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Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of 
identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer 
classification. This task is a combinatorial search problem, and optimisation methods can be applied for its 
resolution. In this paper, two memetic micro-genetic algorithms (M𝜇V1 and M𝜇V2) with different hybridisation 
approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are 
used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that 
problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of 
cancer microarray data.
1. Introduction

Classification systems for medical diagnosis are becoming more and 
more popular in the last decade. They consist of data mining processes 
that divide data into classes to facilitate diagnosis of different patholo-
gies (Tarle et al., 2019). Cancer disease is one of the most critical areas 
of research in the medical field. DNA microarray technology allows the 
analysis of thousands of genes’ expression level, which is specifically 
useful for cancer diagnosis. The capability to predict normal tissue and 
different tumour types is crucial to patient prognosis and early treat-
ment of disease.

The determination of which genes are useful to predict between pos-
sible classes is a difficult task. Irrelevant and redundant genes are not 
valuable for classification, and moreover, they can also make the anal-
ysis harder and more prone to errors (Alonso-Betanzos et al., 2019). 
As such, effective gene selection methods for cancer are critically nec-
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essary. In this context, a feature selection process aims to choose the 
minimum number of informative genes most predictive for increasing 
the accuracy in the classification process.

Feature selection is considered to belong to the class of NP-hard 
combinatorial optimisation problems (Venkatesh & Anuradha, 2019). 
Feature selection of microarray cancer data consists of taking a sub-
set of 𝑛 genes from an immense set of 𝑁 genes to use in the defi-
nition of a mathematical model (Narendra & Fukunaga, 1977). These 
selected features can be viewed as a subset of features that needs to 
be evaluated as a whole (Xue et al., 2016). For a set of 𝑁 genes, 
there are 2𝑁 subsets (Siedlecki & Sklansky, 1993). Traditional deter-
ministic search methods can be computationally costly to find the op-
timal solution (Dash & Liu, 1997, Liu & Zhao, 2009). To reduce the 
time complexity, alternative methods have been proposed: greedy tech-
niques (Mao & Tsang, 2013, Min et al., 2014), metaheuristics (Li et 
al., 2013, Dussaut et al., 2018, Shukla et al., 2020), hybridisation of 
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Nomenclature

𝛼 Importance of the accuracy in the fitness function
𝑁 Number of Genes
NP-Hard Kind of problems without a polynomial solution
𝜇GA Micro-Genetic Algorithm
M𝜇GA Memetic Micro-Genetic Algorithm
𝑀 Number of samples from patients
𝑥𝑖 State of a given gene (selected or non-selected)
𝑘 Number of groups for K-fold Cross-Validation
K-NN K-Nearest Neighbours Classifier
SVM Support Vector Machine Classifier
DT Decision Tree Classifier
FS Feature Selection
GA Genetic Algorithm
MA Memetic Algorithms
PSO Particle Swarm Optimisation
CGA Cellular Genetic Algorithm
HC Hill Climbing Algorithm
𝑝 or 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 Population size
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃 𝑜𝑝 Offspring population size
𝑉 Offspring population size
𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑝 Mating population
𝑃 Population of solutions
M𝜇V1 Memetic Micro-Genetic Algorithm Version 1

M𝜇V2 Memetic Micro-Genetic Algorithm Version 2
𝑈 Number of evaluations for the local search operator
ALL Acute Lymphoblastic Leukaemia
AML Acute Myelogenous Leukaemia
ADCA Adenocarcinoma
MLP Malignant Pleural Mesothelioma
SRBCT Small-Blue Round Cell Tumour
EWS Ewing Sarcoma
BL Burkitt Lymphoma
NB Neuroblastoma
RMS Rhabdomyosarcoma
RBF Radial Basis Function kernel
BPSO Binary Particle Swarm Optimisation
VNS Variable Neighbourhood Search
BTS Binary Tournament Selection
HUX Half-Uniform Crossover
BDE Binary Differential Evolution
PeSOA-C Penguin Search Optimisation Algorithm with Rapid Con-

vergence
IG-𝜇GA Information Gain and Micro-Genetic Algorithm
C-HMOSHSSA Multi-Objective Spotted Hyena Optimiser, hy-

bridised with the Salp Swarm Optimisation
ACO-S Ant Colony Optimisation-Selection
metaheuristics (Jona & Nagaveni, 2014), and recently, memetic algo-
rithms (Lee & Kim, 2015).

Moreover, memetic algorithms have gained importance due to their 
ability to combine techniques such as evolutionary algorithms (that are 
suitable for feature selection -their population-based mechanism pro-
duce multiple solutions in a single run-) (Xue et al., 2016) and local 
search that allows exploiting areas incapable of reaching by canonical 
techniques (Abu Zaher et al., 2019, Lee & Kim, 2015, Rojas et al., 2020, 
Yang et al., 2008).

Micro Genetic Algorithm (𝜇GA) is a kind of metaheuristic that uses 
genetic operators to improve a small population of solutions for search 
intensification and diversification. To avoid the stagnation of 𝜇GA, it 
uses a restart population method to keep the best solution found and 
reset the others. The aim of this algorithm is to achieve the most-fit so-
lution by applying high levels of elitism and, at the time, reduce the 
computational resource usage. However, some problems require the al-
gorithm to work with different operators to improve the general method 
and incorporate knowledge of the problem. Therefore, the design of a 
memetic 𝜇GA that allows collaboration with another technique and the 
use of problem-oriented operators could provide robust and numerically 
effective behaviour (in terms of the classification values obtained).

In this work, two novel Memetic micro-Genetic Algorithms (M𝜇GAs) 
are introduced to improve the qualities of the canonical 𝜇GA in se-
lecting the most relevant genes of microarray cancer data and, thus, 
increase the classification capability. The main contributions of this pa-
per can be resumed as follows:

• Two novel memetic micro-genetic algorithms (M𝜇GAs) are intro-
duced for feature selection.
– The first approach, called M𝜇V1, proposes a new local search 

method that disturbs a reduced number of the individuals’ genes 
to avoid abruptly changing the direction of the algorithm. M𝜇V1 
also introduces a new operator for resetting the population when 
stagnation occurs. The new reset operator aims to conserve so-
lutions that could have valuable information about the search 
space while helps the local search operator to reduce the amount 
2

of selected genes rapidly.
– The second approach, called M𝜇V2, introduces a new local 
search operator to perform a significant variation in the structure 
of the exploited neighbourhoods, provoking a major perturbation 
over the selected features (genes) of each solution. The objective 
is to speed up the discovery of new promising areas of the search 
space.

• Experiments are conducted using three state-of-the-art classifiers, 
for trying the proposals under different conditions.

• An in-depth analysis is carried out to demonstrate the capability 
of the M𝜇GAs in comparison with other based metaheuristics tech-
niques that were formerly used for the same problem instances.

The manuscript is organised as follows: Section 2 introduces the def-
inition of the Feature Selection Problem and stochastic related works. 
Section 3 defines the memetic micro-Genetic Algorithm, the local search 
approaches, the novel reset population method, individual representa-
tion and operators of M𝜇GA for feature selection. Experimental settings 
are described in Section 4, and the results are shown in 5. Finally, Sec-
tion 6 summarises and remarks main results and conclusions.

2. Feature selection problem

There are several challenges in bioinformatics; one of them is to 
select groups of informative genes with high predictive power from ex-
isting samples. The most considerable difficulty in gene expression data 
analysis is the search space’s high and disproportional dimension. Usu-
ally, gene expression data is presented in a matrix with a large number 
of genes and a small number of samples.

Feature selection is a combinatorial optimisation problem (NP-
hard) (Xiong et al., 2001). Its objective is to eliminate characteristics 
that do not contribute to the classification problem or are redundant 
since they provide the same information. Feature selection for cancer 
data in microarray data consists of identifying relevant genes for clas-
sifying samples. A sample is generally catalogued as “no cancer” or 

“cancer” in a binary class dataset.
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2.1. Problem definition

Let 𝐺 be an 𝑀 × 𝑁 matrix with 𝑀 samples and 𝑁 features. The 
objective is to find a subset of 𝑛 relevant features (𝑛 ≤𝑁), so that clas-
sification processes may be improved.

Now, take 𝑥 a binary vector with size 𝑁 , where 𝑥𝑖 = 1 denotes that 
feature 𝑖 has been selected while 𝑥𝑖 = 0 indicates that it has not been se-
lected. The objective function to be maximised is shown in Eq. (1); it 
represents the fitness function that considers maximising the classifica-
tion accuracy and reducing the number of selected characteristics when 
evaluating a solution 𝑥.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) = 𝛼 × 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥) + (1.0 − 𝛼) ×

(
1 −

∑𝑁

𝑖=1 𝑥𝑖

𝑁

)
(1)

Where 𝛼 is a weight with value 0.9, to control that the accuracy 
value takes precedence over the subset size. The accuracy is estimated 
running k-Fold Cross-Validation with a classifier (James et al., 2013). 
𝑘-Fold Cross-Validation consists in dividing the data into 𝑘 groups of 
similar size. 𝑘 − 1 groups are used to train the model, and one group 
is employed to test — the process is repeated 𝑘 times using a different 
group as the test set in each iteration. The procedure generates 𝑘 esti-
mations of error (test error); the average error test is used for the final 
estimation.

