Numerical Functional Analysis and Optimization, 34(1):16-35, 2013

Copyright © Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630563.2012.706770

BEST SIMULTANEOUS MONOTONE APPROXIMANTS IN ORLICZ SPACES

F. E. Levis¹ and M. Marano²

¹Departamento de Matemática, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina

 \square Let $\mathbf{f} = (f_1, \dots, f_m)$, where f_j belongs to the Orlicz space $\mathcal{L}_{\phi}[0,1]$, and let $\mathbf{w} = (w_1, \dots, w_m)$ be an m-tuple of m positive weights. If $\mathfrak{D} \subset \mathcal{L}_{\phi}[0,1]$ is the class of nondecreasing functions, we denote by $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ the set of best simultaneous monotone approximants to \mathbf{f} , that is, all the elements $g \in \mathfrak{D}$ minimizing $\sum_{j=1}^m \int_0^1 \phi(|f_j - g|)w_j$, where ϕ is a convex function, $\phi(t) > 0$ for t > 0, and $\phi(0) = 0$. In this work, we show an explicit formula to calculate the maximum and minimum elements in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$. In addition, we study the continuity of the best simultaneous monotone approximants.

Keywords Monotone approximation; Orlicz spaces; Simultaneous approximation.

Mathematics Subject Classification Primary 41A28, 41A30; Secondary 41A65.

1. INTRODUCTION

Let \mathcal{M}_0 be the set of all real extended μ -measurable functions on [0,1], where μ is the Lebesgue measure, and let $\phi:[0,\infty)\to[0,\infty)$ be a differentiable and convex function, $\phi(0)=0$, $\phi(t)>0$ for t>0. For $f\in\mathcal{M}_0$, let

$$\Psi_{\phi}(f) := \int_0^1 \phi(|f(x)|) d\mu(x).$$

We will deal with the Orlicz space

$$\mathcal{L}_{\phi}[0,1] := \{ f \in \mathcal{M}_0 : \Psi_{\phi}(\lambda f) < \infty \text{ for some } \lambda > 0 \}.$$

Received 14 March 2012; Revised and Accepted 22 June 2012.

Address correspondence to F. E. Levis, Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina; E-mail: flevis@exa.unrc.edu.ar

²Departamento de Matemáticas, Universidad de Jaén, Jaén, España

Under the Luxemburg norm, $\mathcal{L}_{\phi}[0,1] =: \mathcal{L}_{\phi}$ is a Banach space. It is easy to see that if $\phi(t) = t^p$, $1 \le p < \infty$, we obtain the Lebesgue space L_p and $\Psi_{\phi}(f) = \|f\|_p^p$.

We assume that ϕ satisfies the Δ_2 -condition, that is, there exists K > 0 such that $\phi(2t) \le K\phi(t)$ for all $t \ge 0$. So,

$$\mathcal{L}_{\phi} = \{ f \in \mathcal{M}_0 : \Psi_{\phi}(\lambda f) < \infty \text{ for all } \lambda > 0 \}.$$

We refer to [7, 13] for a detailed treatment of this subject.

Throughout this paper, $f_j \in \mathcal{L}_{\phi}$, j = 1, 2, ..., m, and we write $\mathbf{f} = (f_1, ..., f_m)$. Given $\mathcal{D} \subset \mathcal{L}_{\phi}$, we consider the problem of finding $g \in \mathcal{D}$ such that

$$\sum_{j=1}^{m} \Psi_{\phi}(f_{j} - g) w_{j} = \inf_{h \in \mathcal{D}} \sum_{j=1}^{m} \Psi_{\phi}(f_{j} - h) w_{j} =: \mathbf{E},$$
 (1)

where w_j are positive real numbers. We denote by $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$ the set of elements $g \in \mathfrak{D}$ satisfying (1), where $\mathbf{w} = (w_1, \dots, w_m)$. Each element of $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$ is called a *best (simultaneous) approximant to* \mathbf{f} *from* \mathfrak{D} .

When \mathfrak{D} is the convex cone of nondecreasing functions in \mathcal{L}_{ϕ} and \mathbf{f} is a single function (m=1), it is known that $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D}) \neq \emptyset$ and there exist $\min \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ and $\max \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$, that is, there exist elements in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ that satisfy

$$\min \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{D}) \leq g \leq \max \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{D})$$

almost everywhere on [0,1] for all $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$ ([8], Theorems 4 and 14). These results of existence can be obtained for m > 1 with analogous proofs. Thus, when $m \ge 1$, in Section 4 of this paper we give a characterization of best simultaneous approximants to \mathbf{f} from \mathfrak{D} , as well as an explicit formula to calculate $\min \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ and $\max \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$. In Section 5 we discuss the continuity of a g in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathfrak{D})$ when each f_j is approximately continuous, $j = 1, 2, \ldots, m$.

Best monotone approximation to a single function has been studied extensively in the literature [2–4, 18, 19, 21]. In [11] and [20], there are explicit formulas to compute the best monotone approximant to a single function defined on an interval when a *p*-norm is used. The \mathcal{L}_{ϕ} -approximation case was considered in [9].

The problem of best simultaneous monotone approximation to two functions with $\phi(t) = t^p$, $1 \le p < \infty$, it was an early subject of study. In [14], the author gives an algorithm to calculate the best approximant in the discrete case and p > 1, and they study the continuity of the best approximant. Similar results can be seen in [16], and in [17] results of characterization are proved in L_1 -approximation from convex sets.

Simultaneous monotone approximation to two functions when the measure of deviation of f_1 and f_2 to an element h is $\max\{\|f_1 - h\|_p, \|f_2 - h\|_p\}$, $1 \le p \le \infty$, can be seen in [5, 6, 15].

For $f, g, h \in \mathcal{L}_{\phi}$, we write

$$N(g) = \{x \in [0,1] : g(x) \neq 0\}$$
 and $Z(g) = \{x \in [0,1] : g(x) = 0\},$

and, throughout this article, we will denote the one-sided Gateaux derivative of Ψ_{ϕ} at f in the direction of h by

$$\gamma_{\phi}^{+}(f,h) := \lim_{s \to 0^{+}} \frac{\Psi_{\phi}(f+sh) - \Psi_{\phi}(f)}{s}
= \int_{N(f)} \phi'(|f|) \operatorname{sgn}(f) h d\mu + \phi'(0) \int_{Z(f)} |h| d\mu,$$
(2)

where $\phi'(0)$ is the right derivative of ϕ at 0. Observe that, for $h \ge 0$, (2) can be written

$$\gamma_{\phi}^{+}(f,h) = \int_{0}^{1} \phi'(|f|)\overline{\operatorname{sgn}}(f)hd\mu, \tag{3}$$

where $\overline{\text{sgn}} = \text{sgn} + \chi_{\{0\}}$, χ_A being the characteristic function of the set A.

