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Abstract
Aim: To evaluate the interaction between climate and biome structure when explain-
ing changes in species richness of soil- associated communities due to tree plantations 
developed in different biomes. Compare the response of plants, soil invertebrates and 
soil microorganisms, and to test whether they should be considered sensitive- coupled 
biotas.
Location: Continental South America.
Time Period: 1996– 2023.
Major Taxa Studied: Plants, soil invertebrates and soil microorganisms.
Methods: Through a meta- analysis, the change in species richness (i.e. response 
ratio) associated with tree plantations was evaluated in 127 points of study across 
South America, considering soil- associated communities of plants, invertebrates and 
microorganisms. The influence of biome structure (open vs. closed habitats) on the 
response ratio, and its interaction with the actual evapotranspiration (AET) and tem-
perature seasonality was evaluated. Differentiated responses of different taxa were 
tested by comparing models with and without an interaction term referring to the 
taxon studied. The regional agricultural cover and plantation age were considered as 
anthropogenic variables.
Results: Models containing the AET were better at explaining the trend of change in 
species richness than those with temperature seasonality. The response of the change 
in species richness was oppositely related to the AET in open and closed biomes. 
Plants presented a higher loss in species richness than soil invertebrates and micro-
organisms. The three taxa were positively associated with AET, while seasonality 
was not relevant in any case. Both anthropogenic variables significantly lessened the 
change in species richness in all models.
Main Conclusions: The structural contrast between the anthropogenic habitat and the 
biome where it is developed is a key factor influencing the response of soil- associated 
communities to tree plantations. Nevertheless, its influence must be assessed to-
gether with climatic and anthropogenic variables given that their interaction can ex-
plain different geographical trends in the change in species richness across regions.
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1  |  INTRODUC TION

Changes in biodiversity due to anthropogenic factors have been 
the focus of study in ecology for the last few decades. Recently, as 
the scale of study has expanded from local to planetary, the rela-
tionship between the proposed drivers and biodiversity have been 
found to vary in different regions of the globe (Chapin III et al., 2000; 
Laurance et al., 2014; Newbold et al., 2015). Global studies have de-
scribed geographic patterns of biodiversity loss in which climatic and 
local biodiversity characteristics are key to explaining differences 
in the effect of large- scale anthropogenic disturbance. Newbold, 
Oppenheimer, et al. (2020b) showed different degrees of impact of 
land- use change according to the biome studied, highlighting high 
levels of diversity loss in tropical and Mediterranean biomes. In the 
same way, Murphy and Romanuk (2014) and Newbold, Bentley, 
et al. (2020a) found that the change in species richness varied ac-
cording to the group studied. Furthermore, the degree of environ-
mental dissimilarity between the anthropogenic habitat studied and 
its natural context has to be considered, as it is a key factor driving 
the assembly of the novel biological community in the anthropo-
genic habitat (Corbelli et al., 2015; Filloy et al., 2010; Santoandré 
et al., 2019). In this study, we aim to explain the geographical vari-
ation in the change in species richness when a particular land use 
is studied (tree plantations in this case) at a continental scale, by 
considering the role of climate, the environmental characteristics of 
different biomes, and different taxonomic groups.

Geographical variation in the change in species richness of bio-
logical communities (defined here as the change in species richness 
between the natural and the anthropogenic habitat) can be ex-
plained by environmental conditions that are associated with energy 
flow in the ecosystems and the ecological niche of species (Evans 
et al., 2005; Newbold, Oppenheimer, et al., 2020b). On the one 
hand, environmental energy is related with high metabolic rates and 
the surplus of resources, what allows bigger populations and faster 
recovery of disturbances (Evans et al., 2005). In this way, high actual 
evapotranspiration (AET), taken as a proxy for environmental energy 
(Willmott & Matsuura, 2001), would allow biological communities to 
recover faster after anthropogenic disturbances. Therefore, under 
the hypothesis of environmental energy, we expect less change in 
species richness after anthropogenic disturbance in habitats with 
higher temperature and water availability (high evapotranspira-
tion) than in habitats with low evapotranspiration. On the other 
hand, climate seasonality was proposed to decrease the change in 
species richness due to land- use change (Newbold, Oppenheimer, 
et al., 2020b). Temperature seasonality is linked to seasonal varia-
tion in resources and environmental conditions, which often leads 
to habitats with species with broader ecological niches (Saupe 
et al., 2019; Vázquez & Stevens, 2004). In this case, wider ecolog-
ical niches would increase the ability of species to better cope with 
environmental changes associated with land- use. Under this hypoth-
esis, we expect to find less change in species richness in temperate 
biomes than in tropical ones. When considering the two hypotheses 
we find a crossroads, since AET and seasonality are distributed in 

