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In the framework of inflationary models with non-vacuum initial states for cosmo-
logical perturbations, we study non-Gaussian signatures on the cosmic microwave back-
ground (CMB) radiation produced by a broken-scale-invariant model which incorporates
a feature at a privileged scale in the primordial power spectrum.
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1. Introduction

The common belief that the CMB is Gaussian distributed can be directly traced

back to the generic assumption that the quantum fluctuations of the inflaton field

are placed in the vacuum state 1. Relaxing this assumption might lead to detectable

signatures in various astrophysical tests, most interestingly in future CMB and

large-scale structure observations. In this note, we study CMB non-Gaussian signa-

tures predicted within inflationary models with non-vacuum initial states for cos-

mological perturbations. The model incorporates a privileged scale, which implies

the existence of a feature in the primordial power spectrum. The model predicts a

vanishing three-point correlation function for the CMB temperature anisotropies 2.

We here focus on the first non-vanishing moment, the CMB four-point function at

zero lag, namely the kurtosis, and compute its expected value for different locations

of the primordial feature in the spectrum, as suggested in the literature to conform

to observations of large scale structure 3,4.

2. Two-point correlation function for non-vacuum initial states

We consider non-vacuum states for the cosmological perturbations of quantum me-

chanical origin. Let D(σ) be a domain in momentum space, such that if k is between

0 and σ, the domain D(σ) is filled by n quanta, while otherwise D contains nothing.

The state |Ψ1(σ, n)〉 is defined by

|Ψ1(σ, n)〉 ≡
∏

k∈D(σ)

(c†k)n

√
n!

|0k〉
⊗

p 6∈D(σ)

|0p〉 =
⊗

k∈D(σ)

|nk〉
⊗

p 6∈D(σ)

|0p〉. (1)
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The state |nk〉 is an n-particle state satisfying, at conformal time η = ηi: ck|nk〉 =√
n|(n − 1)k〉 and c†k|nk〉 =

√
n + 1|(n + 1)k〉. We have the following property

〈Ψ1(σ, n)|Ψ1(σ
′, n′)〉 = δ(σ − σ′)δnn′ . (2)

It is clear from the definition of the state |Ψ1〉 that the transition between the

empty and the filled modes is sharp. In order to “smooth out” the state |Ψ1〉, we

consider a state |Ψ2〉 as a quantum superposition of |Ψ1〉. In doing so, we introduce

an, a priori, arbitrary function g(σ; kb) of σ. The definition of the state |Ψ2(n, kb)〉

|Ψ2(n, kb)〉 ≡
∫ +∞

0

dσg(σ; kb)|Ψ1(σ, n)〉, (3)

where g(σ; kb) is a given function which defines the privileged scale kb. We as-

sume that the state is normalized and therefore
∫ +∞
0

g2(σ; kb)dσ = 1. In the state

|Ψ1(σ, n)〉, for any domain D one has

〈Ψ1(σ, n)|cpcq|Ψ1(σ, n)〉 = 〈Ψ1(σ, n)|c†pc†q|Ψ1(σ, n)〉 = 0, (4)

〈Ψ1(σ, n)|cpc†q|Ψ1(σ, n)〉 = nδ(q ∈ D)δ(p − q) + δ(p − q), (5)

〈Ψ1(σ, n)|c†pcq|Ψ1(σ, n)〉 = nδ(q ∈ D)δ(p − q). (6)

In these formulas, δ(q ∈ D) is a function that is equal to 1 if q ∈ D and 0 otherwise.

These relations will be employed in the sequel for the computation of the CMB

temperature anisotropies for the different non-vacuum initial states.