2.2. Literature review

Feature selection (FS) aims to identify the most relevant features 
from a dataset. Different areas of work use FS due to its ability to pro-
vide interpretability to the analysis of huge datasets (Sarker, 2021). For 
example, in bioinformatics, FS is commonly used to select the subset of 
genes that participate in a given biological process, from an immense 
number of genes (Bommert et al., 2022). There are three major ap-
proaches to FS: filter, wrapper and embedded methods (Agrawal et al., 
2021)

Filter methods decide the subset of features to maintain based on 
statistical concepts like covariance of the features. One example is the 
paper developed by Abdi and Ghodsi (2020) which uses the distance 
correlation for deciding the most relevant subset of genes for microarray 
cancer data. Another example is presented in (Ke et al., 2018), where it 
is proposed a combination between the Symmetrical Uncertainty met-
ric and the ReliefF algorithm. Onan and KorukoGlu (2015) introduce 
an approach which combines several filter methods by using genetic 
algorithms for enhancing text sentiment classification. Filter methods 
considered are information gain, relief algorithm, gain ratio, statistical 
probabilistic significance and statistical metrics like Chi-Square, Pear-
son correlation and symmetrical uncertainty coefficient. Results con-
firmed that the approach improves other individual filter methods. The 
weakness related to filter methods is that they generally just focus on 
specific relationships between variables, ignoring that features do not 
necessarily must have a relationship with other features to be relevant 
in the classification task.

Machine learning (ML) algorithms have called the attention of re-
searchers due to their ability for pattern recognition in data. Tasks of 
ML like classification (Onan, 2019, Xue et al., 2022), regression (Austin 
et al., 2022), text analysis (Onan, 2018) and sentiment analysis (Onan, 
2022), image classification (Xue & Qin, 2022) and cluster analysis (Li 
et al., 2021), highly contribute to understanding data and finding im-
plicit patterns difficult to discover at a glance. Methods that perform FS 
during the training of the ML are known as Embedded Method (Ros-
tami et al., 2021). Wrapped Methods are those FS approaches that use 
ML algorithms for assessing how relevant a subset of features yielded 
by another agent is.

In literature, a common wrapped method approach is to use meta-
heuristics for selecting features (leveraging its ability of exploring and 
exploiting the search space efficiently) and ML algorithms for vali-
3

date the selected genes. There is a wide variety of metaheuristics that 
Intelligent Systems with Applications 17 (2023) 200173

were used for feature selection. Some examples of these are the works 
in (Rao et al., 2019, Sayed et al., 2018, Anand & Arora, 2019), where 
a Canonical Artificial Bee Colony Algorithm, a Chaotic Dragonfly algo-
rithm and a Chaotic Selfish Herd Algorithm were respectively proposed. 
These works use K-Nearest neighbours (K-NN), Support Vector Ma-
chines (SVM) and Decision Trees (DT) as methods that determine the 
relevance of the features. These methods have shown new alternatives 
to deal with the FS, reaching a good performance either in accuracy and 
retained features, compared with other methods. On the other hand, 
Boughaci and Alkhawaldeh (2018) proposed a study in that three Local 
Search Based methods were compared, namely, Hill Climbing method, 
Stochastic Method and Variable Neighbourhood Search method. Al-
though these are methods based on local search, results have proved 
good performance in feature selection.

Genetic Algorithms (GA) are considered one of the first metaheuris-
tics applied to FS. Nowadays, many works have been built based on 
GAs or have made modifications over them. Jadhav et al. (2018) pro-
posed a Hybrid method with an Information Gain algorithm used to 
filter datasets and a GA as a part of a wrapper method, with SVM, K-
NN and DT as classifiers. Ma and Xia (2017) introduced the use of a 
Tribe Competition-Based Genetic Algorithm for feature selection in Pat-
tern Recognition. In (Vijayanand et al., 2018) a wrapped method using 
a GA is used to filter features for an intrusion detection dataset. Results 
show that the approach could improve the accuracy of a Support Vec-
tor Machine. Thus, it is possible to say that GA-based algorithms have 
demonstrated to provide great performance in selecting determinant 
features over datasets, which is likely associated with the robustness of 
the GA in such problems.

Although the above-mentioned algorithms are efficient in FS prob-
lems, they can have difficulties when making fine-tune adjustments, 
especially when their solutions are near to the optimal point of the 
search space. Memetic Algorithms (MA) point to solve this problem by 
integrating a global search component such as an evolutionary frame-
work and a local search component. The first component enhances ex-
ploration, while the second one improves the exploitation of the search 
space. Several researchers have addressed FS by using MAs. In (Tubishat 
et al., 2020), a Dynamic Salp Swarm Algorithm has been improved by 
adding an initialisation process based on the Opposition Based Learning 
and a novel local search method. This work exhibited better exploration 
ability than other optimisation algorithms in accuracy and the num-
ber of selected features. Memetic variants of genetic algorithms and its 
derivatives have also taken place in several proposals, such as GA in-
tegrated with PSO (Moslehi & Haeri, 2019) and multi-objective CHC 
GA (Rathee & Ratnoo, 2020). Both of them were applied over feature 
selection benchmark datasets, and have shown promising results.

When FS must be performed over microarray cancer datasets, a 
new complication emerges. In this case, metaheuristics have to deal 
with many features and a few samples; the opposite of an ideal sce-
nario. Several approaches were applied over microarray datasets. For 
example, Shukla (2019) proposed a hybrid feature selection method us-
ing a multi-population adaptive genetic algorithm and a filter method 
based on F-Score. Its results have shown that it can improve or at least 
equalise results of the state-of-the-art approaches. However, its fitness 
function only considers the accuracy provided by Support Vector Ma-
chine (SVM) and Naive Bayes classifiers, that suggests that the number 
of selected features did not influence the evolution. Alanni et al. (2019)
also proposed a variation of the genetic algorithms that have reached 
good results either in accuracy and number of selected features, but they 
have evaluated their model using only an SVM with a unique configu-
ration. In (Bilen et al., 2020) authors provided a Hybrid FS approach in 
that several filter methods were combined with genetic algorithms. Its 
experiments are applied over a leukaemia cancer dataset. Results have 
shown that the proposed method can provide a reduced number of se-
lected features and a precision value near to 100%, but the model is 

tested only in one dataset.
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Considering the advantages of MA, several authors have proposed to 
use them for FS over microarray data. In (Yang et al., 2008), a hybrid 
feature selection method is presented. The filter method is the Relief 
method, and the wrapper method is a memetic algorithm that com-
bines a GA with a simple random local search algorithm. Results have 
shown that it can improve the performance of both Canonical GA and 
Canonical PSO. However, the model was tested by just one classifier, so 
it is uncorroborated in the efficiency over another classification config-
uration. On the other hand, the proposed local search method seems to 
do a little diversification and intensification between neighbours that 
appear not to minimise the number of selected features that achieve an 
acceptable accuracy value.

In (Rojas et al., 2020) a Cellular Genetic Algorithm (CGA) with a lo-
cal search method specially designed is implemented, and three datasets 
are used for comparison. Pragadeesh et al. (2019) proposed a Hybrid FS 
method that uses a Canonical Micro Genetic Algorithm combined with 
an Information Gain filter method applied over cancer datasets. In this 
work, the authors did not propose a local search method to enhance 
search space exploitation, which probably had an incidence in the slight 
features reduction performed. Furthermore, the test was applied using 
SVM as a unique classifier.

In this paper, two novel Memetic Micro Genetic Algorithms for FS in 
a microarray data context are presented. They are combined with two 
specially designed local search methods. To the best of our knowledge, 
no presented work encompasses all the components included in our 
proposal.

3. Memetic micro-genetic algorithm (M𝝁GA)

The field of evolutionary computation has emerged in the last 
decades to solve problems of different academic and industrial nature, 
due to these methods’ ability to explore the space of possible solutions 
in-depth while trying to avoid exhaustive searches. However, in most 
cases, evolutionary algorithms suffer from low convergence rate de-
pending on the problem. A memetic algorithm (Moscato et al., 1989, 
Moscato & Cotta, 2018) can be applied to improve this situation, in-
corporating a local search into the general evolutionary process. A 
synergistic behaviour is generated where each algorithm’s weaknesses 
can be improved by combining with other techniques, allowing signifi-
cant improvements without exhaustive search.

This section describes our memetic approach based on a micro-
Genetic Algorithm (M𝜇GA). The evolutionary process is performed by a 
micro-Genetic Algorithm (𝜇GA) combined with a local search based on 
Hill Climbing algorithm (HC). Two variations of HC are presented for 
the FS problem. Section 3.1 describes the canonical 𝜇GA algorithm. Sec-
tion 3.2 describes the local search approaches, and Section 3.3 reports 
the novel reset population. Section 3.4 presents the general scheme of 
our approach and specific details about the design.

3.1. Micro-genetic algorithm

Genetic algorithms (GAs) are a well-known and powerful tool used 
in optimisation problems and searching tasks. They are based on Dar-
win’s theory of survival of the fittest (Holland, 1992). A variant of the 
GA known as Micro-Genetic Algorithm (𝜇GA) provides some advan-
tages over the conventional approach. The 𝜇GA is designed to work on 
minimal population size (𝑝). This size is usually less than ten individuals 
(potential solutions of the searching problem) meanwhile, other evolu-
tionary approaches work with 100 individuals (Krishnakumar, 1990).

A summary of the entire process of the 𝜇GA is described in Algo-
rithm 1. As a first step, an initial population is randomly created and 
evaluated (in lines 2 and 3). Next, the evolutionary process applies the 
genetic operators (crossover and mutation) in line 6, and new solutions 
are evaluated in line 7. Then, the 𝑝 individuals with the highest fit-
ness value are selected, between the old and the new ones (line 8). The 
4

characteristics of the individuals tend to converge to the fittest solution 
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over successive generations. To avoid this, the convergence of the pop-
ulation is evaluated. If all the solutions are more similar than a certain 
threshold, the best individual is saved, and the remaining are randomly 
created from scratch (line 10). This iterative process is repeated until 
the termination criterion is satisfied.