opposite ways. Thus, one would expect opposite geographic pat-
terns of change in species richness along the latitudinal gradient. In 
this study, we set out to test both hypotheses to shed light on the 
predominant causes of species loss due to land- use change at a con-
tinental scale.

In addition to the hypothetical mechanisms acting at broad scales, 
the Anthropocene challenges us to consider a space intervened by 
human activity (Ellis, 2011; Graham et al., 2017; Valiente- Banuet 
et al., 2015). In that sense, considering the level of anthropogenic 
disturbance at a regional scale (here the agricultural cover) is a key 
factor when studying land- use effects on richness in anthropized 
landscapes. The change in species richness has been described to be 
lessened in highly modified landscapes, as the regional pool of spe-
cies is already affected by land- use and presents a higher proportion 
of species that can cope with anthropogenic disturbance (Newbold 
et al., 2015). At a local scale, the magnitude of the effect of land- use 
change on species richness also depends on the degree of the envi-
ronmental dissimilarity between the anthropogenic and the natural 
habitat (environmental filtering effect) (Kraft et al., 2015). As phys-
iognomic characteristics of the vegetation (from here on, structure) 
typically vary across biomes, we expect differential influences on 
biodiversity for the same land use when broad scales are assessed. 
Considering closed biomes as forests, and open biomes as grass-
lands, savannas and stepes, as defined by Pausas and Bond (2020), 
we expect greater effects of tree plantations in biomes with open 
habitats than in closed ones. Therefore, by considering the struc-
tural contrast at a local scale, and the agricultural cover at a regional 
scale, we will intend to address the influence of anthropogenic vari-
ables in the variation in the change in species richness across South 
America.

Commercial tree plantations are expanding around the world 
and efforts are being made to understand their impacts on biodi-
versity (Bremer & Farley, 2010; Wang, Zhang et al., 2022). Bremer 
and Farley (2010) described that tree plantations have differential 
effects according to the structure of the disturbed biome and that it 
is also partly explained by the plantation age. While in grasslands the 
plantation age was associated with a decrease in species richness, 
as it grows progressively different to the natural, in forests it did 
not show a clear association. With this in mind, we will consider this 
structural contrast given by plantation age and biome structure at 
the local scale as the basic driver of plantation impact. Therefore, by 
incorporating regional agricultural cover and climatic variables, we 
aim to explain the geographic variation that is not explained by the 
structural contrast on its own.

Geographical patterns of biodiversity and their response to 
land use have been previously described for above- ground macro- 
organisms, such as plants and animals (Buckley & Jetz, 2007; Kier 
et al., 2005), but only recently the scope has been focused on be-
lowground invertebrates and microorganisms (Decaëns, 2010; 
Goss- Souza et al., 2017; Sylvain & Wall, 2011). Soil ecosystems 
and their biota are relevant as they are involved in several ecosys-
tem processes and services (Delgado- Baquerizo et al., 2016). The 
functioning of soil ecosystems depends on complex interactions 
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    |  3RIBERO and FILLOY

between multiple taxa such as plants, soil invertebrates and micro-
organisms (Lavelle et al., 2006; Thakur et al., 2019). Therefore, to ad-
dress the effect of land- use change on soil ecosystems, efforts must 
be made to include soil- associated communities (both above-  and 
belowground) through a multi- taxa approach. Despite being part of 
close ecological interactions, these taxa do not usually respond to-
gether to anthropogenic disturbance (Le Provost et al., 2021; Wang 
& Tang, 2019). In this study, we will compare the response of plants, 
soil invertebrates and soil microorganisms, and test whether there 
are generalities or they should be considered uncoupled biotas when 
responding to land- use change.

