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Abstract
Motivation: Codon usage preference patterns have been associated with modulation of translation efficiency, protein folding, and mRNA decay.
However, new studies support that codon pair usage has also a remarkable effect at the gene expression level. Here, we expand the concept of
CAI to answer if codon pair usage patterns can be understood in terms of codon usage bias, or if they offer new information regarding coding
translation efficiency.

Results: Through the implementation of a weighting strategy to consider the dicodon contributions, we observe that the dicodon-based measure
has greater correlations with gene expression level than CAI. Interestingly, we have noted that dicodons associated with a low value of adaptive-
ness are related to dicodons which mediate strong translational inhibition in yeast. We have also noticed that some codon-pairs have a smaller
dicodon contribution than estimated by the product of the respective codon contributions.

Availability and implementation: Scripts, implemented in Python, are freely available for download at https://zenodo.org/record/7738276#.
ZBIDBtLMIdU.

1 Introduction

The study of gene expression can explain how protein pro-
duction is regulated by different molecular entities that inter-
pret genome information. However, in addition to those
regulatory molecules, protein level can partly be explained by
the codon usage pattern in the coding sequences (Fredrick
and Ibba 2010). These patterns arise from the redundancy of
the genetic code since this property provides the possibility to
use synonymous codons differentially (Kurland 1991). The
preference in codon usage, known as codon usage bias (CUB),
is specific to each organism, but species that are close to each
other often show a similar codon usage preference pattern
(Plotkin and Kudla 2011). CUB has been associated with
modulation of translation efficiency, protein folding, and
mRNA decay in a species-specific manner (Hanson and
Coller 2018). Therefore, CUB has numerous applications
such as gene prediction (Burge and Karlin 1997), protein–pro-
tein interaction (Fraser et al. 2004), and heterologous gene ex-
pression (Gustafsson et al. 2004).

Available data from gene expression analysis experiments,
like microarrays or RNA-seq, are great resources to explore
translational efficiency and codon usage patterns in different
organisms (Lithwick and Margalit 2005, Hershberg and
Petrov 2008, Plotkin and Kudla 2011). In this manner, statis-
tical analysis of this available information makes it possible to
study different kinds of measures to quantify codon bias in or-
der to characterize the optimality of each codon. Among these

statistical measures, we can mention the relative synonymous
codon usage (Sharp and Li 1986), the relative adaptiveness
(Sharp and Li 1987), frequency of optimal codons (Ikemura
1981), the codon bias index (Bennetzen and Hall 1982), and
the expression measure (Karlin and Mrázek 2000). Most of
them are based on the codon usage frequencies on a set of
highly expressed genes and they were recently reviewed in
(Bahiri-Elitzur and Tuller 2021). The selection of a set of
highly expressed genes is supported by the fact that those
genes are under strong translational selection and the synony-
mous codons that compose those have hard selective con-
straints, However, this is a strong assumption, because the
factors shaping the codon preference in a genome are, in gen-
eral, species dependent.

Researchers have also devised some functions that map co-
don usage measures to a single number or index, which can
be used for optimizing the heterologous expression of genes in
foreign hosts (Sharp and Li 1987, Roymondal et al. 2009,
Fox and Erill 2010). Most of these indexes use the geometric
mean, introduced by Gribskov et al. (1984). One of the most
used examples of these measures is CAI (Sharp and Li 1987),
which is defined as the geometric mean of the codon’s relative
adaptiveness. Of course, the relative adaptiveness depends on
the codons but not on their positions. In general, these codon-
based indexes present some correlation with expression levels
in many organisms.

The main advantage of these indexes is that they are very
simple to calculate because they only involve computing the
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frequency of codons in a reference gen set. However, in addi-
tion to not being sensitive beyond a single codon distribution,
they have other disadvantages (Salim and Cavalcanti 2008).
For example, they may miss specific regulator factors of gene
expression such as secondary structure and nucleotide compo-
sition. Further, it is mandatory to choose the reference genes
which may include many biases; i.e. some measures can be
influenced by the length of the coding sequence (Ingvarsson
2007). Usually, the results obtained with different reference
gene sets vary substantially.

