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Abstract. We present a bi-orthogonal decomposition of the temporal and latitudinal distribution of
solar magnetic fields from synoptic magnetograms. Results are compared with a similar decomposi-
tion of the distribution of sunspots since 1874. We show that the butterfly diagrams can be interpreted
as the result of approximately constant amplitudes and phases of two oscillations with periods close
to 22 years. A clear periodicity of 7 years can also be identified in the most energetic modes of
both spatio-temporal series. These results can be used to obtain relevant information concerning the
physics of the solar dynamo.

1. Introduction

One of the most impressive features in solar physics is the cyclic behavior of the
Sun. The number of sunspots varies with a period close to 11 years. The record
of sunspot numbers is the only data set related to the solar magnetic field that
reaches back to 1700, and is one of the longest and oldest systematic records in
the history of astronomy. However, it was not until 1843 that the 11-year cycle was
discovered (Schwabe, 1843). Five years later, Wolf introduced the modern criteria
used to measure the sunspot number, and the amount of information on the solar
cycle grew steadily since then.

The observational discoveries of Hale’s law (Hale, 1908) and the reversal of
the polar magnetic field (Babcock, 1961), led to the conclusion that the sunspot
cycle is just one of the outcomes of the roughly periodic behavior of the Sun’s
magnetic field, with a mean period of 22 years. This magnetic field observed at
the solar surface is believed to be produced by a dynamo process operating in
the solar interior. According to dynamo theories, the number of sunspots and its
spatial distribution are in phase with the strong toroidal magnetic field in the solar
interior (Stix, 1976), nowadays believed to be located at the base of the convective
region. Both linear (Hoyng, 1993) and nonlinear models (Dikpati and Charbon-
neau, 1999; Mininni and Gómez, 2002) are used to explain the observed dynamics.
Although current dynamo models are able to explain the periodic behavior of solar
magnetic fields, their agreement with observations relies on assumptions which are
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not clearly understood, such as those invoked by mean field (Krause and Radler,
1980) or Babcock–Leighton dynamos (Dikpati and Charbonneau, 1999). Other
hypotheses, such as the location of the source of poloidal field, are still a matter of
debate (Nordlund et al., 1992). Recently, it has been shown that Babcock–Leighton
models with a source term near the surface lead to solutions with the wrong equat-
orial symmetry (Dikpati and Gilman, 2001). Also, the nature of the mechanism
responsible for the saturation of the dynamo is ill understood, and several models
exist using different mechanisms.

A closer inspection of the sunspot time series shows that it is not exactly peri-
odic, displaying fluctuations both in its frequency and in the extent and intensity of
its maxima. The sunspot number varies as much as 100% from cycle to cycle, while
the period displays fluctuations within the range from 9 to 13 years. The origin of
these irregularities is still unclear, and has become one of the most actively debated
problems in solar physics. While dynamo models explain the mean properties of
the solar cycle reasonably well, the nature of the irregularities remains essentially
unknown. Broadly speaking, two rather different mechanisms have been invoked
in the literature to account for these irregularities: chaos and stochasticity. In the
chaotic scenario, the equations give a deterministic rule of evolution with complex
dynamics (Zeldovich, Ruzmaikin, and Sokoloff, 1983; Knobloch and Landsberg,
1995). As an alternative approach, the scenario of a stochastically driven solar
dynamo has been studied in a number of papers (Choudhuri, 1992; Hoyng, 1993).
In these models, the random forcing is the end result of the stochasticity underly-
ing the magnetic eruption which generates the spots. It is of course important to
determine what types of mechanisms are responsible for the observed complexity,
especially because several qualitative aspects of the system seem to be reproduced
with either stochastic or deterministic approaches. Searches for signatures of a low-
dimensional chaotic attractor in the sunspot time series are not conclusive, due to
insufficient number of data (Carbonell, Oliver, and Ballester, 1994). Also, recent
studies have shown that the standard algorithms used to search for signatures of
a low-dimensional chaotic attractor in time series can lead to spurious conver-
gence when applied to limited time-series (Paluš and Novotná, 2002). However,
little effort has been done on the analysis of the spatio-temporal data. In a recent
paper (Mininni, Gómez, and Mindlin, 2002), a first analysis of the bi-orthogonal
decomposition (BOD) of the latitudinal and temporal distribution of the sunspots
was made. The results obtained proved useful to make quantitative comparisons
with theoretical models. Also, a detailed analysis of these results showed that the
irregularities in the solar cycle are the result of the superposition of two con-
stant amplitude and phase oscillations on a stochastic background, and are not a
manifestation of low-dimensional chaos. It seems apparent that BOD studies yield
valuable information on the physical mechanisms acting on the solar cycle, which
can in turn be essential to address some of the open questions in the field.

