Available online at www.sciencedirect.com

SGIENCE@DIHEGT’ Computer Physics
Communications

s

ELSEVIER Computer Physics Communications 171 (2005) 40-48

www.elsevier.com/locate/cpc

Computation of a generalized Nordsieck integral

M.G. Bustamant@*, J.E. Miraglia*®, F.D. Colavecchi&c

@ nstituto de Astronomia y Fisica del Espacio, Universidad de Buenos Aires, C.C. 67, Suc. 28, 1428 Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina
€ Centro Atomico Bariloche, 8400 R.N., Argentina

Received 24 September 2004; accepted 21 April 2005
Available online 13 June 2005

Abstract

In this work we introduce two analytical representations of a generalized Nordsieck integral. These integrals arise in the
calculations of scattering properties of systems of Coulomb-charged particles using the natural base, which includes general
solutions of the two-body Coulomb equation. We study the numerical convergence of these representations against the direct
Fortran numerical integration. We test the performance of the different strategies as a function of the momentum transfer,
which is typically a relevant variable in collision processes. We also discuss the advantages and disadvantages of the different
approaches.
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1. Introduction

In this paper we investigate the numerical solution of a particular case of integrals that geneaHlizedNord-
sieck integra[1]. This type of integrals arises in the calculation of the transition elements involving three Coulomb
interacting particles. Along the years, it has been customary to write down the final state for the continuum of these
systems as
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whereg; =r;+1; ~'k\1, k; andr; stand respectively for the relative momentum and distance between pajtaies
k, j #k #1. The®py represents the free motion of the particles

¢PW — eiK-R+ik~r , (2)

where{R, r} are Jacobi coordinates afid, k} are their conjugated momenta. As usugl= Z; Ziu i/ k; is the
Sommerfeld parameter for the interaction between particksdk. This is the well-known C3 approximatidf].
It is based upon the approximate separability of the Schrédinger equation for three charged particles: When the
coupling terms of the Hamiltonian are neglected, the solution can be written as the product of three two-body
Coulomb wave functions.

However, it is possible to construct a basis of continuum Coulomb functions that can be used to expand the exact
wave function. This basis was proposed to deal with any kind of three-body Coulomb §@stérthe so-called
A basis can be written as:
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whereg; andn; =r; —r; -k, are generalized parabolic coordinates (§§dor details),

Amn(a,b,c;x,y) = (ia)y(—x)"1F1lia + m; b; x1(—y)" 1 F1ln; c; yl, (%)

m = {m1, mp, m3} andn = {n1, no, n3}. The coefficientsim n, andb;, ¢; are determined when a particular approx-
imate form of the non-orthogonal kinetic energy is used and the Schrédinger equation is solved. Also, it is possible
to obtain these coefficients by satisfying different physical requirements like Redmond asymptotic behavior, Kato
cusp conditions, et¢3]. It has been shown in the same reference, that in some cases the coefficiedtsmay,
for instance, adopt the forin= 1+ 2m andc = 1 + 2n, the one observed by the, model[6]. For those cases,
the functionA,, »(a, b, ¢; x, y) can be associated with the two-body Coulomb wave function where the magnetic
number is different from zero.

Itis clear then, that to compute the transition matrix element with a final state expandeadiCitndomb basis,
one has to deal with the integral:

dr .
Jrin = Omn / Te—““” (—ikE)™ 1 Fr[—ia + m; 1+ 2m; ikE|(—ikn)" 1 Filn; 14 2n; ikn) (6)

With O, = C, (—ia) NoN;.. The factorsNg = (2r)~%/2? and N, = (A3/7)Y/2 are the normalization constants
of the final plane wave state and the initial ground state of the hydrogenic system, respectively(@)) Eds
associated to the charge of the bound state td the Coulomb potentiat] to the momentum transfer,represents
a Sommerfeld parameter akdstands for the final momentum of the system. The fa€lgy is the normalization
factor to satisfy the asymptotic Coulomb wave condition,

(_1)m+n I'l1+m—ia] I'[1+n] e*ﬂ%+in(m+n).