2.1. Two-point function of the CMB temperature anisotropy

The spherical harmonic expansion of the cosmic microwave background temperature

anisotropy, as a function of angular position, is given by

δT

T
(e) =

∑

ℓm

aℓmYℓm(e) with aℓm =

∫

dΩe

δT

T
(e)Y ∗

ℓm(e). (7)

As we are interested in a non-Gaussian signature of primordial origin we will be

focusing on large angular scales, for which the main contribution to the temperature

anisotropy is given by the Sachs-Wolfe effect, namely, δT/T (e) ≃ (1/3)Φ[ηlss, e(η0−
ηlss)], where Φ(η,x) is the Bardeen potential, while η0 and ηlss denote respectively

the conformal times now and at the last scattering surface. Note that the previous

expression is only valid for the standard Cold Dark Matter model (sCDM). In

general, we might also be interested in the case where a cosmological constant is

present (ΛCDM model) since this seems to be favored by recent observations. Then,

the integrated Sachs-Wolfe effect plays a non-negligible role on large scales and the

expression giving the temperature fluctuations is not as simple as the previous one.

In the theory of cosmological perturbations of quantum mechanical origin, the

Bardeen variable becomes an operator, and its expression can be written as

Φ(η,x) =
ℓPl

ℓ0

3

4π

∫

dk

[

ck(ηi)fk(η)eik·x + c†
k
(ηi)f

∗
k (η)e−ik·x

]

, (8)
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where ℓPl = (Gh̄)1/2 is the Planck length. In the following, we will consider the

class of models of power-law inflation since the power spectrum of the fluctuations

is then explicitly known. In this case, the scale factor reads a(η) = ℓ0|η|1+β , where

β ≤ −2 is a priori a free parameter. However, in order to obtain an almost scale-

invariant spectrum, β should be close to −2. In the previous expression of the scale

factor, the quantity ℓ0 has the dimension of a length and is equal to the Hubble

radius during inflation if β = −2. The parameter ℓ0 also appears in Eq. (8). The

mode function fk(η) of the Bardeen operator is related to the mode function µk(η)

of the perturbed inflaton through the perturbed Einstein equations. In the case of

power-law inflation and in the long wavelength limit, the function fk(η) is given

in terms of the amplitude A
S

and the spectral index ns of the induced density

perturbations by
k3|fk|2 = A

S
kns−1 . (9)

Using the Rayleigh equation and the completeness relation for the spherical har-

monics and after some algebra we get

aℓm =
ℓPl

ℓ0
eiπℓ/2

∫

dk

[

ck(ηi)fk(η) + c†−k(ηi)f
∗
k (η)

]

jℓ[k(η0 − ηlss)]Y
∗
ℓm(k) . (10)

At this point we need to somehow restrict the shape of the domain D. We assume

that the domain only restricts the modulus of the vectors, while it does not act on

their direction. Then, from Eq. (10), one deduces

〈Ψ1(σ, n)|aℓ1m1
a∗

ℓ2m2
|Ψ1(σ, n)〉 =

ℓ2
Pl

ℓ2
0

[

Cℓ1 + 2nD
(1)
ℓ1

(σ)

]

δℓ1ℓ2δm1m2
, (11)

D
(1)
ℓ (σ) ≡

∫ σ

0

j2
ℓ [k(η0 − ηlss)]k

3|fk|2
dk

k
(12)

Thus, the multipole moments C
(1)
ℓ , in the state |Ψ1〉, are given by C

(1)
ℓ (σ) = Cℓ +

2nD
(1)
ℓ (σ) , where Cℓ is the “standard” angular power spectrum, i.e., the multipole

obtained in the case where the quantum state is the vacuum, i.e., n = 0. Let us

calculate the same quantity in the state |Ψ2〉. Performing a similar analysis as the

above one, we find 7

〈Ψ2(n, kb)|aℓ1m1
a∗

ℓ2m2
|Ψ2(n, kb)〉 =

ℓ2
Pl

ℓ2
0

[

Cℓ1 + 2nD
(2)
ℓ1

]

δℓ1ℓ2δm1m2
, (13)