2. SIMULTANEOUS APPROXIMATION FROM CONVEX SETS

The following theorem is an immediate consequence of (2) and a modified version of Theorem 1.6 in [12] for convex functionals.

Theorem 1. Let \mathcal{K} be a convex set in \mathcal{L}_{ϕ} . Then $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$ if only if

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_j - g, g - h)w_j \ge 0 \quad \text{for all } h \in \mathcal{K}.$$
 (4)

The next corollary generalizes Lemma 3.2 in [17].

Corollary 2. Let \mathcal{R} be a convex set in \mathcal{L}_{ϕ} . Assume $h \in \mathcal{R}$ and $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{R})$. Then $h \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{R})$ if only if $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j}-h,h-g)w_{j}=0$.

Proof. Let $r:[0,1] \to [0,\infty)$ be the convex function defined by

$$r(t) = \sum_{j=1}^{m} \Psi_{\phi}(f_j - h + t(h - g))w_j.$$

Then $r'(0) \le r(1) - r(0)$, that is,

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - h, h - g)w_{j} \leq \sum_{j=1}^{m} \Psi_{\phi}(f_{j} - g)w_{j} - \sum_{j=1}^{m} \Psi_{\phi}(f_{j} - h)w_{j}.$$
 (5)

On the other hand, if $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{K})$, we get

$$\sum_{j=1}^{m} \Psi_{\phi}(f_{j} - g)w_{j} - \sum_{j=1}^{m} \Psi_{\phi}(f_{j} - h)w_{j} \leq 0.$$

So, (5) implies

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - h, h - g)w_{j} \le 0.$$
 (6)

If $h \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$, by (6) and Theorem 1 we have $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j}-h,h-g)w_{j}=0$. Reciprocally, if $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j}-h,h-g)w_{j}=0$, from (5) and the fact that $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$, we get

$$\sum_{j=1}^{m} \Psi_{\phi}(f_{j} - g)w_{j} = \sum_{j=1}^{m} \Psi_{\phi}(f_{j} - h)w_{j}.$$

In consequence, $h \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$.

We now turn our attention to the uniqueness of the simultaneous approximation from a convex set. This means that if g, h are in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$, then g = h a.e. on [0,1].

Theorem 3. Let \mathcal{H} be a convex set in \mathcal{L}_{ϕ} . If ϕ is a strictly convex function and g, h are in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{H})$, then g = h a.e. on [0,1].

Proof. Assume that there exist $g, h \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{K})$ with $\mu\{g \neq h\} > 0$. Since ϕ is a strictly convex function we have

$$\Psi_{\phi}\left(f_{j}-\frac{g+h}{2}\right)w_{j}<\frac{1}{2}\Psi_{\phi}(f_{j}-g)w_{j}+\frac{1}{2}\Psi_{\phi}(f_{j}-h)w_{j}, \quad j=1,2,\ldots,m.$$

So,

$$\sum_{j=1}^{m} \Psi_{\phi} \left(f_{j} - \frac{g+h}{2} \right) w_{j} < \frac{1}{2} \sum_{j=1}^{m} \Psi_{\phi} (f_{j} - g) w_{j} + \frac{1}{2} \sum_{j=1}^{m} \Psi_{\phi} (f_{j} - h) w_{j} = \mathbf{E},$$

which yields a contradiction because $\frac{g+h}{2} \in \mathcal{K}$.

3. SIMULTANEOUS APPROXIMATION BY CONSTANT **FUNCTIONS**

Let $f_j \in \mathcal{L}_{\phi}$, j = 1, 2, ..., m. Throughout this section, $A \subset [0, 1]$ stands for any measurable set with $\mu(A) > 0$. Let $\mathcal{C}_A := \{c\chi_A : c \in \mathbb{R}\}$, and we write $\mathbf{f_A} = (f_1 \chi_A, \dots, f_m \chi_A).$

Since Ψ_{ϕ} is a convex functional, the function $E: \mathbb{R} \to [0, \infty)$ defined by

$$E(c) = \sum_{j=1}^{m} \Psi_{\phi}((f_j - c)\chi_A)w_j$$

is convex. Moreover, $\lim_{\epsilon \to \pm \infty} E(\epsilon) = +\infty$. So, $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f_A}, \mathcal{C}_A)$, the set of best constant approximants to \mathbf{f} on A, is a nonempty compact interval. We call

$$\underline{m}(\mathbf{f}, A) = \min \mathcal{M}_{\phi, \mathbf{w}}(\mathbf{f}_{\mathbf{A}}, \mathcal{C}_A) \quad \text{and} \quad \overline{m}(\mathbf{f}, A) = \max \mathcal{M}_{\phi, \mathbf{w}}(\mathbf{f}_{\mathbf{A}}, \mathcal{C}_A).$$

Lemma 4. A constant c is in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f_A}, \mathcal{C}_A)$ if and only if

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - c, \chi_{A}) w_{j} \ge 0 \quad and \quad \sum_{j=1}^{m} \gamma_{\phi}^{+}(c - f_{j}, \chi_{A}) w_{j} \ge 0.$$
 (7)

Proof. Take $\mathcal{H} = \mathcal{C}_A$ in Theorem 1; now, since $-\operatorname{sgn}(f_j - c) = \operatorname{sgn}(c - f_j)$, the lemma follows immediately from that theorem and (2).

Lemma 5. Let $g, h \in \mathcal{L}_{\phi}$.

- (a) If $g \leq h$ a.e. on A, then $\gamma_{\phi}^{+}(g, \chi_{A}) \leq \gamma_{\phi}^{+}(h, \chi_{A})$; (b) If g < h a.e. on A, then $\gamma_{\phi}^{+}(g, \chi_{A}) \leq -\gamma_{\phi}^{+}(-h, \chi_{A})$.

Proof. (a) We have

$$\begin{split} & \gamma_{\phi}^{+}(g,\chi_{A}) \\ & = \int_{0}^{1} \phi'(|g|) \overline{\operatorname{sgn}}(g) \chi_{A} d\mu \\ & = \int_{0}^{1} \phi'(|g|) \chi_{A \cap \{g \geq 0\}} d\mu - \int_{0}^{1} \phi'(|g|) \chi_{A \cap \{g < 0\} \cap \{h \geq 0\}} d\mu - \int_{0}^{1} \phi'(|g|) \chi_{A \cap \{h < 0\}} d\mu \\ & \leq \int_{0}^{1} \phi'(|h|) \chi_{A \cap \{g \geq 0\}} d\mu + \int_{0}^{1} \phi'(|h|) \chi_{A \cap \{g < 0\} \cap \{h \geq 0\}} d\mu - \int_{0}^{1} \phi'(|h|) \chi_{A \cap \{h < 0\}} d\mu \\ & = \int_{0}^{1} \phi'(|h|) \overline{\operatorname{sgn}}(h) \chi_{A} d\mu = \gamma_{\phi}^{+}(h, \chi_{A}). \end{split}$$

(b) There holds

$$\begin{split} \gamma_{\phi}^{+}(g,\chi_{A}) &= \int_{0}^{1} \phi'(|g|) \chi_{A \cap \{g \geq 0\}} d\mu - \int_{0}^{1} \phi'(|g|) \chi_{A \cap \{g < 0\}} d\mu \\ &\leq \int_{0}^{1} \phi'(|h|) \chi_{A \cap \{h > 0\}} d\mu - \int_{0}^{1} \phi'(|h|) \chi_{A \cap \{h \leq 0\}} d\mu = -\gamma_{\phi}^{+}(-h,\chi_{A}). \end{split}$$

The next Corollary follows immediately from Lemma 5.