Using a small population enhances the computational resources us-
age, as a minimal number of solutions is in physical memory during 
the algorithm execution. This is especially important when working 
with high dimensional data (as microarray data sets) because memory 
overflow is prevented (Dokken & Fronk, 2018, Santiago et al., 2021). 
Saving computational resources also allows parallelism, which could 
significantly improve the process performance and reduce the execu-
tion times.

Another advantage of small populations is the high level of elitism 
during evolutionary process, due to the best solution of the population 
impacts heavily on the evolution of the other solutions. This provides 
the ability of a rapid convergence to optimal points (Jaen-Cuellar et 
al., 2016, Santiago et al., 2021). Additionally, by restarting the popu-
lation constantly, not just diversity is achieved, but also the 𝜇GA has a 
better possibility of escaping from local optima, which results in better 
solutions (Madadi & Balaji, 2008).

The 𝜇GA algorithm has been used for diverse problems of academic 
and industry nature. These approaches have demonstrated their effec-
tiveness in finding optimal (or near-optimal) solutions in landscapes 
with multiple local optima. Some problems can be found in the fields 
of oil (Ribas et al., 2013), construction (Au et al., 2003, Madadi & Bal-
aji, 2008), aerospace (Chakravarty & Mittra, 2002, Truong et al., 2017), 
bioinformatics (Pragadeesh et al., 2019), energy (Burhan et al., 2016, 
Lee et al., 2019), sensor networks (Mendoza et al., 2007), urban plan-
ning (Chen & Song, 2012), airfoil (Szőllős et al., 2009), among others.

Algorithm 1 Pseudo-code of canonical 𝜇GA.
1: procedure EVOLVE(𝑝𝑜𝑝𝑆𝑖𝑧𝑒)
2: 𝑃 ←𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑆𝑖𝑧𝑒)
3: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑃 ) ⊳ Evaluate initial population
4: while not StopCondition() do

5: 𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑝 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃 )
6: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃 𝑜𝑝 ←𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑝)
7: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃 𝑜𝑝 ←𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑜𝑓𝑓𝑠𝑟𝑝𝑖𝑛𝑔𝑃 𝑜𝑝)
8: 𝑃 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑃 , 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃 𝑜𝑝)
9: if 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑃 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

10: 𝑃 ←𝑅𝑒𝑠𝑒𝑡𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃 )
11: end if

12: end while

13: return 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

14: end procedure

3.2. Local search

The local search procedure is an individual reinforcement process 
to find a better solution around the best solutions (Blum et al., 2011). 
When an element is changed in a candidate solution, a neighbour chro-
mosome (solution) is obtained.

Memetic algorithms introduce a local search (LS) operation to ac-
celerate the whole evolutionary searching process. The local search 
algorithm starts from a candidate solution and then iteratively moves 
to a neighbour solution, making small perturbations. The process is re-
peated until a solution deemed optimal is found, or a specific number 
of movements 𝑙 is completed. LS needs to be carefully designed to bal-
ance the acceleration of the convergence and the avoidance of the local 
optimum.

In this work, a Hill-Climbing algorithm (HC) based approach is used 
to increase the accuracy of the results of the 𝜇GA and to decrease the 
likelihood of getting stuck in suboptimal solutions. The relative simplic-
ity of HC, its ability to improve solutions in short periods of execution 

time, and its adaptability to the problem make it a perfect component 
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to be mixed with the 𝜇GA process. In this proposal, two HC-based local 
search designs are presented.

• The first variation of the HC algorithm is exposed in Algorithm 2. A 
random value between 0 and 1, called 𝑝𝑟𝑜𝑏, is generated at the be-
ginning of each iteration to choose a possible modification. There 
are four possible perturbations (each with an equal probability of 
being selected). The options allow modifying one, two or three 
variables located consecutively by 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑃 𝑒𝑟𝑡𝑢𝑟𝑏 function, or 
altering five variables at random positions by 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑒𝑟𝑡𝑢𝑟𝑏 func-
tion (Boughaci & Alkhawaldeh, 2018). These functions receive as 
parameters the solution to be perturbed and the number of vari-
ables to modify. The value of each variable can turn to false ac-
cording to the probability presented in Eq. (2). When perturbations 
are applied, the resulting solution is conserved if it is better than 
the current. This LS alternative points not to disturb the solution 
so much and to ensure that individuals do not change abruptly in 
the search space. The aim is to improve the precision capacity by 
deactivating the selected genes and finding the most representative 
genes that were not considered during the evolutionary process. 
The memetic 𝜇GA that use this variation of HC is called M𝜇V1.

1.0 − 1
𝑁 × 0.2

(2)

Algorithm 2 Pseudocode of the first variation of the HC.
1: function LOCALSEARCH(Solution)
2: 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑝𝑦(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
3: 𝑛𝑜𝑛𝐶𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ← 5
4: 𝑒𝑣𝑎𝑙𝑠 ← 0
5: while 𝑒𝑣𝑎𝑙𝑠 < 𝑙 do

6: 𝑝𝑟𝑜𝑏 ←𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)
7: if 𝑝𝑟𝑜𝑏 <= 0.25 then

8: 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑃 𝑒𝑟𝑡𝑢𝑟𝑏(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 1)
9: else if 𝑝𝑟𝑜𝑏 > 0.25 and 𝑝𝑟𝑜𝑏 <= 0.5 then

10: 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑃 𝑒𝑟𝑡𝑢𝑟𝑏(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 2)
11: else if 𝑝𝑟𝑜𝑏 > 0.5 and 𝑝𝑟𝑜𝑏 <= 0.75 then

12: 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑃 𝑒𝑟𝑡𝑢𝑟𝑏(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 3)
13: else

14: 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ←𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑒𝑟𝑡𝑢𝑟𝑏(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑁𝑜𝑛𝐶𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
15: end if

16: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
17: if 𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 then

18: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑝𝑦(𝑎𝑢𝑥𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
19: end if

20: 𝑒𝑣𝑎𝑙𝑠 ← 𝑒𝑣𝑎𝑙𝑠 + 1
21: end while

22: return 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

23: end function

• The second variation can also randomly modify one, two or three 
variables arranged consecutively or alter 20% of their variables 
without requiring them to be contiguous. This occurs by chang-
ing the 𝑛𝑜𝑛𝐶𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑠 variable to the product between the 
number of genes 𝑁 and 0.2 (in line 3 of Algorithm 2).
This LS approach introduces the possibility of generating a stronger 
disturbance at some point in the evolutionary process. It seeks 
to explore a neighbourhood a little further from the current one, 
trying to find a significant improvement. However, the possibil-
ity of continuing to exploit nearby neighbourhoods remains. The 
memetic 𝜇GA hybridised with this local search variant is called 
M𝜇V2.

3.3. Reset population

The first variation (M𝜇V1) changes how the reset operator gener-
ates new solutions when the algorithm reaches nominal convergence. 
The objective is to contribute the local search operator by reducing 
even more the number of selected genes, considering that compact sub-
5

sets of discriminative genes, related to diseases and disorders, are more 
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valuable for biologist than having a big number of related genes (Yu, 
2007).

The new reset operator takes the best solution to the new popula-
tion, maintaining the elitism characteristics of the original reset oper-
ator. The difference is given when restarting the remaining solutions, 
which are modified by randomly deactivating 20% of their genes, ac-
cording to probability presented in Eq. (2). An example of the resultant 
population after passing through the new reset operator is presented in 
Fig. 1

The advantage of the new M𝜇V1 reset operator is that the solu-
tions are not completely discarded, so that valuable information about 
the search process is not lost. Additionally, the new operator promotes 
finding a little set of genes that reaches high accuracy values by de-
activating more genes than it activates. This modification can increase 
the exploration of the search space and accelerate the convergence to 
optimum points.

3.4. General scheme of M𝜇GA approaches

This subsection describes the proposed M𝜇GA. Fig. 2 shows the evo-
lutionary process flow. The variations improve the exploitation ability 
of the 𝜇GA algorithm.

First, the algorithm creates and evaluates solutions. Then, the stop 
condition is check, if it is not fulfilled, the evolutionary process begins 
applying the genetic operators of 𝜇GA. Once the new population has 
been selected, a variation of the HC is applied. Next, the level of con-
vergence of the population is evaluated. A few solutions can quickly 
converge to just one, trapping the population at a local optimum. A 
Hamming function is used to evaluate the nominal convergence of the 
solutions. If there is convergence, the population reset process is car-
ried out. In the first variant, the change process explained in section 3.3
is applied. For the second variant, the canonical reset of 𝜇GA is used. 
In the memetic approach, the local search acts like an operator in 𝜇GA 
algorithm. The process is repeated until the stop condition is met, and 
the best solution is selected.

3.4.1. Chromosome representation

The encoding for FS in each chromosome is represented by a binary 
vector, where each position represents a feature in the dataset. Value 1
in the position 𝑖 implies that the feature 𝑖 is selected, whilst 0 indicates 
that 𝑖 is not selected. Fig. 3 shows a representation of a vector solution 
with 8 features.

3.5. Time complexity analysis of the M𝜇GA approaches

The analysis of the time complexity is carried out by using the big 
O notation. For evaluating the time complexity of the M𝜇GA versions, 
several factors have to take into account: the population size (𝑝), the 
number of genes of the solutions (𝑁), the offspring size (𝑉 ), the number 
of divisions for k-Fold Cross-Validation (𝑘) and the number of evalua-
tions performed in each execution of the local search operator (𝑈 ). The 
total complexity of each version is obtained by considering the individ-
ual complexity of the following steps:

• The time complexity of the crossover operator, based on the com-
plexity of the Half-Uniform Crossover, is 𝑂(𝑉 ×𝑁).

