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A B S T R A C T   

Leaf-cutter ants play a crucial role in agroecosystems, and understanding their behavior is key to developing 
effective damage control strategies. While several tracking solutions exist for ants in controlled environments or 
on aerial images, accurately measuring ant behavior in the wild remains a challenge. In this work, we propose a 
three-stage processing pipeline that segments individual ants, tracks their movement, and classifies whether they 
are carrying a leaf using a convolutional neural network. The output of the pipeline includes a timestamped 
record of the activity on the trail, accounting for parameters such as ant velocity, size and if it is going from or to 
the nest. We use the recently developed portable device AntVideoRecord to register video of a selected ant trail. 
To validate our approach, we collected a labeled dataset and evaluated each stage using standard metrics, 
achieving a median F2 score of 83% for segmentation, MOTA of 97% for tracking and F1 of 82% for detecting 
ants carrying a leaf. We then carried out a larger use case in the wild, demonstrating the effectiveness of our 
approach in capturing the intricate behaviors of leaf-cutter ants. We believe our method has the potential to 
inform the development of more effective ant damage control strategies in agroecosystems.   

1. Introduction 

Leafcutter ants (LCA) are known for their activity of cutting various 
plant fragments, being destructive pests in the neotropical region [1–5] 
mainly to cultivate fungi. They play an important role as ’ecosystem 
engineers’ since they modify its structure and function [6–8]. Their 
foraging capacity is the main activity that arouses the greatest interest in 
study due to its effects on agroecosystems. They are capable of using 
between 50 and 80% of the available plant species from various plant 
communities [9]. Atta and Acromyrmex are the most important LCA 
genera that obtain their food from short to long distances due to the size 
of the workers and consequently the size of the nest. Forage activity is 
affected by biotic and abiotic factors [10–12]. Also, Activity rhythms of 
LCA based on endogenous factors such as photoperiod and annual 
thermal cycle have recently been studied [13]. 

In South America, LCA forage 15% per year of tropical forest vege-
tation [9] and about 50% of them are herbaceous species [14]. Estimates 
have determined that a nest can cut, carry and process between 20 to 
1000 kg of plant material per year in the form of millions of bits of leaves 

and flowers [15]. Not only do they cut large amounts of vegetation in 
natural ecosystems, but also anthropic ecosystems are affected, causing 
significant economic damage to forest crops (eg Pinus spp., Eucalyptus 
spp.), agricultural crops (eg Citrus spp., Theobroma cacao, Manihot 
esculenta, Coffea arabica, Zea mays, Gossypium hirsutum) and in natural 
grasslands or implanted pastures where extensive livestock is developed 
[16–18]. All the estimates mentioned arise from discrete evaluations 
over time and recorded in brief times during the day, rarely 24 h. 

Methods for estimating yield losses by leaf-cutting ants vary ac-
cording to the agricultural system. The simplest assessments occur in 
forestry and agriculture immediately after planting, where losses are 
easily estimated by counting losses of seedlings. On the other hand, 
losses in adult agricultural and forestry plantations and cattle husbandry 
are more difficult. In this case ant consumption can be estimated by two 
methods. First, in the exclusion method ants are precluded from cutting 
the plants of interest. It is performed by killing the colonies, or by 
avoiding ants reaching the plants using exclusion cages. Second, the 
herbivory rate method, where all fragments ants cut and carry into the 
nest are collected for a given period of time, and then the total daily 
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consumption is extrapolated. The former suffers from the fact that it also 
excludes other herbivores and the impossibility of excluding all foraging 
areas of the colony. The main issue related to the herbivory rate method 
relies on the impossibility of collecting all fragments carried out by ants. 
This problem could be easily solved with an autonomous non-human 
system that counts the ants and the loads they carry around the 24 h 
of the day. 

Machine learning approaches have already been used in several 
agroindustrial applications [19,20], animal habitat [21] and environ-
mental studies [22]. Insects monitoring is a very time-consuming task, 
requiring large amounts of trained staff hours and equipment. Here, 
computer vision approaches showed promising results for several agri-
cultural applications. In [23] an object detection approach was proposed 
for monitoring Drosophila. They estimate the insect population using 
traps placed near the crops. From the pictures of such traps, a con-
volutional neural network (CNN) is trained to detect insect positions and 
classes for each picture. In [24] Aphids are detected and classified 
automatically from petri dish photos using an hybrid approach of image 
processing and deep learning. Moreover, measuring ant activity in a 
general scale was proposed by estimating nests density from satellite 
images [25]. 