Corollary 6. For $g \in \mathcal{L}_{\phi}$, the application that assigns $\gamma_{\phi}^{+}(g-u,\chi_{A})$ to $u \in \mathbb{R}$ is nonincreasing.

As a consequence of Lemma 5, we have the following theorem of characterization.

Theorem 7. We have the following relations:

(a)
$$\underline{m}(\mathbf{f}, A) = \min\{c \in \mathbb{R} : \sum_{j=1}^{m} \gamma_{\phi}^{+}(c - f_{j}, \chi_{A})w_{j} \geq 0\}; \text{ and}$$

(b) $\overline{m}(\mathbf{f}, A) = \max\{c \in \mathbb{R} : \sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - c, \chi_{A})w_{j} \geq 0\}.$

In addition, if ϕ is a strictly convex function, then $m(\mathbf{f}, A) = \overline{m}(\mathbf{f}, A)$.

Proof. (a) From Lemma 4, $\sum_{j=1}^{m} \gamma_{\phi}^{+}(\underline{m}(\mathbf{f}, A) - f_{j}, \chi_{A})w_{j} \geq 0$. Suppose that there exists $u \in \mathbb{R}$, $u < \underline{m}(\mathbf{f}, A)$, such that

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(u - f_j, \chi_A) w_j \ge 0.$$
 (8)

By Lemma 5 (a) and Lemma 4,

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - u, \chi_{A}) w_{j} \ge \sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - \underline{m}(\mathbf{f}, A), \chi_{A}) w_{j} \ge 0.$$
 (9)

Then, Lemma 4, (8) and (9) imply $u \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f_A}, \mathcal{C}_A)$, a contradiction. We can prove (b) in a similar way. Finally, if ϕ is a strictly convex function, the equality $\underline{m}(\mathbf{f}, A) = \overline{m}(\mathbf{f}, A)$ follows from Theorem 3.

4. SIMULTANEOUS APPROXIMATION BY NONDECREASING FUNCTIONS

Henceforth, \mathscr{D} is the convex cone of nondecreasing functions in \mathscr{L}_{ϕ} . In this section, we give a characterization of best approximants to f from D. Moreover, we show an explicit formula to calculate the maximum and minimum elements in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$.

Definition 8. For $x \in (0,1)$, we define

$$\underline{f}(x) = \inf_{b>x} \sup_{a< x} \underline{m}(\mathbf{f}, (a, b))$$
 and $\overline{f}(x) = \sup_{a< x} \inf_{b>x} \overline{m}(\mathbf{f}, (a, b))$.

Lemma 9. The functions f and \overline{f} are nondecreasing.

Proof. Let $x, y \in (0, 1)$ such that x < y. Then

$$\inf_{b>x}\sup_{a< x}\underline{m}\left(\mathbf{f},(a,b)\right) \leq \inf_{b>x}\sup_{a< y}\underline{m}\left(\mathbf{f},(a,b)\right) \leq \inf_{b> y}\sup_{a< y}\underline{m}\left(\mathbf{f},(a,b)\right).$$

Therefore, $f(x) \le f(y)$. The proof that $\overline{f}(x) \le \overline{f}(y)$ is analogous.

That \overline{f} and \underline{f} are in \mathcal{L}_{ϕ} is a consequence of Theorems 16 and 18, respectively.

4.1. Characterization of Best Simultaneous Monotone Approximants

The following is a characterization theorem. Similar results can be seen in [1, 10].

Theorem 10. The following statements are equivalent:

- (a) $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D});$
- (b) For every $u \in \mathbb{R}$ we have

(b1)
$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(g - f_{j}, \chi_{\{g < u\} \cap (a,1)}) w_{j} \geq 0$$
, for $0 \leq a < 1$; and (b2) $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - g, \chi_{\{g > u\} \cap (0,b)}) w_{j} \geq 0$, for $0 < b \leq 1$.

Proof. (a) \Rightarrow (b). Take a $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{D})$, and let $u \in \mathbb{R}$. We prove (b1). The proof of (b2) is similar. Let $0 \leq a < 1$. If $\mu(\{g < u\} \cap (a,1)) = 0$, then (b1) is obvious. Suppose $\mu(\{g < u\} \cap (a,1)) > 0$. So, $\chi_{\{g < u\} \cap (a,1)} = \chi_{(a,b_u)}$ a.e. on [0,1], where

$$b_u = \sup\{g < u\}. \tag{10}$$

Assume $b_u = 1$, and let $h \in \mathcal{D}$ be given by h = g on [0, a] and h = g + 1 on (a, 1]. From (4) with this function h we get (b1).

Suppose now $b_u < 1$. We consider the following three cases:

• g is continuous at b_u , and $g(x) = g(b_u)$ for some $x > b_u$. Let $\{x_n\}_{n \in \mathbb{N}} \subset (a, b_u)$ be such that $x_n \uparrow b_u$. Since g is continuous at b_u ,

$$g(b_u) = u. (11)$$

Therefore, $y_n := g(b_u) - g(x_n) > 0$. Consider the function $h_n \in \mathcal{D}$ given by

$$h_n = g \text{ on } [0, a] \cup (b_u, 1], \quad h_n = g + y_n \text{ on } (a, x_n], \text{ and}$$

 $h_n = g(b_u) \text{ on } (x_n, b_u].$

Applying (4) with $h = h_n$, we deduce that

$$0 \le \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(a,x_{n})} \right) w_{j} + \sum_{j=1}^{m} \int_{x_{n}}^{b_{u}} \phi'(|g - f_{j}|) \overline{\operatorname{sgn}}(g - f_{j}) \frac{g(b_{u}) - g}{y_{n}} w_{j} d\mu.$$

Since $0 \le \frac{g(b_u)-g}{y_n} \le 1$ on (x_n, b_u) , by passing to the limit as $n \to \infty$, we get (b1).