On the other hand, early studies consider codon pair usage
as a phenomenon that regulates protein translational process
at the level of fidelity and efficiency (Gutman and Hatfield
1989, Irwin et al. 1995). In fact, a bias on using two succes-
sive codons, hereafter dicodons, is a well-studied issue in vari-
ous organisms and is supported by experimental evidence
(Fedorov 2002, Tats et al. 2008, Guo et al. 2012, Gamble
et al. 2016, Kunec and Osterrieder 2016, Diambra 2017). For
example, a comparative analysis of the codon pair usage con-
firms that certain dicodons are avoided since others are pre-
ferred in the ORFeome of the analyzed genomes (Tats et al.
2008). In addition, by using a yeast approach to estimate the
expression of 35 811 GFP variants, with three random adja-
cent codons, the authors identified 17 dicodons associated
with strong inhibition of translation (Gamble et al. 2016).
Furthermore, a marked difference in codon pair frequency is
observed when coding sequences from high-abundance pro-
teins are compared to coding sequences from low-abundance
proteins in model organisms (Diambra 2017). Also, hidden
Markov models for gene prediction based on hexamers fre-
quency have better accuracy than models based on codons
(Burge and Karlin 1998, Korf et al. 2001). Based on these
findings, it can be hypothesized that the translation perfor-
mance of the sequence could be better described in terms of
dicodons. However, strategies for mapping coding sequences
to expression indexes based on dicodons usage frequencies
have not been explored yet.

In this work, we extend the geometric mean based-index by
considering the contributions of dicodons on the nucleotide
sequences. Alternatively, we also introduce a new way to
measure the contributions, taking into account the expression
level for each sequence. Thus, using the traditional no-
weighted and the new weighted contributions we compute
through the geometric mean both, codon- and dicodon-based
indexes to evaluate their correlations with gene expression
level. Our results show that dicodons are more informative
than codons and could be used to design new biotechnologi-
cal applications, like the design of attenuated virus (Coleman
et al. 2008) and the improvement of protein heterologous ex-
pression to a rational design of transcripts that reduce protein
misfolding (Mauro 2018, Papamichail et al. 2018).

2 Materials and methods
2.1 Data description

In this work, we have used two kinds of data across four
organisms: (i) transcript abundance and (ii) nucleotide
sequences associated with the coding regions. The transcrip-
tome profiles corresponding to Escherichia coli and
Saccharomyces cerevisiae, were downloaded from the Many
Microbe Microarrays database (http://m3d.mssm.edu) (Faith
et al. 2008). From E.coli, we selected 26 transcriptome pro-
files associated with wild-type studies obtained by

microarray. From S.cerevisiae we select 61 transcriptome pro-
files, obtained by microarray, associated with three GEO se-
ries: GSE3076 [16 conditions with 3 biological replicates
(BR)] from Guan et al. (2006), GSE3431 (36 conditions with
1 BR) from Tu et al. (2005), and GSE4807 (9 conditions with
3 BR) from Knijnenburg et al. (2007). We also included tran-
scriptome profiles corresponding to the Apicomplexa
Toxoplasma gondii and to the fruit fly Drosophila mela-
nogaster. In the case of T.gondii, we consider transcriptome
profiles associated with 10 conditions: tachyzoite 24 h postin-
fection (Waldman et al. 2020), tachyzoite infection in four
mouse cell types (Swierzy et al. 2017), rat nontransformed ep-
ithelial cell line IEC-18 infection (Guiton et al. 2017), tachy-
zoite 3–4 days postinfection (Reid et al. 2012) and two
conditions corresponding to acute and chronic infection in
mouse (Pittman et al. 2014). All these datasets were obtained
by RNAseq and we downloaded the normalized values [tran-
scripts per million (TPM)] from T.gondii database (Gajria
et al. 2007). In the case of D.melanogaster, we consider the
transcriptome profiles, obtained by microarray, from five
study series: GSE3955 (five conditions with three BR) from
Pilot et al. (2006), GSE6515 (one condition with five BR)
from Magalh~aes et al. (2007), GSE7763 (11 conditions with
3 BR) from Baker et al. (2007), GSE9149 (two conditions
with three BR) from Chintapalli et al. (2012) and E-MEXP-
2580 (three conditions with four BR) from Thomsen et al.
(2010). These studies correspond to the wild-type fly and
were downloaded from Bgee database (http://bgee.org)
(Bastian et al. 2021).

