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SUMMARY

A novel technique to estimate gravity wave drag from global-scale analyses is presented. It is based on the
principles of four-dimensional variational data assimilation, using a dynamical model of the middle atmosphere
and its adjoint. The global analyses are treated as observations. A cost function that measures the mismatch
between the model state and observations is defined. The control variables are the components of the three-
dimensional gravity wave drag field, so that minimization of the cost function gives the optimal gravity wave drag
field. The minimization is performed using a conjugate gradient method, with the adjoint model used to calculate
the gradient of the cost function.

In this work, we present the theory behind the new technique and evaluate extensively the ability of the
technique to estimate the gravity wave drag using so-called twin experiments, in which the ‘observations’ are given
by the evolution of the dynamical model with a prescribed gravity wave drag. The results show that the technique
can estimate accurately the prescribed gravity wave drag. When the cost function is suitably defined, there is
good convergence of the minimization scheme under realistic atmospheric conditions. We also show that the cost
function gradient is well approximated taking into account only adiabatic processes. We note some limitations of
the technique for estimating gravity wave drag in tropical regions if satellite temperature measurements are the
only observational information available.
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1. INTRODUCTION

Small-scale gravity waves have profound influence on the general circulation of the
middle atmosphere. They propagate upwards from the troposphere, and give rise to a
convergence of pseudo-momentum flux, or ‘drag’, where they break or dissipate in the
middle atmosphere. The drag is responsible for closing the mesospheric jets and for the
reversal of the mesospheric meridional temperature gradient (e.g. Lindzen 1981); it also
affects the lower stratosphere and upper troposphere (e.g. Palmer et al. 1986), and is
thought to be a significant component of the driving of the quasi-biennial oscillation
(e.g. Lindzen and Holton 1968; Baldwin et al. 2001).

The drag due to gravity waves cannot be measured directly from observations.
However, since the waves produce notable effects in the general circulation, by using
large-scale observations and an inverse method it is possible to infer the gravity wave
drag (GWD) that is producing those effects. This concept has been used by budget
studies, where the residual term in the mean momentum equations is attributed to the
GWD field.

To date, budget studies have been based on either a zonal mean (e.g. Hamilton 1983;
Shine 1989; Marks 1989; Alexander and Rosenlof 2003) or a time mean (Klinker and
Sardeshmukh 1992) of the momentum equations. Thus, they suffer from the limitation
of only giving information on the zonal mean or the time mean of the GWD field, and
in some cases only the zonal component.

A particular motivation for quantifying GWD is the need to represent it in general
circulation models. Small-scale gravity waves cannot be resolved in current general-
circulation models; instead the GWD is taken into account by means of parametrizations
(e.g. Hines 1997; Warner and McIntyre 1996). These parametrizations have improved
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the results of general-circulation models (e.g. Scaife et al. 2002). However, they contain
many simplifying assumptions and tunable parameters. These parameters are chosen
subjectively to give a good representation of the phenomenon that is being modelled.
Given the arbitrariness of this tuning, a set of parameters that allow, for instance, the
characteristics of the quasi-biennial oscillation to be reproduced, may give unrealistic
features in high latitudes. Therefore, there is a current need for observational evidence
on the GWD to help improve parametrization schemes.

There have been some attempts to constrain the parameters using the estimated
GWD from budget studies, but they cannot determine all the parameters since there
are more unknown parameters in the drag schemes than information on the drag field
(Alexander and Rosenlof 2003). Observational knowledge of meridional and zonal
components of the GWD, and their distribution in space and time, can be a key point in
overcoming this difficulty.

In this work, we present a novel technique that uses data assimilation principles
to estimate GWD from observations. The technique is based on four-dimensional
variational assimilation (4D-Var) which allows the representation of the flow evolution
from the initial conditions to the final state keeping information of the whole trajectory.
As a result, in principle, the zonal and meridional components of the GWD field in three-
dimensional space can be determined, including its evolution with time. The estimated
field is the GWD that best reproduces the observed large-scale fields during the model
evolution from the initial time to the final state. In this way, the present technique is
able not only to determine the three-dimensional field of the meridional and zonal
components of the GWD but also avoids another of the problems related to budget
studies: it is able to distinguish between the local and remote GWD that produce
perturbations contributing to the same point at a given time. We apply the technique
to estimating middle atmosphere GWD, since GWD is more significant in the middle
atmosphere than in the troposphere and the implementation is simpler since it does not
require the use of a full tropospheric general-circulation model.

The paper is organized as follows. The next section presents the theoretical details
of the technique. Section 3 explains the practical implementation including a description
of the dynamical model and its adjoint. Then, we present a series of simulations to show
the technique performance, for ideal and realistic flow conditions. Finally, we examine
how the accuracy of the method could be affected by errors in the model radiation
scheme.

2. THEORETICAL BACKGROUND

Variational data assimilation offers an objective way of estimating the initial condi-
tions or other unknown parameters of a numerical model; for an introduction see Errico
(1997). In general, a cost function or ‘model error’ that measures the mismatch between
the observations and the state of the model is defined. In turn, the model state is a
function of the unknown parameters. The cost function is minimized using the unknown
parameters as control variables, and the resulting optimal values of the control variables
give the best estimate of the unknown parameters.