• g is continuous at b_u , and $g(x) > g(b_u)$ for all $x > b_u$. Let $\{x_n\}_{n \in \mathbb{N}} \subset (b_u, 1)$ be such that $x_n \downarrow b_u$. Then $y_n := g(x_n) - g(b_u) > 0$. Consider the function $h_n \in \mathcal{D}$ given by

$$h_n = g \text{ on } [0, a] \cup (x_n, 1], \quad h_n = g + y_n \text{ on } (a, b_u], \quad \text{and}$$

 $h_n = g(x_n) \text{ on } (b_u, x_n].$

Applying (4) with $h = h_n$, we have

$$0 \leq \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(a,b_{u})} \right) w_{j} + \sum_{j=1}^{m} \int_{b_{u}}^{x_{n}} \phi'(|g - f_{j}|) \overline{\operatorname{sgn}}(g - f_{j}) \frac{g(x_{n}) - g}{y_{n}} w_{j} d\mu.$$

Since $0 \le \frac{g(x_n) - g}{y_n} \le 1$ on (b_u, x_n) , by passing to the limit as $n \to \infty$, we get (b1).

• $g(b_u^+) - g(b_u^-) = 2\delta$.

Taking in (4) the function $h \in \mathcal{D}$ given by h = g on $[0, a] \cup (b_u, 1]$ and $h = g + \delta$ on $(a, b_u]$, we obtain (b1).

(b) \Rightarrow (a) Let $u \in \mathbb{R}$, $h \in \mathcal{D}$, and $b = \sup\{h < u\}$. If $\mu(\{h < u < g\}) > 0$ then $0 < b \le 1$ and $\chi_{\{h < u < g\}} = \chi_{\{g > u\} \cap (0,b)}$ a.e. on [0, 1]. Therefore, by (b2),

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - g, \chi_{\{h < u < g\}} \right) w_{j} \ge 0.$$
 (12)

If $\mu(\{h < u < g\}) = 0$, then (12) is obvious. Since u is arbitrary, integrating on u in the inequality (12) we have

$$\sum_{i=1}^{m} \int_{-\infty}^{\infty} \left(\int_{0}^{1} \phi'(|f_{j}-g|) \overline{\operatorname{sgn}}(f_{j}-g) \chi_{\{h < u < g\}} w_{j} d\mu \right) du \ge 0.$$

Applying Fubini's theorem, we get

$$\sum_{j=1}^m \int_0^1 \left(\phi'(|f_j - g|) \overline{\operatorname{sgn}}(f_j - g) w_j \int_{-\infty}^\infty \chi_{\{h < u < g\}} du \right) d\mu \ge 0,$$

that is,

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - g, \chi_{\{g > h\}}(g - h) \right) w_{j} \ge 0.$$
 (13)

The inequality

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - g, \chi_{\{h > g\}}(g - h) \right) w_{j} \ge 0$$
 (14)

follows from (b1) in a similar way. Now, according to (13) and (14), we have

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} (f_{j} - g, g - h) w_{j} \ge 0.$$
 (15)

Since $h \in \mathcal{D}$ is arbitrary, (a) follows from (15) and Theorem 1.

Corollary 11. If $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{D})$, then for every $u \in \mathbb{R}$ we have

(a)
$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(g - f_{j}, \chi_{\{g \leq u\} \cap (a,1)}) w_{j} \geq 0$$
, for $0 \leq a < 1$; and (b) $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - g, \chi_{\{g \geq u\} \cap (0,b)}) w_{j} \geq 0$, for $0 < b \leq 1$.

Proof. For every $u \in \mathbb{R}$ and $\epsilon > 0$, Theorem 10 implies

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{\{g < u + \epsilon\} \cap (a,1)} \right) w_{j} \ge 0, \quad \text{for } 0 \le a < 1, \quad \text{and}$$

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - g, \chi_{\{g > u - \epsilon\} \cap (0, b)} \right) w_{j} \ge 0, \quad \text{for } 0 < b \le 1.$$

As $\lim_{\epsilon \to 0^+} \chi_{\{g < u + \epsilon\}} = \chi_{\{g \le u\}}$ and $\lim_{\epsilon \to 0^+} \chi_{\{g > u - \epsilon\}} = \chi_{\{g \ge u\}}$, both (a) and (b) hold.

Remark 12. Under the same hypothesis of Corollary 11, observe that if $\mu(\{g=u\}) > 0$, then this Corollary and Lemma 4 show that u is a best constant approximant to \mathbf{f} on $\{g=u\}$.

Theorem 13. If $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$, then $f \leq g \leq \overline{f}$ a.e. on [0,1].

Proof. Let $x \in (0,1)$ be a continuity point of g. Let $\lambda > 0$ and $u = g(x) + \lambda$. For $0 \le a < b_u$, where b_u is defined in (10), we have $x < b_u$ and $\chi_{(a,b_u)} = \chi_{\{g < u\} \cap (a,1)}$ a.e. on [0,1]. By Theorem 10, we get

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(a,b_{u})} \right) w_{j} \ge 0.$$
 (16)

Since $g - f_j \le g(x) + \lambda - f_j$ on (a, b_u) for all j = 1, 2, ..., m, Lemma 5 (a) implies

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g(x) + \lambda - f_{j}, \chi_{(a,b_{u})} \right) w_{j} \ge \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(a,b_{u})} \right) w_{j}.$$
 (17)

From (16), (17), and Theorem 7 (a) we have

$$m(\mathbf{f}, (a, b_u)) < g(x) + \lambda, \quad 0 < a < b_u.$$

So, $\sup_{a < x} \underline{m}(\mathbf{f}, (a, b_u)) \le g(x) + \lambda$. Consequently, as $b_u > x$,

$$\underline{f}(x) = \inf_{b > x} \sup_{a < x} \underline{m}(\mathbf{f}, (a, b)) \le g(x) + \lambda.$$

As λ is arbitrary, we obtain $\underline{f}(x) \leq g(x)$. A similar argument shows that $\overline{f}(x) \geq g(x)$. Since g is continuous a.e. on [0,1], the proof is complete. \square

Corollary 14. If ϕ is a strictly convex function, then $\underline{f} = \overline{f}$ a.e. on [0,1], and $g = \overline{f}$ a.e. on [0,1] for any g in $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$.

Proof. Let $x \in (a, b)$ with 0 < a < b < 1. Since ϕ is a strictly convex function, it follows that

$$\inf_{c>x} \overline{m}(\mathbf{f},(a,c)) \leq \overline{m}(\mathbf{f},(a,b)) = \underline{m}(\mathbf{f},(a,b)),$$

where the equality is due to Theorem 7. Then $f(x) = \sup_{a < x} \inf_{c > x} \overline{m}(\mathbf{f}, (a, c)) \le \sup_{a < x} \underline{m}(\mathbf{f}, (a, b))$ and, consequently,

$$\overline{f}(x) \le \inf_{b>x} \sup_{a < x} \underline{m}(\mathbf{f}, (a, b)) = \underline{f}(x).$$

So, Theorem 13 completes the proof.