• The mutation operator complexity, based on the Bit-Flip Mutation, 
is 𝑂(𝑉 ×𝑁).

• The selection operator complexity is 𝑂(𝑝).
• The fitness evaluation has a time complexity of 𝑂(𝑘 ×𝑉 ×𝑁), where 
𝑘 is a constant (𝑘 = 4). So, 𝑂(𝑉 ×𝑁).

• The reset operator of the M𝜇GA has a time complexity of 𝑂(𝑝 ×𝑁), 
given it, does not regenerate the best individual of the population.

• The local search operator has a time complexity of 𝑂(𝑝 ×𝑈 ×𝑁)

The maximum complexity value from one of the steps gives the total 

algorithm complexity of both versions, namely M𝜇V1 and M𝜇V2. The 
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Fig. 1. New population after passing through the new reset operator.

Fig. 2. Evolutionary process flow of M𝜇GA.
Fig. 3. Representation of chromosome encoding.

overall complexity is presented in Eq. (3), which also considerates the 
number of generations 𝑔 (iterations) of the algorithm.

𝑂(𝑀𝜇𝐺𝐴) =

𝑂(max(𝑔 × 𝑉 ×𝑁,𝑔 ×𝑁 × 𝑉 , 𝑔 × 𝑝, 𝑔 × 𝑉 ×𝑁,𝑔 × 𝑝 ×𝑁,𝑔 × 𝑝 ×𝑈 ×𝑁))

(3)

This results in an adequate time complexity, given that the time 
complexities of solutions for NP-Hard problems are used to being in 
similar orders. Even more, NP-Hard problems do not require solutions 
to have in polynomial time complexities due to their inherent diffi-
culty. Metaheuristics like M𝜇GA versions are promising due to their 
ability to provide featured results independently of the instances being 
used (Oliveto et al., 2007).

4. Experimental settings

This section presents the experimental set-up. First, the datasets are 
introduced. Next, the methodology and the parameter settings in the 
6

tests are summarised.
4.1. Cancer datasets

Several experiments were performed with different instances of can-
cer datasets from the ELVIRA Biomedical Data Set Repository.1 In 
this paper, seven datasets with samples belonging to two classes and 
one dataset with samples divided into four classes are used. Colon 
Cancer (Alon et al., 1999) distinguishes between normal samples and 
cancer. In Leukaemia (Golub et al., 1999), class 1 contemplates the 
samples classified as Acute Lymphoblastic Leukaemia (ALL) and class 
2 encompasses Acute Myelogenous Leukaemia (AML) samples. Lung 
Cancer (Bhattacharjee et al., 2001) divides the samples into Adeno-
carcinoma (ADCA) and Malignant Pleural Mesothelioma (MLP). The 
Prostate dataset (Singh et al., 2002) separates data into two classes, 
tumour and normal instances. The Ovarian Cancer dataset (Petricoin et 
al., 2002) distinguishes between normal and ovarian cancer samples. 
Breast cancer (van’t Veer et al., 2002) separates into Relapse samples 
after initial diagnosis and non-relapse ones. A summary of each case 
of study is shown in Table 1. Finally, the SRBCT dataset (Khan et al., 
2001) is composed of 83 instances belonging to four different classes, 
Ewing Sarcoma (EWS), Burkitt Lymphoma (BL), Neuroblastoma (NB) 
and Rhabdomyosarcoma (RMS).
1 https://leo .ugr .es /elvira /DBCRepository/.

https://leo.ugr.es/elvira/DBCRepository/
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Table 1

Cancer datasets summary.

Datasets #Genes #Samples Classes

Colon Tumour 2000 62 Normal(22)
Cancer(40)

Leukaemia 7129 72 ALL(47)
AML(25)

Lung Cancer 12600 181 ADCA(150)
MLP(31)

Prostate 12600 102 Tumour(52)
Normal(50)

Ovarian Cancer 15154 253 Normal(91)
Cancer(162)

Breast Cancer 24481 78 Relapse(34)
Non-Relapse(44)

SRBCT 2308 83 EWS(29)
BL(11)
NB(18)
RMS(25)

4.2. Classifiers

Three classifiers are explored to calculate the accuracy of each sub-
set of features: Support Vector Machine, Decision Tree, and K-Nearest 
Neighbours. Scikit-learn is used to run them.2

Support Vector Machine (SVM) (Vapnik, 2000) is a supervised ma-
chine learning algorithm used for both classification and regression. 
It tries to identify the hyperplane placed in the middle between the 
classes, ensuring that the best separation is made. This makes SVM 
to focus on minimising the generalisation error instead of focusing on 
reducing the training error as other machine learning models. Neverthe-
less, there are situations in that no separation hyperplane exists between 
classes because of the dataset’s distribution. Thus, it is necessary to use 
a mathematical trick called kernel that elevates the data to a dimen-
sion in which they can be separated (Noble, 2006). In this work, SVM 
is configured with a Radial Basis Function kernel (RBF); the parame-
ter gamma is set in “scale” and the remaining parameters were defined 
taking the default configuration proposed by the library scikit-learn.

Decision Tree (DT) (Quinlan, 1986) is a supervised machine learning 
algorithm widely used because it gives interpretable results. A DT learns 
by building a hierarchical tree by partitioning the training set according 
to its attributes. The aim is to obtain pure subsets in the leaves of the 
tree; the subset only contains single class training data. Implicitly, a 
DT generates a set of rules that partition the dataset. In that way, a DT 
can provide an informative and robust hierarchical classification model. 
When the training phase finishes, test data passes through the nodes of 
the tree that decide what path the data has to follow until it reaches 
a leaf that determines its class (Wu et al., 2007, Myles et al., 2004). 
Default parameters proposed by the library scikit-learn were adopted 
for this algorithm.

K-Nearest Neighbours (K-NN) (Cover & Hart, 1967) is a supervised 
machine learning algorithm which determines the class of a test point, 
based in the predominance of a class in the 𝑘 nearest training points. It 
is necessary to have a distance metric that allows estimating how far a 
test point is from the training points. It is also necessary to have a set 
of training point where each one is labelled, since they are going to be 
used to determine the class of a new test point. Finally, it is needed to 
define the value of the parameter 𝑘 that is the number of the closest 
neighbours to be considered (Wu et al., 2007). In this work, 𝑘 is set in 
5, and the remaining parameters were configured with default values 
of the library scikit-learn.
7
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4.3. Algorithms to compare

Several authors confirm the capability of different metaheuristics ap-
plied to the feature selection problem, and specifically over microarray 
datasets (Ali & Hassanien, 2015, Rojas et al., 2020). This section intro-
duces the main characteristics of the techniques used for the analysis 
and comparisons in this work.

Canonical Genetic Algorithm (GA) (Holland, 1992) is a metaheuristic 
based on the Darwinian theory of evolution of species. The fundamental 
idea of GA is the survival of the fittest individual (a solution) of a pop-
ulation that evolves across time. First, the population is initialised and 
evaluated. The evaluation of each individual is performed by a fitness 
function that indicates how good is the solution regarding the prob-
lem. The population evolves by iterations of the GA called generations. 
In every generation, three evolutionary operators are applied to the 
population. The first one is the selection operator that selects a set of 
individuals to be kept in the next generation or well, to be recombined 
by the other operators. This operator is directly inspired by natural se-
lection in the sense that fitter individuals are more likely to be selected. 
The crossover is the second operator applied to the population and con-
sists of the exploitation of the shared space of two individuals selected 
by the selection operator. It combines the two individuals (called par-
ents) to produce two new individuals (called children). Finally, the last 
operator is the mutation, that randomly changes genes of an individual 
to increase the diversity of the population. The mutation rate is usually 
set in a low value because a great number of mutations can provoke that 
the GA becomes in a primitive random search. The population evolves 
until the stop criterion is reached, then the best solution so far is re-
turned as the best approximation for a given problem (Mirjalili, 2019).

Micro-Genetic Algorithm (𝜇GA) (Krishnakumar, 1990) is a variation 
of the GA that emerges by the assumption that a few individuals are suf-
ficient to reach an optimal solution for a given problem. 𝜇GA adopts all 
the concepts of the canonical GA, so it begins with a random population 
that evolves by generations where operators of selection, crossover and 
mutation are applied. The key differences are that it usually uses a small 
population such as 3, 5 or 7 individuals, it incorporates an operator to 
reset the population when the nominal convergence is reached (when 
all the individuals are very similar) and it has the aim to maintain the 
diversity of the population.

Binary Particle Swarm Optimisation (BPSO) (Kennedy & Eberhart, 
1997) is an extension of the canonical Particle Swarm Optimisation al-
gorithm (PSO) to allow it to deal with binary problems. PSO is based on 
the behaviour of different organisms, like bird flocking. It begins gen-
erating a swarm of particles, where each one is randomly positioned in 
different regions of the search space. At each iteration of the algorithm, 
the position and velocity of every particle are updated according to its 
previous position, and the position of the best-positioned particle until 
that moment. The key difference in BPSO is that the concept of veloc-
ity takes the form of the probability in that a bit or position becomes a 
one or a zero, and it is used when the position of the particle is updated 
(Lee et al., 2008). The Sigmoid function provides that probability.

Hill Climbing (HC) (Appleby, 1961) is considered the simplest ap-
proach to a local search method. Its strategy is to pass from a current 
solution to another better neighbour iteratively, to reach an optimal so-
lution. It starts with a random solution; then, a perturbation is applied 
to identify a neighbour solution in each iteration. This neighbour is ac-
cepted only if it is better than the current solution (Al-Betar, 2016).