D
(2)
ℓ =

π

2
A

S

∫ +∞

0

J2
ℓ+1/2(k)h̄(k)knS−3dk (14)

where, to reach this eqn, we defined g2(σ; kb) ≡ dh/dσ [we will see below that

this function h(kb) cannot be arbitrary] and we integrated by parts, and then we

defined h̄(k) ≡ h(∞)[1 − h(k)/h(∞)]. In this we have not assumed anything on

h(∞) or h(0). We see that the relation g2(k) ≡ dh/dk requires the function h(k) to

be monotonically increasing with k. It is interesting that, already at this stage of

the calculations, very stringent conditions are required on the function h(k) which

is therefore not arbitrary. This implies that the function h̄(k) which appears in the
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correction to the multipole moments is always positive, vanishes at infinity and is

monotonically decreasing with k. An explicit profile for h̄(k) is given in Fig. 1. The

total power spectrum of the Bardeen potential can be written as

k3|Φk|2 ∝ A
S
knS−1

{

1 + 2nh(∞)

[

1 − h(k)

h(∞)

]}

= A
S
kn

S
−1[1 + 2nh̄(k)]. (15)

Observations indicate that n
S
≃ 1 and for simplicity we will take n

S
= 1. As we

have seen previously, we can write the multipole moments in the state |Ψ2〉 as

C
(2)
ℓ = Cℓ + 2nD

(2)
ℓ . Substituting the well-known expression for the Cℓ’s and the

definition of D
(2)
ℓ given by Eq. (14), one finds that the coefficients C

(2)
ℓ are given

by

C
(2)
ℓ = A

S

π

2

{

1

23−ns

Γ(3 − ns)Γ[ℓ + (ns − 1)/2]

Γ2[(4 − ns)/2]Γ[ℓ − (ns − 5)/2]
+ 2nD̄

(2)
ℓ

}

. (16)

As a next step, one has to normalize the spectrum (need to determine the value of

AS). We choose to use the value of Qrms−PS = T0[5C
(2)
2 /(4π)]1/2(ℓPl/ℓ0) ∼ 18µK

with T0 = 2.7K measured by the COBE satellite. Thus, we compute the quadrupole

and then

A
S

=
8

5

Q2
rms−PS

T 2
0

ℓ2
0

ℓ2
Pl

[

1

6π
+ 2nD̄

(2)
2

]−1

, (17)

for n
S

= 1. The band power δTℓ gives

δTℓ =
Qrms−PS

T0

√

12

5

√

√

√

√

1 + 2nπℓ(ℓ + 1)D̄
(2)
ℓ

1 + 12nπD̄
(2)
2

. (18)

The n-dependence in the above expression is the correction due to the non-vacuum

initial state. We easily check that if n = 0 the corresponding band powers are

constant at large angular scales.

Finally, we calculate the two-point correlation function at zero lag in the state

|Ψ2〉. Using Eqs. (7), (13), the second moment, µ2, of the distribution is given by

µ2 ≡
〈[

δT

T
(e)

]2〉

=
ℓ2
Pl

ℓ2
0

∑

ℓ

2ℓ + 1

4π
C

(2)
ℓ . (19)

Once we have reached this point, an obvious first thing to do is to check that the two-

point correlation function calculated above is consistent with present observations.

2.2. Comparison with observations

Among the available observations that one can use to check the predictions of

theoretical models, two are key in cosmology: the CMB anisotropy and the matter-

density power spectra. We will not study in details all the predictions that can

be done from the two-point correlation function since our main purpose in this

note is to calculate the non-Gaussianity which is a clear specific signature of a non
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Fig. 1. The function h̄(k) for different values of α (left panel). On the right panel we show
the matter power spectrum normalized to COBE for different numbers n of quanta in the initial
state. The cosmological parameters are those corresponding to the sCDM model, namely, h = 0.65,
ΩΛ = 0, Ωb = 0.05, Ωcdm = 0.95 and n

S
= 1. The parameters describing the non vacuum state

are k
phys
b

= 0.052hMpc−1 and α = 2.5. The data points represent the power spectrum measured
by the PSCz survey.