Our aim was to assess the influence of climate and biome struc-
ture on the response of communities highly dependent on soil con-
ditions (soil- associated from herein) to tree plantations across South 
America. Throughout bibliographic research and meta- analysis our 
goals were to (i) Detect a general response of soil- associated com-
munities of plants, arthropods and microorganisms to commercial 
tree plantations along South America, and compare the responses 
between taxa; (ii) Explore the influence of biome structure on the 
change in species richness due to tree plantations taking into ac-
count other potential drivers (i.e. AET/climate seasonality, regional 
agricultural cover, plantation age); (iii) Identify potential geographical 
trends of change in species richness of above-  and below- ground 
communities to tree plantations in South America. Commercial 
plantations are monoculture stands that imply a great disturbance 
for their initiation, with simplified strata when matured (Pairo 
et al., 2021; Santoandré et al., 2019). Thus, we predict an overall neg-
ative effect of commercial plantations on species richness. As tree 
plantations are forests, albeit highly simplified, we expect lower loss 
of species richness when tree plantations are developed in forest 
biomes than when they are developed in biomes with an open struc-
ture, such as grasslands, steppes and savannas. However, we expect 
variation in the change in species richness across the continent that 
could be explained by climatic factors interacting with the structural 
contrast between forest plantations and the natural habitat where 
they developed.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

Data acquisition consisted of a literature search using the main peer- 
reviewed articles databases and obtaining environmental data ras-
ters from online repositories. We search peer- reviewed articles in 
English, Portuguese, and Spanish using Web of Science, SCOPUS 
and Google Scholar, following the Preferred Reporting Items for 
Systematic Reviews and Meta- Analysis (PRISMA) protocol (Moher 
et al., 2015; Page et al., 2021) (Appendix S1, Figure S1.1). The search 
initially produced 3261 articles, from which one person selected ar-
ticles that fulfil the following criteria: (1) were not repeated; (2) sam-
pling was carried out between 1990 and 2023; (3) compared species 
richness between a commercial tree plantation and a nearby natural 

area; (4) the taxa studied were plants, soil invertebrates, or soil mi-
croorganisms (see search string in Appendix S1); (5) the study area 
had no experimental manipulation; (6) the article included species 
richness (S) per treatment or the species list per site, and the num-
ber of sites studied (N); (7) studies with geographical coordinates 
of sampling points; (9) a minimum of two replicates per treatment. 
The temporal range of the studies was fixed to compare the values 
of climate and agricultural cover provided by the rasters. The final 
data set included 81 original articles (Appendix A, data sources) and 
127 points of comparison between commercial tree plantations and 
a nearby natural habitat (Figure 1a). To explore the distribution of 
the data across south American biomes, each study was mapped ac-
cording to the mean annual temperature and the mean annual pre-
cipitation in a diagram based on the Whittaker biome classification 
(Whittaker, 1975), using the package “plotbiomes” in R (Figure 1b).

From each article, we retrieved coordinates of the sampling 
point, the structure of the biome of reference (i.e. open for grass-
lands, steppes, and savannas, or closed for forests), taxa studied (i.e. 
plants, soil invertebrates, or microorganisms), the plantation age 
(time since the site is forested), the species richness and its standard 
deviance, and the number of replicates for each treatment. Species 
richness was obtained from the text, tables, species lists per site, fig-
ures, or article supporting information. When richness was obtained 
from figures, its value and standard deviance were obtained via the 
software ImageJ (Abràmoff et al., 2004). If the mean species rich-
ness was reported together with a Standard Error or the Confidence 
Interval, their values were converted to Standard Deviation (SD). In 
the case there was no information about the variability in the data 
(4 cases out of 103), the missing data was obtained based on the 
predictive mean matching (Beckmann et al., 2019), using the package 
“mice” in R (Van Buuren & Groothuis- Oudshoorn, 2011).