In this study we use a three-dimensional, time-dependent model of the middle
atmosphere, described in section 3(a). The control variables are the components, X,
of the GWD field. As a first approximation, we assume the GWD is independent of time
within the assimilation window. The field is specified directly on the same grid as the
model state; therefore the number of dimensions of the control space is 2N where N is
the number of model grid points.
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We define the cost function by

J = 1

2

n∑

i=1

(H [yi] − xi)
TR−1(H [yi] − xi), (1)

where xi is the model state at time ti , H is the operator that transforms the observed
variables, yi , to the model space and R is a certain matrix, discussed below. The state xi

is given by the model evolution from t0 to ti

xi = M(x0, X, ti), (2)

where x0 is the known initial condition.
Note the model variable xi is not necessarily the same as the observed variable yi ,

since H may represent not only a grid interpolation but also a variable transformation.
For instance, wind can be represented by the velocity field, (u, v), or by the absolute
vorticity and divergence, (f + ζ, δ). Under the hydrostatic balance approximation,
temperatures may be transformed to geopotential height or to pseudo-density.

One difference in the cost function definition (1) from the usual form used in 4D-Var
is that observations are transformed to the model grid and variables rather than the other
way round. This is possible in our case because it does not involve any complicated
inverse modelling (unlike retrieving temperatures from radiances, for example) and
it saves computing time since the observations only need to be transformed once;
the estimated GWD is not significantly affected.

Another difference in the cost function from the usual 4D-Var form is the omission
of a term of the form (X − Xb)

TB−1(X − Xb) measuring the difference between the
drag X and some background or a priori estimate of the drag, Xb. This omission is
equivalent to the assumption that we have a priori perfect ignorance of the GWD
(a reasonable first approximation), so that the background error covariance B is infinite.
In the usual form of 4D-Var, a background term is essential to make the problem well
posed, because there are far fewer pieces of observational information than degrees of
freedom in the control variables. Because in our problem the observations are three-
dimensional global analyses of wind and temperature, the problem is well posed without
the background term. Future work could also include such a background term using a
GWD parametrization, or a climatology produced using the current method, to give Xb.
However, the estimation of B would be very difficult.

We assume that our ignorance of the GWD is much greater than the uncertainty in
the observations, and therefore in the cost function (1) we make no explicit allowance
for errors in the observed data, which is used to define the model initial conditions as
well as the yi . By a suitable choice of the cost function and control variables, we can
make some allowance for the fact that the observed rotational flow is likely to be more
accurate than the observed divergent flow (see section 4).

In the usual 4D-Var, R must be the observation error covariance matrix, so that
minimization of J gives the optimal balance between observational and background
errors. In the absence of the background term, there is considerable freedom to choose
different Rs without affecting the X that minimizes the cost function. We exploit this
freedom to choose R to give good conditioning, and hence fast convergence, of the
minimization algorithm.

Since the initial state is prescribed, the only unknown quantity in (1) and (2) is the
drag vector, X. Therefore, the minimum of the cost function will determine the optimal
drag. The model evolution from t = t0 to tn with the given initial conditions and the
optimal drag minimizes the mismatch between the observations and model state along
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the entire temporal window from t = t0 to tn. In practice, we have used n = 1, i.e. a
single observation time at the end of the assimilation window.

We use a conjugate gradient minimization algorithm which requires at each itera-
tion the gradient of the cost function with respect to the drag. In practice, the gradient
of the cost function is calculated by means of an adjoint model (see section 3(b)).

The rate of convergence depends on the condition number of a certain matrix.
Let M̂i be the tangent linear model corresponding to the model M defined in (2),
linearized about the control case, xc, i.e. the evolution of the model with zero drag.
Then

x′
i = xi − xci ≈ M̂iX. (3)

Representing the true drag by X∗, then, if the model is perfect,

x′∗
i = H [yi] − xci ≈ M̂iX∗. (4)

Substituting in (1) gives

J ≈ 1

2

n∑

i=1

(X − X∗)TM̂T
i R−1M̂i(X − X∗). (5)

It is the condition number of the matrix
n∑

i=1

M̂T
i R−1M̂i

that determines the rate of convergence; a condition number close to 1 gives fast
convergence while a large condition number gives slow convergence. The choice of
which R−1 we use in practice is discussed in sections 3(c) and 4(c).

Like 4D-Var, this drag estimation technique relies on the assumption that the
dependence of the model state xi on the control variables X is approximately linear.
If it is exactly linear, then the cost function is exactly quadratic and the minimization
algorithm converges as theoretically predicted. If the dependence is nonlinear, then
the cost function will not be exactly quadratic and convergence may be impaired.
When the nonlinearity is very strong, the cost function may have multiple minima, and
the minimization algorithm could converge to the wrong one. We will show later that,
for realistic flow field and drag amplitudes and for an assimilation window of one day,
linearity is in fact an excellent approximation.

3. TECHNIQUE IMPLEMENTATION

In this section we discuss the implementation of the technique. We apply the
theoretical ideas developed in the previous section to a specific middle-atmosphere
dynamical model. In particular, the components of the developed system, called ASDE
(Assimilation System for Drag Estimation), are described.