Variable Neighbourhood Search (VNS) (Hansen & Mladenović, 2018) 
is a variation of the HC algorithm based on the use of multiple neigh-
bourhood structures rather than a single one. It changes systematically 
from one structure to another to quickly switch among different re-
gions of the search space. First, it is necessary to define the structures 
to be used. Then, a random solution has to be generated. The follow-
ing operation is repeatedly applied to this solution: shaking, that selects 
a neighbour solution based on a determined structure. Next, the hill-

climbing operator discovers its neighbours without being restricted to 

https://scikit-learn.org/stable/
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Table 2

Algorithm configuration parameters.

Algorithm Parameter Value

BPSO Population Size 30
Position Updating Sigmoid Function

GA Population Size 100
Crossover Operator HUX - Prob.: 1.0
Mutation Operator Bit-Flip - Prob.: (1/N)
Selection Operator BTS

𝜇GA Population Size 5
Crossover Operator HUX - Prob.: 1.0
Mutation Operator Bit-Flip - Prob.: (1/N)
Selection Operator BTS
Reset Population Threshold 5% Distinct Variables

HC Changes per iterations 1 change
VNS Neighbourhood Structures 1, 2 or 3 consecutive changes

any structure, in a given number of iterations. In every iteration, the 
current solution can be substituted if a new neighbour is better than 
itself. This process repeats until a stop condition is reached (Al-Betar, 
2016).

4.4. Configuration of the algorithms

Experiments were done considering these five canonical approaches: 
Binary Particle Swarm Optimisation (BPSO), Genetic Algorithm (GA), 
Micro-Genetic Algorithm (𝜇GA), Variable Neighbourhood Search (VNS) 
and Hill Climbing (HC). Table 2 shows the configuration for every im-
plementation. For the 𝜇GA variations, the same configuration as for the 
canonical 𝜇GA was used.

In this work, the Binary Tournament Selection (BTS) (Deb, 2000) 
was used. This operator starts randomly selecting two parents from the 
population. Then, it selects the fittest one, which will be thrown to the 
next generation. The crossover operator is the Half Uniform Crossover 
(HUX) (Eshelman, 1991). Given two parents chosen by the selection 
operator, it swaps the half of the distinct genes between both of them. 
Finally, the mutation operator is the Bit-Flip Mutation. It works over 
each gene of the individual, mutating them (i.e. changing them from 
0 to 1 and vice versa) with a given probability (Sivanandam & Deepa, 
2008).

The threshold for the reset population operator of the 𝜇GA requires 
that at least 5% of the variables keep distinct, to avoid solutions con-
verging to the same point in the search space. Both M𝜇V1 and M𝜇V2 
perform 50 iterations per execution of the local search operator.

Due to the non-deterministic nature of the proposal, several inde-
pendent runs (30) were considered for each algorithm and for each 
dataset. We have marked a result with a bold face when it is the best 
and with italic when it is the second best in performance. For the 
purpose of checking whether the differences between the algorithms 
are statistically significant or just a matter of chance, we applied the 
Wilcoxon rank-sum (Gibbons & Chakraborti, 2020) test and highlight, 
in the tables, the differences that are statistically significant. We always 
consider in this work a confidence level of 99% (i.e., significance level 
of 𝛼 = 0.01) in the statistical tests.

Experiments were performed in the Toko cluster (toko.uncu.edu.ar) 
with an AMD Opteron/Epyc processor (64 cores and 128 GB of RAM). 
The operating system is Ubuntu 18.04 LTS. Algorithms are implemented 
in jmetalpy (Benitez-Hidalgo et al., 2019).

5. Results

In this section, the analysis and results of the experiments are pre-
sented. First, in sections 5.1, 5.2 and 5.3, newly proposed approaches 
are compared to the most used methods in the literature for FS. The 
8

analysis considers fitness quality, execution time, accuracy, and the 
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number of features. Finally, in section 5.4, a comparison with the re-
sults of several approaches applied to the same datasets is presented.

5.1. Classifiers and fitness analysis

Table 3 reports, for each algorithm and classifier, the average fit-
ness value of the best solutions from the 30 independent runs. M𝜇V2 
overcomes all other algorithms (even M𝜇V1) considering the three clas-
sifiers and all the datasets, excepting with the dataset SRBCT using 
the DT and K-NN classifiers, where M𝜇V2 got the second-best value. 
This shows the capability of M𝜇V2 to explore and exploit the search 
space, reaching highlighted solutions even under different distributions 
of classes of the datasets.

Moreover, comparing M𝜇V2 and M𝜇V1 confirms that the variation 
of a proportion of the number of genes made by M𝜇V2 can improve the 
results. On its part, canonical 𝜇GA does not reach good results for any 
of the datasets confirming that the combination of reset and local search 
operators of the M𝜇V1 and the local search operator of the M𝜇V2 pro-
posed in this work improve the exploitation and resolve the premature 
convergence of 𝜇GA.

Concerning the classifiers, the three of them achieve similar results 
of classification, but SVM yields the best fitness results. In the case of the 
Decision Tree, GA obtains the second-best results overcoming M𝜇V1; 
whilst BPSO achieves the worst results for Leukaemia and Colon. VNS 
and HC fail to explore and exploit the search space, no matter the clas-
sifier.

Table 4 illustrates the details of the statistical analysis confirming 
the promising results of the M𝜇V2. Values are presented in a table as an 
algorithm-by-algorithm comparison for each tested instance (one sym-
bol for each dataset: Leukaemia, Breast, Colon, Lung, Ovarian, Prostate 
and SRBCT). A leftward triangle (⊲) shows that the row setting gets sta-
tistically higher values than the column setting. In contrast, an upward 
triangle (△) indicates that the row setting gets statistically lower val-
ues than the column setting. If no significant differences are found, the 
place is completed with a dash (-). For example, the first upward trian-
gle in the table corresponds to the significance of the difference between 
the performance metrics of BPSO against M𝜇V1 using the SVM classi-
fier in the Leukaemia case of study. It means that the difference of the 
performance in favour of the M𝜇V1 (the orientation of the triangle) is 
significant (a triangle instead of a dash).

M𝜇V2 is the only algorithm that obtains significant differences, win-
ning in most of the performed tests, against all the other methods for the 
three Classifiers. M𝜇V1 overcomes the other algorithms when imple-
mented with SVM and K-NN classifiers. However, when Decision Tree 
is applied, M𝜇V1 is overcome by the 𝜇GA and the GA. BPSO only de-
feats HC and VNS in two datasets, with SVM and K-NN Classifiers. All 
in all, we can confirm then that the M𝜇V2 presents significant superior 
performance for all classifiers in all datasets, losing just against the GA 
when the DT is used to classify the SRBCT dataset.

Figs. 4a, 4b, and 4c show representative convergence curves of the 
algorithms for Ovarian instance. In order to understand the convergence 
at the beginning of the search process, the fitness value is plotted along 
the x-axis, which represents the percentage of fitness evaluations. As 
shown in the curves, in general, M𝜇V2 has smoother curves and can 
reach a good convergence (high fitness value).

In Fig. 4b and 4c, M𝜇V2 has a fast convergence at the beginning of 
the optimisation process and then starts to jump to higher fitness values. 
The other algorithms slow down in the latter process, unable to find 
significant improvements. The permeability jumps in the convergence 
curves of both memetic algorithms are owing to the application of the 
synergy between the two techniques used to find good solutions. After 
these jumps, the convergence slows down or even stops as the optimal 

solution is approached.

http://toko.uncu.edu.ar
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Table 3

Mean of the fitness quality indicator for SVM, DT and K-NN classifiers.

Class. Alg. Instance

Leukaemia Breast Colon Lung Ovarian Prostate SRBCT

SVM BPSO 0.786 0.505 0.739 0.775 0.890 0.795 0.803
GA 0.870 0.508 0.787 0.818 0.903 0.840 0.851
𝜇GA 0.789 0.502 0.764 0.781 0.890 0.804 0.826
M𝜇V1 0.927 0.570 0.862 0.847 0.980 0.894 0.846
M𝜇V2 𝟎.𝟗𝟔𝟖 𝟎.𝟕𝟏𝟕 𝟎.𝟖𝟖𝟔 𝟎.𝟖𝟕𝟓 𝟎.𝟗𝟗𝟗 𝟎.𝟗𝟐𝟒 𝟎.𝟖𝟕𝟓
HC 0.769 0.512 0.839 0.763 0.903 0.735 0.848
VNS 0.764 0.513 0.797 0.764 0.903 0.767 0.841

DT BPSO 0.855 0.618 0.727 0.758 0.927 0.813 0.734
GA 0.881 0.653 0.785 0.795 0.930 0.854 𝟎.𝟖𝟑𝟖
𝜇GA 0.880 0.641 0.767 0.787 0.929 0.851 0.822
M𝜇V1 0.873 0.622 0.741 0.777 0.928 0.840 0.798
M𝜇V2 𝟎.𝟗𝟒𝟎 𝟎.𝟔𝟖𝟗 𝟎.𝟖𝟐𝟖 𝟎.𝟖𝟓𝟎 𝟎.𝟗𝟕𝟕 𝟎.𝟖𝟓𝟗 0.825
HC 0.867 0.608 0.734 0.752 0.926 0.806 0.773
VNS 0.870 0.614 0.733 0.754 0.925 0.813 0.774

K-NN BPSO 0.870 0.606 0.795 0.847 0.828 0.855 0.801
GA 0.904 0.650 0.822 0.859 0.841 0.880 𝟎.𝟖𝟕𝟕
𝜇GA 0.876 0.608 0.805 0.847 0.828 0.855 0.812
M𝜇V1 0.923 0.624 0.868 0.876 0.925 0.851 0.859
M𝜇V2 𝟎.𝟗𝟓𝟏 𝟎.𝟕𝟑𝟓 𝟎.𝟗𝟎𝟐 𝟎.𝟖𝟖𝟓 𝟎.𝟗𝟗𝟐 𝟎.𝟗𝟏𝟐 0.872
HC 0.831 0.574 0.813 0.844 0.839 0.793 0.800
VNS 0.828 0.596 0.817 0.845 0.840 0.809 0.808

Table 4

Wilcoxon test results for the fitness differences (Leukaemia, Breast, Colon, Lung, Ovarian, Prostate and 
SRBCT) with significance level 𝛼 = 0.01.