An additional layer of complexity is tracking the individual behavior 
of the insects [26], which is an interesting topic in both biology and 
computational models [27,28]. There exist several successful tools to 
track insects [29,30]. More recently, in [31] they propose a device, 
illumination system and object detectors based on CNN to identify ants 
in a clear background. In this case, ants are tracked with a codebar 
attached to their bodies. In [32] they also address the high amount of 
contact of ants using color tags. All these tools are very precise and 
useful in specific laboratory settings, but it is not feasible to track 
behavior on-the-wild. 

In order to track insects in natural settings, other approaches are 
required. In the case of ants, it is still very challenging, as they have 
chaotic trajectories, colliding with each other very often [33]. Moreover, 
the ants have mostly the same appearance in video, making it harder to 
track unique individuals. Modern ant counting studies use conventional 
video cameras and then manually analyze the videos in slow motion by 
visually counting the activity, or eventually using the few freely avail-
able software available so far. AntCounter is a free access system that 
counts the number of ants that walk through the center of the video 
frame (Bustamante and Amarillo-Suárez, 2016). Still, illumination 
changes and shadows make a huge impact on image processing tasks, 
where high user intervention is usually required. Moreover, counting 
can easily get overestimated by errors in the tracking algorithm, in 
which an erratic ant can be counted as different ants crossing through 
the checkpoint. Improving the tracking of this kind of behavior auto-
matically would be an important improvement to the behavior science 
of ants. 

In [34] an online ant tracking system is proposed. This system uses a 
Residual CNN (ResNet) to learn embedding representations (this is, a 
feature vector) of each ant. They combine similarity metrics and motion 
metrics using a Kalman filter to identify each ant between frames. The 
system was built for short videos of less than 30 s. Still, the issue of ant 
detection (this is, finding the ants in the image) was found to be critical 
to obtain a good tracking result, and it was not solved yet. Identification 
using a combination of Fast-masked-RCNN and a tracking system was 
proposed in [33], where the indoors performance is good, but it dras-
tically drops with outdoor and unseen natural videos. This low perfor-
mance in detection, according to the authors, makes it unaffordable to 
run tracking predictions. Others such as [35] use a precise approach 
with detection using maskRCNN and tracking with optimal transport. 
However, this requires very high quality videos. On the other hand, 
low-cost tracking implemented to track bees showed promising results 
[36]. 

The labeling process is one of the most time demanding tasks in new 
computer vision tasks, especially when the application is very narrow 

and specific as in this case. Several efforts have been made to collect and 
label ant behavioral data [34,37]. Still important user intervention is 
required to select the ants with proper bounding boxes. Moreover, in this 
work we focus on the detection of ants following a path to (and from) 
their nest with the aim of detecting the number of ants which carry a 
load, usually a fragment of leaf or grass, to the nest. Given the natu-
ralistic setting of the image acquisition, detecting the load, and linking 
the ant with the load, is not a trivial task. Leaves can have different 
shapes and colors, and they are hard to distinguish in one frame alone, 
especially at night. 

In this work we propose a low-cost and effective approach to register 
and analyze the locomotion and foraging ant activity directly from 
videos. Unlike the previous works, we propose a solution of ant seg-
mentation and tracking that is robust and can be rapidly improved with 
assisted tagging, allowing the processing of several hours of video with 
cheap resolution. To this end, several fronts have to be resolved: limi-
tations of hardware autonomy, background removal, ant segmentation, 
ant tracking, identification of loaded ants and finally an activity sum-
mary per timestamp. 

Recently we have found an effective way to register locomotion 
rhythms continuously in time by means of the AntVRecord [38], an open 
hardware device that stores video on physical media that must then be 
analyzed to determine the daily, monthly, or seasonal rate of locomotion 
and foraging of an LCA nest. Using this hardware, we can record several 
hours of activity with total autonomy. The device is placed on an ant 
trail near the nest. This can be seen as a checkpoint where we can 
measure how many ants go in or out the nest, and extract information 
about their load and behavior. 