(a) Dynamical model
The dynamical model used in this study models the middle atmosphere from

approximately 100 mb to approximately 0.01 mb. It is based on the fully nonlinear,
hydrostatic primitive equations, with an isentropic vertical coordinate and a hexagonal-
icosahedral horizontal grid (Gregory 1999).
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The hydrostatic primitive equations in isentropic coordinates represented in the
model are

∂tσ + ∇ · (σu) + ∂θ (σ θ̇) = 0, (6)

∂t (σQ) + ∇ · (σQu − k̂ × θ̇ ∂θu) = Xζ , (7)

∂t δ + ∇ ·
[
σQk̂ × u + ∇

(
� + u2

2

)
+ θ̇∂θu

]
= Xδ, (8)

where the model variables are potential vorticity, Q, divergence, δ, and pseudo-density,
σ ≡ ρ∂θz, and ∇ is the horizontal gradient operator. The drag terms are defined by Xζ =
k̂ ·∇ × X and Xδ = ∇ · X. The relation between pseudo-density and the Montgomery
potential � is given by the expressions

∂θp = −gσ (9)

∂θ� = cp

(
p

p0

)κ

, (10)

where p is pressure, p0 = 105 Pa and κ = R/cp.
The model has p = 0 at the top, and a bottom boundary condition near the

tropopause at a potential temperature of θ = 414 K, where a time-dependent observa-
tional Montgomery potential is imposed.

The vertical velocity across isentropes is given by

θ̇ = 
(σ). (11)

A parametrization of the radiative transfer 
(σ) (Shine 1987; Shine and Rickaby 1989)
is used to determine θ̇ . The scheme includes the radiative effects of CO2, O3 and H2O.
The ozone distribution used for the radiation calculation is prescribed using monthly
means from a zonally averaged climatology.

The hexagonal-icosahedral horizontal grid used in this study has 2562 cells that
corresponds to a horizontal resolution of 480 km. There are 16 vertical levels which
lead to a vertical resolution of about 3 km.

(b) Adjoint model
The gradient of the cost function is calculated by integrating the dynamical model

forwards over the assimilation window, then integrating the adjoint of the tangent linear
model, linearized about the forward trajectory, backwards over the assimilation window.

To develop the adjoint model, it is convenient to treat the GWD components as
additional state variables satisfying

∂tX = 0. (12)

The control variables are then the initial values of X, so that this parameter estimation
problem can be treated in exactly the same way as an initial value estimation problem.

Part of the code was developed using the Tangent and Adjoint Module Compiler
(Giering and Kaminski 1998), but some manual intervention was necessary to obtain
efficient codes. The complete forward trajectory is stored in order to evaluate the adjoint
matrix each model time step.

As we are concerned with time-scales of the order of a day, the effects of radiative
processes are not taken into account in the adjoint calculation, i.e. the sensitivity of θ̇ is
neglected. We discuss this point further in section 5.
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Preliminary tests during the adjoint development showed that the original flux-
limited advection schemes of the dynamical model (Thuburn 1996) could impair the
smoothness of the cost function, and hence the convergence of the minimization, due
to the artificial nonlinearities introduced by the flux limiter, which was switched on/off
many times during the evolution (Thuburn and Haine 2001; Vukićević et al. 2001).
Because of this, the flux limiter was removed and the linear version of the advection
scheme and its adjoint were used in this work.

(c) Assimilation details
The minimization is performed by an iterative method; the conjugate gradient

method is used to find the next minimization direction, and in each direction the
secant method is used to estimate the one-dimensional minimum. The conjugate
gradient method offers a good balance between convergence rates and computer
memory requirements for problems with a large number of degrees of freedom (Navon
and Legler 1987). Newton methods have a quicker rate of convergence (quadratic) but
they require storage of the Hessian matrix.

As each minimization iteration is computationally very expensive and the number
of degrees of freedom in the control space is large, an efficient minimization algorithm
is needed. One of the aims of this study is to show that only a few iterations are needed
to achieve an accurate forcing estimation.

The importance of choosing R−1 so that the problem is well conditioned was noted
in section 2. The analysis in the Appendix gives information on the form that M̂ takes,
and hence helps to choose a suitable R−1. On very short times, t � ω−1 (see (A.5)),
and with our choice of control variables, M̂ takes a particularly simple diagonal form;
it follows that the cost function

J = 1

2

n∑

i=0

N∑

k=1

(δik − δ∗
ik)

2 + {σ(θ)}2(Qik − Q∗
ik)

2 (13)

leads to a perfectly conditioned problem under idealized conditions. Here i is the time
index, k is the index on the three-dimensional grid, and σ is the horizontally averaged
pseudo-density. On longer time-scales, under more realistic conditions, the analysis
suggests that the following form, although not perfectly conditioned, should be a good
choice for the relative weights of the three terms and the relative weights of the different
vertical levels:

J = 1

2

n∑

i=0

N∑

k=1

(δik − δ∗
ik)

2 + {σ(θ)}2(Qik − Q∗
ik)

2 + {τσ(θ)}−2(σik − σ ∗
ik)

2. (14)

Here τ is a tunable time-scale; experimentation in realistic conditions showed that a
value τ = 4 × 104 s worked well.