To test the stated hypotheses, the AET was used as a proxy of 
environmental energy (Willmott & Matsuura, 2001), as energy can 
be considered both by the metabolic pathway (temperature) or re-
source (water availability). To account for seasonality, data on the 
annual deviation of temperature was retrieved from BIOCLIM (Fick 
& Hijmans, 2017). In addition, the level of regional disturbance was 
considered using a worldwide raster of agricultural cover, consid-
ering the percent of the cover of a five- minute cell (Ramankutty & 
Foley, 1999). To retrieve the value of the variables for each point, the 
mean was estimated for a 0.5- degree buffer around each point of 
study with the QGIS 3.6 software (Qgis 2018, http://qgis.osgeo.org), 
overlapping the coordinates of each study and the variable rasters. 
Based on the agricultural cover raster, the data ranged from regions 
with <1% to 93% of agricultural cover.

2.2  |  Data analysis

To assess the change in species richness between tree plantation 
and natural habitat, it was calculated as the response ratio (RR). The 
response ratio was calculated considering the difference between 
the species richness in an anthropogenic habitat (Slu) and a nearby 
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4  |    RIBERO and FILLOY

natural habitat (Snat) (equation N°1). According to this equation, 
the more negative the value is, the more species are lost in the an-
thropogenic habitat. Then, the sampling error was calculated con-
sidering the mean of the species richness (X), its standard deviance 
(SD) and the number of replicates (n) (equation N°2) (Koricheva 
et al., 2013) with the “esclac” function of the METAFOR R package 
(Viechtbauer, 2010)

To check whether the data presented publication bias, meaning 
that it is more frequent to publish studies with significant effects, 
Egger's test was run using the function “regtest”. To calculate the 
general response ratio of biodiversity (considering all taxa) to tree 
plantations, a multilevel model was made with the RR as the re-
sponse variable, and the study ID and the taxa studied were included 
as random factors (Nakagawa & Santos, 2012).

To identify differences in the response ratio of the taxa studied, 
and the influence of climate and the biome structure on it, meta- 
regression models were made using the “rma.mv” function of the 
METAFOR package. In all cases, the response variable was RR, 
the study ID was included as a random effect factor, and the error 
distribution selected was gaussian (Zuur et al., 2009). To evaluate 
whether the response ratio varied among the taxa studied, a meta- 
regression model was made entering the taxa studied as the fixed 
factor. Differences in the response between taxa was tested by 

pairwise Tukey comparison. Then, to test if the biome structure ex-
plained the RR on its own, three univariate models were run for the 
general RR (taxa studied as random effect factor), for plants, and soil 
invertebrates, with the RR as the response variable and the biome 
structure as the fixed factor. The effect of biome structure was not 
evaluated for microorganisms given that their data was unbalanced; 
while 19 points of study were recorded for closed biomes, only 6 
were found for open biomes.

To test the influence of climate together with the structure of 
the biome of reference, the interaction between the biome struc-
ture and the AET or temperature seasonality was modelled. Meta- 
regression models of the stated hypotheses and null models were 
compared to determine the best explanatory model for changes in 
species richness. To account for the influence of different levels of 
regional disturbance and differences in age of the plantations, con-
trol variables of agricultural cover (AC) and plantation age (AGE) 
were added in all models as fixed terms. Given that the interaction 
between the age of the plantation and the biome structure is already 
documented in the literature, a first model called “Basic” containing 
only the interaction between these variables was evaluated. Then, 
based on the “Basic” model, we incorporated the agricultural cover 
and the interaction between the different climatic variables and the 
biome structure one at a time. In addition, a model only containing 
the intercept was evaluated as a null model. To test whether the re-
sponses differed among taxa, we compared models including taxa as 
a fixed factor with and without an interaction term accounting for 
it. In total, 13 models were run (one null model, 6 models with taxa 
as a main fixed effect and 6 with the additional interaction term). 
The best model was selected by comparing them by their Akaike 
information criterion (AIC). The model with the lowest AIC was 

(1)RR = Ln

(

Slu

Snat

)

,

(2)se
2

RR
=

SDnat
2

nnatXnat

2
+

SDlu
2

nluXlu

2
.

