [55], the authors

studied how to efciently run large-scale workfows on
clouds, using on-demand and spot instances provided by the
EC2 service of Amazon. In [55], both the spot price and the
efect of spot instances disturbance were analyzed for de-
signing a dynamic strategy able to minimize cost, increase
reliability, and minimize the complexity of fault tolerance
while maintaining overall performance and scalability.

Moreover, in [41], a dynamic strategy based on the earliest
deadline frst (EDF) subject to deadline constraints for ef-
ciently executingmultiple workfows was presented.Temain
objective consisted of ensuring that every single workfow task
terminated before its deadline. Subsequently, the same au-
thors extended the problem to consider budget constraints
[56]. On the other hand, in the work presented in [57], an
autoscaler that learns over time the tasks’ resource needs from
the workfow structure and automatically adapts the number
of needed instances was proposed. Te autoscaler must
meet all task deadlines without having prior information
about the workfow structure or execution times.Te strategy
was implemented to minimize the timeline and cost. Finally,
in [58], the authors presented an online Cloud Multiobjective
Intelligence (CMI) autoscaler for minimizing the duration,
cost, and impact of the interruptions due to exploiting spot
instances. Tis autoscaler is subject to budget constraints, and
its goal is to periodically solve the cloud autoscaling problem
while the workfow is executed.

Note that, from the surveyed works, there are few third-
party approaches that deal with the autoscaling problem by
using strategies based on multiobjective metaheuristics that
consider the use of on-demand and spot instances while
minimizing the makespan, monetary cost, and task failures
of PSEs applications. In this paper, we also aim at addressing
the signifcance of the results by evaluating the autoscaler via
4 (four) diferent applications and running statistical sig-
nifcance tests.

7. Conclusions and Future Research

Te autoscaler MOEA is a recent cloud autoscaler based on
the NSGA-II algorithm, which has been proposed to execute
PSEs in public cloud environments. Tis autoscaler con-
siders the well-known pricing models on-demand and spot
in order to acquire VM instances for executing the tasks of a
given PSE application. Besides, MOEA considers three
optimization objectives relevant for the users: minimizing
the computing time, the monetary cost, and the spot in-
stances interruptions of the application’s execution. How-
ever, the performance of this autoscaler with respect to the
three considered optimization objectives depends signif-
cantly on the Pareto set of scaling plans provided by the
multiobjective optimization algorithm used. As detailed in
[14], the performance of this autoscaler improves consid-
erably when the algorithm NSGA-II is replaced by NSGA-
III. However, the algorithm NSGA-III has limitations in
terms of the diversity of the resulting Pareto set, which can
negatively impact on the performance of the autoscaler.

Motivated by this, we have analyzed the incorporation of
other multiobjective optimization algorithms into the
autoscaler MOEA in order to enhance the performance of
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this autoscaler with respect to the three considered opti-
mization objectives. In this sense, we incorporated the
following three popular of such kind of algorithms:
E-NSGA-III, SMS-EMOA, and SMPSO. Tese algorithms
have important behavioral diferences w.r.t. NSGA-III, as
utilized in [14]. Te obtained autoscaler variants were re-
ferred to as MOEA-E-NSGA-III, MOEA-SMS-EMOA, and
MOEA-SMPSO. Besides, the variant of the autoscaler with
the algorithm NSGA-III [14] was considered as a reference
for comparison purposes and referred to as MOEA-NSGA-
III.

We evaluated each of the four variants of the autoscaler
MOEA on four real-world PSE applications from the mo-
lecular dynamics and meteorology areas. We considered
three sizes per application, i.e., the number of tasks involved
in an application. Besides, we considered the characteristics
of on-demand and spot instances which correspond to fve
VM types available in Amazon EC2. We considered the
aforementioned applications and characteristics of VM in-
stances with the aim of defning diverse realistic experi-
mental scenarios. Te evaluations of the four variants on the
applications were developed by using the well-known
CloudSim simulator [22].