In order to process the recorded videos, the proposed pipeline is 
described in Fig. 1. The first step is to separate the ants from the back-
ground, which is not a trivial task in the wild, even with the aid of an 
uniform background. Using a mixture of gaussians models it is possible 
to separate background from foreground using spatial and temporal 
information, making it robust to different recording conditions and with 
low computational cost. At this point, each pixel in the video is either 
background or “ant”. Then, each ant on a frame can be isolated with 
precision, associating each ant pixel to a particular ant. If two ants are 
too close there is a risk of instance segmentation confusion, which is 
solved with a watershed based algorithm, combined with tracking in-
formation from previous frames. The tracking algorithm, based on a 
Kalman filter, is used to predict the following frame displacement of 
each identified ant from the current frame. This way, each ant receives 
an unique id. This is important to count precisely how many ants go from 
and to the nest, and also to obtain relevant features of the track of each 
ant, such as their average walking speed and size. Finally, a multi- 
instance classifier approach was designed to detect if each ant is car-
rying load. To the best of our knowledge there are no tools to estimate 
the amount of loaded ants, which is important to estimate their foraging 
rate. The outcome of the proposed system is a timestamp table with each 
ant going through the trail checkpoint, detailing their direction (to and 
from the nest), average size and walking speed, and if it is loaded or not. 
Moreover, the generated masks (this is, the pixels that represent each ant 
in each frame) can be easily available for additional analysis or cor-
rections by the user. 

The software used for labeling the ants (AntLabeler) uses the same 
image processing pipeline in an assisted (semi-automatic) way. Basic 
background removal and segmentation is performed automatically, then 
the user can correct the masks and edit the tags on each frame using near 
frame predictions as baseline. This tool will allow us to build a larger 
dataset in the future to further improve the computer vision methods. 

The next section describes in detail the proposed methods. Section 3 
describes the process of data collection and curation, and how the per-
formance is measured. Section 4 shows the results obtained on realistic 
experimental conditions. Finally, important conclusions are drawn in 
Section 5. 

J.A. Sabattini et al.                                                                                                                                                                                                                             



Smart Agricultural Technology 5 (2023) 100252

3

2. Methods 

2.1. Background removal and segmentation 

Three well known alternatives for background removal were evalu-
ated: temporal median, mixture of gaussians (MoG) and the GSOC 
background extractor (Quian 2017). These methods use a series of 
frames to detect stationary objects which will be tagged as background. 
With the background mask, a series of morphological operations (clos-
ing, opening and hole filling) are applied to eliminate spurious de-
tections and obtain closed regions that completely contain each ant. A 
structured element of the size of the minimum detectable ant is used. To 
avoid camera movement and illumination variations, frames where the 
detected motion is too high will be ignored. This is feasible because the 
object tracking algorithm (detailed in the next section) can deal with 
missing data on a frame-by-frame basis. 

The Laplacian of Gaussian filter [39] is a basic region detection al-
gorithm. By convolving the image with a gaussian kernel (1), the 
resulting image contains high intensities in the center of each defined 

region (each ant), making it possible to separate overlapping regions. A 
threshold T is computed using (2) to get a binary blob mask per ant, 
where I<=T is the intensity average below T, and I>T is the intensity 
average above. 

G(x, y, t) =
1

2πt
exp

(
− (x2 + y2)

2t

)

, (1)  

T =
I −<=T + I−>T

2
, (2) 

If ants are too close, it still may result in one unified blob. To solve 
these conflicts, the centroids of each region on the previous frame are 
used. If two regions were merged, and thus one centroid is missed in the 
current frame, the watershed algorithm is used to split the regions 
starting from the previous centroids. 

2.2. Tracking  

Fig. 1. Proposed ant tracker pipeline. AntVi-
deoRecorder provides continuous videos (up to 
several hours). A frame-by-frame processing is 
performed to remove the background and 
segment each ant. The ants are tracked using 
current and previous frames, this way each ant 
is identified as an unique trajectory. Then, in-
formation from the trajectory on all the frames 
is used to determine if the ant is loaded, its 
direction (from or to the nest) and other fea-
tures such as average speed and size. The results 
are exported as a timestamp table.   
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Each ant can be represented by a path, an ordered set of regions from 
a set of frames. As the software is intended to work for a continuous 
analysis in time, for several ants, it is important to associate each ant to a 
path, and define when ants arrive and leave the visual field. Given that 
different ants are visually similar, the assignment problem is defined by 
comparing mainly their paths instead of similarities of the objects along 
the frames. 

