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� Let f = (f1, � � � , fm), where fj belongs to the Orlicz space ��[0, 1], and let w =
(w1, � � � ,wm) be an m-tuple of m positive weights. If � ⊂ ��[0, 1] is the class of nondecreasing
functions, we denote by ��,w(f,�) the set of best simultaneous monotone approximants to f,
that is, all the elements g ∈ � minimizing

∑m
j=1

∫ 1
0 �(|fj − g |)wj , where � is a convex

function, �(t) > 0 for t > 0, and �(0) = 0. In this work, we show an explicit formula to
calculate the maximum and minimum elements in ��,w(f,�). In addition, we study the
continuity of the best simultaneous monotone approximants.

Keywords Monotone approximation; Orlicz spaces; Simultaneous approximation.
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1. INTRODUCTION

Let �0 be the set of all real extended �-measurable functions on
[0, 1], where � is the Lebesgue measure, and let � : [0,∞) → [0,∞) be
a differentiable and convex function, �(0) = 0, �(t) > 0 for t > 0. For
f ∈ �0, let

��(f ) :=
∫ 1

0
�(|f (x)|)d�(x)�

We will deal with the Orlicz space

��[0, 1] := �f ∈ �0 : ��(�f ) < ∞ for some � > 0��
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Simultaneous Monotone Approximants 17

Under the Luxemburg norm, ��[0, 1] =: �� is a Banach space. It is easy
to see that if �(t) = t p , 1 ≤ p < ∞, we obtain the Lebesgue space Lp and
��(f ) = ∥∥f ∥∥p

p
.

We assume that � satisfies the 	2-condition, that is, there exists K > 0
such that �(2t) ≤ K�(t) for all t ≥ 0. So,

�� = �f ∈ �0 : ��(�f ) < ∞ for all � > 0��

We refer to [7, 13] for a detailed treatment of this subject.
Throughout this paper, fj ∈ ��, j = 1, 2, � � � ,m, and we write f =

(f1, � � � , fm). Given � ⊂ ��, we consider the problem of finding g ∈ � such
that

m∑
j=1

��(fj − g )wj = inf
h∈�

m∑
j=1

��(fj − h)wj =: E, (1)

where wj are positive real numbers. We denote by ��,w(f,�) the set of
elements g ∈ � satisfying (1), where w = (w1, � � � ,wm). Each element of
��,w(f,�) is called a best (simultaneous) approximant to f from �.

When � is the convex cone of nondecreasing functions in �� and
f is a single function (m = 1), it is known that ��,w(f,�) �= ∅ and there
exist min��,w(f,�) and max��,w(f,�) in ��,w(f,�), that is, there exist
elements in ��,w(f,�) that satisfy

min��,w(f,�) ≤ g ≤ max��,w(f,�)

almost everywhere on [0, 1] for all g ∈ ��,w(f,�) ([8], Theorems 4
and 14). These results of existence can be obtained for m > 1 with
analogous proofs. Thus, when m ≥ 1, in Section 4 of this paper we give a
characterization of best simultaneous approximants to f from �, as well
as an explicit formula to calculate min��,w(f,�) and max��,w(f,�). In
Section 5 we discuss the continuity of a g in ��,w(f,�) when each fj is
approximately continuous, j = 1, 2, � � � ,m.

Best monotone approximation to a single function has been studied
extensively in the literature [2–4, 18, 19, 21]. In [11] and [20], there
are explicit formulas to compute the best monotone approximant to a
single function defined on an interval when a p-norm is used. The ��-
approximation case was considered in [9].

The problem of best simultaneous monotone approximation to two
functions with �(t) = t p , 1 ≤ p < ∞, it was an early subject of study. In
[14], the author gives an algorithm to calculate the best approximant in
the discrete case and p > 1, and they study the continuity of the best
approximant. Similar results can be seen in [16], and in [17] results of
characterization are proved in L1-approximation from convex sets.
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18 F. E. Levis and M. Marano

Simultaneous monotone approximation to two functions when the
measure of deviation of f1 and f2 to an element h is max�‖f1− h‖p , ‖f2 −
h‖p�, 1 ≤ p ≤ ∞, can be seen in [5, 6, 15].

For f , g , h ∈ ��, we write

N (g ) = �x ∈ [0, 1] : g (x) �= 0� and Z (g ) = �x ∈ [0, 1] : g (x) = 0�,

and, throughout this article, we will denote the one-sided Gateaux
derivative of �� at f in the direction of h by


+
�(f , h) := lim

s→0+
��(f + sh) − ��(f )

s

=
∫
N (f )

�′(|f |)sgn(f )hd� + �′(0)
∫
Z (f )

|h|d�, (2)

where �′(0) is the right derivative of � at 0. Observe that, for h ≥ 0, (2)
can be written


+
�(f , h) =

∫ 1

0
�′(|f |)sgn(f )hd�, (3)

where sgn = sgn + ��0�, �A being the characteristic function of the set A.

