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High-throughput sequencing approaches have become frequent in the study of endophyte 
communities allowing the cumulative description of fungal diversity in the last decade. However, they 
brought new challenges to researchers in terms of programming and developing of informatics tools. 
Currently, there is no consensus concerning the appropriate bioinformatics to process such sequence 
data. The aim of this study was to compare the performance of three pipelines of two cost-free toolkits 
designed to be friendly to non-programmer users, and specifically developed for fungal data: AMPtk and 
PIPITS. The sapwood-inhabiting fungal assemblages of two Nothofagus species from the Patagonian 
Forests were assessed through metabarcoding of the internal transcribed spacer (ITS) and compared 
with an extant sequence dataset obtained from culture prospection in the same study sites and trees. The 
AMPtk toolkit has performed better concerning community description in terms of precision of taxa 
clustering, mainly due to the DADA2 algorithm; PIPITS evidenced a higher sensitivity in detecting taxa 
known to be present, hence it is potentially useful for future specific taxa detection surveys. Because of 
a current lack of information of the reference databases, both bioinformatic toolkits performed poorly 
as to taxonomy assignment. It is imperative to continue studying these ecosystems to, concomitantly, 
improve databases and the explanatory potential of the new technologies.

Keywords. AMPtk; environmental DNA; fungal endophytes; Nothofagus forests; PIPITS.

Resumen. Molina, L.; M. Rajchenberg, M. C. Aime & M. B. Pildain. 2023. Evaluación de la diversidad de endófitos 
fúngicos: un estudio comparativo de tres flujos de trabajo automatizados de metabarcoding. Darwiniana, nueva serie 
11(2): 402-419.

La utilización de la secuenciación de alto rendimiento se ha vuelto frecuente en el estudio de 
comunidades endófitas. Estas tecnologías han permitido la descripción acumulativa de diversidad 
fúngica a lo largo de la última década. No obstante, también han implicado nuevos desafíos para los 
investigadores de las áreas involucradas en términos de la necesidad de contar con herramientas de 
programación y habilidades desarrolladoras. Hoy en día no existe un consenso sobre las herramientas 
bioinformáticas más adecuadas para procesar los datos crudos de secuencias que estas tecnologías 
arrojan. El objetivo de este trabajo fue comparar el rendimiento de tres flujos de trabajo realizados 
en dos plataformas gratuitas diseñadas para ser amigables con usuarios que no son programadores y 
desarrolladas específicamente para estudios de hongos: AMPtk y PIPITS. Evaluamos los ensambles de 
hongos que habitan en la albura de dos especies de Nothofagus de los bosques patagónicos y comparamos 
el conjunto de datos de metabarcoding del espaciador transcrito interno (ITS) con un conjunto de datos 
de secuencias existente, obtenido de la prospección de cultivos de los mismos árboles y sitios de estudio. 
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La plataforma AMPtk se desempeñó mejor con respecto a la descripción de la comunidad, en términos de 
precisión del agrupamiento de taxones, principalmente debido al algoritmo DADA2. El flujo de trabajo 
PIPITS evidenció una mayor sensibilidad en la detección de taxones conocidos presentes, por lo que es 
potencialmente útil para futuros estudios que persigan la detección de taxones específicos. Debido a la 
falta de información que exhiben las bases de datos de referencia sobre el ecosistema en estudio, ambas 
plataformas tuvieron un desempeño deficiente en cuanto a la asignación de taxonomías. Es imperativo 
seguir estudiando estos ecosistemas y mejorar las bases de datos para aumentar el potencial explicativo 
de las nuevas tecnologías.