Cmn = N 7
(ia)m  T[14+2m] T[l+ 2n] (7)
We call Eq.(6) the extendedNordsieck integral to distinguish it from tlgeneralizedne given by
z a1 b ar ., ia ] . . '
=71 (q a; b; B;) = / ¢ IHAT) Filiag; by ip1&1)1Filiao; by; ipoés] (8)

and theelementaryversion in which in particulab; = b2 = 1. Note that/, is a special case of the already
computed elementary Nordsieck intediBl7]. The integral in Eq(6) can be reduced to a finite sum of generalized
Nordsieck integrals which were studied by Colavec¢8]a
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In this work, we introduce two groups of representations for the extended form of the generalized Nordsieck
integral and test them against the numerical quadrature. In Séoherpresent the main formulas related to these
representations, while in Secti@the numerical results are shown. We summarize the results and discuss future
developments in Sectioh Atomic units are used throughout this paper.

2. Mathematics
2.1. Asingle series expansion

Provided that in the generalized parabolic coordinates system the radius vector is given by

= (Vencoss. VEnsing, ¢ —n)/2) ©)

and the element of volume is & (¢ + 1) /4 d& dn dp we find, after performing the integration in thecoordinate,
that the integral in Eq(6) can be written as
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qt qt

whereq; = (¢2 + qf,)l/2 stands for the transversal momentum transfée- £¢, andn’ = nq,. The remaining
parameters are,

1 lk m+n
Rinn = 27t Qmn 24712 (_;> ) (11)
—A ]
i L N (12)
qr 2q; qt

The series expansion that we work out in this section is obtained directly fror{ilB)).once the Bessely
function that couples the integration variables is expressed in terms of its power series expansibi,/&.g/] =
S o(=1/H ey /112 [9]. The two integrals in variableg andy’ resulting from the substitution, are the integral
representations of the Gauss hypergeometric functions in the parakiedesY [5], respectively, involved in the
next
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The above series expansion converges absolutely|ik Xo, |Y| < Yo and|Z| < Zp, wheneverXg, Yo and Zg

satisfy that(1 — Xo)(1 — Yo) = Zo or (1 — Xo)? = Zo, the convergence radius, determined by the parameters

of the main integral. This condition holds because the last series expansion has the same absolute convergenc
properties than the triple hypergeometric function in the varialsle¥ and Z, obtained when both Gaus$:
hypergeometric functions in E¢L3) are written in terms of their corresponding power series expangiohsThe

resulting triple power series expansion converges absolutely for suitable constrained vatyes ahd Z and

the corresponding convergence intervals are related as stated before. This triple power series expansion is name
by Srivastava and Manochal] as the Lauricella’ss or Saran'sFx hypergeometric function of three variables.

The series expansion in E({.3) and the triple series expansion must converge absolutely within the same domain,
since the only difference between both of them stems from the way the infinite terms of the two series are added.
Even though in this case there is no doubt aboutataytic convergence, thaumericalconvergence may be a

source of problems.

As shown below, the expansion in Hg.3) is suitable for numerical purposes in the region of low transversal
momentum transfey,. This representation is divergent within the range of high valugswere the corresponding
analytic continuation in th& direction must be used to compute the main integral. This issue will be considered
in the next section.

2.2. The multiple series expansion

A second series expansion is obtained from(#&8), first performing the summation with respect to the variable
Z and then in the remaining variable¥,andY . After some algebra involving the Pochhammer coefficients, we
obtain the double series expansion

/ o (—ia +m) (m 4+ 1), X7 (n)s(n + 1), ¥*
Jm,,zsm,,;)g L 2m), Tt —roPilm+ 14+ 1451 Z]. (17)
The series expansion in E(.7) keeps the same absolute convergence properties as the serie¢lif)Esince
again, the only difference between the two of them stems from the way in which the terms of the series are added.
It is worth noting that, from the numerical standpoint, this last expansion is a suitable representation of the main
integral in Eq{(6) only at small values of the parametérandm +n for which the series remains convergent within
all the range of momentum transigr. This happens to be so because even though formally the series expansion is
a representation of the main triple Nordsieck integral (it is an expansion in the vardgkddsolutely convergent
only for suitable constrained values®fthe analytical continuation of the involved Gauss hypergeometric function
(which is an expansion in the variabfe1) is already well known and included in the computer software. As
a result, the series expansion behaves in practice as if it were absolutely convergent within all the &nge of
However, as the parametdr&ndm + n increase, the series expansion in Ed) becomes numerically divergent
at low values ofy; and remains a suitable representation only at high values of the paramdtdsehaves like
an actual analytic continuation of the main triple series expansion. Since the expansion(d8)Empnverges,
numerically speaking, within the range of low momentum transfer, the triple series must be absolutely convergent
at least for those low, values. For that reason the expansion in @q) is divergent at lowg,, but only due to
numerical computer limitations.
The formal expression for the last partial analytical continuation inZhdirection of the Lauricella’s triple
hypergeometric function may be obtained from EL{), performing the substitution of the compact form of the
2F1 Gauss hypergeometric function in varialdeby its analytical continuation to obtain, after some algebra and
for the case withn > n, the following

00
- (m+1,m+1), 27"
J = _qymtntl (M) 5 —(m+1) wmr AT e s
mn mn( ) n g (m+1_n)t t!