Class. Alg. M𝜇V1 M𝜇V2

SVM BPSO △ △ △ △ △ △ △ △ △ △ △ △ △ △

GA △ △ △ △ △ △ – △ △ △ △ △ △ △

𝜇GA △ △ △ △ △ △ △ △ △ △ △ △ △ △

HC △ △ – △ △ △ – △ △ △ △ △ △ △

VNS △ △ △ △ △ △ – △ △ △ △ △ △ △

M𝜇V1 △ △ △ △ △ △ △

DT BPSO △ – △ △ – △ △ △ △ △ △ △ △ △

GA ⊲ ⊲ ⊲ ⊲ ⊲ ⊲ ⊲ △ △ △ △ △ △ ⊲

𝜇GA ⊲ ⊲ ⊲ ⊲ – ⊲ ⊲ △ △ △ △ △ △ –
HC – – – △ △ △ △ △ △ △ △ △ △ △

VNS – – – △ – △ △ △ △ △ △ △ △ △

M𝜇V1 △ △ △ △ △ △ △

K-NN BPSO △ △ △ △ △ – △ △ △ △ △ △ △ △

GA △ ⊲ △ △ △ ⊲ ⊲ △ △ △ △ △ △ –
𝜇GA △ △ △ △ △ – △ △ △ △ △ △ △ △

HC △ △ △ △ △ △ △ △ △ △ △ △ △ △

VNS △ △ △ △ △ △ △ △ △ △ △ △ △ △

M𝜇V1 △ △ △ △ △ △ △
5.2. Time analysis

In order to analyse the complete performance of the approaches 
under the study, the results of the execution times are reported and dis-
cussed. Table 5 displays the average time consumed in seconds in each 
instance for the case of SVM, Decision Tree and K-NN. Column two 
present the name of each algorithm, and columns three to nine present 
the average time measured in seconds for each algorithm. M𝜇V2 has 
obtained shorter times for most instances. In general, Table 5 indicates 
that the M𝜇V2 approach obtains lower times with all the classifiers for 
all the instances. These times might be due to the intrinsic character-
istics of certain operations in the M𝜇GA, which have a high degree of 
parallelization that can maximise the efficiency of each thread and thus, 
the simplicity of each kernel is maintained.

It is observed that the times of the two versions M𝜇GA are shorter 
than the rest of the algorithms. This behaviour is observed for both 
small and large instances, and even with multi-class datasets like SR-
BCT. Similarly, it is observed that the times of the two versions M𝜇GA 
9

do not increase exponentially, but rather that, the times are reduced 
compared to the rest of the algorithms as the characteristics increase in 
each instance.

5.3. Classification accuracy and number of selected features

Table 6 shows the maximum and average values of the classification 
accuracy obtained by each algorithm and classifier for each dataset. The 
reported values correspond to the accuracy calculated for the best indi-
vidual of the last run in each execution. M𝜇V2 achieves the best results 
for the three classifiers. Moreover, M𝜇V2 is the only one that obtains 
100% of accuracy for Ovarian dataset in the three classifiers. It is in-
teresting that for Ovarian cancer instance DT classifier obtains similar 
results in all algorithms. Similarly occurs for the rest of datasets, this 
may be because of the classifier and not because of a problem of con-
vergence in the algorithms. The algorithms attain better accuracy with 
SVM and K-NN classifiers. In particular, when SVM is used, M𝜇V1 earns 
second-best values. For K-NN, M𝜇V2 achieves the best results for Colon 
and Lung instances maximum accuracy and the second place in Colon 

and Ovarian datasets average accuracy. Regarding the prostate dataset, 
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Fig. 4. Evolution of the fitness quality indicator for each algorithm using different classifiers for the Ovarian dataset.
the M𝜇V1 and the M𝜇V2 have overcome the other algorithms with all 
the considered classifiers. With the SRBCT dataset, the M𝜇V2 has been 
positioned as the second-best value in both DT and K-NN classifiers, but 
it was the best result with the SVM classifier. Clearly, the special local 
search of M𝜇GAs helps to exploit the solution space, and it is reflected 
in the accuracy.

Table 7 exhibits how M𝜇V2 selects a few features from the total 
number of characteristics for each dataset, no matter the classifier. In 
particular, for Leukaemia, using SVM classifier (Table 7) chooses three 
features in the best execution and an average of five features. Indeed, 
this not affect the accuracy (Table 6) considering M𝜇V1 reaches the 
best accuracy values for Leukaemia. Similarly occurs for the rest of the 
datasets except for Colon where M𝜇V1 attains the minimum number of 
10

features selected with SVM classifier.
M𝜇V2 takes the minimum number of features with DT and K-NN 
classifiers, followed by M𝜇V1. Both M𝜇V2 and M𝜇V1 select far fewer 
features than the rest of the algorithms. This means that with few 
characteristics, both memetic versions can achieve good accuracy. For 
Ovarian cancer dataset, using K-NN classifier, the accuracy obtained by 
the memetic algorithms is similar but M𝜇V1 needs several more fea-
tures (187.9 avg.) to achieve this accuracy in comparison with M𝜇V2 
(5.8 avg.).

Figs. 5a, 5b, and 5c display, for Ovarian dataset, the evolution of 
the accuracy and the number of features selected during one execu-
tion of each algorithm with each classifier. As it can be seen, using 
the SVM Classifier (Fig. 5a), BPSO, GA and 𝜇GA require numerous 
features to gain accuracy. Clearly, these algorithms fail to get a good 

selection of relevant features. VNS and HC reach similar accuracy 
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Table 5

Mean of time quality indicator (in seconds) for SVM, DT and K-NN classifiers.

Classifier Algorithm Instance

Leukaemia Breast Colon Lung Ovarian Prostate SRBCT

SVM BPSO 1950 9200 603 15300 15400 3637 670
GA 1210 6500 381 14300 14200 2725 454
𝜇GA 1320 7500 404 14900 15300 2807 501
M𝜇V1 787 3230 283 6550 6360 1457 309
M𝜇V2 𝟔𝟓𝟑 𝟐𝟒𝟕𝟎 263 𝟑𝟔𝟑𝟎 𝟑𝟒𝟖𝟎 𝟏𝟏𝟑𝟏 𝟐𝟔𝟒
HC 876 6120 𝟐𝟓𝟗 10600 11300 2072 282
VNS 903 5620 274 10600 11100 2033 312

DT BPSO 2150 8940 815 10400 20600 3392 695
GA 1550 7300 647 10000 20400 2641 546
𝜇GA 1650 7500 654 10400 21100 2653 564
M𝜇V1 1070 4920 510 5240 9260 2378 510
M𝜇V2 𝟗𝟎𝟗 𝟐𝟕𝟓𝟎 490 𝟐𝟖𝟔𝟎 𝟓𝟎𝟑𝟎 𝟏𝟔𝟕𝟖 𝟒𝟏𝟓
HC 1170 6210 𝟒𝟖𝟗 7470 16800 2397 521
VNS 1230 6220 513 7400 16600 2435 510

K-NN BPSO 2310 10300 740 65200 11000 4218 976
GA 1450 7730 493 70700 9460 3347 790
𝜇GA 1480 7650 494 71000 9520 3493 812
M𝜇V1 1260 6700 432 69900 9320 2370 620
M𝜇V2 𝟖𝟏𝟒 𝟑𝟔𝟓𝟎 𝟑𝟏𝟒 𝟏𝟑𝟑𝟎𝟎 𝟑𝟏𝟒𝟎 𝟏𝟔𝟎𝟖 𝟓𝟕𝟎
HC 1240 6930 441 72000 9460 2650 605
VNS 1260 6660 437 70500 9380 2632 644

Table 6

Maximum and average values of accuracy for algorithms and instances with the SVM, DT and K-NN classifiers.