F I G U R E  1  Distribution of studies across South- America and its biomes. (a) Coordinates of the studies retrieved across South America. 
Open structure biomes (grasslands, savannas and steppes) are painted in grey. Symbols represent the different taxa considered. (b) 
Distribution of studies based on the mean annual precipitation and temperature obtained from BIOCLIM, and then classified according to 
Whittaker's biomes distribution.
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    |  5RIBERO and FILLOY

selected as the best, and it was considered more informative than 
its following model if their ΔAIC was bigger than two (Burnham & 
Anderson, 2002). The complete R code and the database were made 
available in the supporting information.

To explore the response of biodiversity across South America 
the best model for the change in species richness was mapped cal-
culating the predicted RR through the continent. To predict the RR 
across the continent, the best model was chosen. Although there 
were two equivalent models according to the AIC, given that the 
model II was nested in model V, the geographical prediction was 
based in model V (Burnham & Anderson, 2002). For this purpose, 
the raster calculator of the QGIS 3.6 software was used, entering 
the parameters of the best model for each case, and mapping the 
response with a 0.5- degree resolution. To restrict the prediction to 
potential tree plantation areas, the predicted area was restricted to 
regions inside the range of AET evaluated and with at least 1% of 
agricultural cover. To account for the different biomes across South 
America, the distribution of each biome was taken as proposed by 
Olson and Dinerstein (2002). A categorical value for biome struc-
ture of “OPEN” was given to grasslands, steppes and savannas, and 
“CLOSED” was given to forests, based on the percentage of tree 
cover in each biome (Woodward et al., 2004). To map the predic-
tions of the models containing the age of the plantation, its value had 
to be fixed. Therefore, we predicted the RR for young and matures 
plantations, of 5 and 15 years since planted, respectively.

3  |  RESULTS

3.1  |  Meta- analysis

Considering the 127 points of comparison, the meta- analysis de-
tected a general RR of −0.46 (p < 0.05), which means that, on aver-
age, tree plantations present a 36.92% reduction in species richness 
when compared with the natural habitat (Figure 2a). The Egger's 
test for publication bias did not detect funnel asymmetry in the 
whole dataset, (Appendix S1, Figure S2). Overall, the RR of plants 
was more negative than that of invertebrates and microorgan-
isms (p < 0.05) but invertebrates and microorganisms did not differ 
(p > 0.05, Figure 2b). The general RR showed no association with the 
biome structure (p > 0.05). However, we did find differences in the 
RR between biomes with open and closed structures for soil inverte-
brates (p < 0.05). While the RR of plants did not associate with biome 
structure, soil invertebrates presented a more negative RR in closed 
biomes than in open ones, RR = −0.41 and RR = −0.21 respectively 
(Figure 2c,d).

3.2  |  Meta- regression and geographical predictions

From the model selection process, we obtained that the best models 
were both the basic one plus agricultural cover and a more complex 
one also including the interaction between AET and biome structure 

(Models II & V, ΔAIC <2) (Table 1). In both cases, the plantation age 
and the agricultural cover had a positive coefficient for both open 
and closed biomes (Table 2, Figures S3 and S4). In model V a sig-
nificant interaction between AET and biome structure was found. 
AET was positively associated with overall RR in open biomes and 
negatively in closed ones (Figure 3). The model containing the inter-
action with the taxa was less informative than those considering it as 
a simple effect factor (Table 1).

The geographical predictions of the RR ranged from −0.91 to 
−0.01 for young plantations (Figure 4a), and from −0.98 to 0.48 ma-
ture plantations (Figure 4b). As plantation age had a positive effect 
in both open and closed biomes, the prediction for mature planta-
tions presented more positive RR values overall. In closed biomes, 
the spatial prediction estimated the lower values of RR in center- 
east and north Brazil. In open biomes, the lower values of RR were 
predicted along the western South American Arid Diagonal and in 
southern Pampa, regions with open structure biomes and low levels 
of AET. The maximum values according to Model V were in the cen-
tral Pampa region and the northern Cerrado region, in central Brazil.

