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Abstract

In this work we introduce two analytical representations of a generalized Nordsieck integral. These integrals aris
calculations of scattering properties of systems of Coulomb-charged particles using the natural base, which include
solutions of the two-body Coulomb equation. We study the numerical convergence of these representations against
Fortran numerical integration. We test the performance of the different strategies as a function of the momentum
which is typically a relevant variable in collision processes. We also discuss the advantages and disadvantages of th
approaches.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we investigate the numerical solution of a particular case of integrals that we callgeneralizedNord-
sieck integral[1]. This type of integrals arises in the calculation of the transition elements involving three Co
interacting particles. Along the years, it has been customary to write down the final state for the continuum
systems as

(1)ΨC3 = NC3ΦPW

3∏
l=1

1F1[ial;1;−iklξl],
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whereξl = rl + rl · k̂l , kl andrl stand respectively for the relative momentum and distance between particlesj and
k, j �= k �= l. TheΦPW represents the free motion of the particles

(2)ΦPW = eiK·R+ik·r,
where{R, r} are Jacobi coordinates and{K,k} are their conjugated momenta. As usual,al = ZjZkµjk/kl is the
Sommerfeld parameter for the interaction between particlesj andk. This is the well-known C3 approximation[2].
It is based upon the approximate separability of the Schrödinger equation for three charged particles: W
coupling terms of the Hamiltonian are neglected, the solution can be written as the product of three tw
Coulomb wave functions.

However, it is possible to construct a basis of continuum Coulomb functions that can be used to expand t
wave function. This basis was proposed to deal with any kind of three-body Coulomb system[3,4]. The so-called
� basis can be written as:

(3)Φ� = ΦPW

∞∑
m,n=0

Am,nΦm,n,

(4)Φm,n =
3∏

l=1

�mj ,nj
(aj , bj , cj ;−ikj ξj ,−ikj ηj ),

whereξj andηj = rj − rj · k̂j , are generalized parabolic coordinates (see[5] for details),

(5)�m,n(a, b, c;x, y) = (ia)m(−x)m1F1[ia + m;b;x](−y)n1F1[n; c;y],
m = {m1,m2,m3} andn = {n1, n2, n3}. The coefficientsAm,n, andbi , ci are determined when a particular appro
imate form of the non-orthogonal kinetic energy is used and the Schrödinger equation is solved. Also, it is p
to obtain these coefficients by satisfying different physical requirements like Redmond asymptotic behavi
cusp conditions, etc.[3]. It has been shown in the same reference, that in some cases the coefficientsb andc may,
for instance, adopt the formb = 1 + 2m andc = 1 + 2n, the one observed by theΦ2 model[6]. For those cases
the function�m,n(a, b, c;x, y) can be associated with the two-body Coulomb wave function where the mag
number is different from zero.

It is clear then, that to compute the transition matrix element with a final state expanded in the� Coulomb basis
one has to deal with the integral:

(6)J ′
mn = Qmn

∫
dr
r

e−λr+iq·r(−ikξ)m1F1[−ia + m;1+ 2m; ikξ ](−ikη)n1F1[n;1+ 2n; ikη]

with Qmn = C∗
mn(−ia)mN0Nλ. The factorsN0 = (2π)−3/2 andNλ = (λ3/π)1/2 are the normalization constan

of the final plane wave state and the initial ground state of the hydrogenic system, respectively. In Eq.(6), λ is
associated to the charge of the bound state, 1/r to the Coulomb potential,q to the momentum transfer,a represents
a Sommerfeld parameter andk stands for the final momentum of the system. The factorCmn is the normalization
factor to satisfy the asymptotic Coulomb wave condition,

(7)Cmn = (−1)m+n

(ia)m

�[1+ m − ia]
�[1+ 2m]

�[1+ n]
�[1+ 2n]e

−π a
2+iπ(m+n).

We call Eq.(6) theextendedNordsieck integral to distinguish it from thegeneralizedone given by

(8)J ′
1 = J ′

1

(
z a1 b1 p1
q a2 b2 p2

)
=

∫
dr
r

e−zr+iq·r
1F1[ia1;b1; ip1ξ1]1F1[ia2;b2; ip2ξ2]

and theelementaryversion in which in particularb1 = b2 = 1. Note thatJ ′
00 is a special case of the alrea

computed elementary Nordsieck integral[1,7]. The integral in Eq.(6) can be reduced to a finite sum of generaliz
Nordsieck integrals which were studied by Colavecchia[8].
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In this work, we introduce two groups of representations for the extended form of the generalized No
integral and test them against the numerical quadrature. In Section2 we present the main formulas related to th
representations, while in Section3 the numerical results are shown. We summarize the results and discuss
developments in Section4. Atomic units are used throughout this paper.