2. SIMULTANEOUS APPROXIMATION FROM CONVEX SETS

The following theorem is an immediate consequence of (2) and a
modified version of Theorem 1.6 in [12] for convex functionals.

Theorem 1. Let � be a convex set in ��. Then g ∈ ��,w(f,�) if only if

m∑
j=1


+
�(fj − g , g − h)wj ≥ 0 for all h ∈ �� (4)

The next corollary generalizes Lemma 3.2 in [17].

Corollary 2. Let � be a convex set in ��. Assume h ∈ � and g ∈ ��,w(f,�).
Then h ∈ ��,w(f,�) if only if

∑m
j=1 


+
�(fj − h, h − g )wj = 0.

Proof. Let r : [0, 1] → [0,∞) be the convex function defined by

r (t) =
m∑
j=1

��(fj − h + t(h − g ))wj �
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Simultaneous Monotone Approximants 19

Then r ′(0) ≤ r (1) − r (0), that is,

m∑
j=1


+
�(fj − h, h − g )wj ≤

m∑
j=1

��(fj − g )wj −
m∑
j=1

��(fj − h)wj � (5)

On the other hand, if g ∈ ��,w(f,�), we get

m∑
j=1

��(fj − g )wj −
m∑
j=1

��(fj − h)wj ≤ 0�

So, (5) implies

m∑
j=1


+
�(fj − h, h − g )wj ≤ 0� (6)

If h ∈��,w(f,�), by (6) and Theorem 1 we have
∑m

j=1 

+
�(fj − h, h − g )wj = 0.

Reciprocally, if
∑m

j=1 

+
�(fj − h, h − g )wj = 0, from (5) and the fact that

g ∈ ��,w(f,�), we get

m∑
j=1

��(fj − g )wj =
m∑
j=1

��(fj − h)wj �

In consequence, h ∈ ��,w(f,�). �

We now turn our attention to the uniqueness of the simultaneous
approximation from a convex set. This means that if g , h are in ��,w(f,�),
then g = h a.e. on [0, 1].
Theorem 3. Let � be a convex set in ��. If � is a strictly convex function and
g , h are in ��,w(f,�), then g = h a.e. on [0, 1].

Proof. Assume that there exist g , h ∈ ��,w(f,�) with ��g �= h� > 0. Since
� is a strictly convex function we have

��

(
fj − g + h

2

)
wj <

1
2
��(fj − g )wj + 1

2
��(fj − h)wj , j = 1, 2, � � � ,m�

So,
m∑
j=1

��

(
fj − g + h

2

)
wj <

1
2

m∑
j=1

��(fj − g )wj + 1
2

m∑
j=1

��(fj − h)wj = E,

which yields a contradiction because g+h
2 ∈ �� �
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20 F. E. Levis and M. Marano

3. SIMULTANEOUS APPROXIMATION BY CONSTANT
FUNCTIONS

Let fj ∈ ��, j = 1, 2, � � � ,m. Throughout this section, A ⊂ [0, 1] stands
for any measurable set with �(A) > 0. Let �A := �c�A : c ∈ ��, and we write
fA = (f1�A, � � � , fm�A).

Since �� is a convex functional, the function E : � → [0,∞)
defined by

E(c) =
m∑
j=1

��((fj − c)�A)wj

is convex. Moreover, limc→±∞ E(c) = +∞. So, ��,w(fA ,�A), the set of best
constant approximants to f on A, is a nonempty compact interval. We call

m(f,A) = min��,w(fA ,�A) and m(f,A) = max��,w(fA ,�A)�

Lemma 4. A constant c is in ��,w(fA ,�A) if and only if

m∑
j=1


+
�(fj − c , �A)wj ≥ 0 and

m∑
j=1


+
�(c − fj , �A)wj ≥ 0� (7)

Proof. Take � = �A in Theorem 1; now, since −sgn(fj − c) = sgn(c − fj),
the lemma follows immediately from that theorem and (2). �

Lemma 5. Let g , h ∈ ��.

(a) If g ≤ h a.e. on A, then 
+
�(g , �A) ≤ 
+

�(h, �A);
(b) If g < h a.e. on A, then 
+

�(g , �A) ≤ −
+
�(−h, �A).