4  |  DISCUSSION

In this study, we confirmed that there is variation in the influence of 
commercial tree plantations on species richness of soil- associated 
communities of plants, invertebrates and microorganisms in South 
America. Although an overall negative effect on species richness 
was detected, its variation was associated with climatic condi-
tions (i.e. AET, as stated by the environmental energy hypothesis). 
However, its association depended on the structure of the disturbed 

F I G U R E  2  Response ratio according to different factors, 
different letters mean significant differences. (a) General response; 
(b) response for each taxon; (c) Response of plants in open and 
closed habitats; and (d) response of invertebrates in open and 
closed habitats. Bands represent 95% confidence intervals.
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6  |    RIBERO and FILLOY

biome. While tree plantations lead to higher loss of species richness 
in temperate open biomes (grasslands, savannas and stepes) than 
in tropical ones, closed biomes (forests) presented an opposite re-
sponse. The anthropogenic variables, plantation age and agricultural 
cover, included as control proved to be of major influence in the 
response of the change in species richness. We found that in the 

two best models, they presented a significant effect on the change 
in species richness. Therefore, we support that their consideration 
is of major relevance when studying ecological responses at large 
scales (Gámez- Virués et al., 2015; Gerstner et al., 2014; Newbold 
et al., 2015).

Although we found an overall negative response to tree plan-
tations, we tested whether there were differences in the richness 
response ratio between taxa. We found that the response ratio of 

TA B L E  1  Detail of the model selection process for the response 
of species richness (n = 127).

Model

+ TAXA * TAXA

AIC AIC

Null –  Intercept AIC = 188,05

I -  Basic 175.71 177.97

II -  Basic + AC 173.58 178.55

III -  Basic + AET*STRUCTURE 176.73 182.29

IV -  Basic + TSEAS*STRUCTURE 177.97 185.31

V -  Basic + AC + AET*STRUCTURE 174.47 183.13

VI -  Basic + AC + TSEAS*STRUCTURE 175.74 185.22

Note: In bold letters, the lowest AIC value and the equivalents (<2 
ΔAIC).
Abbreviations: AC, Agricultural cover; AET, Actual evapotranspiration; 
AGE, Plantation age; Basic, AGE*Structure; TSEAS, Temperature 
seasonality.

TA B L E  2  Details of the values for the parameters of models  
II and V.

Model Intercept + AGE + AC + AET

Invertebrates

ModeI II

Open −0.52 0.011 0.005

Closed −0.6 0.001 0.005

Model V

Open −0.94 0.014 0.005 0.005

Closed −0.51 0.008 0.005 −0.001

Plants

ModeI II

Open −0.96 0.011 0.005

Closed −1.04 0.001 0.005

Model V

Open −1.33 0.014 0.005 0.005

Closed −0.9 0.008 0.005 −0.001

Microorganisms

ModeI II

Open −0.53 0.011 0.005

Closed −0.61 0.001 0.005

Model V

Open −0.95 0.014 0.005 0.005

Closed −0.51 0.008 0.005 −0.001

Abbreviations: AC, agricultural cover; AET, actual evapotranspiration; 
AGE, plantation age.

F I G U R E  3  Partial regression representing the interaction of the 
actual evapotranspiration and the biome structure according to 
Model V. Open biomes are represented in red and closed biomes 
in blue. The response of invertebrates, microorganisms and plants 
are in dotted, dashed and solid lines respectively. Agricultural cover 
and age of the plantation were fixed in their mean value. The size 
of circles represents the confidence (1/SD) of the meta- analytical 
data.