Class. Alg. Colon Leukaemia Lung Ovarian Breast Prostate SRBCT

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

SVM BPSO 0.77 0.76 0.84 0.81 0.78 0.77 0.93 0.93 0.50 0.50 0.81 0.80 0.83 0.80
GA 0.81 0.80 0.94 0.90 0.82 0.81 0.94 0.94 0.50 0.50 0.86 0.84 0.86 0.85
𝜇GA 0.80 0.77 0.84 0.81 0.78 0.78 0.93 0.93 0.50 0.50 0.82 0.81 0.84 0.83
M𝜇V1 0.88 0.85 𝟎.𝟗𝟖 0.92 0.88 0.85 0.99 0.98 0.57 0.52 𝟎.𝟗𝟒 0.89 0.86 0.85
M𝜇V2 𝟎.𝟖𝟗 𝟎.𝟖𝟕 𝟎.𝟗𝟖 𝟎.𝟗𝟔 𝟎.𝟖𝟗 𝟎.𝟖𝟕 𝟏.𝟎𝟎 𝟏.𝟎𝟎 𝟎.𝟕𝟕 𝟎.𝟔𝟗 𝟎.𝟗𝟒 𝟎.𝟗𝟐 𝟎.𝟗𝟎 𝟎.𝟖𝟕
HC 0.88 0.82 0.81 0.76 0.79 0.76 0.92 0.92 0.50 0.59 0.79 0.73 0.86 0.85
VNS 0.81 0.78 0.82 0.76 0.79 0.76 0.93 0.92 0.49 0.49 0.81 0.77 0.86 0.84

DT BPSO 0.74 0.67 0.86 0.81 0.76 0.75 0.97 0.96 0.62 0.57 0.84 0.82 0.79 0.74
GA 0.77 0.72 0.90 0.85 0.80 0.79 0.97 0.96 𝟎.𝟔𝟔 𝟎.𝟔𝟎 𝟎.𝟖𝟕 𝟎.𝟖𝟔 𝟎.𝟖𝟖 𝟎.𝟖𝟒
𝜇GA 0.74 0.68 0.90 0.83 0.80 0.78 0.97 0.95 0.63 0.59 𝟎.𝟖𝟕 0.85 0.85 0.83
M𝜇V1 0.72 0.67 0.92 0.84 0.79 0.77 0.97 0.96 0.61 0.57 𝟎.𝟖𝟕 0.84 0.85 0.80
M𝜇V2 𝟎.𝟖𝟒 𝟎.𝟕𝟓 𝟎.𝟗𝟑 𝟎.𝟗𝟐 𝟎.𝟖𝟖 𝟎.𝟖𝟓 𝟎.𝟗𝟖 𝟎.𝟗𝟕 𝟎.𝟔𝟔 𝟎.𝟔𝟎 𝟎.𝟖𝟕 𝟎.𝟖𝟔 0.86 0.83
HC 0.69 0.64 0.87 0.80 0.77 0.75 0.97 0.95 0.60 0.56 0.86 0.81 0.85 0.78
VNS 0.73 0.64 0.85 0.76 0.77 0.75 0.97 0.95 0.60 0.56 0.86 0.82 0.85 0.78

K-NN BPSO 0.83 0.82 0.92 0.91 0.85 0.84 0.86 0.86 0.63 0.61 0.87 0.86 0.82 0.80
GA 0.85 0.84 0.96 0.94 0.86 0.85 0.87 0.87 0.68 0.66 0.89 0.88 𝟎.𝟗𝟎 𝟎.𝟖𝟖
𝜇GA 0.84 0.82 0.92 0.91 0.85 0.84 0.86 0.86 0.63 0.62 0.88 0.86 0.85 0.81
M𝜇V1 𝟎.𝟗𝟎 0.86 0.95 0.92 𝟎.𝟖𝟗 𝟎.𝟖𝟖 0.94 0.92 0.63 0.60 0.91 0.85 𝟎.𝟗𝟎 0.86
M𝜇V2 𝟎.𝟗𝟎 𝟎.𝟖𝟗 𝟎.𝟗𝟕 𝟎.𝟗𝟓 𝟎.𝟖𝟗 𝟎.𝟖𝟖 𝟏.𝟎𝟎 𝟎.𝟗𝟗 𝟎.𝟖𝟎 𝟎.𝟕𝟏 𝟎.𝟗𝟒 𝟎.𝟗𝟏 𝟎.𝟗𝟎 0.87
HC 0.85 0.80 0.89 0.83 0.85 0.84 0.86 0.85 0.59 0.57 0.83 0.79 0.86 0.80
VNS 0.87 0.81 0.88 0.83 0.85 0.84 0.86 0.85 0.61 0.59 0.84 0.81 0.86 0.81
than the previous algorithms with relative fewer features. Only M𝜇V1 
and M𝜇V2 achieve a balance between numbers of features selected 
and high accuracy. In the case of Decision Tree classifier (Fig. 5b), 
M𝜇V2 attains good accuracy with fewer features in comparison with 
the other algorithms. If we compare M𝜇V2 and M𝜇V1, evidently the 
fact that changes in the solutions are less restricted than M𝜇V1 en-
sures a balance between exploration and exploitation, reflected in the 
accuracy reached and on the features that were selected. For K-NN 
classifier (Fig. 5c), the number of selected features for BPSO, GA and 
𝜇GA are similar and all of them obtain low accuracy in comparison 
with HC and VNS, which gain similar accuracy with fewer features. 
Once again, M𝜇V1 and M𝜇V2 overcome the other algorithms. How-
ever, only M𝜇V2 obtains, with few selected features, 100% of accu-
11

racy.
5.4. Comparison with state-of-the-art

This section compares the best accuracy and number of selected fea-
tures arrived by the M𝜇GA versions against state-of-the-art proposals 
using different classifiers. Results are distributed in three tables, each 
corresponding to a different classifier.

The algorithms from the state-of-the-art considered for comparisons 
are: the Binary Differential Evolution (BDE) (Apolloni et al., 2016), 
the Penguin Search Optimisation Algorithm with Rapid Convergence 
(PeSOA-C) (Dif et al., 2018), the hybridisation between Information 
Gain and the Micro-Genetic Algorithm (IG-𝜇GA) (Pragadeesh et al., 
2019), the Multi-Objective Spotted Hyena Optimiser, hybridised with 
the Salp Swarm Optimisation (C-HMOSHSSA) (Sharma & Rani, 2019) 
and the Ant Colony Optimisation - Selection (ACO-S) (Li et al., 2013). 

A summary of their configurations is presented in Table 8. It informs 
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Table 7

Min and average value of number of selected features for each algorithm and instance with the SVM, DT and K-NN classifiers.

Class. Alg. Colon Leukaemia Lung Ovarian Breast Prostate SRBCT

Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg

SVM BPSO 819 864.5 3183 3271.9 5674 5834.6 6479 6788.6 9977 10430.8 5316 5628.6 941 1011.4
GA 552 591.0 2602 2756.1 5280 5469.8 5954 6239.4 9061 9314.2 5135 5364.5 622 677.1
𝜇GA 596 660.5 2886 3069.3 5566 5730.4 6680 6800.6 10821 10972.0 5621 5734.8 722 797.9
M𝜇V1 𝟑 16.1 27 113.4 88 273.1 52 128.9 28 111.5 56 172.2 21 67.0
M𝜇V2 4 𝟏𝟎.𝟐 𝟑 𝟓.𝟐 𝟔 𝟑𝟕.𝟏 𝟑 𝟔.𝟓 𝟑 𝟖.𝟐 𝟒 𝟏𝟑.𝟒 𝟔 𝟐𝟏.𝟕
HC 27 51.5 853 910.5 2802 2880.6 3841 3951.4 8045 8163.8 2756 3074.8 42 71.2
VNS 146 190.8 1311 1347.2 3071 3176.4 4109 4182.9 7942 8059.8 3119 3266.4 213 232.5

DT BPSO 840 879.9 3005 3118.6 5403 5571.9 6541 6697.8 10765 10900.8 5439 5561.3 975 1019.5
GA 930 960.5 3383 3441.2 6204 6265.6 7338 7475.9 11990 12135.5 6124 6265.2 1096 1144.8
𝜇GA 932 979.2 3360 3483.2 6134 6261.3 7384 7486.0 12101 12214.2 6119 6254.4 1066 1153.8
M𝜇V1 770 961.0 3197 3501.8 5059 5807.5 7481 7557.9 12167 12254.8 4195 6047.5 946 1135.6
M𝜇V2 𝟕 𝟏𝟔𝟐.𝟐 𝟏 𝟏𝟔.𝟒 𝟏𝟖𝟏 𝟏𝟎𝟔𝟗.𝟖 𝟐 𝟏𝟕𝟓.𝟕 𝟔𝟏𝟏 𝟐𝟒𝟕𝟐.𝟓 𝟏𝟎𝟓𝟐 𝟐𝟗𝟏𝟓.𝟏 𝟐𝟕𝟕 𝟔𝟔𝟖.𝟗
HC 936 982.3 3485 3537.5 6208 6305.1 7514 7610.2 12097 12219.3 6181 6281.8 1084 1153.8
VNS 952 989 3456 3564.0 6210 6285.5 7496 7600.5 12128 12258.3 6152 6264.6 1110 1155.9

K-NN BPSO 822 861.8 3115 3218.2 5459 5683.3 6716 6852.6 10726 11122.8 5385 5665.9 976 1032.8
GA 493 603.5 2638 2814.3 5109 5391.5 6174 6467.9 11274 11534.6 5158 5455.5 826 904.8
𝜇GA 615 652 3006 3091.9 5662 5758.4 6752 6917.8 11550 11741.2 5611 5794.4 791 855.3
M𝜇V1 11 37.8 48 252.4 356 890.5 57 187.9 1452 4212.1 303 1590.1 72 162.3
M𝜇V2 𝟑 𝟕.𝟖 𝟔 𝟐𝟗.𝟒 𝟐𝟔 𝟐𝟎𝟔.𝟗 𝟑 𝟓.𝟖 𝟏𝟎 𝟏𝟔𝟖.𝟑 𝟒 𝟓𝟐.𝟐 𝟏𝟐 𝟒𝟒.𝟒
HC 25 105.1 929 1014.6 2895 3127.8 3967 4086.8 8430 8706.0 2859 3077.4 147 215.5
VNS 155 202.8 1324 1415.6 3215 3352.2 4178 4321.1 8400 8765.1 3160 3331.2 310 401.0

Table 8

Configuration for state-of-the-art algorithms.

Algorithm Datasets Classifiers Evaluations Performed

BDE Colon, Leukaemia, Lung, Ovarian and Prostate SVM, DT and K-NN 40000
PeSOA-C Colon, Leukaemia, Lung, Ovarian, Breast and SRBCT SVM 2500
IG-𝜇GA Lung, Ovarian SVM 10000
C-HMOSHSSA Leukaemia, Breast, Prostate and SRBCT SVM, DT and K-NN 30000
ACO-S Leukaemia and Colon DT and K-NN 8000

Table 9

Comparison with SVM wrapper methods. Accuracy and number of selected features of the best found 
solution (between brackets).