2. Mathematics

2.1. A single series expansion

Provided that in the generalized parabolic coordinates system the radius vector is given by

(9)r =
(√

ξη cosφ,
√

ξη sinφ, (ξ − η)/2
)

and the element of volume is dr = (ξ +η)/4 dξ dη dφ we find, after performing the integration in theφ-coordinate,
that the integral in Eq.(6) can be written as

J ′
mn = Rmn

+∞∫
0

+∞∫
0

dξ ′ dη′ J0
[√

ξ ′η′ ]ξ ′meα′ξ ′

(10)× 1F1

[
−ia + m;1+ 2m; ik

qt

ξ ′
]
η′neβ ′η′

1F1

[
n;1+ 2n; ik

qt

η′
]
,

whereqt = (q2
x + q2

y )1/2 stands for the transversal momentum transfer,ξ ′ = ξqt and η′ = ηqt . The remaining
parameters are,

(11)Rmn = 2πQmn

1

2q2
t

(
− ik

qt

)m+n

,

(12)α′ = α

qt

= −λ + iqz

2qt

and β ′ = β

qt

= α′ ∗.

The series expansion that we work out in this section is obtained directly from Eq.(10), once the BesselJ0
function that couples the integration variables is expressed in terms of its power series expansion, e.g.,J0[√ξ ′η′] =∑∞

l=0(−1/4)lξ ′ lη′ l/ l!2 [9]. The two integrals in variablesξ ′ andη′ resulting from the substitution, are the integ
representations of the Gauss hypergeometric functions in the parametersX andY [5], respectively, involved in the
next

J ′
mn = Smn

∞∑
t=0

(m + 1)t (n + 1)t

1t

Zt

t !
(13)× 2F1[−ia + m,m + 1+ t;1+ 2m;X]2F1[n,n + 1+ t;1+ 2n;Y ],
(14)X = − ik

α
= −2kqz

λ2 + q2
z

+ i
2kλ

λ2 + q2
z

,

(15)Z = − q2
t

4αβ
= − q2

t

4|α|2 = −q2
x + q2

y

λ2 + q2
z

,

Y = −ik/β = −X∗ and

(16)Smn = 2πQmn

2

λ2 + q2
z

(−X)m(−Y)n1m1n.



M.G. Bustamante et al. / Computer Physics Communications 171 (2005) 40–48 43

rs
nvergence

is named
s.
main,
added.

a

rsal
g
dered

ble
, we

e added.
e main
in
sion is
t

ction
As

ge of
nt

vergent

he
and
The above series expansion converges absolutely if|X| < X0, |Y | < Y0 and |Z| < Z0, wheneverX0, Y0 andZ0
satisfy that(1 − X0)(1 − Y0) = Z0 or (1 − X0)

2 = Z0, the convergence radiusX0 determined by the paramete
of the main integral. This condition holds because the last series expansion has the same absolute co
properties than the triple hypergeometric function in the variablesX, Y andZ, obtained when both Gauss2F1
hypergeometric functions in Eq.(13)are written in terms of their corresponding power series expansions[10]. The
resulting triple power series expansion converges absolutely for suitable constrained values ofX, Y andZ and
the corresponding convergence intervals are related as stated before. This triple power series expansion
by Srivastava and Manocha[11] as the Lauricella’sF3 or Saran’sFK hypergeometric function of three variable
The series expansion in Eq.(13)and the triple series expansion must converge absolutely within the same do
since the only difference between both of them stems from the way the infinite terms of the two series are
Even though in this case there is no doubt about theanalytic convergence, thenumericalconvergence may be
source of problems.

As shown below, the expansion in Eq.(13) is suitable for numerical purposes in the region of low transve
momentum transferqt . This representation is divergent within the range of high values ofqt were the correspondin
analytic continuation in theZ direction must be used to compute the main integral. This issue will be consi
in the next section.

2.2. The multiple series expansion

A second series expansion is obtained from Eq.(13), first performing the summation with respect to the varia
Z and then in the remaining variables,X andY . After some algebra involving the Pochhammer coefficients
obtain the double series expansion

(17)J ′
mn = Smn

∞∑
r=0

∞∑
s=0

(−ia + m)r(m + 1)r

(1+ 2m)r

Xr

r!
(n)s(n + 1)s

(1+ 2n)s

Y s

s! 2F1[m + 1+ r, n + 1+ s;1;Z].