All databases above provide mean transcriptome profiles,
i.e. the biological replicates were averaged. In addition in the
case of microarray studies, the mean expression profiles
downloaded from databases correspond to log-normalized
expression values, for that reason we need to take the expo-
nential of these values before they are considered as the ex-
pression level. Detailed information about each study,
condition, biological replicates, and links is listed in
Supplementary Table S1.

From the Ensembl website for eukaryote organisms, we down-
loaded the nucleotide coding sequences corresponding to yeast
(ftp.ensemblgenomes.ebi.ac.uk/pub/fungi/release-56/fasta/saccha-
romyces_cerevisiae/cds/Saccharomyces_cerevisiae.R64-1-1.cds.all.
fa.gz) and fruit fly (ftp.flybase.net/genomes/Drosophila_melano
gaster/dmel_r6.30_FB2019_05/fasta/dmel-all-CDS-r6.30.fasta.gz).
The nucleotide coding sequences corresponding to E.coli were
downloaded from Ensembl website for prokaryote organisms
(ftp.ensemblgenomes.ebi.ac.uk/pub/bacteria/release-56/fasta/bac-
teria_79_collection/escherichia_coli_str_k_12_substr_w3110_gc
a_000010245/cds/Escherichia_coli_str_k_12_substr_w311
0_gca_000010245.ASM1024v1.cds.all.fa.gz), while cod-
ing sequences corresponding to T.gondii genes were down-
loaded from ToxoDB database (Gajria et al. 2007). We
have restricted our analysis to coding sequences with
lengths >50 codons, disregarding the first codon and first
dicodon. Stop codons and dicodons that contain a stop co-
don are not considered for further analysis. The coding
sequences and transcript profiles used in our study are also
available for download at https://zenodo.org/record/
7738276#.ZBIDBtLMIdU.

2.2 The measures

An expression index is a function that maps a nucleotide se-
quence into the associated gene expression level. Most of
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these codon preference statistics use the geometric mean of
the contributions associated with the codons that make up the
sequence (Gribskov et al. 1984), defined as

Expression index ¼
YL

i

CcðiÞ
 !1=L

; (1)

where CcðiÞ is the contribution of the codon c located at posi-
tion i and L is the length of the sequence considered. In this
paper, we use four different codon contributions that can be
classified according to whether they are based on codons or
dicodons. They can also be classified according to whether, or
not, they use a weighting strategy according to the level of ex-
pression of the sequence. The one based on codons without a
weighting strategy corresponds to the well-known CAI (Sharp
and Li 1987).

2.3 Contributions without weighting strategy

Using a set of sequences S as input, we count the observed
number of codons and dicodons, oc and od, respectively.
Then, we use these counts to calculate the relative codon
adaptiveness (Sharp and Li 1987), ac, and its extension for
dicodons, ad, which are defined as:

ac ¼
oc

maxfocg
; ad ¼

od

maxfodg
;

where maxfocg and maxfodg are the counts of the most fre-
quent synonymous codon of c and dicodon d, respectively.
Codons or dicodons with relative adaptiveness equal to one
can be considered translationally optimal.