As control variables, we use the curl Xζ and divergence Xδ of the GWD.
This choice is particularly easy to implement in our dynamical model. More impor-
tantly, it provides a separation between the dynamically important Xζ , which forces a
geostrophic growing response in σ and Q on long time-scales, and the less important
Xδ , whose response is a steady ζ and σ anomaly and forced gravity waves. These fields
Xζ and Xδ are specified on the same grid as model prognostic variables. The number
of degrees of freedom in the control space for the standard setting of ASDE is of the
order of 105. Tests were performed in order to assess the dependence of the estimation
on the number of degrees of freedom. Specifically, the components of the drag were
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expressed as truncated series of spherical harmonics and only a limited number of modes
were retained to reduce the number of degrees of freedom and risk of noise. The results
showed that, with the same number of minimization iterations, there were no significant
differences between the large-scale GWD estimated with the full control space and with
the reduced control space. Indeed the estimated drag with the full control space was not
noisy, and it was computationally cheaper since the transformations between grid and
spherical harmonics are avoided.

For the tests reported below, the assimilation window is taken to be τ = 24 h and
the final time is the only observation time. The chosen assimilation window length
is a compromise between frequency of the available analyses which are taken as the
observations and computer resources needed to store the whole forward trajectory. But,
it is also a reasonable scale for GWD variability.

If we want to estimate the GWD for a period longer than a single assimilation
window, the GWD estimations are performed for each successive 24 h assimilation
window. For the first window, the initial conditions are taken from the analyses.
For subsequent windows the initial conditions are taken as the final model state from
the previous assimilation window when the model is run with the best estimate of the
GWD; the optimization ensures that these initial conditions are close to the observations.
This procedure has the advantage that the model state evolves continuously between suc-
cessive assimilation windows, rather than being repeatedly re-initialized. In particular,
the model remains balanced and has a closed angular momentum budget. A potential
disadvantage is that the model could experience a drift (for example in horizontal mean
σ due to radiation errors) which cannot be corrected by the estimated drag. To avoid
such problems we have used this procedure for up to one month at a time, then we
re-initialized the model from observations.

4. IDEALIZED TWIN EXPERIMENTS

In the following sections we describe tests carried out to demonstrate that the
method works, to investigate the validity of some of the approximations and assumptions
made, and to tune some of the choices in the method such as the exact form of the cost
function and the number of conjugate gradient iterations used.

To test the technique we use ‘twin experiments’, in which the same dynamical
model with a prescribed drag is used to calculate the ‘observation’, and then the ASDE
is applied to the ‘observation’ in order to see how well the prescribed drag can be
estimated. For these tests, the model is run for one day from known initial conditions
and with the true GWD specified. The state at 24 h is then taken as the observation.

(a) Estimation of a prescribed analytical GWD
The prescribed GWD is a three-dimensional field with both zonal and meridional

components. It is defined by a three-dimensional Gaussian centred at a latitude of −45◦,
as shown in Fig. 1. The maximum zonal GWD is 15 m s−1day−1 and the maximum
meridional GWD is 7.5 m s−1day−1. Note the chosen intensities are similar to the
zonal intensities inferred from observations using budget studies (Hamilton 1983; Shine
1989).

The evolution of the model is adiabatic, computed starting from rest with an
isothermal atmosphere, T = 250 K, and constant Montgomery potential at the bottom
boundary. From this evolution, we take the model state at t =24 h as the observations
which are also shown in Fig. 1. The flow responds to the drag by producing a westward
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  -4.5    -3.5    -2.5    -1.5    -0.5     0.5     1.5
  

  -4.5    -3.5    -2.5    -1.5    -0.5     0.5     1.5
  

 -0.50  -0.25   0.00   0.25   0.50   0.75
  

 -1.25  -1.00  -0.75  -0.50  -0.25   0.00   0.25   0.50
  

(a) (b)

(c) (d)

Figure 1. Prescribed zonal component of gravity wave drag (m s−1day−1, black contours, solid denoting
positive and dashed negative), and u perturbations (m s−1, white contours and shading) at t = 24 h resulting
from the evolution of the model with the prescribed drag; (a) is a vertical section at 180◦ longitude, and (b) a
horizontal section at 1.9 hPa. (c) and (d) are as (a) and (b), respectively, but showing meridional components and
v perturbations. Transformation to the model grid and variables distorts the drag field slightly; the fields shown

are those actually ‘felt’ by the model.

jet located at the centre of the drag with two eastward jets at the latitudinal extremes and
a meridional circulation in the height–latitude plane.

Then the ASDE is applied to the observations in order to estimate the prescribed
drag. The first-guess drag is set to zero (we assume there is no previous information).
In this first experiment we assume that the three state variables, σ , Q, δ, are observed
and therefore the cost function was defined by (14) with τ = 4 × 104 s.