vacuum state. So, we just compute the matter power spectrum to demonstrate that

it fits reasonably well the available astrophysical observations for some values of the

free parameters. In addition, this illustrates well the fact that, using the available

observations, we can already put some constraints on the free parameters. A simple

ansatz for the function h̄(k) is represented in Fig. 1 and can be expressed as

h̄(k) =
1

2

[

1 − tanh

(

α ln
k

kb

)]

. (20)

With it, the matter power spectrum today, after taking into account the transfer

function T (k) which describes the evolution of the Fourier modes inside the horizon,

can be written

P (k) = T 2(k)
16π

5H4
0

Q2
rms−PS

T 2
0

[

1

6π
+ 2nD̄

(2)
2 (kb)

]−1[

1 + 2nh̄(k)

]

kphys . (21)

The sCDM transfer function is given approximatively by the numerical fit 5

T (k) =
ln(1 + 2.34q)

2.34q

[

1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4
]−1/4

, (22)

where q and the shape parameter Γ can be written as

q ≡ k/[(hΓ)Mpc−1] Γ ≡ Ω0he−Ωb−
√

2hΩb/Ω0 , (23)

where Ω0 is the total energy density to critical energy density ratio and Ωb rep-

resents the baryon contribution. Or, more explicitly, we take Ω0 = ΩΛ + Ωm =

ΩΛ + Ωcdm + Ωb. We have now normalized the matter power spectrum to COBE.

It is important to realize that the above procedure only works for the sCDM model

since we have used the Sachs-Wolfe equation. The sCDM matter power spectrum

is depicted in Fig. 1. The measured power spectrum of the IRAS Point Source
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Catalogue Redshift Survey (PSCz) 6 has also been displayed for comparison. One

notices that the effect of the step in h̄(k) is to reduce the power at small scales

which precisely improves the agreement between the theoretical curves for n 6= 0

and the data. Let us remind at this point that the shape of the function h̄(k) has

not been designed for this purpose and comes from different (theoretical) reasons.

Therefore, it is quite interesting to see that the power spectrum obtained from our

ansatz fits reasonably well the data. This plot also confirms the result of Ref. 2,

namely that the number of quanta must be such that (for sCDM) 1 ≤ n < 10, i.e.,

it cannot be too large.

3. Four-point correlation function for non-vacuum initial states

It is time to proceed with the calculation of the four-point correlation function.

Briefly, one has to first perform the calculation for the state |Ψ1〉, and then gener-

alize it for |Ψ2〉. After some lengthy but straightforward algebra, one finds 7

〈Ψ2(n, kb)|aℓ1m1
aℓ2m2

aℓ3m3
aℓ4m4

|Ψ2(n, kb)〉 =
ℓ4
Pl

ℓ4
0

{

(−1)m1+m2

[

Cℓ1Cℓ2 + 2nCℓ1D
(2)
ℓ2

+ 2nCℓ2D
(2)
ℓ1

+ 4n2F
(2)
ℓ1ℓ2

]

δℓ1ℓ3δℓ2ℓ4δm1,−m3
δm2,−m4

+(−1)m1+m2

[

Cℓ1Cℓ2 + 2nCℓ1D
(2)
ℓ2

+ 2nCℓ2D
(2)
ℓ1

+ 4n2F
(2)
ℓ1ℓ2

]

δℓ1ℓ4δℓ2ℓ3δm1,−m4
δm2,−m3

+(−1)m1+m3

[

Cℓ1Cℓ3 + 2nCℓ1D
(2)
ℓ3

+ 2nCℓ3D
(2)
ℓ1

+ 4n2F
(2)
ℓ1ℓ3

]

δℓ1ℓ2δℓ3ℓ4δm1,−m2
δm3,−m4

−2n(n + 1)E
(2)
ℓ1ℓ2ℓ3ℓ4

Hm1m2m3m4

ℓ1ℓ2ℓ3ℓ4
eiπ(ℓ1+ℓ2+ℓ3+ℓ4)/2

[

1 + (−1)ℓ1+ℓ3 + (−1)ℓ2+ℓ3

]}

, (24)