4.2. Maximum and Minimum of Best Simultaneous Monotone Approximants

We now prove that $\max \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D}) = \overline{f}$ a.e. on [0,1] and $\min \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D}) = f$ a.e. on [0,1]. For $u \in \mathbb{R}$, observe that the function $x \longrightarrow \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(\overline{f_{j}} - u, \chi_{(x,1)}\right) w_{j}$ is continuous on [0,1]. Let

$$Q_{u} = \max \left\{ \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(x,1)} \right) w_{j} : x \in [0,1] \right\} \text{ and}$$

$$y_u = \min \left\{ x \in [0, 1] : \sum_{j=1}^m \gamma_{\phi}^+ (f_j - u, \chi_{(x,1)}) w_j = Q_u \right\}.$$

Lemma 15. Let $u \in \mathbb{R}$. If $0 < x < y_u < y < 1$, then

(a)
$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - u, \chi_{(y_{u}, y_{j})})w_{j} \ge 0$$
 and $\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - u, \chi_{(x, y_{u})})w_{j} < 0$; (b) $\overline{f}(x) \le u \le \overline{f}(y)$.

Proof. (a) Let $0 < x < y_u < y < 1$. By definition of y_u and Q_u ,

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y,1)} \right) w_{j} \leq Q_{u} = \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y_{u},1)} \right) w_{j} \quad \text{and} \quad \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(x,1)} \right) w_{j} < Q_{u} = \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y_{u},1)} \right) w_{j}.$$

So, (3) and the additivity of the integral imply (a).

(b) Let $0 < v < y_u < z < 1$. If b > z, then Theorem 7 (b) and the first inequality in (a) (with y = b) imply $\overline{m}(\mathbf{f}, (y_u, b)) \ge u$. Thus, $\inf_{b>z} \overline{m}(\mathbf{f}, (y_u, b)) \ge u$. As $y_u < z$, we obtain

$$\overline{f}(z) = \sup_{a < z} \inf_{b > z} \overline{m}(\mathbf{f}, (a, b)) \ge u.$$

On the other hand, if a < v then $\inf_{b>v} \overline{m}(\mathbf{f}, (a, b)) \leq \overline{m}(\mathbf{f}, (a, y_u)) < u$, where the first inequality follows from the hypothesis $v < y_u$, and the second inequality is due to Theorem 7 (b), Corollary 6 and the second inequality in (a) (with x = a). Then

$$\overline{f}(v) = \sup_{a < v} \inf_{b > v} \overline{m}(\mathbf{f}, (a, b)) \le u.$$

Theorem 16. We have $\overline{f} = \max \mathcal{M}_{\phi, \mathbf{w}}(\mathbf{f}, \mathcal{D})$ a.e. on [0, 1].

Proof. Let $g = \max \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$. By Theorem 13, $g \leq \overline{f}$ a.e. on [0,1]. Suppose that there exists $z_0 \in (0,1)$ such that $g(z_0) < u < \overline{f}(z_0)$, where z_0 is a point of continuity of g and \overline{f} . Clearly $z_0 < b_u$, where b_u is defined in (10). In addition, $y_u \leq z_0$; otherwise Lemma 15 (b) implies $\overline{f}(z_0) \leq u$.

Let $R(g) = g([y_u, b_u])$. Since g is a nondecreasing function on $(y_u, b_u]$, for $c \in R(g)$ the set

$$I_g(c) := \{ z \in (y_u, b_u] : g(z) = c \}$$

is either a singleton, or an interval with endpoints $\underline{c} < \overline{c}$. We observe that the second case can occur for at most countable many values of c, say $\{c_n\}_{n\in I}$, $I\subseteq\mathbb{N}$. Let

$$C := (y_u, b_u) \setminus \left(\bigcup_{n \in I} \left(\underline{c_n}, \overline{c_n}\right)\right)$$

and let $\beta:(y_u,b_u]\to\mathbb{R}$ be the continuous function defined by

$$\beta(x) := \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y_{u}, x)} \right) w_{j} = \sum_{j=1}^{m} \int_{y_{u}}^{x} \phi'(|f_{j} - u|) \overline{\operatorname{sgn}}(f_{j} - u) w_{j} d\mu.$$
 (18)

We next prove that

$$\beta(x) = 0 \quad \text{for all } x \in C.$$
 (19)

Let $z \in C$; we consider two cases.

• $z \neq \underline{c_n}$. Clearly, $\{g \leq g(z)\} \cap (y_u, 1) = (y_u, z]$, because g(y) > g(z) for y > z. Since g < u on (y_u, z) , from Lemma 15 (a), Lemma 5 (b) and Corollary 11 (a) we have

$$0 \le \beta(z) = \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y_{u}, z)} \right) w_{j} \le -\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(y_{u}, z)} \right) w_{j}$$
$$= -\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{\{g \le g(z)\} \cap (y_{u}, 1)} \right) w_{j} \le 0.$$

• $z = c_n$.

As $\chi_{\{g < c_n\} \cap (y_u, 1)} = \chi_{(y_u, z)}$ a.e. on [0, 1], and g < u on (y_u, z) , Lemma 15 (a), Lemma 5 (b) and Theorem 10 imply

$$0 \le \beta(z) = \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{(y_{u}, z)} \right) w_{j} \le -\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{(y_{u}, z)} \right) w_{j}$$
$$= -\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{\{g < c_{n}\} \cap (y_{u}, 1)} \right) w_{j} \le 0.$$

Therefore, (19) holds.

On the other hand, β has a derivative β' at almost every point $x \in (y_u, b_u)$. Indeed, from (18),

$$\beta' = \sum_{j=1}^{m} \phi'(|f_j - u|)\overline{\operatorname{sgn}}(f_j - u)w_j \quad \text{a.e. on } (y_u, b_u).$$

Let *D* be the set of points $x \in C$ such that x is a density point of *C* and it satisfies the above equation. Since $\mu(D) = \mu(C)$, by (19) we get $\beta' = 0$ a.e. on *C*. Further, g < u on *C*; thus

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, (u - g) \chi_{C} \right) w_{j} = \int_{C} (u - g) \beta' d\mu = 0.$$
 (20)

If $(y_u, b_u) \setminus C \neq \emptyset$, then

$$\sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, (u - g) \chi_{(y_{u}, b_{u}) \setminus C} \right) w_{j} = \sum_{n \in I} \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - u, (u - g) \chi_{\left(\underline{c_{n}}, \overline{c_{n}}\right)} \right) w_{j}$$

$$= \sum_{n \in I} \sum_{j=1}^{m} (u - c_{n}) \gamma_{\phi}^{+} \left(f_{j} - u, \chi_{\left(\underline{c_{n}}, \overline{c_{n}}\right)} \right) w_{j}$$

$$= \sum_{n \in I} (u - c_{n}) \left(\beta(\overline{c_{n}}) - \beta(\underline{c_{n}}) \right) = 0,$$

where the last equality is due to (19). Therefore, by (20) we get

$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(f_{j} - u, (u - g)\chi_{(y_{u}, b_{u})})w_{j} = 0.$$
 (21)

Now we consider the function $h \in \mathcal{D}$ given by

$$h = g \text{ on } [0, y_u] \cup (b_u, 1] \text{ and } h = u \text{ on } (y_u, b_u].$$

It follows from (21) and Corollary 2 that $h \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathcal{D})$, which contradicts the definition of g. So, $\overline{f}(z_0) = g(z_0)$ at every continuity point z_0 of g and \overline{f} . Since almost every point in (0,1) is a continuity point of both g and \overline{f} , we conclude that $g = \overline{f}$ a.e. on [0,1].