The series expansion in Eq.(17)keeps the same absolute convergence properties as the series in Eq.(13), since
again, the only difference between the two of them stems from the way in which the terms of the series ar
It is worth noting that, from the numerical standpoint, this last expansion is a suitable representation of th
integral in Eq.(6) only at small values of the parametersk andm+n for which the series remains convergent with
all the range of momentum transferqt . This happens to be so because even though formally the series expan
a representation of the main triple Nordsieck integral (it is an expansion in the variableZ), absolutely convergen
only for suitable constrained values ofZ, the analytical continuation of the involved Gauss hypergeometric fun
(which is an expansion in the variableZ−1) is already well known and included in the computer software.
a result, the series expansion behaves in practice as if it were absolutely convergent within all the ranZ.
However, as the parametersk andm + n increase, the series expansion in Eq.(17)becomes numerically diverge
at low values ofqt and remains a suitable representation only at high values of the parameterqt . It behaves like
an actual analytic continuation of the main triple series expansion. Since the expansion of Eq.(13) converges,
numerically speaking, within the range of low momentum transfer, the triple series must be absolutely con
at least for those lowqt values. For that reason the expansion in Eq.(17) is divergent at lowqt , but only due to
numerical computer limitations.

The formal expression for the last partial analytical continuation in theZ direction of the Lauricella’s triple
hypergeometric function may be obtained from Eq.(17), performing the substitution of the compact form of t
2F1 Gauss hypergeometric function in variableZ by its analytical continuation to obtain, after some algebra
for the case withm � n, the following

J ′
mn = Smn(−1)m+n+1

(
m

n

)
Z−(m+1)

∞∑
t=0

(m + 1)t (m + 1)t

(m + 1− n)t

Z−t

t !
(18)× F [−ia + m,−t;1+ 2m;X] F [n,n − m − t;1+ 2n;Y ].
2 1 2 1
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The corresponding expansion for case withm < n keeps a similar structure to the last one with the indexesm and
n exchanged.

2.3. Connection with the generalized Nordsieck integrals

We have also computed a finite expansion of the extended Nordsieck integral in terms of generalized N
integrals, given by

(19)J ′
mn = Qmn(1+ m)m(1+ n)n

m∑
r=0

n∑
s=0

(−1)r+s

(
m

r

)(
n

s

)
J ′

1

[
z −a − ir 1+ m k
q −is 1+ n −k

]
.

On the other hand, Colavecchia et al.[12] computed from the integral representation of the Kummer funct
included in the generalized Nordsieck integral in Eq.(8), a power series representation of the generalized inte
J ′

1 in terms of a particular case of the Lauricella generalized hypergeometricF (3) function of three variables[11].
Since the convergence properties of the expansionF (3) are not well known, two more expansions were compu
and presented in the same cited reference. These expansions are given by (for short we writeJ ′

1 in terms of the
parameters given in[7])

J ′
1 = 4π

A
−ia1
1 A

−ia2
2

D

∞∑
k=0

(ia1)k(ia2)k1k

(b1)k(b2)k

xk
0

k!
(20)× 2F1[b1 − 1, ia1 + k;b1 + k; z1]2F1[b2 − 1, ia2 + k;b1 + k; z2]

and

J ′
1 = 4π

A
−ia1
1 A

−ia2
2

D

∞∑
l=0

∞∑
m=0

(b1 − 1)l(ia1)l

(b1)l

[z1]l
l!

(b2 − 1)m(ia2)m

(b2)m

[z2]m
m!

(21)× 3F2[1, ia1 + l, ia2 + m;b1 + l, b2 + m;x0],
where

(22)D = z2 + q2,

(23)Si = q · pi − izpi, i = 1,2,

(24)S3 = p1q2 − p1 · p2,

(25)Ui = 2Si/D, Ai = 1+ Ui, i = 1,2,3,

(26)x0 = 1− A1 + A2 − A3

A1A2
,

(27)z1 = Ui/Ai, i = 1,2.

Combining Eq.(19) with Eqs.(20) and (21), two additional representations of the extended generalized N
sieck integral are obtained. We found, as it will be shown later, that the numerical convergence properties
of these two representations are similar to those of representations in Eqs.(13) and (17), at least for the smalle
values of the parametersm andn.

2.4. The numerical approach

To test the approximations obtained before, we developed a Fortran code for numerical integration in
precision that allowed us a straightforward determination of the actual value of the extended generalized in
Eq. (6). The code was designed to integrate functions that are complicated only in a region of space by in
the number of points taken in that interval. The code is based on the Simpson’s method with 3 points, but in
exactlythe oscillations contained in the factors exp[α′ξ ′] or exp[β ′η′].
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The method so developed is much faster than the traditional Simpson scheme. Using a relative errorεr = 10−4,
we reproduce at least 3 or 4 figures of the exact values as obtained before, only in the range of lowk, sayk � 3 a.u.
for the case studied. Fork � 3 a.u. (incidentally the same value of the parameterk for which the divergence interva
mentioned in the next section begins to unfold), the Fortran subroutine fails to compute the integral within
ranges of the parameterqt , for the value ofεr considered. Smaller relative errors and extended precision
consequently much more time consuming) are necessary in order to achieve convergency.