In order to relate sunspot data with magnetic fields, some hypotheses are re-
quired. Therefore, in the present work we extend the previous analysis to the
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latitudinal and temporal distribution of magnetic fields from solar magnetograms.
The spatio-temporal distribution of sunspots (Gokhale et al., 1992) or magnetic
fields (Stenflo and Voguel, 1986) have so far been used to search for dispersion
relations, but not to characterize the complexity of these datasets. Also, in spite of
the limited time span covered by magnetograms, previous decompositions (Stenflo
and Voguel, 1986; Gokhale et al., 1992) have been carried out using Fourier or
spherical harmonic expansions. The bi-orthogonal decomposition has the major ad-
vantage of being linearly optimal, since modes are ordered by their energies rather
than by their wave numbers. This property facilitates the identification of the most
important modes for the dynamics. Relevant information concerning periodicities
and nonlinearities is obtained from the analysis of the decomposition. Also, the
results are in good agreement with the results presented in Mininni, Gómez, and
Mindlin (2002), and therefore bring a strong confidence to our previous results and
to the stochastic scenario. In Section 2 we present the different sets used to perform
the analysis. In Section 3 we make a brief description of the statistical tool used to
decompose the data. Section 4 shows the results obtained and Section 5 lists the
main conclusions of this work.

2. The Data

To compute a bi-orthogonal decomposition of the latitudinal and temporal distri-
bution of magnetic fields (dataset M), we have used synoptic maps obtained by the
National Solar Observatory at Kitt Peak (NSO/KP) (see ftp://argo.tuc.noao.edu/
kpvt/synoptic/README). The maps consist of rectangular arrays built from daily
full-disk line-of-sight magnetograms using a triangular weighted integration. The
result of this procedure is arranged in an array from right to left (west to east) as
time evolves. The arrays have a 360 × 180 pixels format. Each pixel in the hori-
zontal direction corresponds to a heliographic longitude of 1◦, while in the vertical
direction they correspond to the sinus of the latitude in heliographic coordinates.
Therefore, each map corresponds to a time span of one Carrington rotation. Each
pixel contains the time and space averaged magnetic flux per unit surface cross-
ing the photosphere at a given position on the Sun. Projection effects are taken
into account by correcting the flux according to the real solar area covered by
a particular pixel and by assuming that the photospheric field is radial. Figure 1
shows a magnetic field butterfly built by averaging in longitude (at each latitude)
all the synoptic maps from June 1975 to December 2000. The averaged magnetic
field values are arranged in a rectangular array in which the horizontal direction
corresponds to time and the vertical direction to the sinus of the latitude.

To obtain information of long temporal trends, we also used the Wolf number
data as measured by the Royal Greenwich Observatory (RGO), starting in May
1874 (dataset W). Although this observatory discontinued the data set in 1976,
the Solar Optical Observing Network (SOON) and the US National Oceanic and
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Figure 1. Magnetic butterfly obtained from Kit Peak synoptic maps (dataset M).

Figure 2. Inferred magnetic butterfly from sunspot data (dataset W).