Proof. (a) We have


+
�(g , �A)

=
∫ 1

0
�′(|g |)sgn(g )�Ad�

=
∫ 1

0
�′(|g |)�A∩�g≥0�d� −

∫ 1

0
�′(|g |)�A∩�g<0�∩�h≥0�d� −

∫ 1

0
�′(|g |)�A∩�h<0� d�

≤
∫ 1

0
�′(|h|)�A∩�g≥0�d� +

∫ 1

0
�′(|h|)�A∩�g<0�∩�h≥0�d� −

∫ 1

0
�′(|h|)�A∩�h<0� d�

=
∫ 1

0
�′(|h|)sgn(h)�A d� = 
+

�(h, �A)�
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Simultaneous Monotone Approximants 21

(b) There holds


+
�(g , �A) =

∫ 1

0
�′(|g |)�A∩�g≥0�d� −

∫ 1

0
�′(|g |)�A∩�g<0�d�

≤
∫ 1

0
�′(|h|)�A∩�h>0�d� −

∫ 1

0
�′(|h|)�A∩�h≤0�d� = −
+

�(−h, �A)�

�

The next Corollary follows immediately from Lemma 5.

Corollary 6. For g ∈ ��, the application that assigns 
+
�(g − u, �A) to u ∈ �

is nonincreasing.

As a consequence of Lemma 5, we have the following theorem of
characterization.

Theorem 7. We have the following relations:

(a) m(f,A) = min�c ∈ � : ∑m
j=1 


+
�(c − fj , �A)wj ≥ 0�; and

(b) m(f,A) = max�c ∈ � : ∑m
j=1 


+
�(fj − c , �A)wj ≥ 0�.

In addition, if � is a strictly convex function, then m(f,A) = m(f,A).

Proof. (a) From Lemma 4,
∑m

j=1 

+
�(m(f,A) − fj , �A)wj ≥ 0. Suppose

that there exists u ∈ �, u < m(f,A), such that
m∑
j=1


+
�(u − fj , �A)wj ≥ 0� (8)

By Lemma 5 (a) and Lemma 4,
m∑
j=1


+
�(fj − u, �A)wj ≥

m∑
j=1


+
�(fj − m(f,A), �A)wj ≥ 0� (9)

Then, Lemma 4, (8) and (9) imply u ∈ ��,w(fA ,�A), a contradiction. We
can prove (b) in a similar way. Finally, if � is a strictly convex function, the
equality m(f,A) = m(f,A) follows from Theorem 3. �

4. SIMULTANEOUS APPROXIMATION BY
NONDECREASING FUNCTIONS

Henceforth, � is the convex cone of nondecreasing functions in ��.
In this section, we give a characterization of best approximants to f from
�. Moreover, we show an explicit formula to calculate the maximum and
minimum elements in ��,w(f,�).
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22 F. E. Levis and M. Marano

Definition 8. For x ∈ (0, 1), we define

f (x) = inf
b>x

sup
a<x

m (f, (a, b)) and f (x) = sup
a<x

inf
b>x

m (f, (a, b)) �

Lemma 9. The functions f and f are nondecreasing.

Proof. Let x , y ∈ (0, 1) such that x < y. Then

inf
b>x

sup
a<x

m (f, (a, b)) ≤ inf
b>x

sup
a<y

m (f, (a, b)) ≤ inf
b>y

sup
a<y

m (f, (a, b)) �

Therefore, f (x) ≤ f (y)� The proof that f (x) ≤ f (y) is analogous. �

That f and f are in �� is a consequence of Theorems 16 and 18,
respectively.

4.1. Characterization of Best Simultaneous Monotone
Approximants

The following is a characterization theorem. Similar results can be seen
in [1, 10].

Theorem 10. The following statements are equivalent:

(a) g ∈ ��,w(f,�);
(b) For every u ∈ � we have

(b1)
∑m

j=1 

+
�(g − fj , ��g<u�∩(a,1))wj ≥ 0, for 0 ≤ a < 1; and

(b2)
∑m

j=1 

+
�(fj − g , ��g>u�∩(0,b))wj ≥ 0, for 0 < b ≤ 1.

Proof. (a) ⇒ (b). Take a g ∈ ��,w(f,�), and let u ∈ �. We prove (b1).
The proof of (b2) is similar. Let 0 ≤ a < 1. If �(�g < u� ∩ (a, 1)) = 0, then
(b1) is obvious. Suppose �(�g < u� ∩ (a, 1)) > 0. So, ��g<u�∩(a,1) = �(a,bu ) a.e.
on [0, 1], where

bu = sup�g < u�� (10)

Assume bu = 1, and let h ∈ � be given by h = g on [0, a] and h = g + 1 on
(a, 1]. From (4) with this function h we get (b1).

Suppose now bu < 1. We consider the following three cases:

• g is continuous at bu , and g (x) = g (bu) for some x > bu . Let �xn�n∈� ⊂
(a, bu) be such that xn ↑ bu . Since g is continuous at bu ,

g (bu) = u� (11)
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Simultaneous Monotone Approximants 23

Therefore, yn := g (bu)− g (xn)> 0. Consider the function hn ∈� given by

hn = g on [0, a] ∪ (bu , 1], hn = g + yn on (a, xn], and

hn = g (bu) on (xn , bu]�
Applying (4) with h = hn , we deduce that

0 ≤
m∑
j=1


+
�

(
g − fj , �(a,xn )

)
wj +

m∑
j=1

∫ bu

xn

�′(|g − fj |)sgn(g − fj)
g (bu) − g

yn
wj d��

Since 0 ≤ g (bu )−g
yn

≤ 1 on (xn , bu), by passing to the limit as n → ∞, we get
(b1).