The proposed algorithm is described in Algorithm 1. Ants that are 
detected in the edges of each frame start a new path. As the video is 
processed frame by frame, the regions detected in the new frame are 
either associated with active paths or create new paths. For each path, a 
synthetic region is predicted from the last frames using a Kalman filter 
[40]. This filter is widely used in tracking to predict the state of the 
object (position and velocity) from previous frames. Then, each detected 
region can be compared with the predicted state to find the optimal 
correspondence between current frame regions and known paths. If a 
region is not plausible to match any known path, a new one is created 
with this region as the initial step, with an unique identifier. If a path is 
not matched with a new region in the current frame, the predicted re-
gion is assumed as the next step in the path. If this situation is repeated 
for a certain number of frames, or if the last recorded region is close to 
the frame edge, the path is closed. 

The area of a region is also used in the comparison to improve the 
assignment problem solution. This helps to resolve assignments when 
paths are too close. Also, a maximum threshold distance between as-
signments is set, thus any candidate region that exceeds this value is 
discarded. The Hungarian algorithm is used to solve the optimal 
assignment problem between trajectories and new regions. 

2.3. Ant Load detection 

The load carried by an ant is often difficult to detect at a frame basis. 
As seen in Fig. 2, the ant is usually partially-occluded, and color dif-
ferences tend to be subtle. We propose a multi-instance classification 
approach, where all the regions corresponding to one ant are considered 
as multiple observations, which will have the same binary target: either 
loaded or not. The set of all the regions related to each ant is obtained 
from the previous segmentation and tracking stages. Generally the load 
is larger than the ant, so an area greater than the segmented region is 
required to recognize it. For this reason, an extra pixel margin is added 
by extending horizontally and vertically from the ant bounding box, 
defining a larger square bounding box. Regions positioned near the 
edges of the image are discarded, under the assumption that they are 
partially out of frame 

The proposed model is composed of a CNN-based network that re-
ceives each region from an ant trajectory as input. This network is 
trained to learn specific features of each ant boundary and predict if it is 
loaded or not. The first stage is composed of three blocks of convolution- 
pooling-batch normalization which will perform the extraction and 
encoding of characteristics of each observation (each frame). The output 
is flattened into a vector of 4608 features, which enter a fully connected 
layer of 64 neurons, with a ReLU activation function. 50% dropout is 
applied during training to regularize the network at this stage. The 
trainable weights are shared among observations: each image goes 
through the same layers, and a binary logit score is obtained for each 
one. A final average operation aggregates the results of the observations 
to obtain a classification score for the incoming pattern. 

Given that the number of examples is rather low, and the imbalance 
between the classes is high, with loaded ants as the minority class, a data 
augmentation algorithm was implemented. It creates new patterns by 
performing random rotations (up to 180◦), zoom in and out (up to 20%), 
horizontal and/or vertical image shift and image mirroring. The binary 
cross entropy is used as the loss function. To update the weights, Adam 
algorithm was used with a learning rate of 1e− 4. 

3. Experimental setup 

3.1. Data collection 

The hardware AntVideoRecorder [38] was used to record the activity 
of leafcutter ants on video. The device was placed on an ant trail near the 
nest entrance. A white sheet was used to enhance contrast and provide 
size calibration. The AntVideoRecorder allows recording in a range of 
video resolutions. We found that 1084 × 720 is a good balance of image 
quality and autonomy, costing about 64 Gb per day. Storage is important 
because for the current version the videos are retrieved and processed on 
an external workstation. 

To validate the proposed methods, a human labeling process was 
performed to obtain the region of each ant per frame, an unique ID 
across frames and a load label for each ant. The existing tagging software 
was not enough help in reducing the burden from the labeling process, 
thus we implemented our own labeling system, the AntLabeler. This tool 
provides an assisted labeling process specifically for this task. Starting 
with the raw video, an initial automatic background removal and seg-
mentation is performed. Then the user can fix segmentation errors and id 
each ant on a frame. The next frames will be labeled automatically using 
the closest centroid from the previous label. The user will review if the 
tracking is correct along the ant path and tag if the ant is loaded or not. 
The resulting ground of truth masks are more precise than using 
bounding boxes, with low time cost given the automatic assistance. The 
fully tagged dataset sums up 4 min 45 s (8570 frames) of daytime ac-
tivity with 147 ants in total (14 loaded), where each pixel on the sheet 
surface represents 0.1 mm. 

Fig. 2. Convolutional neural network for multi-instance classification. Each 
image (one frame corresponding to one ant) is passed through the net and the 
binary label loaded/not-loaded is asked as output. Then, the final score for each 
ant is computed as the average across all the frames of the given ant path. 
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3.2. Model validation 

To validate the segmentation stage, each pixel is assigned as class 
‘ant’ or ‘background’. Taking the groundtruth labeled by the users and 
the prediction of the background removal algorithm, true positives (TP) 
are then pixels correctly classified as ‘ant’, thus we can define precision 
and recall as 

P =
TP

TP + FP
, R =

TP
TP + FN

.