2.4 Contributions with weighting strategy

In this case, we define a dicodon contribution bd where the
observed count of dicodons in a set of N sequences S ¼
fs1; s2; . . . ; sNg is weighted with a magnitude relative to the
expression level of the sequence si, i.e.

bd ¼
XN

i¼1
odðsiÞwðsiÞ; (2)

where odðsiÞ is the count of dicodon d in each si belonging to S.
The weight wðsiÞ can be defined in terms of the transcript or
protein abundance levels associated with sequence si, depending
on the data availability. Of course, this summation (2) must be
normalized. Thus, the relative weighted contribution of dicodon
d can be expressed as the ratio fd ¼ bd=ðmaxfbdgÞ, where
maxfbdg is the maximum of the weighted counts bd associated
to all synonymous dicodons of d. The weighted contribution de-
fined above can also be defined for codons. In fact, we also per-
formed this computation for the sake of comparison and this
codon-weighted contribution will be denoted by fc.

2.5 The sets of sequences and weights

The effect of different reference sets used to compute the codon
contribution has been studied in many papers (Supek and
Vlahovi�cek 2005, Fox and Erill 2010, Roth et al. 2012, Hanson
and Coller 2018). In general, high-quality transcript/protein
abundance data are required to define a suitable reference set. In
this paper, we count codons and dicodons over sequence sets Sp

that include genes with expression levels above the percentile p,

using different percentile values p ¼ 99;97;95;90;80 and also
0, which indicates that all sequences available are used.

In the case of S.cerevisiae, E.coli, and D.melanogaster,
where expression levels are log-normalized, the weights are
defined as wðsiÞ ¼ expðEiÞ and Ei is the log-normalized ex-
pression level of gene i. On the other hand, in the case of
T.gondii, weights are defined as wðsiÞ ¼ Ei, where Ei is ex-
pression level of gene i in TPM.

3 Results

Using the traditional no-weighted and the new weighted
contributions, we compute through the geometric mean
both, codon- and dicodon-based indexes (see Table 1) and
their correlation with the expression level. In Fig. 1, we de-
pict a raster plot of the expression levels of S.cerevisiae tran-
scriptome versus the dicodon expression index using
weighted contributions and versus the codon expression in-
dex using weighted contributions. The fd were obtained by
counting over a sequence set S97 of one S.cerevisiae sample.
Pearson’s correlation coefficient correlation associated with
the plot is near 0.78. For the sake of comparison, in Fig. 2A
we plot the correlations obtained for the expression index
computed with the four contributions listed in Table 1 (61
yeast samples). All expression indexes were computed for
four different reference gen sets: S97, S95, S90, and S80, and
for each sample independently. Firstly, we observed that, in-
dependently of the reference gene set used, dicodon-based
indexes have a greater correlation than codon-based in-
dexes. This is evident in Fig. 2B which shows the correla-
tions obtained with codon- and dicodon-based indexes for
each one of the 61 experimental conditions of yeast with
S97. Paired T-test indicates that means of correlations coeffi-
cient obtained from codon- and dicodon-based indexes,

Table 1. The new weighted and the traditional no-weighted contributions,

both codon- and dicodon-based indexes.a

Codon-based Dicodon-based

No-weighted ac ¼ oc

maxfocg ad ¼ od

maxfodg

Weighted fc ¼ bc

maxfbcg fd ¼ bd

maxfbdg

a Of course, the codon-based index without weight corresponds to the
traditional CAI.

Figure 1. Raster plot of two expression indexes versus expression levels

in yeast, considering the weighted dicodon-based scheme (left curve) and

codon-based scheme (right curve). In both cases, the expression indexes

were obtained using sequences with expression levels greater than the

97 percentile. Solid lines correspond to linear regression lines.
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with the weighted strategy, are significatively different (P-
value¼ 6.7 �10�51).