Atmospheric Administration (NOAA) continued compiling the data in a format
consistent with RGO standards. Hereafter we will regard this set of data as the RGO
data set. This data set includes not only the information of number of sunspots, but
also of their sizes and position on the solar disc. The data plotted in the butterfly
diagram is the result of computing the area covered by sunspots in strips of constant
projected area aligned in latitude. In order to build a spatio-temporal series able to
serve as a proxy of the toroidal magnetic field (see Figure 2), the sunspot data
were processed to explicitly show magnetic field reversals (Mininni, Gómez, and
Mindlin, 2002). A similar process to obtain a proxy of magnetic fields from sunspot
data has been previously used by Gokhale et al. (1992).

Several features of these butterfly diagrams are striking: the absence of sunspots
at high latitudes, and the equator-ward drift of the sunspot distribution as the cycle
evolves. Note that the latitudinal distribution of sunspots is not exactly periodic,
and that north–south asymmetries can also be identified. At solar minima, spots
from the new cycle are born at mid-latitudes, while spots from the preceding cycle
are still present near the equator.

Note that although both datasets provide information concerning the cycle of
solar activity, they are obtained with rather different instruments and techniques
and are quite independent from one another. On one hand, the data obtained from
solar magnetograms yield information about the complete spatial distribution of
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magnetic fields with a relatively short time span (only one complete magnetic
cycle). On the other hand, the sunspot areas provide information about the latitudes
where sunspots are observed, with a much longer time span.

3. Bi-orthogonal Decomposition

The bi-orthogonal decomposition (BOD) was independently proposed by Kosambi
(1943), Loève (1945), and Karhunen (1946) as an appropriate space–time decom-
position of regular and complex phenomena. This tool consists of decomposing a
spatio-temporal signal into an orthogonal set of temporal and spatial modes, with a
view to extracting dominant features and trends from the dataset. These empirical
modes are in general coupled to one another, and are eigenvectors of a linear oper-
ator obtained from the data. The BOD has been used to study different phenomena
in several disciplines, such as image processing (Rosenfeld and Kak, 1982), data
compression (Andrews, Davies, and Schwartz, 1967), signal analysis (Algazi and
Sakrison, 1969), random variables (Papoulis, 1965) or oceanography (Preisen-
dorfer, 1988). To our knowledge, it has been applied to astrophysical datasets only
very recently (Carbone et al., 2002; Mininni, Gómez, and Mindlin, 2002).

One of the most interesting features of this decomposition is optimality, in the
sense that it provides the most efficient way of capturing the dominant components
of infinite-dimensional processes with only a few modes. This optimality results
from the fact that the empirical modes are ordered by their energies rather than
by their wavenumbers (Holmes, Lumley, and Berkooz, 1996). When applied to
turbulent flows, the BOD provides a representation for the mean and fluctuating
velocity fields, and the corresponding modes can be related to two-point velocity
correlations (Pope, 2000). In this sense, the modes that we obtain yield relevant
information for closures of the dynamo equation.

Given a spatio-temporal (and in general complex valued) signal u(x, t), where
x ∈ X and t ∈ T are respectively the space and time variables, we can define a
linear operator U : H(X) → H(T ) such that

∀ φ ∈ H(X) (Uφ)(t) =
∫

X

u(x, t)φ(x) dx , (1)

where H is a linear Hilbert space with the standard inner product. The adjoint
operator U ∗ : H(T ) → H(X) is given by

∀ ψ ∈ H(T ) (U ∗ψ)(x) =
∫

T

u(x, t)ψ(t) dt , (2)

where the overbar denotes a complex conjugate operation. Assuming that U is a
compact operator, its spectrum consists of a denumerable set of singular points and
the signal u(x, t) can be written as
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u(x, t) =
∞∑

k=1

αkφk(x)ψk(t) , (3)

where αk, φk and ψk are elements of the spectral decomposition of the operator U .
More specifically, they are solutions of the eigenvalue problem given by

(U ∗Uφk)(x) = α2
kφk(x), (4)

(UU ∗ψk)(t) = α2
kψk(t). (5)