After that, we compared the performance of the four
variants of the autoscaler MOEA on all the PSEs and sizes,
regarding the three optimization objectives considered.
According to the performance comparison developed, the
variant MOEA-E-NSGA-III outperformed the other three
variants with regard to the L2-norm metric in all the PSEs
and sizes. In particular, the variant MOEA-E-NSGA-III
achieved better values than the variant MOEA-NSGA-III in
relation to the average makespan, monetary cost, and
number of task failures inherent to spot instance inter-
ruptions in all the PSEs and sizes. Since the four variants
only difer regarding the multiobjective optimization algo-
rithm used to obtain the Pareto set of scaling plans, we
analyzed the quality of the Pareto sets provided by each of
the algorithms utilized in these variants via the hypervolume
metric. Te obtained hypervolume values indicated that the
Pareto sets provided by the algorithm E-NSGA-III are better
than those provided by the other three algorithms, in respect
of optimal Pareto set proximity and solution distribution.
Because of this, the variant MOEA-E-NSGA-III has been
able to apply better scaling plans, and thus outperform the
other three variants in all the PSEs and sizes. Additionally,
we have compared the performance of the four variants on
each PSE and size in relation to the required average
computation time. Regarding this, the variant MOEA-E-
NSGA-III required an average computation time very close
to that of MOEA-NSGA-III (i.e., the variant with the lowest
average computation time) in all the PSEs and sizes. Te
computation time needed byMOEA-E-NSGA-III represents
a small percentage (i.e., less than 4.5% in most of the ap-
plications and sizes used) of the computation time that
corresponds to one autoscaling stage (i.e., one hour).

Te results obtained by the variant MOEA-E-NSGA-III
are encouraging. Te reason is that reducing the three
considered optimization objectives would have a positive
impact on the execution of PSEs, for example, by speeding

up the analysis of results for decision-making (e.g., issuing a
weather alert). In addition, users could take advantage of the
reductions in monetary costs to invest in acquiring more
instances, explore a greater number of parameters, and thus
obtain greater precision in the results.

Considering the aforementioned facts, we conclude that
the variant MOEA-E-NSGA-III represents a better
autoscaling alternative compared to MOEA-NSGA-III for
solving diverse instances of the addressed multiobjective
cloud autoscaling problem.

Regarding the addressed multiobjective cloud autoscaling
problem, it is necessary to note that this problem aims to
decide the scaling plan to be applied in each autoscaling stage.
Ten, the scheduling of the PSE’s tasks on the VM instances
indicated in the scaling plans is solved by applying a well-
known scheduling algorithm named ECT. However, con-
sidering that ECTis a greedy algorithm, the schedule provided
by this algorithm in each autoscaling stage could not sig-
nifcantly approximate the optimal schedule. Terefore, a
future research line involves modeling a new variant of the
problem to simultaneously decide on the scaling plan and the
scheduling plan so that the optimization objectives are
achieved. In this new variant of the addressed problem, we
will also incorporate other optimization objectives relevant to
the context of cloud environments. In particular, we will
consider energy consumption [59]. Since PSEs require a large
number of computational resources to run efciently, energy
consumption has become a crucial problem [60] due to the
high costs of electricity and CO2 emissions. Terefore, it is
also important to minimize energy consumption.

In the future, we will also incorporate other optimization
algorithms into the frst autoscaling phase of MOEA. In the
frst place, we will analyze the incorporation of other
multiobjective optimization algorithms with the goal of
improving the performance of the variant MOEA-E-NSGA-
III. In particular, we will consider adaptive multiobjective
evolutionary algorithms [39], which adapt their behavior
(i.e., crossover, mutation, and selection processes) according
to the evolutionary search state in order to promote the
exploration/exploitation of the search space and thus im-
prove the quality of the resulting Pareto set. Note that, unlike
this kind of algorithm, the algorithm E-NSGA-III does not
adapt its behavior according to the evolutionary search state.
Terefore, we consider that this kind of algorithm could
obtain better Pareto sets than those obtained by E-NSGA-III.
As a result, the incorporation of this kind of algorithm into
the autoscaler MOEA could outperform the performance of
MOEA-E-NSGA-III. In the second place, we will design and
incorporate multiobjective optimization algorithms aimed
at addressing the new variant of the cloud autoscaling
problem.

In this line, PSE applications considered in this paper are
not real-time applications (i.e., they do not require results
before a predefned deadline). Tus, in the experiments
developed, restrictions about the optimization delay were
not considered. However, with respect to the unavoidable
computing uncertainty as conceptualized in [61], there are
some improvements to be made. We are working on an
approach to sample crucial points in the input parameter
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space used to execute a given PSE, so we can streamline the
execution of the tasks associated with such points and the
visualization of results. In this way, users could partially
visualize PSE output variables earlier instead of waiting for
all PSE tasks to be completed.

Finally, notice that the VM instances provided by public
CSPs have other sources of uncertainty. For example, there
may be variability in performance due to the use of virtu-
alization technologies, the concurrent use of multiple users,
and possible failures. According to studies in [62], the
performance variability of VM instances is about 20%.
Terefore, to deal with this uncertainty, future research will
consist of addressing the cloud autoscaling problem through
deep learning (DL) techniques. DL techniques will allow us
to perform predictions on infrastructure performance and
thus make better decisions regarding how it is convenient to
scale the infrastructure and improve the global performance
to execute PSEs.
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