Furthermore, Fig. 2B compares the correlations obtained for
weighted and no-weighted strategies for the dicodon-based ex-
pression indexes with S97. In this case, the paired T-test indi-
cates that correlation coefficients obtained with the weighted
strategy are significatively greater than the ones obtained with
the no-weighted strategy (P-value¼ 1.5 �10�43). Similar results
were obtained by considering the Spearman-rank correlation as
comparison metrics, but with higher P-values (Supplementary
Fig. S1). These statistical analyses were performed for the four
organisms considered here and the results are consistent with
the premises: dicodon-based indexes have a better performance
than codon-based indexes, and the weighted strategy improves
performance with respect to the no-weighted strategy, in partic-
ular in the dicodon-based cases. We have performed the com-
parisons of the correlations coefficient obtained with different
expression indexes schemes and reference gene sets (S80, S90,
and S97) for S.cerevisiae (Supplementary Fig. S2), E.coli
(Supplementary Fig. S3), T.gondii (Supplementary Fig. S4), and
D.melanogaster (Supplementary Fig. S5). These results suggest
that dicodons are more informative than codons to model ex-
pression levels from nucleotide sequences.

The CAI was originally defined with a set of genes empiri-
cally proven to be highly expressed in yeast and E.coli (Sharp
and Li 1987). Other authors have added transcription/
translation-related factors and chaperones in the reference set
(Karlin and Mrázek 2000), and/or ribosomal protein genes
(Supek and Vlahovi�cek 2005). In Fig. 2A one can observe, as
a general behavior, that the correlations of indexes with

expression levels decrease as the reference set includes more
gene sequences with lower expression levels. The same behav-
iors are observed in the other three organisms, as shown in
Supplementary Fig. S6. However, this is not true when con-
sidering the Spearman-rank metric instead of Pearson correla-
tion, where in the case of the weighted dicodon index the
performance obtained for S95 is better than S97 (P-value
¼ 3:8� 10�8, Supplementary Fig. S1).

We see that weighting the contributions according to the se-
quence abundance has a similar effect that selecting the se-
quence associated with highly expressed genes. In fact, one
can understand this selection as a tight weighting procedure
where all the selected sequences have the same weight, while
the discarded sequences are weighted with a null weight. In
order to understand the role of the contributions weighting
we compute two histograms: (i) from dicodon contribution,
fd, obtained by counting over a sequence set S97 using the
weighting, and (ii) from dicodon contribution, ad, obtained
by counting overall sequences (S0) using the not weighting
schemes (yellow and blue bars, respectively, in Fig. 3A). This
plot shows that there is a significant difference among the
contributions associated with these schemes (Kolomogorov–
Smirnov test, P-value �10�300), while not-weighted contribu-
tions are broadly distributed with a mode around 0.2 (blue
bars), most of the weighted contributions are accumulated at
lower values (yellow bars) and are in agreement with the
number of dicodons that contribute with one. One can hy-
pothesize that broad distributions could be associated with
worse performance and a transformation of the contributions,
according to this observation, can lead to an improvement in

A

B C

Figure 2. Pearson correlation coefficients between the expression

indexes and expression level in yeast. They correspond to four schemes

(weighted codons, no-weighted codons, weighted dicodons, and no-

weighted dicodons) using transcript sequences with different percentiles

(A). The correlation coefficients are computed for each sample

independently. For comparison among schemes, we plot the correlations

obtained for weighted codons versus weighted dicodons (B), and

weighted dicodons versus no-weighted dicodons (C). Straight-line is the

identity line and the P-values were obtained with the paired T-test. Similar

comparisons for all studied organisms are depicted in Supplementary Figs

S2–S5.

A

B

Figure 3. Histogram of the dicodon contributions, fd, obtained for the

weighted case using sequences S97 (yellow bars) and for the no-weighted

case, ad, using all transcript sequences S0 (blue bars) (A). Histogram of the

dicodon contributions obtained for the weighted case using all sequences

(blue bars) and for the case in which contributions were squared (yellow

bars) (B). Values that superimpose are highlighted in gray.
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the performance. Figure 3B displays the histogram of dicodon
contributions obtained by counting over all sequences (i.e. S0)
using the weighting schemes (blue bars). Similarly to the
weighting case of Fig. 3A, most of the dicodons are associated
with small contributions. The distribution obtained when all
contributions are squared (i.e. it is the histogram of f 2

d ) is
more biased to the extremes (yellow bars).