INTRODUCTION 

Temperate forests have been demonstrated to be 
reservoirs of an outsize fungal endophyte diversity 
living in standing trees (Unterseher, 2011). It 
is known that this mycobiota plays a key role in 
the fitness and functioning of the trees through 
complex dynamics (Baldrian, 2016), and whose 
roles fell along a continuum from mutualism, 
commensalism, and parasitism that can elapse 
even through the same fungal organism lifetime 
(Saikkonen et al., 1998, Stone et al., 2004). Plant-
associated mycobiota also contribute to large-scale 
patterns of plant diversity in forest ecosystems 
(Wang et al., 2019). However, there is a huge gap 
in the understanding of fungal endophyte diversity, 
the drivers that modulate such communities, and 
the nature of the interactions they establish with 
plants (Suryanarayanan, 2020). 

In the last decades, novel high-throughput 
sequencing technologies (HTS) become frequent 
and accessible, leading to progress in plant 
mycobiomes investigations, especially through 
metabarcoding approaches. They are cost and 
time-efficient and have allowed increasing 
sensitivity and rate at which biomes can be 
assessed (Terhonen et al., 2019). Nonetheless, 
they brought great challenges in data processing, 
in terms of sequence quality filtering and curation, 
assemblage, clustering, and taxonomic assignment 
of such a huge volume of output sequences. This 
led to the development of the many different 
bioinformatic tools assessing each of the steps of 
the workflow, whose performances are still under 
assessment. HTS metabarcoding approaches also 
required from researchers certain bioinformatics 
and programming skills. In this sense, numerous 
developments came to light, aiming to provide 
accessible and integrated tools for the whole data 

processing (Gweon et al., 2015; Rognes et al., 2016; 
Palmer et al. 2018; Jalili et al., 2020). There have 
been various efforts to compare the performance of 
different individual tools aimed at different steps 
of the workflow (Schloss & Westcott, 2011; Edgar 
& Flyvbjerg, 2015), but there are limited efforts to 
assess integrated pipelines useful to microbiologists 
and mycologists that are not programmers or 
developers (Mysara et al., 2017). Many of these 
tools have been developed for bacterial 16S 
amplicon analysis and have been subsequently 
adapted to fungal data (Anslan et al., 2018). Among 
the available tools, PIPITS (Gweon et al., 2015) 
and the Amplicon toolkit (AMPtk) (Palmer et al., 
2018) have been created, specifically, to process 
fungal ITS-sequencing data and have demonstrated 
to perform better for fungal ITS amplicon analysis 
among other available pipelines (Anslan et al., 
2018, Nilsson et al., 2019). Both PIPITS and AMPtk 
are command-line cost-free toolkits, designed with 
easy-to-use straightforward pipelines that allow 
performing all data analysis from raw sequences to 
final operational taxonomic unit (OTU) tables and 
taxonomy. They take advantage of extant methods 
from other toolkits and, also, develop new tools for 
certain steps of the workflow. 

Recently, we first described the endophytic 
mycobiota of the Andean Patagonian Forest 
through culture prospection, in a study that assessed 
wood endophyte communities of Nothofagus trees 
(Molina et al., 2020). Even though we described 
a rich and heterogeneous diversity, we concluded 
that our results underestimated such diversity, 
and that fungal endophyte diversity harboured by 
Nothofagus trees was unable to be fully assessed 
through culture prospection; to further describe 
fungal endophyte diversity and elucidate beta 
diversity patterns, a culture-independent approach 
was proposed (Molina et al., 2020, 2022).
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In this study, we aim to compare the performances 
of three pipelines from two automated toolkits 
(AMPtk and PIPITS) in the assessment of wood 
fungal endophytes assemblages of Nothofagus trees 
from the Patagonian Forests; this is accomplished 
by comparing the ITS metabarcoding dataset with 
another sequence dataset derived from culture 
prospection isolates, from the same sites and trees.

MATERIALS AND METHODS 

Study area and sampling procedure
The study was conducted in Los Alerces 

National Park in Argentinian Patagonia, from May 
2016 to April 2018. The sampling collection was 
described in Molina et al. (2020). Briefly, at each 
site, roots and stems were sampled seasonally, 
from ten trees of similar diameter at breast height. 
The sampling was performed in seven sites: three 
stands of Nothofagus pumilio (Poepp. & Endl.) 
Krasser and four stands of Nothofagus dombeyi 
(Poepp. & Endl.) Krasser. Sapwood cores of 5 
mm diameter and 15 mm length were extracted 
by using an increment borer sterilized with 70% 
ethanol (v/v) and flaming between samples. A total 
of 280 trees were sampled, taking different samples 
for the culture-dependent and culture-independent 
approaches, but from the same trees. 