The convergence of the technique is very good; it was found that 25 minimization
iterations are enough to achieve an accuracy of the order of 1 m s−1day−1 in the drag
estimation. Figure 2 shows the results of the experiment. There is a good agreement
between the estimated and prescribed drag. The intensity and shape of the prescribed
drag are well estimated. The largest errors are in the meridional component, whose
maximum intensity is underestimated by 1.2 m s−1day−1, and its pattern is elongated
towards the South Pole.

The variational method estimate of the drag can be compared with a crude budget-
based estimate given by X ≈ {u(1 day) − u(0)}/1 day. For this idealized test case, the
budget estimate is given by the shading in Fig. 1, reinterpreted as a drag in m s−1day−1.
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(a) (b)

(c) (d)

Figure 2. Estimated (a, b) zonal and (c, d) meridional components of gravity wave drag (GWD, black contours)
and the errors in the GWD estimation (white contours and shading), both m s−1day−1. Sections are as Fig. 1.

There are important differences between the budget estimate and the true drag, not only
in the amplitude but also in the morphology. On the other hand, the adjoint model is able
to trace back these effects and to identify the source of the forcing that produces them
(cf. Figs. 2 and 1).

(b) Convergence of the technique
As already mentioned, the convergence could be affected by two factors. The first is

nonlinearity, which may be produced by the dynamics themselves, especially with long
assimilation intervals or large drag values, or may be generated artificially by numerical
schemes. These nonlinearities may produce departures of J from the quadratic form
or even multiple minima. To assess the influence of nonlinearities, we investigated the
geometry of the cost function along the minimization path. Figure 3 shows the cost
function and its derivative in a typical minimization direction. The cost function was
found to be convex in all the directions. Indeed the derivative of the cost function is
extremely close to linear.

Figure 3 also shows a comparison between the derivative of the cost function
calculated with the adjoint model and that calculated directly by finite differences from
the cost function. The perfect agreement confirms that the adjoint code is calculating the
gradient correctly.
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(a) (b)

Figure 3. Cost function shape at the 10th minimization direction: (a) cost function and (b) derivative of the cost
function, calculated with the adjoint model (solid line) and directly from cost function (dotted line). (There are no
visible differences between the curves). Since the control variables are the curl and divergence of the drag, their

units are s−2.

The second factor that could affect convergence is an anisotropic cost function that
results in a poor conditioning. To investigate the convergence rate, Fig. 4(a) shows the
cost function and root-mean-square errors in the drag components (all normalized to
one initially) versus iteration number. The method is smoothly converging in both the
error in the observational variables and in the control variables. Although the control
space has dimension of order 105, the cost function decreases by a factor more than 102

in just 25 iterations, showing that, with the choice of control variables and R (see (14)),
the problem is well conditioned.

For any given number of iterations, the zonal drag Xx is better estimated than the
meridional drag Xy (Fig. 4(a)). This appears to be because the curl of the drag Xζ is
better estimated than the divergence of the drag Xδ (Fig. 4(b)); note that the zonal mean
of Xx is determined entirely by Xζ , while the zonal mean of Xy is determined entirely
by Xδ . The reason why Xζ is better estimated than Xδ can be found in the perturbations
that these forcings produce: Xζ generates gravity waves and a geostrophic mode, which
changes the mean state, while Xδ generates gravity waves and steady σ and ζ anomalies
(see Appendix). The geostrophic mode keeps a simple, local relationship between Xζ

and Q. However, gravity waves are propagating away and then the relationships between
Xδ and σ become non-local and scale-dependent. This fact affects the conditioning
in the problem of determining Xδ . Besides, some of the generated gravity waves are
dissipated so that the information they contain is lost, and the Xδ forcing them cannot
be recovered by the backwards integration.

(c) Limited observational information
We have shown in the last section that in ideal conditions there is good convergence

of the method towards the true drag. Now we will study some issues related with
incomplete observational information. Particularly, we are concerned with how much
drag information can be obtained with the ASDE if only one or two observational
variables are available. The motivation for examining this is that the main observational
input into middle atmosphere analyses is satellite observations of temperature, so that
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(a) (b)

Figure 4. Error as a function of minimization iteration in (a) normalized cost function (solid), and zonal (dotted)
and meridional (dashed) drag estimation, and in (b) Q (solid), δ (dotted), Xζ (dashed) and Xδ (dash-dotted).

Q errors are weighted with a σ factor as in Eq. (14). See text for definitions.

(a) (b)

Figure 5. Error as a function of minimization iteration in the estimation of (a) zonal drag and (b) meridional
drag, using the methods described in the text.

the unbalanced divergent component of the analysed winds is likely to be less accurate
than the balanced rotational component.

The experiment of section 4(a) was repeated using the following alternative cost
functions: J (Q, δ) given by (13), J (Q, σ ) given by (14) but without the δ term, and
J (u, v) given by

J (u, v) = 1

2

N∑

k=1

{(uk − u∗
k)

2 + (vk − v∗
k )2}. (15)

In all cases the true isothermal resting initial condition is used. Figure 5 shows
the convergence of the root-mean-square errors in the estimated Xx and Xy , compared
with the full case J (σ, Q, δ) given by (14). None of the reduced cost functions perform
as well as the full cost function. Nevertheless, they all do converge towards the same
solution. For the first 10 to 20 iterations, J (Q, δ) performs as well as J (σ, Q, δ), but
converges much more slowly after that. Finally, although J (σ, Q) converges slower than
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the alternatives tested, it does converge, and has the advantage of not using divergence
data, which might be unreliable in practical applications of the method.