In Fig. 4, we depict the correlations obtained with the
squared contributions in yeast, i.e.

expression index ¼
YL

i
C2ðiÞ

� �1=L

: (3)

For the sake of comparison, we also included two cases also
depicted in Fig. 2. When comparing the performances obtained
for S80, clearly the square transformation increases the correla-
tion (P-value ¼ 2:4� 10�35 for weighted dicodons). In the case
of weighted schemes, this improvement allows a good perfor-
mance even for contributions computed without selecting a set
of high-expression sequences S0. However, even with this im-
provement, dicodon-based indexes are more efficient than
codon-based indexes, and indices with weighted contributions
are more efficient than those with the no-weighted strategy.

So far as we have computed the correlation over all avail-
able sequences. However, in general, the correlation of any
expression index depends on coding, but also on other factors
like sequence length (Fox and Erill 2010, Bahiri-Elitzur and
Tuller 2021). In order to study the stability of performances
with the sequence length we examined the correlations with
expression level by considering two sets of sequences that dif-
fer in their mean lengths: coding sequences with lengths above
the percentile 80 (long sequences), and coding sequences be-
low the percentile 20 (short sequences). Figure 5 depicts the
correlations obtained with the four schemes listed in Table 1
computed over the short-sequences set (blue and yellow
boxes) and over the long-sequences set (green and red boxes)
for the yeast samples. In Fig. 5A, one can see that the correla-
tions obtained for long sequences are smaller than the corre-
sponding to short sequences in all cases. These differences are
statistically significant, at the level of 0.01, in all cases with
the exception of the dicodon-based measures using S97 (P-val-
ues of paired T-test are listed in Supplementary Table S2).
This result suggests that dicodon-based measures decrease the
biases between long and short sequences, particularly the

weighted strategy. Further, Fig. 5B depicts the results from a
similar analysis but using squared contributions for codons
and dicodons. Again the correlations obtained for long
sequences are smaller than the corresponding to short sequen-
ces. However, these differences are smaller than in Fig. 5A. In
particular, they are not statistically significant for the
dicodon-based measures using S90 and S97 (P-values listed in
Supplementary Table S2). Thus, the comparison of results
depicted in Fig. 5 suggests that squared transformation of
contribution decreases the bias between long and short
sequences.

One reason for the out-performance of dicodon-based in-
dexes seems to be that many dicodons’ contributions are
close to zero and cannot be explained solely by the codon
frequencies, especially when we restrict the analysis to the
set of highly expressed sequences. In Fig. 6A and B, we de-
pict raster plots of dicodon adaptiveness ad in yeast versus
an expected dicodon adaptiveness which is obtained by the
product of each codon adaptiveness (ac � ac), computed by
using sequences set S0 and S97, respectively. In the latter, re-
stricted to highly expressed sequences, we see that some
dicodons depart from an expected linear relationship. This
effect is more remarkable when we are dealing with
weighted contributions fd, where there are clearly three
clusters (Fig. 6C). The smaller cluster consists of only 121
dicodons and includes 11 (AGGCGA, ATACGA,
CGAATA, CGACCG, CGACGA, CGACGG, CGACTG,

Figure 4. Pearson correlation coefficients between different expression

indexes and the expression levels in yeast. They correspond to four

schemes (weighted codons, no-weighted codons, weighted dicodons,

and no-weighted dicodons) using different weights. The ones obtained

with the sequence set S97 and S80 are the same that were shown in

Fig. 2A. Last two boxes were obtained using squared weights from

sequences set S80 and S0, respectively.