The square values of the eigenvalues αk, k = 1, . . . ,∞ are known as the ‘ener-
gies’ of the corresponding modes and satisfy the conditions α1 ≥ α2 ≥ · · · > 0,
limk→∞ αk = 0. The spatial eigenfunctions φk, k = 1, . . . ,∞ are termed ‘topos’
and are mutually orthogonal, i.e. (φk, φl) = δk,l. In turn, the temporal eigenfunc-
tions ψk, k = 1, . . . ,∞ are known as ‘chronos’, and also satisfy the orthogonality
conditions (ψk, ψl) = δk,l. The series of Equation (3) is convergent in norm.

The series shown in Equation (3) represents the BOD of the signal u(x, t). Two
particular examples of this decomposition are the well known two dimensional
Fourier decomposition and the proper orthogonal decomposition used in probab-
ility theory (Holmes, Lumley, and Berkooz, 1996). Let us assume that the matrix
Uij (i = 1, 2, 3, . . . , NX; j = 1, 2, 3, . . . , NT ) stores the area of the sunspots for
different latitudes and times. That is to say, i labels the NX latitude bins and j labels
the NT Carrington rotations available in the data set (the same procedure is applied
to the data from synoptic maps). In both datasets NT � NX. Then the matrix
U ∗U is computed, where the asterisk denotes transposed and conjugated matrix.
Eigenvalues and eigenvectors of U ∗U are obtained (note that this is a relatively
small problem involving only a NX × NX matrix). From Equation (4) it follows
that the eigenvalues obtained are the energies α2

k (here k labels the ordering, from
larger to smaller), while the eigenvectors are the empirical modes denoted in the
continuum case as φk(X). Therefore, for the discrete data set the topos are NX

vectors of NX components each.
The chronos in Equation (5) could be obtained in the same way by solving

the eigenvalue problem for the matrix UU ∗. However, this is a larger matrix with
NT × NT elements. Instead, Equation (1) can be used. Therefore, the NX vectors
with NT elements representing the chronos are obtained after multiplying the row
vectors of the topos with the matrix U , except for a normalization factor.

In summary, when dealing with a finite and discrete dataset, the sum in Equa-
tion (3) will run up to a finite number. Also, Equations (4) and (5) reduce to a
spectral problem for the square matrices UU ∗ ∈ NT × NT and U ∗U ∈ NX × NX.
For instance, the spatial eigenvectors of U ∗U ∈ NX × NX can be interpreted as
the principal axes of the cloud of data points u(x, tj ), j = 1, . . . , NT in the NX-
dimensional vector space. Our goal in this paper is to perform the BOD of dataset
M and compare it with results from dataset W, to extract useful information on the
solar magnetic cycle.
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Figure 3. Reconstruction of datasets M and W.

4. Data Analysis

In Figure 3(a) we show butterfly patterns reconstructed using the first 5 modes of
the bi-orthogonal decomposition of dataset M. These modes remarkably describe
the mean properties of the solar cycle. Several features observed in the solar but-
terfly diagram can also be identified in this truncated version, such as the absence
of sunspots at high latitudes, and the equator-ward drift of the sunspot distribution.
These modes alone comprise the 80.6% of the total energy of the system, where
the energy of each mode k is defined as the square of its amplitude αk. On the
other hand, the first two modes contain 63.24% of the total energy. However, when
reconstructing the diagrams with the first two modes, the main features of the solar
cycle can be still identified.

When considering dataset W, only the first two modes (with 84.4% of the en-
ergy) are needed to reconstruct the magnetic butterfly diagram (see Figure 3(b)).
The BOD is a statistical tool, and as a result the quality of the decomposition is
dependent on the length of the dataset. Therefore, the dispersion of the energy in
several modes in case M can be expected since the dataset only covers one complete
magnetic cycle.