F I G U R E  4  Prediction of Response ratio through South America 
according to model V for: (a) 5 years old plantations. (b) 15 years old 
plantations. The range of colours has been set between −0.8 and 
0 to be able to compare the values between the two models. To 
comprise the three taxa, the mean of their response was plotted.
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plant richness was the most negative considering that of the other 
taxa. On the one hand, these differences may be because resources 
for belowground biota (soil invertebrates and microorganisms) may 
not be as directly affected by tree plantations as for plants (highly 
affected by light restrictions and allelopathic effects) (Brockerhoff 
et al., 2003; Navarro- Cano et al., 2010; Vexetal et al., 1994). On the 
other hand, the slower rate of recolonization of anthropogenic hab-
itats by plants, in comparison with the belowground biota, may also 
explain smaller richness of plant communities in tree plantations (de 
Graaff et al., 2019; Wang, Zhang et al., 2022). In the case of micro-
organisms, they presented high variability in their response, leading 
to no differentiation with soil invertebrates. As taxa of bacteria, ar-
chaea and fungi were considered as a whole group, the high diversity 
of life- forms included may have led to the observed pattern. In ad-
dition, the resolution at what microbial diversity was studied varied 
across the assessed studies, given that technologies used to study 
microbial diversity have improved greatly in the last decades (Nesme 
et al., 2016). These results confirmed that besides the trends in 
multi- taxa species richness loss, there are singularities for different 
taxa. Therefore, focusing only on general trends can lead to gener-
alizations that may eclipse a diversity of responses in different taxa.

When testing if the structural contrast between the tree plan-
tations and the natural habitat by its own explained variation in the 
change in species richness, we found that only soil invertebrates 
responded differently according to this variable. What is more, con-
trary to our prediction, loss of species richness of invertebrates was 
bigger in closed biomes than in open ones. Although this result is 
not explained by the environmental filtering hypothesis, stronger ef-
fects of tree plantations in forests than in grasslands were previously 
reported for multiple taxa (Corbelli et al., 2015; Filloy et al., 2010; 
Santoandré et al., 2019). These authors found a higher loss of tax-
onomic richness of multiple taxa in tree plantations developed in 
subtropical forests context than in a grassland context, arguing that 
habitat simplification in forests may be affecting microhabitat and 
resource availability for highly specialized species. Lastly, although 
all tree plantations studied were monospecific plantations for tim-
ber production, differences in the structure of the tree plantations 
between them could have also distorted the degree of contrast with 
the natural habitat. Therefore, the structural contrast between an 
anthropogenic habitat and a native one may not be enough to ex-
plain changes in species richness when evaluating land use effects 
across different biomes.

Although the biome structure was not associated with the mag-
nitude of change in species richness for all taxa, it did affect how 
change in species richness associated with climatic variables. The 
loss of species richness due to tree plantations was oppositely re-
lated to AET in open and closed biomes across the continent. While 
loss of species richness was higher in temperate than tropical grass-
lands across the continent, that in forests responded the other way 
around. Based on this, the environmental energy hypothesis is only 
confirmed for open biomes. In biomes such as temperate grasslands 
and shrublands, plants are usually adapted to receive a high incidence 
of light, but to cope with low availability of water (Burke et al., 1998). 

These characteristics might increase the loss of plant species rich-
ness in implanted forests in open biomes, where the resource of light 
is greatly diminished (Wang, Jiang et al., 2022). Following the loss of 
plant species, the overall negative effect may also reflect a cascading 
effect from producers to decomposers (Barnes et al., 2017; Tylianakis 
et al., 2008). As water availability and temperature increase (an  
increase of AET), plants may be able to recolonize the plantation 
sites, resulting in a mitigation of the change in species richness in 
open biomes with high AET. Higher AET may also allow soil inver-
tebrates and microorganisms to cope with changes in environmen-
tal conditions and resources or to have faster rates of colonization, 
through higher metabolic rates (Gibb et al., 2015; Zhou et al., 2016). 
In contrast, the negative association between the change in species 
richness and the AET in forest biomes may be explained by a higher 
loss of species richness due to tree plantations in tropical forests. 
In this case, tree plantations may represent oversimplified habitats 
where the heterogeneity and abundance of resources are reduced 
(Holl et al., 2013). As energy is often associated with species rich-
ness, it can also be an indicator of a growing ecological specializa-
tion and rarity in species (Evans et al., 2005; Mason et al., 2008). 
Therefore, tree plantations may not be able to support niche over-
lapping and relaxed competition between specialist species from 
tropical forests (Bremer & Farley, 2010). Consequently, although the 
AET can account for broad geographical trends of change in species 
richness due to tree plantations, the mechanisms that determine the 
diversity of communities in anthropogenic habitats may be deter-
mined by the structural contrast between it and the natural habitat.