A

B

Figure 5. Pearson correlation coefficients for different expression indexes

obtained from two groups of transcripts: short sequence and long

sequence (A). The correlations were obtained for the same conditions as

(A) but using squared weights (B).
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CGAGCG, CTGCGA, GTACGA, GTGCGA) of the 17
dicodons which mediate strong translational inhibition in
yeast according to Gamble et al. (2016). The second cluster,
indicated by a dashed ellipse, is formed by 1026 dicodons
and includes 4 (AGGCGG, ATACGG, CTCCCG,
CTGCCG) of these 17 dicodons. The larger cluster contains
the remaining dicodons and includes only two of the inhibi-
tory dicodons (CTGATA, GTACCG). In fact, all these in-
hibitory dicodons, with the exception of the last two, have
associated a very small fd value (< 3:5� 10�9). The dico-
dons with small fd value, and not included in the 17 inhibi-
tory dicodons are GCGCTC, GCGCTG, GCGGCA,
GCGGGT, GCTCTC, GGCGGG, and GGGGCG, and
could be considered for further translational inhibition
studies. It is interesting to note that Fig. 6C depicts several
dicodons whose contribution is clearly overestimated by
the product fc � fc (dots inside the dashed ellipse). Many of
dicodons’ contributions are accumulated at a lower value
as we see in the histogram of contributions fd (yellow bars)
in contrast to fc � fc (blue bars). Although the existing ex-
pression indexes in the literature today present correlations
with expressivity when applied to unicellular organisms,
their performance is more elusive when applied to multicel-
lular organisms. However, as we show in Fig. 7A, the corre-
lations between expression levels and expression indexes
based on dicodons are much greater than the results
obtained with expression indexes based on codons. This
improvement is almost 100% than in the case of
D.melanogaster when the comparison is made on squared
weights based on dicodons and S99 where the average cor-
relation reaches 0.45. Further, in a similar manner than in
yeast, Fig. 7B shows that there are dicodon contributions
that are overestimated by the product fc � fc. These results
suggest that dicodon-based measures could be used to

computationally identify dicodons associated with a strong
inhibition of translation as in Gamble et al. (2016).

4 Discussion

Understanding CUB across species is important to improve
our knowledge about gene expression (Gustafsson et al.
2004, Supek and Vlahovi�cek 2005), or phylogenomic infer-
ence (Christianson 2005, Shackelton et al. 2006). Because of
the relevance of codon usage information across species, there
exist several databases which provide these metrics
(Nakamura et al. 2000, Alexaki et al. 2019, Subramanian
et al. 2022). Additionally, a variety of studies based on differ-
ent strategies have proposed measures with the aim of predict-
ing protein expression from a coding sequence (Supek and
Vlahovi�cek 2005, Burgess-Brown et al. 2008, Plotkin and
Kudla 2011). More recently, researchers have reported that
the usage frequency of adjacent codons pairs, or dicodons,
have correlations that are not explained by the frequency of
single codons (Diambra 2017). Furthermore, dicodons have
been linked to ribosomal pauses and overall expression levels
(Gamble et al. 2016). Consequently, it arises as an attractive
field for gene prediction and to improve recombinant gene ex-
pression (Coleman et al. 2008, Chung et al. 2013, Huang
et al. 2021).

In this work, we expand the codon adaptation index that is
based on the frequency of single codons from a representative
set of highly expressed genes (Sharp and Li 1987). We incor-
porate dicodon frequencies on a weighted strategy based on
available expression data. When our strategy was applied for
E.coli, yeast, T.gondii, and fruit fly, the results confirm that
the new approach outperforms expression indexes based on
single-codon strategies in all cases. In fact, the correlation co-
efficient between expression indexes and expression levels
was better for yeast genes. The difference in the performance
between the analyzed species could be related to factors that
were not included in our models like transcriptional regula-
tions or mRNA stability. Since it is documented that codon
usage is linked with factors like mRNA stability, further stud-
ies adding this factor could be relevant (Hanson and Coller
2018).