Analogously to the previous case, for $u \in \mathbb{R}$, let

$$M_u = \max \left\{ \sum_{j=1}^m \gamma_{\phi}^+ \left(u - f_j, \chi_{(0,x)} \right) w_j : x \in [0,1] \right\} \text{ and}$$

$$x_u = \max \left\{ x \in [0, 1] : \sum_{j=1}^m \gamma_{\phi}^+ \left(u - f_j, \chi_{(0, x)} \right) w_j = M_u \right\}.$$

With similar proofs to those of Lemma 15 and Theorem 16 we obtain the following two results, respectively.

Lemma 17. Let $u \in \mathbb{R}$. If $0 < x < x_u < y < 1$ then

(a)
$$\sum_{j=1}^{m} \gamma_{\phi}^{+}(u - f_{j}, \chi_{(x,x_{u})})w_{j} \geq 0$$
 and $\sum_{j=1}^{m} \gamma_{\phi}^{+}(u - f_{j}, \chi_{(x_{u},y)})w_{j} < 0$; (b) $\underline{f}(x) \leq u \leq \underline{f}(y)$.

Theorem 18. We have $f = \min \mathcal{M}_{\phi, \mathbf{w}}(\mathbf{f}, \mathcal{D})$ a.e. on [0, 1].

5. CONTINUITY OF BEST SIMULTANEOUS MONOTONE APPROXIMANTS

In this section, we study the continuity of best simultaneous monotone approximants to ${\bf f}$. Note that ϕ' is a continuous function, since ϕ is convex and differentiable.

A function $f \in \mathcal{M}_0$ is said to be approximately continuous at $x_0 \in (0, 1)$ if, for each $\epsilon > 0$, x_0 is a point of density of $\{|f - f(x_0)| < \epsilon\} =: A_{\epsilon}(f, x_0)$.

Lemma 19. Let $g \in \mathcal{D}$, $f \in \mathcal{L}_{\phi}$, $x_0 \in (0,1)$, w > 0 and

$$L_{\epsilon}(\delta, f, w) := \frac{1}{\delta} \int_{x_0 - \delta}^{x_0} \chi_{A_{\epsilon}(f, x_0)} \phi'(|g - f|) \overline{\operatorname{sgn}}(g - f) w \, d\mu, \quad 0 < \delta < x_0.$$

Assume that f is approximately continuous at x_0 .

(a) If
$$0 < \epsilon < |g(x_0^-) - f(x_0)|$$
, then
$$\overline{L}_{\epsilon}(f, w) := \limsup_{\delta \downarrow 0} L_{\epsilon}(\delta, f, w)$$

$$\leq \phi'(|g(x_0^-) - f(x_0) + \epsilon|) \overline{\operatorname{sgn}}(g(x_0^-) - f(x_0)) w;$$

(b) If $f(x_0) = g(x_0^-)$ and $\epsilon > 0$, then $\overline{L}_{\epsilon}(f, w) \leq \phi'(\epsilon)w$.

Consequently,

 $\overline{L}_{\epsilon}(f, w) \leq \phi'(|g(x_0^-) - f(x_0) + \epsilon|)\overline{\operatorname{sgn}}(g(x_0^-) - f(x_0))w \quad \text{for all ϵ small enough}.$

Proof. (a) Assume $0 < \epsilon < |g(x_0^-) - f(x_0)|$. Then

$$L_{\epsilon}(\delta, f, w) \leq \frac{\mu\left([x_0 - \delta, x_0] \cap A_{\epsilon}(f, x_0)\right)}{\delta} \times \phi'\left(|g(x_0^-) - f(x_0) + \epsilon|\right) \overline{\operatorname{sgn}}(g(x_0^-) - f(x_0))w,$$

for all sufficiently small $\delta > 0$. Since $\lim_{\delta \downarrow 0} \frac{\mu([x_0 - \delta, x_0] \cap A_{\epsilon}(f, x_0))}{\delta} = 1$, by passing to the limit as $\delta \downarrow 0$ we get (a).

(b) Suppose now $g(x_0^-) = f(x_0)$ and let $\epsilon > 0$. Since

$$|L_{\epsilon}(\delta, f, w)| \leq \frac{\mu([x_0 - \delta, x_0] \cap A_{\epsilon}(f, x_0))}{\delta} \phi'(\max\{|\epsilon + f(x_0) - g(x_0 - \delta)|, \epsilon\}) w,$$

by passing to the limit as $\delta \downarrow 0$ we have (b).

With a similar proof to that of Lemma 19, we get the next lemma.

Lemma 20. Let $g \in \mathcal{D}$, $f \in \mathcal{L}_{\phi}$, $x_0 \in (0,1)$, w > 0 and

$$N_{\epsilon}(\delta, f, w) := \frac{1}{\delta} \int_{x_0}^{x_0 + \delta} \chi_{A_{\epsilon}(f, x_0)} \phi'(|f - g|) \overline{\operatorname{sgn}}(f - g) w \, d\mu, \quad \delta > 0.$$

Assume that f is approximately continuous at x_0 .

(a) If
$$0 < \epsilon < |g(x_0^+) - f(x_0)|$$
, then

$$\overline{N}_{\epsilon}(f, w) := \limsup_{\delta \downarrow 0} N_{\epsilon}(\delta, f, w)
\leq \phi'(|f(x_0) - g(x_0^+) + \epsilon|) \overline{\operatorname{sgn}}(f(x_0) - g(x_0^+)) w;$$

(b) If
$$f(x_0) = g(x_0^+)$$
 and $\epsilon > 0$, then $\overline{N}_{\epsilon}(f, w) \leq \phi'(\epsilon)w$.

Consequently,

$$\overline{N}_{\epsilon}(f, w) \leq \phi'(|g(x_0^+) - f(x_0) + \epsilon|)\overline{\operatorname{sgn}}(g(x_0^+) - f(x_0))w$$
for all ϵ small enough.