X oFi[—ia+m, —t: 1+ 2m: X|oFiln.n —m — t: 1+ 2n: Y1. (18)
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The corresponding expansion for case with< n keeps a similar structure to the last one with the indexesd
n exchanged.

2.3. Connection with the generalized Nordsieck integrals

We have also computed a finite expansion of the extended Nordsieck integral in terms of generalized Nordsieck
integrals, given by

m n .
Jr/rzrzszn(1+m)m(1+n)n 2(:)2(:](_1)r+s(’:}> (Z)Jl,[é a_islr ]i_’-l_—’:’l/l _kk:| (19)
r=0s=

On the other hand, Colavecchia et[aR] computed from the integral representation of the Kummer functions
included in the generalized Nordsieck integral in B), a power series representation of the generalized integral
J1 interms of a particular case of the Lauricella generalized hypergeon#&®idunction of three variablef 1].
Since the convergence properties of the expangiGhare not well known, two more expansions were computed
and presented in the same cited reference. These expansions are given by (for short wigiwtiéems of the
parameters given ify])

AIialAz_mz i (ia1)k(ia)k Ly x§

Ji=4x
D = Gokb2k K
x oF1[b1 — 1 iar + k; b1+ k; z1l2Falb2 — 1,iao + k; b1 + k; z2] (20)
and
14 AT A S g (01— Dian) [l (b2 — Dnlia2)m [2a]"
)
D == (b1 I (b2)m m!
x 3Fo[1,ia1+1,iaz + m; b1 +1, by + m; xo], (21)
where
D=2"+¢, (22)
Si:q'Pi_iZPh i:1123 (23)
S3 = p1g2 — P1- P2, (24)
U; =2S;/D, Ai=14+U;, i=123, (25)
A Ar— A
X0 = 1-— M’ (26)
A1A2
z1=U;/A;, i=12 (27)

Combining Eq(19) with Egs.(20) and (21)two additional representations of the extended generalized Nord-
sieck integral are obtained. We found, as it will be shown later, that the numerical convergence properties of each
of these two representations are similar to those of representations i{lBjjsnd (17) at least for the smaller
values of the parameters andn.

2.4, The numerical approach

To test the approximations obtained before, we developed a Fortran code for numerical integration in double
precision that allowed us a straightforward determination of the actual value of the extended generalized integral in
Eq. (6). The code was designed to integrate functions that are complicated only in a region of space by increasing
the number of points taken in that interval. The code is based on the Simpson’s method with 3 points, but including
exactlythe oscillations contained in the factors gxig’] or exdg’n’].
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The method so developed is much faster than the traditional Simpson scheme. Using a relatiye-eti@r*,
we reproduce at least 3 or 4 figures of the exact values as obtained before, only in the range slpw< 3 a.u.
for the case studied. Far> 3 a.u. (incidentally the same value of the paramefier which the divergence interval
mentioned in the next section begins to unfold), the Fortran subroutine fails to compute the integral within all the
ranges of the parametegy, for the value ofs, considered. Smaller relative errors and extended precision (and
consequently much more time consuming) are necessary in order to achieve convergency.

3. Numerical results

In this section we display some basic results obtained from the test on the numerical performance of the rep-
resentations computed before against the numerical integration Fortran subroutine. All the matrix elements were
computed by means of the Mathematica 4.0 program and plotted for the case-wRhandg, = 1 measured in
atomic units, which simulate a typical double photoionization of Helium.
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Fig. 1. Theoretical and numerical matrix element approximation for the two-body Coulomb system as a function of the transversal momentum
transferg; atlowm +n andk. (@)m =2,n=1andk = 1. (b)m =3,n =4 andk = 3.
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For the sake of simplicity, we will denote each expansiorEbyherel indicates the number of equation while
the numerical integral obtained by means of the Fortran subroutine will be denoted in the figures by FOR.