F
(2)
ℓ1ℓ2

≡
∫ +∞

0

dσh̄(σ)
d

dσ

[

D
(1)
ℓ1

D
(1)
ℓ2

]

(25)

E
(2)
ℓ1ℓ2ℓ3ℓ4

≡
∫ +∞

0

jℓ1 [k(η0 − ηlss)] . . . jℓ4 [k(η0 − ηlss)]h̄(k)k3|fk|4
dk

k
(26)

We are now in a position to calculate the CMB excess kurtosis. In order to establish

an analytical formula for it, one just needs to use the equation linking aℓm and

δT/T and play with the properties of the spherical harmonics. Explicitly, the excess

kurtosis is defined as K ≡ µ4 − 3µ2
2 , where the second moment has already been

introduced and where the fourth moment, µ4, of the distribution is defined as

µ4 = 〈K〉 with K ≡ [ δT
T (e)]4. An important shortcoming of the previous definition

is that the value of K depends on the normalization. It is much more convenient

to work with a normalized (dimensionless) quantity. Therefore, we also define the

normalized excess kurtosis as

Q ≡ K
µ2

2

=
µ4

µ2
2

− 3 , (27)

which is the one more commonly used in the literature. We have performed the full
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[
]

a=5
n=2

Fig. 2. The normalized excess kurtosis parameter Q in terms of the privileged (comoving) wave-
number kb for a particular representative set of parameters: α = 5 for the sharpness of the weight
function signaling the privileged scale, and n = 2 quanta in the non-vacuum initial state for the
cosmological perturbations.

numerical resolution of the normalized excess kurtosis parameter which we show in

Fig. 2. As we see from it, Q ≃ −4.24 × 10−4 is an asymptotic value, provided we

concentrate on the middle and big values of the built-in scale kb. An analytical order

of magnitude estimate of this can be seen in Ref. 7. The fact that the numerical

estimate does not depend on kb is confirmed by the plot, except for small values

of the wave-numbers. In fact, this shows that the quantity Q does not depend very

much on the free parameters. One can see this is true for parameters α and n since,

using the above mentioned analytical estimate, we find, for n = 1, Q ≃ −3.77×10−4

and for n → ∞, Q ≃ −4.25×10−4. Since we know that this result does not depend

on the details of the weight function h̄(k), we conclude that the asymptotic value

obtained above is a generic value, at least for large values of kb. In particular, this

is true for kb ≈ 300 which corresponds to the built-in scale located roughly at the

privileged scale in the matter power spectrum selected by the redshift surveys of

Ref. 4. Another important remark is that the excess kurtosis is found to be negative.

4. Discussion

The above paragraphs show that the introduction of non-vacuum initial states leads

to a clear prediction for the excess kurtosis parameter. However, this by itself does

not imply that the signature will be observable. The signal to theoretical noise ratio

has to be considered or, stating it differently, we need to make the comparison of

the signal against the cosmic variance. The cosmic variance quantifies the theo-

retical error coming from the fact that, in cosmology, observers have only access

to one realization of the δT/T stochastic process whereas theoretical predictions

are expressed through ensemble averages. The specific computation of the cosmic

variance for the model under consideration was performed 7 and found to be some

four orders of magnitude higher than the signal itself. This is no surprise: we are

interested in a non-Gaussian signature of primordial origin, and thus we are focus-

ing on large angular scales, for which the theoretical uncertainties are the highest.

Shifting to intermediate angular scales, a stronger signal would be obtained; how-
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ever, in that case secondary sources would be more difficult to subtract and thus

the transparency of the effect would be compromised.

In sum, the excess kurtosis is found to be negative and the signal to noise ratio

for the dimensionless excess kurtosis parameter is equal to |S/N | ≃ 4×10−4, almost

independently of the free parameters of the model. This signature turns out to be

undetectable and therefore we conclude that, subject to current tests, Gaussianity

is a generic property of single field inflationary models.
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