The first topo of decomposition M has a strong component related with the
dynamics of the magnetic fields at the poles (see Figure 4(a)). Its energy is about
45% of the total energy of the decomposition. Also, weaker features at intermediate
latitudes can be identified. This strong polar intensity is not present in decom-
position W, since this dataset provides no information about the dynamics near
the poles. However, note that the intensity at the poles in dataset M is strongly
enhanced during the process of building the butterfly diagram, as a result of the
relatively weak fluctuations observed in the poles. Therefore, the mean value over
a Carrington rotation strongly increases its energy. This can be verified when con-
sidering the absolute value of the magnetic fields, since in that case the intensity
is much smaller. We therefore consider this strong distribution of magnetic fields
in the polar regions as an artifact, and as a consequence will skip this mode when
comparing with dataset W.

As previously discussed, topos from dataset W show no dynamics in the poles
(Figure 4(b)). This is an expected result, since the data are related with the sunspot
areas. However, out of the polar regions, topos 1 and 2 from dataset W coincide
qualitatively with topos 2 and 3 from dataset M. Note that these are the modes
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Figure 4. First topos for decompositions M and W.

Figure 5. Chronos for decompositions M and W.

which correspond to activity at mid-latitudes, and can therefore be compared with
information from dataset W. The chronos associated with these first topos (dataset
M, see Figure 5(a)) show an almost constant phase shift. When one of the chronos
is about to change sign, the other is near a maximum or minimum.

This behavior is also observed in dataset W (see Figure 5(b)), where we observe
the two first topos to display a 22-year cycle and a constant phase shift. Therefore,
the butterfly diagrams could be interpreted as the result of the approximately con-
stant amplitudes and phases of two odd oscillations with periods close to 22 years.
The alternation between the maxima of each mode gives rise to the migration of
magnetic activity towards the equator and therefore to the butterfly diagrams. Here
resides the major advantage of the bi-orthogonal decomposition: the modes are
ordered by their energies rather than by their wave numbers, thus allowing the
identification of the most important modes for the dynamics. The rest of the modes
have amplitudes which are much smaller than these first two.

Figure 6 shows the power spectra of the chronos corresponding to the first
modes of decomposition M. In these first modes, a periodicity close to 7 years
can be seen, which has also been reported by Bracewell (1985) for the Wolf time
series. As we discuss below, this periodicity suggests the presence of a nonlinear
deterministic oscillation driving the first two modes. Apart from the power ridge in
the frequency band close to 7 years, no other spectral features can be observed.

Essentially the same features (a strong peak near 22 years) can be identified
in the spectra of the chronos corresponding to dataset W (see Figure 7). Also, a
weak peak close to 4 years can be observed. The strong peak close to 7 years
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Figure 6. Spectrum of the chronos for decomposition M.

Figure 7. Spectrum of the time traces of decomposition W.

observed in both datasets gives strong confidence to this result. In a previous
paper (Mininni, Gómez, and Mindlin, 2002), it was shown that this peak (and
also the 4 years periodicity) can be generated from beating considering an odd
nonlinearity in the deterministic equations governing the system (see also Landau,
1976). For instance, a cubic nonlinearity in the dynamo equations would cause that
an initially harmonic solution with frequency ω (corresponding to a period of 22
years) develops a peak at a frequency 3ω (Bracewell, 1985; Mininni and Gómez,
2003). As a result, the initial harmonic solution develops an asymmetry in its time
evolution, with a fast increase and a slow decay, as observed in the sunspot time
series (Mininni, Gómez, and Mindlin, 2000). Note that these results are compatible
with the commonly used expression for α-quenching (Dikpati and Charbonneau,
1999) of the form α(B) = α0B/(1 + B2) ≈ α0(B − B3).

The spectra corresponding to the remaining chronos show no clear features
whatsoever. Moreover, autocorrelation tests for decomposition W suggest that it
has no correlation at 22 years or at its harmonics, and therefore it seems to be just
noise. For the chronos corresponding to the first two modes of both datasets (see
Figures 8 and 9), the autocorrelation coefficients show positive correlation in the
time lag equal to zero, and negative correlations in time lags approximately equal
to ±11 years. Modes 1 and 2 from dataset W also show positive correlation at time
lags close to ±22 years. On the other hand, the autocorrelation of the remaining
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Figure 8. Auto-correlation for the first modes of decomposition M.