Culture-dependent database construction 
Sampling collection, fungal isolation, and 

molecular identification methods were reported in 
Molina et al. (2020). Briefly, the sapwood tissue of 
the core samples were cut into 5 mm pieces, surface 
sterilized, put into Ascomycota and Basidiomycota 
selective media and incubated at 20-24 °C for up to 
4 months. Pure axenic cultures were used for DNA 
extraction, and ITS sequencing.

Culture-independent database construction
The sampling processing, library preparation 

and amplicon sequencing were described in Molina 
& Pildain (2022). Briefly, sapwood samples were 
recovered using a sterilized increment borer, about 
50 mg of wood was ground to powder, for each 
wood sample, according to Dumolin et al. (1995). 
Total DNA was extracted using DNeasy Power 
Plant Pro Kit (QIAGEN, Hilden, Germany). 

Internal Transcribed Spacer 1 (ITS1) library was 
prepared using the TrueSeq dual indexing strategy. 
ITS1 amplification was performed by using the 
primers pair TS-ITS1-F and TS-ITS2-R (White et 
al., 1990; Gardes & Bruns, 1993) and MyTaqTM 
Mix (Bioline, USA, Inc., Memphis) in a total volume 
of 25 μL per reaction, with the following cycling 
conditions: 94 °C for 5 minutes, 32 cycles of 94 °C 
for 45 seconds, 50 °C for 45 seconds, and 72 °C for 1 
minute, and a final extension at 72 °C for 7 minutes. 
PCR products were purified using ExoSap-IT (USB 
Corporation, Cleveland, OH). The purified PCR 
products were indexed by using sample-specific 
barcodes combinations of the TruSeq primers pairs 
i5-TS-DI-5xx and i7-TS-DI-7xx with the following 
cycling conditions: 95 °C for 3 minutes, 8 cycles 
of 95 °C for 30 seconds, 55 °C for 30 seconds, 
and 72 °C for 30 seconds, and a final extension at 
72 °C for 5 minutes. PCR products were purified 
as already mentioned, and quantified by using 
a NanoDrop spectrophotometer (ThermoFisher, 
Waltham, MA). Negative controls (from both the 
DNA extraction and PCR runs) and non-biological 
synthetic mock communities (SynMock; Palmer 
et al., 2018) were simultaneously processed, and 
sequenced. Synthetic mock communities are non-
biological constructs specifically designed to mimic 
the composition and complexity of real-world 
fungal communities, serving as essential references 
for validating and benchmarking experimental 
procedures in mycological research. All samples 
were randomly separated in two groups and each 
one received pooled purified ITS amplicons in 
equimolar ratios (multiplexed). Libraries were 
sequenced at the Purdue Genomics Core Facilities 
(Purdue University, West Lafayette, IN) with a 
MiSeq version 2 Reagent kit of 500 cycles in the 
Illumina MiSeq platform (2 x 250 bp). 

Bioinformatic analysis
Data processing was carried out through 

the different toolkits: PIPITS (v2.7.12) and the 
Amplicon toolkit (AMPtk) (v1.2.4). Also, AMPtk 
was performed by using two different clustering 
methods. The detailed workflow of the three 
different pipelines (hereafter PIPITS, AMPtk-
UPARSE, and AMPtk-DADA2) is illustrated in 
Fig. 1. Pre-clustering steps were conducted under 
default conditions.
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Both toolkits differ in the order and the tools 
used for quality filtering, read-pair assemblage, and 
sequence trimming to get ITS amplicon. AMPtk 
uses USEARCH tools (v9.2.64; Edgar, 2010) 
while PIPITS takes advantage of the open-source 
alternative: VSEARCH (v2.7.0; Rognes et al., 2016). 