Since practical middle atmosphere analyses are dominated by satellite observations
of temperature, with wind information coming via the assumption of thermal wind
balance, we performed two experiments with the cost function J (σ ) given by the
last term in (14) so that it contains only temperature information and no direct wind
information.

The first experiment was the same as that in section 4(a) except for the choice of
the cost function. The results are shown in the left panels in Fig. 6. Both the zonal drag
and the zonal wind itself are well estimated, particularly in the zonal mean. However the
overall errors are worse than the other alternative cost functions (Fig. 5). This reflects
the fact that the rotational component of GWD is well estimated while the divergent
component is not converging. For this cost function J (σ ), we are using only one
observational variable at only one time and therefore the control space has more degrees
of freedom than the observational space. Therefore we should not expect to be able to
determine both components of GWD.

The second experiment was similar to the first except the prescribed ‘true’ drag was
centred on the equator. The results are shown in the right panels of Fig. 6. In this case
the assimilation procedure does not converge to the correct values of either component
of the GWD, or the wind (see Fig. 6(f)).

In theory, the perturbation to the control state produced by a drag component, say
Xζ , will generate a perturbation in Q which will induce a perturbation in the other state
variables, δ and σ . Therefore, the drag Xζ may be determined using observations of, for
instance, σ alone at several times within the assimilation window. However, the linear
dynamical equations are decoupled near the equator, where f → 0. In this simplified
case, a perturbation in Q may not induce a related perturbation in σ at all, as seen in the
solution (A.7)–(A.9), and so we cannot obtain information on the drag by observing σ .

5. TWIN EXPERIMENTS IN REALISTIC CONDITIONS

(a) Real initial conditions
So far, the study was kept as simple as possible to focus on the theoretical

points of the technique. In this section we will assess what happens under realistic
conditions. The first set of experiments deals with realistic initial conditions and realistic
bottom-boundary forcing at θB = 414 K, both taken from Met Office/Upper Atmosphere
Research Satellite analyses (Swinbank and O’Neill 1994). Therefore the model is
evolving as a realistic simulation except that radiative heating is still zero, and we
have added the same prescribed forcing as in the idealized experiments. Note in this
case that the simulations will have a variety of waves produced by the boundary
forcing and internally generated motions that are propagating upwards together with
the perturbations forced by the GWD, which may interact nonlinearly.

In order to examine the technique in strong wind and shear conditions, we have
chosen the initial condition at 1 July 2002 where a very strong jet and also high planetary
wave activity are present at the altitude of the GWD (see contours in Fig. 7). In these
conditions there are interactions between the response to the GWD and the evolution of
the control case. Indeed, the response of the system to the GWD has changed radically
compared to the case starting from rest. Figure 7 shows the difference of the observed
wind and the control wind (evolution without drag) at 24 h. Both the intensity and the
pattern have changed because of interactions between the control flow and the forcing
response. (Compare the shading in Fig. 7 to the shading in Fig. 1.)
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Figure 6. Estimation of gravity wave drag (GWD) using pseudo-density as the observed variable. Black contours
(dashed values negative) are estimated fields and white contours with shading are the errors in the estimation (both
m s−1day−1). (a) and (b) show estimated zonal GWD and its errors at 1.9 hPa, (c) and (d) show estimated zonal
mean zonal GWD and its errors at 180◦ longitude, and (e) and (f) show zonal mean zonal wind perturbation and
its errors at 180◦ longitude. (a), (c) and (e) show the case with GWD centred at −45◦, and (b), (d) and (f) the case

with GWD centred at the equator.
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Figure 7. ‘Observed’ (a, b) zonal and (c, d) meridional winds (m s−1) evolved from realistic initial conditions
(black contours), and the difference between the true evolution and the control run (white contours with shading).

(a) and (c) are vertical sections at 180◦ longitude, and (b) and (d) are horizontal sections at 1.9 hPa.

Despite these notable differences in the response, the technique can capture the
GWD field as shown in Fig. 8 using the cost function defined in (14) with 25 minimiza-
tion iterations. This effective estimation is due to the adjoint model; it can trace back
along the trajectory and identify the right place where the source or sink of momentum
is occurring, even when the effects of this forcing are being advected and deformed
by the mean flow. As in the idealized cases, the technique can estimate the true drag.
However it takes more iterations to achieve the same accuracy; in Fig. 8 errors are larger
than Fig. 2 using the same number of minimization iterations. This happens because the
realistic flow conditions lead to a more complex relationship between the drag field and
the response to the drag, particularly involving advection and shear by the control flow.
Consequently the system is less well conditioned than in the idealized case.

Diagnostics like that shown in Fig. 4 (see Fig. 9) show that, even in realistic flow
conditions, the sensitivity of the model state to the drag remains linear to an excellent
approximation. Thus, nonlinearity is not a limitation of the technique.