• g is continuous at bu , and g (x) > g (bu) for all x > bu .
Let �xn�n∈� ⊂ (bu , 1) be such that xn ↓ bu . Then yn := g (xn) − g (bu) > 0.
Consider the function hn ∈ � given by

hn = g on [0, a] ∪ (xn , 1], hn = g + yn on (a, bu], and

hn = g (xn) on (bu , xn]�
Applying (4) with h = hn , we have

0≤
m∑
j=1


+
�

(
g − fj , �(a,bu )

)
wj +

m∑
j=1

∫ xn

bu

�′(|g − fj |)sgn(g − fj)
g (xn) − g

yn
wj d��

Since 0 ≤ g (xn )−g
yn

≤ 1 on (bu , xn), by passing to the limit as n → ∞, we
get (b1).

• g (b+
u ) − g (b−

u ) = 2�.

Taking in (4) the function h ∈ � given by h = g on [0, a] ∪ (bu , 1] and h =
g + � on (a, bu], we obtain (b1).

(b) ⇒ (a) Let u ∈ �, h ∈ �, and b = sup�h < u�. If �(�h < u <
g �) > 0 then 0 < b ≤ 1 and ��h<u<g � = ��g>u�∩(0,b) a.e. on [0, 1]. Therefore,
by (b2),

m∑
j=1


+
�

(
fj − g , ��h<u<g �

)
wj ≥ 0� (12)

If �(�h < u < g �) = 0, then (12) is obvious. Since u is arbitrary, integrating
on u in the inequality (12) we have

m∑
j=1

∫ ∞

−∞

( ∫ 1

0
�′(|fj − g |)sgn(fj − g )��h<u<g �wj d�

)
du ≥ 0�
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24 F. E. Levis and M. Marano

Applying Fubini’s theorem, we get

m∑
j=1

∫ 1

0

(
�′(|fj − g |)sgn(fj − g )wj

∫ ∞

−∞
��h<u<g �du

)
d� ≥ 0,

that is,

m∑
j=1


+
�

(
fj − g , ��g>h�(g − h)

)
wj ≥ 0� (13)

The inequality

m∑
j=1


+
�

(
fj − g , ��h>g �(g − h)

)
wj ≥ 0 (14)

follows from (b1) in a similar way. Now, according to (13) and (14),
we have

m∑
j=1


+
�

(
fj − g , g − h

)
wj ≥ 0� (15)

Since h ∈ � is arbitrary, (a) follows from (15) and Theorem 1. �

Corollary 11. If g ∈ ��,w(f,�), then for every u ∈ � we have

(a)
∑m

j=1 

+
�(g − fj , ��g≤u�∩(a,1))wj ≥ 0, for 0 ≤ a < 1; and

(b)
∑m

j=1 

+
�(fj − g , ��g≥u�∩(0,b))wj ≥ 0, for 0 < b ≤ 1.

Proof. For every u ∈ � and 
 > 0, Theorem 10 implies

m∑
j=1


+
�

(
g − fj , ��g<u+
�∩(a,1)

)
wj ≥ 0, for 0 ≤ a < 1, and

m∑
j=1


+
�

(
fj − g , ��g>u−
�∩(0,b)

)
wj ≥ 0, for 0 < b ≤ 1�

As lim
→0+ ��g<u+
� = ��g≤u� and lim
→0+ ��g>u−
� = ��g≥u�, both (a) and (b)
hold. �

Remark 12. Under the same hypothesis of Corollary 11, observe that if
�(�g = u�) > 0, then this Corollary and Lemma 4 show that u is a best
constant approximant to f on �g = u�.

D
ow

nl
oa

de
d 

by
 [1

90
.1

93
.8

.2
33

] a
t 0

2:
27

 1
9 

Ja
nu

ar
y 

20
13

 



Simultaneous Monotone Approximants 25

Theorem 13. If g ∈ ��,w(f,�), then f ≤ g ≤ f a.e. on [0, 1]�

Proof. Let x ∈ (0, 1) be a continuity point of g . Let � > 0 and u = g (x) +
�. For 0 ≤ a < bu , where bu is defined in (10), we have x < bu and �(a,bu ) =
��g<u�∩(a,1) a.e. on [0, 1]. By Theorem 10, we get

m∑
j=1


+
�

(
g − fj , �(a,bu )

)
wj ≥ 0� (16)