3. Numerical results

In this section we display some basic results obtained from the test on the numerical performance of
resentations computed before against the numerical integration Fortran subroutine. All the matrix eleme
computed by means of the Mathematica 4.0 program and plotted for the case withλ = 2 andqz = 1 measured in
atomic units, which simulate a typical double photoionization of Helium.

Fig. 1. Theoretical and numerical matrix element approximation for the two-body Coulomb system as a function of the transversal m
transferqt at lowm + n andk. (a)m = 2, n = 1 andk = 1. (b)m = 3, n = 4 andk = 3.
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For the sake of simplicity, we will denote each expansion byEl wherel indicates the number of equation wh
the numerical integral obtained by means of the Fortran subroutine will be denoted in the figures by FOR.

Each matrix element was obtained by evaluating the series expansionsE13, E18 andE19 together with the
numerical quadrature FOR, at different points of the space of parameters and as a function of the mo
transferqt . The series obtained from Eqs.(17) and (21)were excluded from the numerical analysis, since th
convergence properties do not improve those of seriesE18 andE19, respectively.

In all the cases we believe that the correct value for the matrix element is the one obtained when
independent series expansions (the coupleE13 andE18, andE19) coincide within the error considered.

Whenever the parametersm + n andk are kept small, e.g.,m + n � 10 andk � 3 a.u., the series represen
tionsE13 (suitable for smallqt ) andE18 (suitable for largeqt ), considered as one, the Colavecchia’sE19 and the
numerical quadrature FOR are found to be equivalent in the sense that they produce the same numeric
(seeFig. 1) and demand similar CPU times in the performance of the sum. As the parameterk > 3 a.u., a finite
interval [qm,qM ] in which all the approximations diverge begins to unfold. This is shown inFig. 2. Note that the

Fig. 2. Similar toFig. 1 at low m + n and highk. (a) m = 2, n = 1 andk = 5. (b) m = 5, n = 5 andk = 10. Between the vertical lines bot
theoretical representations diverge.



M.G. Bustamante et al. / Computer Physics Communications 171 (2005) 40–48 47

all the
matrix
with

.

d. First,
th

ended
rix
d this

h

numerical quadrature FOR is not plotted, since the Fortran program fails to perform the integration within
range ofqt , consideringεr = 10−4. In this situation, only the series representations are useful to evaluate the
element. The range of values of the parameterqt for which the integral representations diverge is associated
the transition between the two characteristic regimes of the matrix element integral considered. That is, forqt < qm

the curve remains relatively constant and forqt > qM , the plot falls off asq−2(m+1)
t if m � n, which follows from

Eq. (18). In this caseqm � 2 a.u. whileqM is determined by the convergence of the seriesE19. This latter limit
depends upon the values ofk, m andn. Forqt

∼= qM the seriesE19 converges slowly whileE18 does not converge
As qt increases, bothE18 andE19 converge, the former being much faster.

In Fig. 3, where the higher index matrix elements are considered, two points deserve to be mentione
the CPU time spent to compute the matrix element from representationE19 increases notably compared wi
the corresponding time of the coupleE13 andE18, because the finite expansion given in Eq.(19) involves the
computation of (m+ 1)(n+ 1) different terms and because the Mathematica program needs to work with ext
precision in order to reproduce the same result as the seriesE13 andE18. The time required to compute each mat
element from the seriesE19 increases with the number of figures required to produce the correct result an

Fig. 3. Similar toFig.1 at highm + n and lowk. (a) m = 9, n = 9 andk = 1. (b) m = 14, n = 11 andk = 3. Between the vertical lines bot
theoretical representations diverge.
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number increase asm + n increase. The second point to be noticed is that, as expected, the numerical qua
loses its accuracy when the parameterm + n increases consideringεr = 10−4, because for those integral index
the correct matrix element value falls down to levels below the significance level of double precision descr

4. Conclusions

In this work we have obtained an analytical result for the extended Nordsieck integral. We have sho
this expression can be cast into a single index series expansion and a multiple series expansion, both
Gauss hypergeometric functions. We have performed a comparative study on the performance of two a
representations and a numerical integration subroutine, as a function of the transversal momentum transfqt .

We have found that the analytical models provide an accurate approximation to the actual value of the
element, within the range of values of the transversal momentum transferqt where they converge. For the high
values of the parametersm + n andk, for which the Fortran subroutine fails to perform the main integral, b
analytical representations converge to the same approximate value for the matrix element. In that situa
observed that the CPU time spent by the representationE19 increases considerably, as compared with the t
spent by the seriesE13 andE18, however, near the extremes of the divergence interval, only the representatioE19
converges.

The expansions here introduced may represent a very useful alternative to be considered and they
complementary strategy in the calculation of the transition matrices for the three charged particle problem
work has been undertaken to compute extended Nordsieck integrals in higher dimensions.
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