(b) Radiation
The adjoint model only represents the adiabatic processes. There are two

reasons which lead us to approximate the gradient of the cost function in this way.
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Figure 8. Estimated (a, b) zonal and (c, d) meridional gravity wave drag in realistic flow conditions (black
contours) and errors in the estimation (white contours with shading), both m s−1day−1. (a) and (c) are vertical

sections at 180◦ longitude, and (b) and (d) are horizontal sections at 1.9 hPa.

Firstly, the length of the assimilation window is much smaller than the radiative
time-scale. Hence, the cost function must have only small sensitivity to radiative pro-
cesses on this time-scale. The second reason is a practical one; the large number of
operations that would be needed to calculate the adjoint of radiative processes would
require much more computational resources, which could restrict the application of the
technique.

The proposed alternative to avoid this limitation is to use a hybrid method, where
the radiation processes are only taken into account in the forward model within the
assimilation module to calculate the trajectory and initial conditions of the backward
integration. In this case, if the dynamical gradient of the cost function is a good
approximation to the full one, the ASDE should converge towards the true solution.
Note this approximation does not change the solution, i.e. the optimal wave drag that
minimizes J ; it may only influence the convergence process. Such hybrid methods, in
which the cost function gradient is approximated without using the full exact adjoint of
the nonlinear forward model, are often used for data assimilation (Lawless et al. 2003
and references therein).

The experiment of section 5(a) was repeated, this time including θ̇ calculated
using the radiative scheme, both in the ‘truth’ integration and in the ASDE forward
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(a) (b)

Figure 9. Performance of the technique with radiative processes: (a) is as Fig. 4(a), and (b) is as Fig. 3(b) in one
particular search direction. In (b), note the slight differences between the exact derivative and the approximated

one; these differences do not produce a change in the root.

integrations, but neglecting the sensitivity of θ̇ in the adjoint calculations. This hybrid
method presented very good convergence rates, as shown in Fig. 9(a). For all the
iterations, the cost function diminishes and so does the error in the drag estimation.
The reason for this success is that the sensitivity of σ to θ̇ and sensitivity of θ̇ to σ are
both small on the assimilation timescale. Therefore sensitivity of σ to σ , via radiation,
is tiny. Furthermore, as seen in Fig. 9(b), the effects of radiative processes make no
noticeable change in the root of the derivative, which is the same as the one calculated
with the hybrid method. This feature is found in all the search directions.

6. ESTIMATION WITH A NON-PERFECT RADIATIVE SCHEME

So far we have been working with a perfect model, and therefore all the differences
between the observations and the control state were produced by the GWD. However, in
reality there may be differences that are not produced by the drag but by other physical
processes that are not perfectly represented in the numerical model, notably radiative
processes. In this case ASDE will interpret the mismatch as coming from a GWD and
will try to estimate a drag that minimizes those differences, leading to errors in the
estimated drag.

To investigate the errors in the estimated drag that could result from errors in
the model radiation scheme, we carried out a twin experiment in which the truth is
calculated taking into account radiative processes via the standard radiative scheme,
while in the ASDE system all radiative heating rates were multiplied by 1.2 to simulate
a 20% bias. Since the initial state is far from equilibrium, the radiative heating rates, and
hence the imposed errors, are actually very large.

The errors in the estimated drag are dominated by the radiation errors. Figure 10
shows the errors in the estimated GWD. The errors are largest in the mesosphere, where
the radiative heating bias leads to biggest errors in σ and Q (not shown). These values
scale almost linearly with the radiation errors, so they give an idea of the magnitude of
drag errors that can be expected for a given radiation error.

Other tests have shown what happens if the ASDE system has a global-scale
radiation error of one sign, localized in the vertical. It leads to a global-scale bias in σ
and hence Q in the control integration. When the cost function involves Q, the system
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Figure 10. Zonally averaged fields of (a) zonal and (b) meridional gravity wave drag for the overestimated
radiation simulation. Black contours show estimated GWD, and white contours with shading show the errors in

the estimation (both m s−1day−1).

tries to reduce Q errors by moving air polewards or equatorwards. The estimated drag
thus contains a global-scale poleward or equatorward meridional component localized
in the vertical (similar patterns are also visible in Fig. 10). This error is entirely found in
the divergent component of the drag, not in the rotational component. The characteristic,
and unrealistic, pattern of drag makes such radiation errors quite easy to identify in
practice, and indeed has helped to identify and correct errors in the bottom-boundary
upward radiative fluxes used in the model.

7. CONCLUSIONS

Twin experiments have shown that a technique based on variational data assimi-
lation can be used to estimate gravity wave drag from a time series of global middle
atmosphere data. The technique does not rely on zonal averages or long time averages,
and so is able to estimate the three-dimensional distribution of both zonal and meridional
drag components and their day-to-day variations.

The technique is computationally affordable. First, for an assimilation window of
one day and for realistic drag amplitudes, the dependence of the model state on the
drag is linear to an excellent approximation. Second, for a suitable choice of control
variables and cost function, the minimization problem is well conditioned. These two
factors mean that, for practical purposes, the iterative minimization converges in about
10 iterations for resting initial conditions, or about 20 iterations for strong realistic
winds, with errors in the estimated drag of order 1 m s−1day−1. This degree of accuracy
would certainly give useful information in the mesosphere and upper stratosphere, where
drag amplitudes are large; in the lower stratosphere, particularly in the quasi-biennial
oscillation region where drag amplitudes are much smaller, more iterations might be
needed, along with an average over several assimilation windows to improve ‘signal-to-
noise’, even if the observed data are sufficiently accurate.