Given the tracking algorithm capabilities, it is better to have 
improved recall (this is, retrieve most of the ant area) than precision, 
thus we use a the F2-score as an integrative metric 

F2 = (1+ 4)
PR

4P + R 

To evaluate tracking performance, we use the CLEAR-MOT metrics: 
the MOT precision and the MOT accuracy [41]. The best correspondence 
between each predicted track and the references is matched using the 
Hungarian algorithm. The Housdorff distance is used to find the nearest 
paths. In this case, objects with no predictions are false negatives, pre-
dictions with no references are false positives and confusing one ant path 
with another is marked as mismatching associations between frames. 

The CLEAR-MOT metrics are defined as 

MOTP =

∑
i,tdi

t
∑

tct
, y  

MOTA = 1 −

∑
tmt + fpt + mmet

∑
tgt

,

where di
t is the distance between predicted and assigned track, ct is the 

number of assignments, mt, fpt and mmet are the number of false neg-
atives, false positives and association errors respectively, while gt is the 
total number of objects for each frame t. The MOTP indicates the margin 
of error of the tracker when estimating the precise positions of the ob-
jects under analysis. The MOTA, on the other hand, evaluates its ability 
to recognize object configurations and their trajectories consistently. 

For the load classification stage, the dataset was split into training 
(80%) and test (20%) groups. Training data was split following a 3-fold 
cross-validation to adjust the network hyperparameters (number of 
convolutional filters, dropout, optimizer and learning rate, number of 
frames to assess). Once the final model is selected, the network was 
trained on the whole training data, and it was evaluated on the test data. 

4. Results 

Results for the background removal are shown in Fig. 3. Taking each 
pixel as an ant (positive class) or background (negative class), precision, 
recall and F2 are computed for the three methods: GSOC, MoG and 
Median filter, on all dataset frames. Average frame time for each method 
is also included. Results show that the Median filter can generate less 
false positives. However, MoG has a better F2-score, also with better 
computational cost. GSOC doubles the computational time of MoG 
without improving the results. Given that higher recall is preferred (also 
reflected in F2-score), MoG was selected as the background removal 
algorithm. As the software aim is to be able to process several hours of 
video, computational cost is an important aspect, which is also bested by 
MoG method. 

The proposed tracking algorithm with different variations was 
evaluated on the segmented frames. Table 1 shows an ablation study 
with the results for the assignment problem with the tracking algorithm 
alone (plain), adding the predicted area as a feature, adding the Kalman 
filter predictions, and finally combining all together. As ant behavior 
does not follow linear patterns most of the cases, predicting their next 
step is difficult. Still, results show that a slight improvement is obtained 

when considering Kalman filter predictions in the assignment. A similar 
effect is observed by taking the segmented area: many of the ants are 
expected to be of a similar size, but taking the area into account (mainly 
for the ones with a load or with different body size) adds some infor-
mation to the assigned problem. 

For the load prediction task, two approaches were evaluated: a 
trajectory-based approach, which involved constructing a feature sum-
mary for an ant’s entire trajectory and then detecting load possession 
based on it; and a frame-based approach, which involved detecting load 
possession in each individual frame with a set of features and then 
aggregating the results per ant. A set of features was computed, 
including Hu moments, RGB components, area and velocity statistics. As 
a baseline, these were used to train classical classifiers: multilayer per-
ceptron (MLP), logistic regression (LR) and support vector machines 
(SVM) [42]. We found that the trajectory-approach did not yield F1 
scores higher than 0.4, presumably because of the high variability of 
features along the path. 

On the other hand, employing a late integration approach that relies 
on individual frame classification results produced superior outcomes 
for classical methods, as shown in Fig. 4. The CNN classifier was 
implemented using this approach, as illustrated in Fig. 2. Instead of 
computing handcrafted features, the network is fed with each ant 
bounding box, enabling it to learn meaningful features and generate a 
load score for each frame and ant. The predicted load scores for each ant 
track are then averaged to obtain an overall score. The average F1 score, 
depicted in Fig. 4, reveals a significant improvement in load detection, 

Fig. 3. Background removal scores (precision, recall and F2) measured on 
every frame. 