Theorem 21. Let $g \in \mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f}, \mathfrak{D})$. Assume that ϕ is a strictly convex function. If f_j is approximately continuous at $x_0 \in (0,1)$ for each j, and either ϕ' is bounded, or f_j is essentially bounded on a neighborhood of x_0 for every j, then

- (a) g is continuous at x_0 ; and
- (b) If g is not constant on a neighborhood of x_0 , then $g(x_0)$ satisfies

$$\sum_{j=1}^{m} \phi(|f_j(x_0) - g(x_0)|) w_j = \min_{c \in \mathbb{R}} \sum_{j=1}^{m} \phi(|f_j(x_0) - c|) w_j.$$
 (22)

Proof. (a) If g is constant on a neighborhood of x_0 , then g is continuous at x_0 . Otherwise, let $\epsilon > 0$, and for each j = 1, 2, ..., m let $A_{j,\epsilon} = A_{\epsilon}(f_j, x_0)$ and $A_{j,\epsilon}^c = (0, 1) \setminus A_{j,\epsilon}$. We consider the case $g(x) > g(x_0)$ for $x > x_0$; the case where $g(x) < g(x_0)$ for $x < x_0$ is proved in a similar way. For each $0 < \delta < x_0$, from Corollary 11 (a) we have

$$0 \leq \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(g - f_{j}, \chi_{\{g \leq g(x_{0})\} \cap (x_{0} - \delta, 1)} \right) w_{j}$$

$$= \sum_{j=1}^{m} \int_{x_{0} - \delta}^{x_{0}} \phi'(|g - f_{j}|) \overline{\operatorname{sgn}}(g - f_{j}) w_{j} d\mu.$$
(23)

Since g is bounded on $[x_0 - \delta, x_0]$, by hypothesis there exists a constant M > 0 such that

$$\sum_{j=1}^{m} \int_{x_0-\delta}^{x_0} \chi_{A_{j,\epsilon}^c} \phi'(|g-f_j|) w_j d\mu \leq M \sum_{j=1}^{m} \mu([x_0-\delta, x_0] \cap A_{j,\epsilon}^c),$$

for all sufficiently small δ . As f_j is approximately continuous at x_0 for each j, we deduce that $\lim_{\delta \downarrow 0} \frac{\mu([x_0 - \delta, x_0] \cap A_{j,\varepsilon}^c)}{\delta} = 0$ for $j = 1, 2, \ldots, m$. Thus

$$\limsup_{\delta \downarrow 0} \sum_{j=1}^{m} \frac{1}{\delta} \int_{x_0 - \delta}^{x_0} \chi_{A_{j,\epsilon}^c} \phi'(|g - f_j|) \overline{\operatorname{sgn}}(g - f_j) w_j \, d\mu = 0.$$
 (24)

According to (23) and (24), and applying the additivity of the integral, we get

$$\sum_{j=1}^{m} \overline{L}_{\epsilon}(f_{j}, w_{j}) \geq \limsup_{\delta \downarrow 0} \sum_{j=1}^{m} \frac{1}{\delta} \int_{x_{0} - \delta}^{x_{0}} \chi_{A_{j,\epsilon}} \phi'(|g - f_{j}|) \overline{\operatorname{sgn}}(g - f_{j}) w_{j} d\mu \geq 0.$$

From Lemma 19,

$$\sum_{j=1}^{m} \phi'(|g(x_0^-) - f_j(x_0) + \epsilon|) \overline{\operatorname{sgn}}(g(x_0^-) - f_j(x_0)) w_j \ge 0$$

for all ϵ small enough. Therefore,

$$\sum_{j=1}^{m} \phi'(|g(x_0^-) - f_j(x_0)|) \overline{\operatorname{sgn}}(g(x_0^-) - f_j(x_0)) w_j \ge 0.$$
 (25)

On the other hand, (b2) in Theorem 10 implies

$$0 \leq \sum_{j=1}^{m} \gamma_{\phi}^{+} \left(f_{j} - g, \chi_{\{g > g(x_{0})\} \cap (0, x_{0} + \delta)} \right) w_{j} = \sum_{j=1}^{m} \int_{x_{0}}^{x_{0} + \delta} \phi'(|f_{j} - g|) \overline{\operatorname{sgn}}(f_{j} - g) w_{j} d\mu.$$

In the same manner as before, and using Lemma 20, we can see that

$$\sum_{j=1}^{m} \phi'(|f_{j}(x_{0}) - g(x_{0}^{+})|)\overline{\operatorname{sgn}}(f_{j}(x_{0}) - g(x_{0}^{+}))w_{j} \ge 0.$$
(26)

Suppose now $g(x_0^-) < g(x_0^+)$. Due to (26) the set of indexes $J_1 = \{j : f_j(x_0) \ge g(x_0^+)\}$ cannot be empty. Analogously, by (25) $J_2 = \{j : f_j(x_0) \le g(x_0^-)\} \ne \emptyset$. Applying again (26) and (25), we deduce that

$$\begin{split} &\sum_{j \in J_{1}} \phi'(|f_{j}(x_{0}) - g(x_{0}^{+})|) \overline{\operatorname{sgn}}(f_{j}(x_{0}) - g(x_{0}^{+})) w_{j} \\ &\geq \sum_{j \in J_{2}} \phi'(|f_{j}(x_{0}) - g(x_{0}^{+})|) \overline{\operatorname{sgn}}(g(x_{0}^{+}) - f_{j}(x_{0})) w_{j} \\ &> \sum_{j \in J_{2}} \phi'(|f_{j}(x_{0}) - g(x_{0}^{-})|) \overline{\operatorname{sgn}}(g(x_{0}^{-}) - f_{j}(x_{0})) w_{j} \\ &\geq \sum_{j \in J_{1}} \phi'(|f_{j}(x_{0}) - g(x_{0}^{-})|) \overline{\operatorname{sgn}}(f_{j}(x_{0}) - g(x_{0}^{-})) w_{j} \\ &> \sum_{j \in J_{1}} \phi'(|f_{j}(x_{0}) - g(x_{0}^{+})|) \overline{\operatorname{sgn}}(f_{j}(x_{0}) - g(x_{0}^{+})) w_{j}, \end{split}$$

a contradiction. We are using (26) in the first inequality, and (25) in the third inequality. The strict inequalities follow from the fact that ϕ is strictly convex. Hence, $g(x_0^-) = g(x_0^+)$ and g is continuous at x_0 . The same reasoning applies to the case $g(x) < g(x_0)$ for $x < x_0$.