Figure 9. Auto-correlation for the first modes of decomposition W.

chronos fall immediately below 0.2, which implies a strong irregular component in
these time series. This effect can be observed in both the spectra and autocorrela-
tion coefficients of any of these chronos. Note that the first mode of dataset M also
shows a strong periodicity of 1 year. This is a spurious effect caused by the rotation
of the Earth. Since the magnetic axis of the Sun is not exactly perpendicular to the
ecliptic, the projection of the poles contribution modulates the amplitude observed
in the magnetograms.

In the decomposition of the magnetic butterflies (i.e., dataset M), 72.7% of the
total energy is comprised in modes which are antisymmetric with respect to the
equator. The first two modes contain 63.2% of the energy, and are antisymmetric.
On the other hand, in the decomposition obtained from the sunspot area (dataset
W), the first two modes contain 84.4% of the total energy, and all antisymmet-
ric modes together retain 90.4% of the energy. Since the BOD is essentially a
statistical decomposition, the bigger dispersion of the energy in the decompos-
ition of the magnetic butterflies can be associated with the fact that only one
cycle is available for the analysis. Therefore, the solar magnetic field shows a
strong equatorial anti-symmetry, which also means that the sunspot distribution is
nearly symmetric. Only a weak departure from this behavior have been measured
in both datasets. Recently, it was shown that some Babcock–Leighton models tend
to develop equatorially symmetric modes when the equations are solved in both
hemispheres (Dikpati and Gilman, 2001). Therefore, the degree of deviation from
this symmetry (or anti-symmetry) is another property that can be used to validate
or refute theoretical models.

5. Discussion

We present a bi-orthogonal decomposition of the temporal and latitudinal distri-
bution of solar magnetic field intensities derived from Kitt Peak magnetograms.
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These results are compared with a similar decomposition of the distribution of
sunspots areas collected by the Royal Greenwich Observatory since 1874. A clear
periodicity of 7 years can be identified in the most energetic modes of both spatio-
temporal series. Also, a strong periodicity at 22 years and a much weaker period-
icity close to 4 years can be observed in the modes from the distribution of sunspots
areas. The period of about 7 years is indicative of the presence of odd nonlinearities
in the dynamo equations underlying the generation of magnetic field on the Sun. To
our knowledge, the periodicity of 7 years was first reported by Bracewell (1985),
who also interpreted this result as the consequence of a cubic nonlinearity.

Another important finding of the present study, is the fact that modes obtained
from both datasets (i.e., magnetograms and sunspots) are qualitatively similar, and
display the same spectral and autocorrelation features. This similarity, in turn, in-
dicates that magnetograms and sunspots are indeed two observable outcomes of
the same physical process. On one hand, dataset M contains the spatio-temporal
distribution of a physical quantity such as the magnetic field intensity. However,
its statistical quality is somewhat limited because of the (necessarily) small time
coverage. On the other hand, the relationship of the sunspot area (contained in
dataset W) with the underlying physical variables is more obscure. But since the
time coverage is so much larger, it strengthens the statistical value of this dataset.
Therefore, the above-mentioned similarity between both datasets brings a strong
confidence to previous results (Mininni, Gómez, and Mindlin, 2002), which were
obtained only from the sunspot area distribution. Analysis of these results shows
that the irregularities observed in the solar cycle can be interpreted through a su-
perposition of two antisymmetric modes interacting with a stochastic background.
The information provided by the BOD can be used to validate models for the solar
cycle, as well as to obtain information of symmetries and nonlinear effects. Also,
truncated models can be derived by projecting the dynamical equations on the
empirical modes (Holmes, Lumley, and Berkooz, 1996; Carbone et al., 2002).
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