Table 1 
Ablation study of tracking algorithm using the plain assignment, adding the 
segmented area for track, and the Kalman filter prediction. MOTA and MOTP are 
the median values for the dataset.  

Assignation algorithm MOTA MOTP 

Plain assignment 0.960 7.020 
Using area only 0.971 7.048 
Using Kalman filter only 0.970 7.297 
Using area + Kalman filter 0.971 7.046  

Fig. 4. F1 score for load prediction using extracted features (MLP, LR, SVM) 
and a deep learning approach (CNN). Boxes are the scores per video in the 
test partitions. 
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with a median value of 82%. 
This software was tested in a field application under a research 

project which aims to know the locomotion and forage rhythms of 
Acromyrmex lundi in Oro Verde, Argentina. For the study, the AntVi-
deoRecord was used as a video capture device, obtaining more than 189 
days of recorded data from March 2021 to the present. The videos were 
collected weekly and processed using AntTracker. Fig. 5 shows the 
average number of ants entering (red) and leaving (black) the nest for 
the first, second, and third month of spring. The temperature (blue) is 
also registered by the AntVideRecord. These plots show two main ac-
tivity peaks: one during the morning, and the other at evening. Also, the 
rhythm of activity was different at the beginning compared to the end of 
spring, possibly because the ants still have the memory of activity stored 
in their internal biological clock for winter. As the season progresses, the 
photoperiodic and temperature conditions change, and consequently a 
new rhythm of daily activity is established. This allowed a priori 

confirmation not only that the rate of locomotor activity is seasonally 
associated, but also the nest dynamics within the season can be studied. 
These preliminary field results show that the design is reliable for the 
LCA behavior monitoring using AntVideoRecord’s hardware and Ant-
Tracker, making it a device that certainly will improve the knowledge in 
ecological science. 

5. Conclusions 

In this work a comprehensive solution is proposed to track ants 
behavior in the wild. Using AntVideoRecord, an economical and open 
video acquisition hardware, ants can be recorded in their natural trails. 
Background removal, ant segmentation and tracking can be automati-
cally performed using the proposed methods. The ants that carry a load 
are detected using a convolutional neural network, giving a new way to 
analyze foraging behavior in the future. With the detailed timestamps 
from using AntVideoRecord + AntTracker it is possible to obtain a clear 
picture of the ant behavior along other variables such as daytime, 
location and climate. The proposed methods were tested against human 
labeled data. Both the main software tools and the labeler (AntLabeler) 
are now available as open source tools. 

A wider validation process is being conducted in collaboration of 
agricultural sciences researchers to assess the precise foraging behavior 
on a much larger scale video recording. The future work will validate 
this approach for the estimation of foraging activity, using a larger 
tagged dataset and an estimation of load capacity of the ants under 
study. 

Availability 

The source code to use this tool is available at https://github.com/ 
lbugnon/AntTracker. 
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Fig. 5. Average ant counting for different times of a day, on the three months of 
spring. In red the ants entering the nest, in black ants going out the nest, and in 
blue the temperature. 

J.A. Sabattini et al.                                                                                                                                                                                                                             

https://github.com/lbugnon/AntTracker
https://github.com/lbugnon/AntTracker


Smart Agricultural Technology 5 (2023) 100252

7

References 

[1] J.M.Y. Cherretr, D.J. Peregrine, A review of the status of leaf-cutting ants and their 
control, Ann. Appl. Biol. 84 (1976) 124–128. 

[2] Cherretr J.M. (1982). The economic importance of leafcutting ants. (pp. 114-118). 
En: Breed M.D., Michener C.D.Y. Evans H.E. (Comp.) The Biology of social insects: 
Proceedings, Ninth Congress, International Union for the Study of Social Insects. 
Boulder, Colorado: Westview Press. 

[3] K. Jaffe, El Mundo de Las Hormigas, Equinoccio (Ediciones de la Universidad 
Simón Bolívar), Baruta, Venezuela, 1993. 

[4] F.A.M. Mariconi, As Saúvas, Agronômica Ceres, São Paulo, 1970. 
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de hábitat, abundancia de colonias, uso de los recursos y patrones de actividad, 
Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, 2000, 
p. 160. PhD thesis. 

[11] B.Y Hölldobler, E.O. Wilson, The Ants, Harvard University Press, Cambridge, 
Mass., 1990. 

[12] A. Pilati, E. Quiran, Patrones de cosecha de acromyrmex lobicornis (formicidae: 
attini) en un pastizal del parque nacional lihué calel, La Pampa, Argentina, Austral 
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