Taking into consideration anthropogenic variables, such as the 
agricultural cover and the plantation age, proved to explain an im-
portant part of the variation of change in species richness at broad 
scales. High agricultural cover has been described to locally benefit 
generalist species (endemic or exotic) and to lead to extinction of spe-
cies with a highly specialized ecological niche (Newbold et al., 2018; 
Ramiadantsoa et al., 2018). Therefore, by modifying the regional 
species pool that could recolonize altered habitats, it may result in 
patterns of change in species richness due to land- use that are dif-
ferent from those expected based on climatic factors alone. On the 
other hand, the plantation age was positively associated with the 
change in species richness, meaning that older plantations presented 
higher species richness in comparison to young ones. Contrary to 
our prediction, old growth plantation may present a habitat for 
ecological succession rather than increase environmental filtering, 
in accordance with previous studies (Dejene et al., 2017; Wang, 
Zhang et al., 2022). This meta- analysis is constrained to changes in 
the species richness; including the composition of species and their 
functional traits would provide further evidence of the mechanisms 
driving species change. Human intervention at large scales cre-
ates new scenarios with novel ecological systems (i.e. Anthromes) 
(Ellis, 2011; Piquer- Rodríguez et al., 2021) that may present different 
biogeographic patterns to those observed in natural habitats.

The spatial predictions of the change in species richness to tree 
plantations showed differences across regions in South America. 
The lower values of species loss were found in the eastern part 
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of the Brazilian Cerrado and in the central Argentinean Pampa. 
Lower values of species loss in these regions may be explained by 
the high cover percentage of agricultural land. These two regions 
were described to have their biodiversity heavily affected by the 
2000's (Newbold et al., 2015). Therefore, species responding to 
the tree plantations may have been affected by land use before, 
by introducing generalist species (Newbold et al., 2018). On the 
other hand, when evaluating regions with high values of species 
loss, the Atlantic Forest and the Caatinga region, together with 
the western South American Arid diagonal (Luebert, 2021), were 
detected as the more affected. Previous studies found that an-
thropogenic disturbance interacted with aridity variables, causing 
higher diversity loss in arid regions than in humid ones (Arnan 
et al., 2018; Peters et al., 2019). Nowadays, the agricultural cover 
is lower in low AET regions than in high AET ones but arid habitats 
will expand with climate warming and so the demand of agricul-
tural land (Mahmoud & Gan, 2018; van der Esch et al., 2017; Zhang 
et al., 2023). Therefore, climatic and anthropogenic variables must 
be considered together to better understand the changes in spe-
cies richness across regions with different environmental condi-
tions in a changing world.

With this meta- analytical study, we aimed to describe varia-
tions in the response of multi- taxa species richness of above- ground 
and below- ground diversity. Although we managed to obtain sev-
eral studies, particularly in an under- sampled region of the globe, 
our data was unbalanced between the taxa and the biomes stud-
ied. On the other hand, as land- use change is known to modify the 
taxonomic composition of biological communities, studying only the 
change in species richness may not fully detect the response of na-
tive communities. To fully understand the effect of tree plantations 
across different biomes, we encourage future studies to address the 
change in composition of biological communities, particularly that of 
plants and microorganisms.

In summary, we provide evidence that predictions of large- scale 
variation in the change in species richness due to land use change 
can be improved by considering already known factors, such as AET, 
interacting with structural dissimilarity between anthropogenic and 
natural habitats. In this study, tree plantations varied their effect on 
soil- associated biodiversity driven by AET differently in closed and 
open biomes. Temperate open biomes appeared to present higher 
loss of species richness than tropical biomes. Nevertheless, the bi-
omes we considered do not present their original characteristics 
to their full extent, as human activities have greatly modified the 
landscape. Although AET may act as a predictor of biodiversity loss 
at continental scale, anthropogenic factors appear to greatly affect 
natural patterns of change in species richness at local scale, evidenc-
ing the consequences of land- use change. Given that current pat-
terns of biodiversity occur in the Anthropocene, it is mandatory to 
integrate both natural and anthropogenic factors to shed light on the 
processes that shape the large- scale distribution of species.
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