Measures like CAI have the disadvantage that results can
vary when different reference sets are employed (Bahiri-
Elitzur and Tuller 2021). When the new index was evaluated
by a reference dataset enriched with genes of lower expression
we observed a decrease in the correlation, a behavior that

Figure 6. Raster plots of expected dicodon adaptiveness ac � ac versus

dicodon adaptiveness ad in yeast, obtained by using sequences set S0 (A)

and S97 (B). Raster plot of expected dicodon contribution fc � fc versus

dicodon adaptiveness fd in yeast, obtained by using sequences set S97

(C). The dots in the dashed ellipse correspond to a set of dicodons whose

contribution is clearly overestimated by the product fc � fc. Histogram of

the dicodon contribution, depicted in (C), obtained for fd and for fc � fc (D).

A B

Figure 7. The correlation coefficients between the expression indexes

and the expression level in D.melanogaster (A). They correspond to four

schemes (weighted codons, no-weighted codons, weighted dicodons, no-

weighted dicodons) using weights obtained with sequence sets S97 and

S99. Yellow boxes were obtained using squared weights from sequences

set S99. Raster plots of expected dicodon contribution fc � fc versus

dicodon adaptiveness fd in D.melanogaster, obtained by using sequences

set S99 (B).
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could be related to dicodon contributions since when this was
explored we observed that values of dicodon adaptiveness
(ad) have an extensive distribution that can be associated with
the poor performance. To overcome this, we implemented a
square transformation over our weighted contributions that
let us improve the correlations, even when all sequences were
included in the reference set. We also observe that this strat-
egy decreases the difference among sequences of different
lengths.

Interestingly, our strategy was able to explain the contribu-
tions of dicodons that could not be explained by the single-
codon approach. In this sense, we could mention 17 dicodons
(Gamble et al. 2016) with confirmed translational inhibition, 15
of them with low values of fd. In accordance with those observa-
tions, we proposed other seven dicodons with low fd being po-
tential targets for experimental studies since this could be
contributing to inhibiting protein translation, taking into ac-
count that translational inhibitory study of Gamble et al. (2016)
does not include all possible hexamers. The improvement ob-
served by introducing pairs of consecutive codons suggests that
the order of the codons highlights the role of the translocation
time of the ribosome between two consecutive codons during
transcript translation (Diambra 2017). This translocation time
could be a determinant of the ribosomal pauses program associ-
ated with proper protein folding (Komar 2009, Plotkin and
Kudla 2011, McCarthy et al. 2017). In this context, our
dicodon-based index is a promising tool applicable in biotech-
nology fields like codon pair deoptimization for virus attenua-
tion and dicodon optimization for improving protein expression
(Coleman et al. 2008).

Next, we evaluated the weighted dicodons index in a multi-
cellular organism. Although some single-codon approaches
with predictive power were documented (Sahoo et al. 2019),
our weighted strategy improves codon indexes approaches
when it was evaluated in D.melanogaster. However, the fact
that CUB’s influence on gene expression is variable across
tissues cannot be ignored. This particularity makes applying
expression indexes in multi-cellular organisms, from its
whole-body expression data, more difficult (Payne and
Alvarez-Ponce 2019). Recently, tissues specifics metric for co-
don usage was developed (Allen et al. 2022). In this sense, our
weighted dicodons approach could be expanded on the bases
of tissues specifics data in future studies.

In conclusion, in this work, we improved the performance
of the well-known CAI by using dicodon contributions.
Additionally, we have implemented a weighted strategy for
dicodon contributions taking into account the expression
level that improved the correlations even further. Our dico-
don index was evaluated on experimental unicellular models
as E.coli, T.gondii, and S.cerevisiae outperforming codon-
based indexes. Furthermore, our index was put to the test on
a multi-cellular model organism like D.melanogaster showing
better performance than CAI, although factors like tissue-
specific CUB needed to be taken into account for applying ex-
pression indexes in this kind of model organisms.
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