To account for radiative processes we use a hybrid method, which considers
radiative processes in the forward model evolution but neglects their effects in the
adjoint model evolution. This approximation to the adjoint model gives an approximate
directional gradient of the cost function that is very close to the exact gradient, and a
zero of the directional gradient that is extremely close to the exact zero.
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The technique can give useful information even with observations of only one
variable. In particular, a series of experiments was performed where only pseudo-
density, which contains only temperature information, was the observed variable.
It was shown that there is a reasonable convergence of the rotational GWD component
for midlatitudes. However, in the tropics the pseudo-density conservation equation is
almost uncoupled from the momentum equations, so pseudo-density contains almost no
information on the momentum forcing.

For a given number of iterations, the rotational component of the drag is found
to be better estimated than the divergent component, even with perfect observations.
This result can be understood in terms of the relationship between the drag and the
flow response, affecting the conditioning of the two parts of the estimation problem,
and in terms of the information lost as large-scale gravity waves forced by the drag
propagate away and are dissipated. Moreover, errors in model radiation tend to manifest
themselves as errors in the divergent component of the drag. For practical purposes it is
most important that the rotational component of the drag be well estimated, since even
a transient rotational drag will produce a long-term response in the balanced, rotational
part of the flow, whereas a transient divergent drag will produce only a transient large-
scale gravity wave response.

This paper has focused on the description and technical aspects of the new tech-
nique. A second part will apply the technique to estimate gravity wave drag from Met
Office analyses, and discuss the additional sources of error that arise when using the
technique with real-world data.

APPENDIX

Linear response to the gravity wave drag
The knowledge of the response to the forcing may give valuable information to

obtain an optimal estimation of the real GWD. The determination of a suitable R matrix
to get a well-conditioned minimization problem, and the choice of best variables to
observe, depend on the characteristics of the solution.

The adjustment of the atmosphere to external forcing has been extensively studied
in the literature (e.g. Blumen 1972; Zhu and Holton 1987; Weglarz and Lin 1998).
As has already been noted, the analysis of the problem is clearer using the vorticity
and divergence equations, therefore the equations of the dynamical model we use,
(6)–(8), are especially suitable for this study. We assume an isothermal background state
on an f -plane. Linearizing about a state of rest gives

{(∂2
tt + f 2)H + ∇2}∂t (σ

−1σ ′) = −H(∂tXδ + fXζ ) (A.1)

{(∂2
tt + f 2)H + ∇2}∂tζ

′ = ∇2Xζ + H(∂2
ttXζ − f ∂tXδ) (A.2)

{(∂2
tt + f 2)H + ∇2}δ′ = H(∂tXδ + fXζ ), (A.3)

where H = (gσ)−1∂θ(ρθ∂θ ).
The solution can be expressed in Fourier components with the fields given by

(σ ′/σ , ζ ′, δ′) = {σ̂ (t)/σ , ζ̂ (t), δ̂(t)} exp{i(kx + ly) + (1/2H + im)z}. (A.4)

The solutions of the homogeneous equations are free inertia–gravity waves which
satisfy the dispersion relationship

ω2 = f 2 + (k2 + l2)N2

(1/4H 2) + m2
(A.5)

and a geostrophic mode of frequency, ω = 0.
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Expressing the forcing in Fourier components

(X′
δ, X′

ζ ) = (X̂δ, X̂ζ ) exp{i(kx + ly) + (1/2H + im)z}, (A.6)

the forced solution is

σ̂

σ
= − f

ω2
X̂ζ t − X̂δ

ω2
{1 − cos(ωt)} + f

ω3
X̂ζ sin(ωt), (A.7)

δ̂ = f X̂ζ

ω2
{1 − cos(ωt)} + X̂δ

ω
sin(ωt), (A.8)

ζ̂ =
(

1 − f 2

ω2

)
X̂ζ t − f X̂δ

ω2
{1 − cos(ωt)} + f 2

ω3
X̂ζ sin(ωt). (A.9)

The potential vorticity perturbation is given by Q′ = (ζ ′ − f σ ′)/σ , and using (A.7)
and (A.9) we find

Q′ = Xζ t/σ . (A.10)

The forcing in the vorticity equation produces a geostrophically balanced growing
anomaly in Q, ζ and σ , along with some inertia–gravity waves. The forcing in the
divergence equation produces steady ζ and σ anomalies along with some inertia–gravity
waves. Note, in particular, that Q is affected only by Xζ , not Xδ .

On very short time-scales, ωt � 1, we find

σ ′ = 0, (A.11)

ζ ′ = Xζ t, (A.12)

δ′ = Xδt. (A.13)

In this case the response to the forcing is particularly simple; it is local to the forcing
and independent of the spatial scale of the forcing. This allows the matrix M̂ to be
written down explicitly.
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