Since g − fj ≤ g (x) + � − fj on (a, bu) for all j = 1, 2, � � � ,m, Lemma 5 (a)
implies

m∑
j=1


+
�

(
g (x) + � − fj , �(a,bu )

)
wj ≥

m∑
j=1


+
�

(
g − fj , �(a,bu )

)
wj � (17)

From (16), (17), and Theorem 7 (a) we have

m(f, (a, bu)) ≤ g (x) + �, 0 ≤ a < bu �

So, supa<x m(f, (a, bu)) ≤ g (x) + �� Consequently, as bu > x ,

f (x) = inf
b>x

sup
a<x

m(f, (a, b)) ≤ g (x) + ��

As � is arbitrary, we obtain f (x) ≤ g (x). A similar argument shows that
f (x) ≥ g (x). Since g is continuous a.e. on [0, 1], the proof is complete. �

Corollary 14. If � is a strictly convex function, then f = f a.e. on [0, 1], and
g = f a.e. on [0, 1] for any g in ��,w(f,�).

Proof. Let x ∈ (a, b) with 0 < a < b < 1. Since � is a strictly convex
function, it follows that

inf
c>x

m (f, (a, c)) ≤ m(f, (a, b)) = m(f, (a, b)),

where the equality is due to Theorem 7. Then f (x) =
supa<x infc>x m (f, (a, c)) ≤ supa<x m(f, (a, b)) and, consequently,

f (x) ≤ inf
b>x

sup
a<x

m(f, (a, b)) = f (x)�

So, Theorem 13 completes the proof. �
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26 F. E. Levis and M. Marano

4.2. Maximum and Minimum of Best Simultaneous Monotone
Approximants

We now prove that max��,w(f,�) = f a.e. on [0, 1] and min��,w

(f,�) = f a.e. on [0, 1]. For u ∈ �, observe that the function x −→∑m
j=1 


+
�

(
fj − u, �(x ,1)

)
wj is continuous on [0, 1]. Let

Qu = max
{ m∑

j=1


+
�

(
fj − u, �(x ,1)

)
wj : x ∈ [0, 1]

}
and

yu = min
{
x ∈ [0, 1] :

m∑
j=1


+
�

(
fj − u, �(x ,1)

)
wj = Qu

}
�

Lemma 15. Let u ∈ �. If 0 < x < yu < y < 1, then

(a)
∑m

j=1 

+
�(fj − u, �(yu ,y))wj ≥ 0 and

∑m
j=1 


+
�(fj − u, �(x ,yu ))wj < 0;

(b) f (x) ≤ u ≤ f (y).

Proof. (a) Let 0 < x < yu < y < 1. By definition of yu and Qu ,

m∑
j=1


+
�

(
fj − u, �(y,1)

)
wj ≤ Qu =

m∑
j=1


+
�

(
fj − u, �(yu ,1)

)
wj and

m∑
j=1


+
�

(
fj − u, �(x ,1)

)
wj < Qu =

m∑
j=1


+
�

(
fj − u, �(yu ,1)

)
wj �

So, (3) and the additivity of the integral imply (a).

(b) Let 0 < v < yu < z < 1. If b > z, then Theorem 7 (b) and
the first inequality in (a) (with y = b) imply m(f, (yu , b)) ≥ u. Thus,
infb>z m(f, (yu , b)) ≥ u. As yu < z, we obtain

f (z) = sup
a<z

inf
b>z

m(f, (a, b)) ≥ u�

On the other hand, if a < v then infb>v m(f, (a, b)) ≤ m(f, (a, yu)) < u,
where the first inequality follows from the hypothesis v < yu , and the
second inequality is due to Theorem 7 (b), Corollary 6 and the second
inequality in (a) (with x = a). Then

f (v) = sup
a<v

inf
b>v

m(f, (a, b)) ≤ u�
�

Theorem 16. We have f = max��,w(f,�) a.e. on [0, 1].
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Simultaneous Monotone Approximants 27

Proof. Let g = max��,w(f,�). By Theorem 13, g ≤ f a.e. on [0, 1]�
Suppose that there exists z0 ∈ (0, 1) such that g (z0) < u < f (z0), where z0
is a point of continuity of g and f . Clearly z0 < bu , where bu is defined in
(10). In addition, yu ≤ z0; otherwise Lemma 15 (b) implies f (z0) ≤ u.

Let R(g ) = g
([yu , bu]). Since g is a nondecreasing function on (yu , bu],

for c ∈ R(g ) the set

Ig (c) := �z ∈ (yu , bu] : g (z) = c�

is either a singleton, or an interval with endpoints c < c . We observe that
the second case can occur for at most countable many values of c , say
�cn�n∈I , I ⊆ �. Let

C := (yu , bu) \
( ⋃

n∈I

(
cn , cn

) )

and let � : (yu , bu] → � be the continuous function defined by

�(x) :=
m∑
j=1


+
�

(
fj − u, �(yu ,x)

)
wj =

m∑
j=1

∫ x

yu

�′(|fj − u|)sgn(fj − u)wjd�� (18)

We next prove that

�(x) = 0 for all x ∈ C � (19)

Let z ∈ C ; we consider two cases.