(b) According to (a), (25), and (26), we have

$$\sum_{j=1}^{m} \phi'(|g(x_0) - f_j(x_0)|) \overline{\text{sgn}}(g(x_0) - f_j(x_0)) w_j \ge 0 \quad \text{and}$$

$$\sum_{i=1}^{m} \phi'(|f_{j}(x_{0}) - g(x_{0})|) \overline{\operatorname{sgn}}(f_{j}(x_{0}) - g(x_{0})) w_{j} \ge 0,$$

and these two inequalities are precisely the characterization of the minimum $g(x_0)$ in the discrete problem of (22).

Remark 22. Under the same hypothesis of Theorem 21, m = 2 and $w_1 = w_2 = 1$, we conclude that if g is not constant on a neighborhood of x_0 , then $g(x_0) = \frac{\int_1^1 (x_0) + \int_2^1 (x_0)}{2}$.

The following example shows that if ϕ is not a strictly convex function, then both (a) and (b) in Theorem 21 are not true.

Example 23. Let $\phi(t) = t$ and $w_1 = w_2 = 1$. Take $f_1 \equiv 0$ and $f_2 \equiv 1$ on [0,1]. Then for all $c \in [0,\frac{1}{2}]$, the function

$$g_c(x) = \begin{cases} c & \text{if } 0 \le x \le \frac{1}{2} \\ 1 - c & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

is an element of $\mathcal{M}_{\phi,\mathbf{w}}(\mathbf{f},\mathcal{D})$. Moreover, for $c \in [0,\frac{1}{2})$, g_c is not constant on any neighborhood of $\frac{1}{2}$, and $g_c(\frac{1}{2}) = c < \frac{1}{2} = \frac{f_1(\frac{1}{2}) + f_2(\frac{1}{2})}{2}$.

In [9], best monotone \mathcal{L}_{ϕ} -approximation to a single function f is considered. In Theorem 3 the authors prove, without assuming that ϕ is strictly convex, that if f is approximately continuous at every point in (0,1), then uniqueness holds. The above example also shows that this result is not true in simultaneous approximation.

6. FINAL REMARK

Let $1 and <math>1 \le q < \infty$. For a convex set $\mathcal{H} \subset L_p$, and $f_j \in L_p[0,1] \setminus \mathcal{H}$ for j = 1, 2, ..., m, consider the problem of finding a g in \mathcal{H} satisfying

$$\sum_{j=1}^{m} \|f_j - g\|_p^q = \inf_{h \in \mathcal{R}} \sum_{j=1}^{m} \|f_j - h\|_p^q.$$

A straightforward computation shows that every solution $g_{p,q}$ of this problem is characterized by

$$\sum_{j=1}^{m} \int_{0}^{1} |f_{j} - g_{p,q}|^{p-1} \operatorname{sgn}(f_{j} - g_{p,q})(g_{p,q} - h) w_{j} d\mu \ge 0 \quad \text{for every } h \in \mathcal{K},$$

where $w_j = \|f_j - g_{p,q}\|_p^{q-p}$, j = 1, 2, ..., m. From Theorems 1 and 3 we deduce that $g_{p,q} \in \mathcal{H}$ is the solution of (1) taking $\phi(t) = t^p$ and the weights w_j given above. Thus, whenever \mathcal{H} is the set of nondecreasing functions in L_p , Corollary 14 shows that $g_{p,q} = \overline{f}$ a.e. on [0,1], where \overline{f} is given in Definition 8.

ACKNOWLEDGMENTS

The research of F.E. Levis is supported by Universidad Nacional de Río Cuarto and CONICET. The research of M. Marano is supported by Junta de Andalucía, Research Group FQM-268.

REFERENCES

- 1. I. Carrizo, S. Favier, and F. Zó (2011). A characterization of the extended best ϕ -approximation operator. *Numer. Funct. Anal. Optim.* 32(3):254–266.
- R. B. Darst and R. Huotari (1985). Best L₁-approximation of bounded approximately continuous functions on [0, 1]. J. Approx. Theory 43:178–179.
- R. Huotari, D. Legg, and A. Meyerowitz (1988). The natural best L₁-approximation by nondecreasing functions. J. Approx. Theory 52:132–140.
- R. Huotari, A. Meyerowitz, and M. Sheard (1986). Best monotone approximations in L₁[0, 1].
 J. Approx. Theory 47:85-91.
- 5. R. Huotari and S. Sahab (1991). Simultaneous monotone L_p approximation, $p \to \infty$. Bull. Aust. Math. Soc. 34(3):343–350.
- R. Huotari and S. Sahab (1992). Simultaneous monotone approximation in low-order mean. Bull. Aust. Math. Soc. 45(3):423–437.
- 7. M. A. Krasnosel'skii and Ya. B. Rutickii (1961). Convex Function and Orlicz Spaces. Noordhoff, Groningen.
- 8. D. Landers and L. Rogge (1980). Best approximants in L_{ϕ} -Spaces. Z. Warhrsch. verw. Gabiete 51:215–237.
- 9. M. Marano and J. Quesada (1997). L_{ϕ} -Approximation by non-decreasing functions on the interval. *Constr. Approx.* 13:177–186.
- 10. F. Mazzone and H. Cuenya (2005). A characterization of best ϕ -approximants with applications to multidimensional isotonic approximation. *Constr. Approx.* 21(2):207–223.
- 11. F. Mazzone and E. Schwindt (2007). A minimax formula for the best natural C([0,1])-approximate by nondecreasing functions. *Real Analysis Exchange* 32(1):1–7.
- 12. A. Pinkus (1989). On L¹ Approximation. Cambridge University Press, Cambridge, UK.
- 13. M. M. Rao and Z. D. Ren (1991). Theory of Orlicz Spaces. Marcel Dekker, New York.
- 14. S. Sahab (1988). On the monotone simultaneous approximation on [0, 1]. *Bull. Aust. Math. Soc.* 39:401–411.
- 15. S. Sahab (1989). Bounded measurable simultaneous monotone approximation. *Bull. Aust. Math. Soc.* 40(3):37–48.
- 16. S. Sahab (1991). Best simultaneous approximation of quasi-continuous functions by monotone functions. *Bull. Aust. Math. Soc.* 50:391–408.

- 17. J. Shi and R. Huotari (1995). Simultaneous approximations from convex sets. Computers Math. Applic. 30(3):197-206.
- 18. P. W. Smith and J. J. Swetits (1987). Best approximation by nondecreasing functions. *J. Approx. Theory* 49:398–403.
- 19. J. J. Swetits, S. E. Weinstein, and Y. Xu (1990). On the characterization and computation of best monotone approximation on $L_p[0,1]$ for $1 \le p < \infty$. J. Approx. Theory 60:58–69.
- 20. J. J. Swetits and S. E. Weinstein (1990). Construction of the best monotone approximation on $L_p[0,1]$. J. Approx. Theory 61:118–130.
- 21. V. Ubhaya (1974). Isotone optimization, I. J. Approx. Theory 12:146-159.