Each matrix element was obtained by evaluating the series expansigns 1s and E19 together with the
numerical quadrature FOR, at different points of the space of parameters and as a function of the momentum
transferq,. The series obtained from Eq4.7) and (21)were excluded from the numerical analysis, since their
convergence properties do not improve those of séfigsand E19, respectively.

In all the cases we believe that the correct value for the matrix element is the one obtained when the two
independent series expansions (the codflgand E1g, and E19) coincide within the error considered.

Whenever the parameters+ n andk are kept small, e.gm + n < 10 andk < 3 a.u., the series representa-
tions E13 (suitable for small;;) and E1g (suitable for largey;), considered as one, the Colavecchiiiy and the
numerical quadrature FOR are found to be equivalent in the sense that they produce the same numerical value:
(seeFig. 1) and demand similar CPU times in the performance of the sum. As the paragmetgra.u., a finite
interval [g,,, ¢a7] in which all the approximations diverge begins to unfold. This is showign 2 Note that the

100 L | T T LR L | M T T T
w0 L H. Qﬁ% i
—~ 10°F 4
3 D
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ﬁ& A E13
10%F v Eg range of 4
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8 10t} g
tg" [ A E13 1
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107 | ° E, divergence 7
10-9 1 il 1
0.1 1 10
q'( (a'u)

Fig. 2. Similar toFig. 1at lowm + n and highk. (@)m =2,n =1 andk =5. (b)m =5, n =5 andk = 10. Between the vertical lines both
theoretical representations diverge.
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numerical quadrature FOR is not plotted, since the Fortran program fails to perform the integration within all the
range ofy,, considering:;, = 10~%. In this situation, only the series representations are useful to evaluate the matrix
element. The range of values of the parametdor which the integral representations diverge is associated with
the transition between the two characteristic regimes of the matrix element integral considered. That isgfer
the curve remains relatively constant anddpt ¢, the plot falls off aS‘q,_z(m+l) if m > n, which follows from
Eq. (18). In this casey,, >~ 2 a.u. whileg,, is determined by the convergence of the sefigg This latter limit
depends upon the valuesiafm andn. Forg, = g, the serie 19 converges slowly whilé’1g does not converge.
As ¢, increases, botlt1g and E19 converge, the former being much faster.

In Fig. 3, where the higher index matrix elements are considered, two points deserve to be mentioned. First,
the CPU time spent to compute the matrix element from representatigiincreases notably compared with
the corresponding time of the couplg 3 and E1s, because the finite expansion given in EtP) involves the
computation of £z + 1) (n + 1) different terms and because the Mathematica program needs to work with extended
precision in order to reproduce the same result as the séyigand E1g. The time required to compute each matrix
element from the serieB1g increases with the number of figures required to produce the correct result and this
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0.1 1 10

q, (a.u)

Fig. 3. Similar toFig.1at highm + n and lowk. (&) m =9,n =9 andk = 1. (b) m = 14,n = 11 andk = 3. Between the vertical lines both
theoretical representations diverge.
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number increase as + n increase. The second point to be noticed is that, as expected, the numerical quadrature
loses its accuracy when the parametes » increases considering = 10~4, because for those integral indexes
the correct matrix element value falls down to levels below the significance level of double precision description.

4. Conclusions

In this work we have obtained an analytical result for the extended Nordsieck integral. We have shown that
this expression can be cast into a single index series expansion and a multiple series expansion, both involving
Gauss hypergeometric functions. We have performed a comparative study on the performance of two analytical
representations and a numerical integration subroutine, as a function of the transversal momentumgtransfer

We have found that the analytical models provide an accurate approximation to the actual value of the matrix
element, within the range of values of the transversal momentum trapsfdrere they converge. For the higher
values of the parameters + n andk, for which the Fortran subroutine fails to perform the main integral, both
analytical representations converge to the same approximate value for the matrix element. In that situation it is
observed that the CPU time spent by the representdiigrincreases considerably, as compared with the time
spent by the serieB13 and E1g, however, near the extremes of the divergence interval, only the represetitggion
converges.

The expansions here introduced may represent a very useful alternative to be considered and they provide a
complementary strategy in the calculation of the transition matrices for the three charged particle problem. Further
work has been undertaken to compute extended Nordsieck integrals in higher dimensions.
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