• z �= cn .
Clearly, �g ≤ g (z)� ∩ (yu , 1) = (yu , z], because g (y) > g (z) for y > z. Since
g < u on (yu , z), from Lemma 15 (a), Lemma 5 (b) and Corollary 11 (a)
we have

0 ≤ �(z) =
m∑
j=1


+
�

(
fj − u, �(yu ,z)

)
wj ≤ −

m∑
j=1


+
�

(
g − fj , �(yu ,z)

)
wj

= −
m∑
j=1


+
�

(
g − fj , ��g≤g (z)�∩(yu ,1)

)
wj ≤ 0�

• z = cn .
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28 F. E. Levis and M. Marano

As ��g<cn �∩(yu ,1) = �(yu ,z) a.e. on [0, 1], and g < u on (yu , z), Lemma 15
(a), Lemma 5 (b) and Theorem 10 imply

0 ≤ �(z) =
m∑
j=1


+
�

(
fj − u, �(yu ,z)

)
wj ≤ −

m∑
j=1


+
�

(
g − fj , �(yu ,z)

)
wj

= −
m∑
j=1


+
�

(
g − fj , ��g<cn �∩(yu ,1)

)
wj ≤ 0�

Therefore, (19) holds.
On the other hand, � has a derivative �′ at almost every point x ∈

(yu , bu). Indeed, from (18),

�′ =
m∑
j=1

�′(|fj − u|)sgn(fj − u)wj a.e. on (yu , bu)�

Let D be the set of points x ∈ C such that x is a density point of C and it
satisfies the above equation. Since �(D) = �(C), by (19) we get �′ = 0 a.e.
on C . Further, g < u on C ; thus

m∑
j=1


+
�

(
fj − u, (u − g )�C

)
wj =

∫
C
(u − g )�′d� = 0� (20)

If (yu , bu) \ C �= ∅, then
m∑
j=1


+
�

(
fj − u, (u − g )�(yu ,bu )\C

)
wj =

∑
n∈I

m∑
j=1


+
�

(
fj − u, (u − g )�(cn ,cn)

)
wj

=
∑
n∈I

m∑
j=1

(u − cn)
+
�

(
fj − u, �(cn ,cn)

)
wj

=
∑
n∈I

(u − cn)
(
�(cn) − �(cn)

) = 0,

where the last equality is due to (19). Therefore, by (20) we get

m∑
j=1


+
�(fj − u, (u − g )�(yu ,bu ))wj = 0� (21)

Now we consider the function h ∈ � given by

h = g on [0, yu] ∪ (bu , 1] and h = u on (yu , bu]�
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Simultaneous Monotone Approximants 29

It follows from (21) and Corollary 2 that h ∈ ��,w(f,�), which contradicts
the definition of g . So, f (z0) = g (z0) at every continuity point z0 of g and
f . Since almost every point in (0, 1) is a continuity point of both g and f ,
we conclude that g = f a.e. on [0, 1]. �

Analogously to the previous case, for u ∈ �, let

Mu = max
{ m∑

j=1


+
�

(
u − fj , �(0,x)

)
wj : x ∈ [0, 1]

}
and

xu = max
{
x ∈ [0, 1] :

m∑
j=1


+
�

(
u − fj , �(0,x)

)
wj = Mu

}
�

With similar proofs to those of Lemma 15 and Theorem 16 we obtain the
following two results, respectively.

Lemma 17. Let u ∈ �. If 0 < x < xu < y < 1 then

(a)
∑m

j=1 

+
�(u − fj , �(x ,xu ))wj ≥ 0 and

∑m
j=1 


+
�(u − fj , �(xu ,y))wj < 0;

(b) f (x) ≤ u ≤ f (y).

Theorem 18. We have f = min��,w(f,�) a.e. on [0, 1].

5. CONTINUITY OF BEST SIMULTANEOUS MONOTONE
APPROXIMANTS

In this section, we study the continuity of best simultaneous monotone
approximants to f. Note that �′ is a continuous function, since � is convex
and differentiable.

A function f ∈ �0 is said to be approximately continuous at x0 ∈ (0, 1)
if, for each 
 > 0, x0 is a point of density of �|f − f (x0)| < 
� =: A
(f , x0).

Lemma 19. Let g ∈ �, f ∈ ��, x0 ∈ (0, 1), w > 0 and

L
(�, f ,w) := 1
�

∫ x0

x0−�

�A
(f ,x0)�
′(|g − f |)sgn(g − f )w d�, 0 < � < x0�

Assume that f is approximately continuous at x0.