The Figure 1 shows that the first step in the 
PIPITS toolkit is the read-pairs assembling by using 
VSEARCH; then, it filters the assemblage reads 
by quality using FASTX-toolkit (v0.0.13; Gordon 
& Hannon, 2010). Sequences are dereplicated by 
using VSEARCH, this eliminates the redundant 
sequences from the large dataset, streamlining 

downstream data processing and enhancing overall 
computational efficiency. Next, the pipeline 
calls the ITS extractor algorithm (ITSx, v 1.1b1; 
Bengtsson-Palme et al., 2013) to identify the ITS1 
region and to extract it from the reads, deleting any 
conserved region or primer sequences. After data 
processing, the pipeline re-inflates the replicated 
sequences in order to keep the reads abundances 
information. Conversely, the AMPtk toolkit 
first trims the short reads, next trims the primer 
sequences from the reads; then, merges the paired-
end reads by using USEARCH and performs the 
quality filtering (Edgar & Flyvbjerg, 2015).

Fig. 1. Workflow of the three pipelines performed for the data processing of the ITS-sequences from MiSeq Illumina 
(2 x 250) platform: PIPITS and AMPtk toolkit using UPARSE and DADA2 clustering tools. Sequence and OUT/ASV 
input and output are informed for each step.
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For OTU clustering, the threshold was set at 
97% identity. PIPITS uses VSEARCH to cluster 
OTUs, and for chimera detection and deletion by 
confronting the UNITE UCHIME reference data 
set (http://unite.ut.ee/repository.php). In the AMPtk 
toolkit, the algorithms used for the taxonomic units 
definition were: OTU clustering with UPARSE 
(v9.2.6.4; Edgar, 2013) and the DADA2 pipeline 
(v1.6.0; Callahan et al., 2016) which also performs 
chimeras’ detection and removal. The DADA2 
pipeline does not cluster OTUs but defines 
amplicon sequence variants (ASVs). Conversely 
to OTU, ASV represents unique sequences without 
clustering (Callahan et al., 2017).  The AMPtk 
toolkit provides an additional functionality to 
address cross-contamination errors by leveraging 
the sequences of the SynMock community. It 
accomplishes this by identifying the SynMock 
sequences, estimating their frequencies, and 
calculating the tag-switching index. Also, allows 
running the LULU algorithm (v0.1.0; Frøslev 
et al., 2017), which is a post-clustering curation 
pipeline that combines co-occurrence patterns and 
sequence identity analysis to detect and delete (or 
merge) erroneous OTUs from the set. 

Finally, to assign taxonomic classifications 
to the defined OTUs, PIPITS employs the RDP 
Classifier (v2.10.2; Wang et al., 2007) which is a 
machine learning approach. This approach utilizes 
computational algorithms to automatically analyze 
and classify the obtained sequences based on 
patterns and characteristics present in the data. The 
RDP Classifier compares the obtained sequences 
against the carefully curated reference dataset of 
fungal ITS regions UNITE (https://sourceforge.
net/projects/rdp-classifier/files/RDP_Classifier_
TrainingData). Conversely, a “hybrid” approach 
was used to assign the taxonomy with the AMPtk 
toolkit. This approach combines classification 
from a global alignment, with classification from 
the UTAX (RC Edgar, http://drive5.com/usearch/
manual9.2/cmd_utax.html) and SINTAX (Edgar, 
2016) approaches. This hybrid method chooses 
the best taxonomy from the three approaches, 
by prioritizing the global alignment result, if the 
threshold is higher than 97%, or selecting the higher 
confidence score from the other approaches. If there 
is a conflict between the taxonomies, the algorithm 
chooses the last common ancestor taxonomy 

(Palmer et al., 2018), meaning the last taxonomic 
rank in which there would be no conflict.