Algorithm Instance

Colon Leukaemia Lung Ovarian Breast Prostate SRBCT

BDE 0.75(3) 0.88(8) 0.99(3) 0.99(2) - 0.94(3) -
PeSOA-C 𝟎.𝟗𝟐(𝟏𝟐𝟕) 𝟏.𝟎𝟎(𝟑𝟎𝟏) 0.98(613) 𝟏.𝟎𝟎(𝟑𝟓𝟓) 0.81(2036) - 𝟏.𝟎𝟎(𝟓𝟐)
IG-𝜇GA - - 𝟏.𝟎𝟎(𝟏𝟕𝟎𝟔) 0.95(2844) - - -
C-HMOSHSSA - 𝟏.𝟎𝟎(𝟒) - - 𝟏.𝟎𝟎(𝟑) 𝟎.𝟗𝟕(𝟒) 𝟏.𝟎𝟎(𝟒)
M𝜇V1 0.88(3) 0.98(27) 0.88(88) 0.99(52) 0.57(28) 0.94(56) 0.86(21)
M𝜇V2 0.89(4) 0.98(3) 0.89(6) 𝟏.𝟎𝟎(𝟑) 0.77(3) 0.94(4) 0.90(6)
the datasets and classifiers used and the number of fitness evaluations 
performed.

Table 9 compares the results of the M𝜇GA versions against the BDE, 
the PeSOA-C, the IG-𝜇GA and the C-HMOSHSSA, using the SVM clas-
sifier. Both M𝜇V1 and M𝜇V2 obtained comparable results with the 
state-of-the-art approaches. M𝜇V2 has shown it can reach high values 
of accuracy, utilising a minimum number of selected features. Although 
the PeSOA-C has shown high accuracy values in most of the datasets 
evaluated, it performs a minor reduction of the selected features, which 
could be related to the number of evaluations performed. Keeping a sig-
nificant number of selected features could lead to increased accuracy, 
which can explain that behaviour.

While the BDE produces results very similar to those of the M𝜇GA, 
it involves a lot more evaluations, suggesting that it needs a major 
time and resource consumption to achieve such accuracy values and 
reduction of dimension. The IG-𝜇GA, which makes the same number of 
evaluations as the M𝜇GA versions, provided a large number of selected 
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genes.
Compared to the state-of-the-art algorithm, the M𝜇GA versions 
shown a competitive behaviour, founding the minimal number of se-
lected features that provides a high accuracy.

Table 10 compares approaches that use DT as the classifier. Con-
sidered algorithms are the BDE, the ACO-S and the C-HMOSHSSA. It 
appears that the performance of the M𝜇GA has been reduced, show-
ing an increase in the number of selected features and a decrease in 
the value of accuracy. Nevertheless, most of the accuracy values stayed 
near to the state-of-the-art approaches, exhibiting similar performance 
with every dataset. Moreover, M𝜇V2 has stood out, achieving the best 
results in three out of the seven datasets, and reaching the second-best 
result in three out of the remaining. This reflects that the M𝜇V2 can be 
a competitive variant when the DT classifier is used.

The increment in the number of selected features could indicate that 
the M𝜇GA versions find it easier to work with classifiers which base 
their classifications on distances of the points in the feature space, in-
stead of those that rely on the tree-like model of decisions.

Finally, in Table 11 algorithms that use K-NN classifier are com-

pared. Again, BDE, ACO-S and C-HMOSHSSA are used for comparisons. 
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Fig. 5. Evolution of the accuracy and the number of selected features for each algorithm with different classifier for the Ovarian dataset.

Table 10

Comparison with DT wrapper methods. Accuracy and number of selected features of the best found 
solution (between brackets).

Algorithm Instance

Colon Leukaemia Lung Ovarian Breast Prostate SRBCT

BDE 𝟎.𝟖𝟖(𝟐) 𝟎.𝟗𝟒(𝟏) 𝟎.𝟗𝟕(𝟏) 𝟎.𝟗𝟖(𝟏) - 0.74(2) -
ACO-S 0.82(75) 0.91(93) 0.87(141) - - - -
C-HMOSHSSA - 𝟎.𝟗𝟒(𝟒) - - 𝟎.𝟗𝟔(𝟒) 0.32(4) 0.80(4)
M𝜇V1 0.72(770) 0.92(3197) 0.79(5059) 0.97(7481) 0.61(12167) 𝟎.𝟖𝟕(𝟒𝟏𝟗𝟓) 0.85(946)
M𝜇V2 0.84(7) 0.93(1) 0.88(181) 𝟎.𝟗𝟖(𝟐) 0.66(611) 𝟎.𝟖𝟕(𝟏𝟎𝟓𝟐) 𝟎.𝟖𝟔(𝟐𝟕𝟕)
In this case, results have shown that M𝜇V2 reached good results in most 
of the instances, achieving the second-best position in four out of the 
seven datasets and the best solution in two opportunities, suggesting a 
good performance. Likewise, an acceptable balance between accuracy 
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and the number of selected features was obtained.
The M𝜇V2 was slightly outperformed or equalled in Colon, Leu-
kemia, Lung and Ovarian datasets by the BDE or C-HMOSHSSA, which 
performed more fitness function evaluations during their executions. It 
appears, based on evidence, that M𝜇V2 was more efficient at arriving 

at optimal solutions than other approaches.
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Table 11

Comparison with K-NN wrapper methods. Accuracy and number of selected features of the best 
found solution (between brackets).

Algorithm Instance

Colon Leukaemia Lung Ovarian Breast Prostate SRBCT

BDE 0.88(3) 0.97(2) 𝟎.𝟗𝟗(𝟐) 0.99(2) - 𝟎.𝟗𝟕(𝟑) -
ACO-S 0.80(91) 0.89(101) 0.88(138) - - - -
C-HMOSHSSA - 𝟏.𝟎𝟎(𝟒) - - 𝟎.𝟗𝟐(𝟒) 𝟎.𝟗𝟕(𝟒) 𝟏.𝟎𝟎(𝟒)
M𝜇V1 𝟎.𝟗𝟎(𝟏𝟏) 0.95(48) 0.89(356) 0.94(57) 0.63(1452) 0.91(303) 0.90(72)
M𝜇V2 𝟎.𝟗𝟎(𝟑) 0.97(6) 0.89(26) 𝟏.𝟎𝟎(𝟑) 0.80(10) 0.94(4) 0.90(12)
Considering all the analysis, it is possible to conclude that the two 
memetic proposals (M𝜇V1 and M𝜇V2) reach comparable results with 
other start-of-the-art approaches and demonstrate that they can obtain 
high accuracy values whilst keeping a reduced number of selected fea-
tures. It is essential to highlight that these results are observed indepen-
dently of the classifier being used, which ensures that the algorithm’s 
procedure can find the more relevant features under different condi-
tions of classification.

6. Conclusions

Memetic models are an appropriate approach for integrating differ-
ent techniques that explore and exploit the search space. The present 
work proposes two memetic algorithms (M𝜇V1 and M𝜇V2) that fusion 
a micro-genetic algorithm and a hill-climbing local search procedure 
for the feature selection problem. The work’s main contributions are 
the hybrid model, which use two novel local search strategies and a 
new reset population procedure with a specific focus on solving cancer 
microarray data feature selection. Both proposals comprise making in-
tuitive exploitation of the search space by achieving a balance between 
the application of small and strong variations of the active features. 
Three classifiers (Support Vector Machine, Decision Tree and K-Nearest 
Neighbours) were used as wrapper methods. The performance of the 
proposed approaches was applied over seven cancer datasets.

To analyse the potential of the algorithms, exhaustive analysis and 
comparison with other techniques were made. The contrast was car-
ried out with popular literature algorithms: Genetic Algorithm, canoni-
cal Micro-Genetic Algorithm, Binary Particle Swarm Optimisation, Hill 
Climbing and Variable Neighbourhood Search. Later, a comparison was 
made with state-of-the-art approaches that consider the same datasets 
as the present work. In this context, with all the classifiers, M𝜇V2 ob-
tains excellent results of accuracy values and the number of selected 
features.

In terms of fitness values, M𝜇V1 and M𝜇V2 overcome the rest of 
the canonical algorithms for all datasets, whatever the classifiers were 
used. This tendency was statistically confirmed. In particular, the results 
clearly show the efficiency of M𝜇V2. Also, the accuracy and number of 
selected features analysis were done. The accuracy reached by M𝜇V2 
overcomes the rest of the algorithms without a detriment of the number 
of selected features. Indeed, M𝜇V2 needs fewer features to reach its 
excellent results.

In terms of the execution time, a great reduction in time is observed 
(a gain of time up to 4 times approximately) concerning the longest 
time obtained for the rest of the algorithms. In the same way, compute 
time scales linearly when solving high-dimension problem instances.

In general, the memetic approaches show excellent performance on 
the instances tested, providing better computational results than well-
known algorithms to resolve the problems. Moreover, the results show 
that the second approach (M𝜇V2) explores and exploits the search space 
efficiently, finding excellent quality solutions at reasonable execution 
times for the types of problems treated.

For future work, the behaviour of the approach to parallel or dis-
tributed computing platforms will be evaluated. It is also desirable to 
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perform a sensitivity analysis to observe whether the best performance 
of the M𝜇V2 is reached by deactivating 20% of the genes or using a dif-
ferent proportion of genes. Regarding M𝜇V1, future works point to find 
a configuration of the reset operator to effectively contributes the be-
haviour of the local search. Finally, it would be interesting it seeks to 
expand these new local searches capacity of to other types of combina-
torial problems.
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