(a) If 0 < 
 < |g (x−
0 ) − f (x0)|, then

L
(f ,w) := lim sup
�↓0

L
(�, f ,w)

≤ �′(|g (x−
0 ) − f (x0) + 
|)sgn(g (x−

0 ) − f (x0))w;
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30 F. E. Levis and M. Marano

(b) If f (x0) = g (x−
0 ) and 
 > 0, then L
(f ,w) ≤ �′(
)w�

Consequently,

L
(f ,w)≤�′(|g (x−
0 )− f (x0)+ 
|)sgn(g (x−

0 )− f (x0))w for all 
 small enough.

Proof. (a) Assume 0 < 
 < |g (x−
0 ) − f (x0)|. Then

L
(�, f ,w) ≤ �
([x0 − �, x0] ∩ A
(f , x0)

)
�

×�′ (|g (x−
0 ) − f (x0) + 
|) sgn(g (x−

0 ) − f (x0))w,

for all sufficiently small � > 0. Since lim�↓0
�([x0−�,x0]∩A
(f ,x0))

�
= 1, by passing

to the limit as � ↓ 0 we get (a).

(b) Suppose now g (x−
0 ) = f (x0) and let 
 > 0. Since

|L
(�, f ,w)| ≤ �([x0 − �, x0] ∩ A
(f , x0))
�

�′(max�|
 + f (x0) − g (x0 − �)|, 
�)w,

by passing to the limit as � ↓ 0 we have (b).
�

With a similar proof to that of Lemma 19, we get the next lemma.

Lemma 20. Let g ∈ �, f ∈ ��, x0 ∈ (0, 1), w > 0 and

N
(�, f ,w) := 1
�

∫ x0+�

x0

�A
(f ,x0)�
′(|f − g |)sgn(f − g )w d�, � > 0�

Assume that f is approximately continuous at x0.

(a) If 0 < 
 < |g (x+
0 ) − f (x0)|, then

N 
(f ,w) := lim sup
�↓0

N
(�, f ,w)

≤ �′(|f (x0) − g (x+
0 ) + 
|)sgn(f (x0) − g (x+

0 ))w;

(b) If f (x0) = g (x+
0 ) and 
 > 0, then N 
(f ,w) ≤ �′(
)w�

Consequently,

N 
(f ,w) ≤ �′(|g (x+
0 ) − f (x0) + 
|)sgn(g (x+

0 ) − f (x0))w

for all 
 small enough.
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Simultaneous Monotone Approximants 31

Theorem 21. Let g ∈ ��,w(f,�). Assume that � is a strictly convex function.
If fj is approximately continuous at x0 ∈ (0, 1) for each j , and either �′ is bounded,
or fj is essentially bounded on a neighborhood of x0 for every j , then

(a) g is continuous at x0; and
(b) If g is not constant on a neighborhood of x0, then g (x0) satisfies

m∑
j=1

�(|fj(x0) − g (x0)|)wj = min
c∈�

m∑
j=1

�(|fj(x0) − c |)wj � (22)

Proof. (a) If g is constant on a neighborhood of x0, then g is
continuous at x0. Otherwise, let 
 > 0, and for each j = 1, 2, � � � ,m let
Aj ,
 = A
(fj , x0) and Ac

j ,
 = (0, 1) \ Aj ,
. We consider the case g (x) > g (x0)
for x > x0; the case where g (x) < g (x0) for x < x0 is proved in a similar
way. For each 0 < � < x0, from Corollary 11 (a) we have

0 ≤
m∑
j=1


+
�

(
g − fj , ��g≤g (x0)�∩(x0−�,1)

)
wj

=
m∑
j=1

∫ x0

x0−�

�′(|g − fj |)sgn(g − fj)wj d�� (23)

Since g is bounded on [x0 − �, x0], by hypothesis there exists a constant
M > 0 such that

m∑
j=1

∫ x0

x0−�

�Ac
j ,

�′(|g − fj |)wj d� ≤ M

m∑
j=1

�([x0 − �, x0] ∩ Ac
j ,
),

for all sufficiently small �. As fj is approximately continuous at x0 for each

j , we deduce that lim�↓0
�([x0−�,x0]∩Ac

j ,
)

�
= 0 for j = 1, 2, � � � ,m. Thus

lim sup
�↓0

m∑
j=1

1
�

∫ x0

x0−�

�Ac
j ,

�′(|g − fj |)sgn(g − fj)wj d� = 0� (24)

According to (23) and (24), and applying the additivity of the integral,
we get

m∑
j=1

L
(fj ,wj) ≥ lim sup
�↓0

m∑
j=1

1
�

∫ x0

x0−�

�Aj ,
�
′(|g − fj |)sgn(g − fj)wj d� ≥ 0�
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32 F. E. Levis and M. Marano

From Lemma 19,

m∑
j=1

�′(|g (x−
0 ) − fj(x0) + 
|)sgn(g (x−

0 ) − fj(x0))wj ≥ 0

for all 
 small enough. Therefore,

m∑
j=1

�′(|g (x−
0 ) − fj(x0)|)sgn(g (x−

0 ) − fj(x0))wj ≥ 0� (25)

On the other hand, (b2) in Theorem 10 implies

0 ≤
m∑
j=1


+
�

(
fj − g , ��g>g (x0)�∩(0,x0+�)

)
wj =

m∑
j=1

∫ x0+�

x0

�′(|fj − g |)sgn(fj − g )wj d��

In the same manner as before, and using Lemma 20, we can see that

m∑
j=1

�′(|fj(x0) − g (x+
0 )|)sgn(fj(x0) − g (x+

0 ))wj ≥ 0� (26)

Suppose now g (x−
0 ) < g (x+

0 ). Due to (26) the set of indexes J1 = �j :
fj(x0) ≥ g (x+

0 )� cannot be empty. Analogously, by (25) J2 = �j : fj(x0) ≤
g (x−

0 )� �= ∅. Applying again (26) and (25), we deduce that

∑
j∈J1

�′(|fj(x0) − g (x+
0 )|)sgn(fj(x0) − g (x+

0 ))wj

≥
∑
j∈J2

�′(|fj(x0) − g (x+
0 )|)sgn(g (x+

0 ) − fj(x0))wj

>
∑
j∈J2

�′(|fj(x0) − g (x−
0 )|)sgn(g (x−

0 ) − fj(x0))wj

≥
∑
j∈J1

�′(|fj(x0) − g (x−
0 )|)sgn(fj(x0) − g (x−

0 ))wj

>
∑
j∈J1

�′(|fj(x0) − g (x+
0 )|)sgn(fj(x0) − g (x+

0 ))wj ,

a contradiction. We are using (26) in the first inequality, and (25) in
the third inequality. The strict inequalities follow from the fact that � is
strictly convex. Hence, g (x−

0 ) = g (x+
0 ) and g is continuous at x0. The same

reasoning applies to the case g (x) < g (x0) for x < x0.
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Simultaneous Monotone Approximants 33

(b) According to (a), (25), and (26), we have

m∑
j=1

�′(|g (x0) − fj(x0)|)sgn(g (x0) − fj(x0))wj ≥ 0 and

m∑
j=1

�′(|fj(x0) − g (x0)|)sgn(fj(x0) − g (x0))wj ≥ 0,

and these two inequalities are precisely the characterization of the
minimum g (x0) in the discrete problem of (22). �

Remark 22. Under the same hypothesis of Theorem 21, m = 2 and w1 =
w2 = 1, we conclude that if g is not constant on a neighborhood of x0, then
g (x0) = f1(x0)+f2(x0)

2 .

The following example shows that if � is not a strictly convex function,
then both (a) and (b) in Theorem 21 are not true.

Example 23. Let �(t) = t and w1 = w2 = 1. Take f1 ≡ 0 and f2 ≡ 1 on
[0, 1]. Then for all c ∈ �0, 1

2 �, the function

gc(x) =
{
c if 0 ≤ x ≤ 1

2

1 − c if 1
2 < x ≤ 1

is an element of ��,w(f,�). Moreover, for c ∈ �0, 1
2

)
, gc is not constant on

any neighborhood of 1
2 , and gc

(
1
2

) = c < 1
2 = f1

(
1
2

)
+f2

(
1
2

)
2 .

In [9], best monotone ��-approximation to a single function f is
considered. In Theorem 3 the authors prove, without assuming that � is
strictly convex, that if f is approximately continuous at every point in (0, 1),
then uniqueness holds. The above example also shows that this result is
not true in simultaneous approximation.

6. FINAL REMARK

Let 1 < p < ∞ and 1 ≤ q < ∞. For a convex set � ⊂ Lp , and fj ∈
Lp[0, 1] \ � for j = 1, 2, � � � ,m, consider the problem of finding a g in �
satisfying

m∑
j=1

‖fj − g‖q
p = inf

h∈�

m∑
j=1

‖fj − h‖q
p �
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34 F. E. Levis and M. Marano

A straightforward computation shows that every solution gp,q of this
problem is characterized by

m∑
j=1

∫ 1

0
|fj − gp,q |p−1sgn(fj − gp,q)(gp,q − h)wj d� ≥ 0 for every h ∈ �,

where wj = ‖fj − gp,q‖q−p
p , j = 1, 2, � � � ,m. From Theorems 1 and 3 we

deduce that gp,q ∈ � is the solution of (1) taking �(t) = t p and the weights
wj given above. Thus, whenever � is the set of nondecreasing functions
in Lp , Corollary 14 shows that gp,q = f a.e. on [0, 1], where f is given in
Definition 8.
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