Manual curation of the three pipeline outputs 
was performed by following Brown et al. (2015) 
recommendations, thus three additional databases 
were evaluated (hereafter, curated data). Non-
fungal and kingdom undefined OTUs/ASVs, as 
well as OTUs/ASVs represented by less than 10 
reads, were removed from the set. 

Database comparisons
Sequences obtained from fungal strains isolated 

from cultures, were used as reference to assess the 
performance of the HTS methodologies on finding 
and describing accurately the fungal taxa present 
in the sapwood of Nothofagus species under study. 
To achieve this, the ITS sequences obtained from 
cultures by Molina et al. (2020) were compared, 
by using the BLAST algorithm (Altschul et al., 
1997), to the datasets obtained from the PIPITS, 
the AMPtk-UPARSE, and the AMPtk-DADA2 
pipelines. The comparisons were performed in 
Geneious Prime (v2020.1.1; Biomatters Ltd, 
https://www.geneious.com/). 

The databases used were the output FASTA 
files from each pipeline, so that all the OTUs with 
a similarity above 97% were reported. The culture-
based dataset that was blasted to them, consisted of 
72 sequences of the full ITS regions of rDNA (ITS1, 
the intervening 5.8 RNA gene, and ITS2)  obtained 
through Sanger sequencing from Basidiomycota, 
Ascomycota and Mucoromycota phyla isolated from 
the same study sites following the same sampling 
methods. These taxa are known to be present 
in the studied system as a result of the previous 
culture prospection study (Molina et al., 2020). 
The sensitivity of each pipeline to detect the taxa 
registered was evaluated, as well as the precision in 
reaching the taxonomy assignment. Five parameters 
were defined to assess pipeline performances : a) the 
percentage of cultured taxa that matched to at least 
one OTU/ASV defined bioinformatically from HTS 
(as an estimator of sensitivity), b) the percentage of 
cultured taxa that were detected as the same OTU/
ASV by pipeline algorithms (i.e., different cultured 
taxa that were merged by the culture-independent 
approach), c) the percentage of cultured taxa that 
were assigned a wrong taxonomy by a pipeline, d) 
average number of OTUs/ASVs that matched to a 

https://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier_TrainingData
https://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier_TrainingData
https://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier_TrainingData
https://www.geneious.com/
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cultured taxon and e) maximum number of OTUs/
ASVs that matched with a single cultured taxon in 
the HTS pipeline (both parameters assessing the 
redundancy in OTUs/ASVs clustering and post-
clustering curation).

Statistical analyses
Differences in alpha diversity between the three 

pipelines were assessed by using the Friedman test 
and the Bonferroni test. Statistical analyses and 
graphics were performed in R ( R Core Team, 2022) 
with packages biomformat (v1.8.0; McMurdie & 
Paulson, 2016), phyloseq (v1.24.2; McMurdie & 
Holmes, 2013), ggplot2 (v3.3.3; Wickham, 2016), 
vegan (v2.5.7; Oksanen et al., 2020).

RESULTS

Bioinformatic pipelines comparisons
The sequencing experiment yielded a mean 

depth of 133 855 reads per sample (paired-end raw 
reads) and a total depth of 38 million raw reads. 

With identical computing power, the AMPtk 
toolkit was much more time-efficient than PIPITS. 
The AMPtk-UPARSE pipeline took 79 minutes 
of total run time, and AMPtk-DADA2 took 205 
minutes. The difference was originated by the 
clustering algorithm of either pipeline. The PIPITS 
pipeline used 11 418 minutes mainly used to 
complete the “pipits-funits” step: reads dereplicate, 
ITS extraction, and back to reads replicate. Also, 
the clustering method from PIPITS (119 minutes) 
was also more time-consuming than the AMPtk-
UPARSE method (38 minutes).

The OTU/ASV richness strongly differed between 
pipelines; PIPITS generated almost twice as many 
OTUs (14 647 OTUs) as AMPtk pipelines [UPARSE 
(8 031 OTUs), and DADA2 (7 524 ASVs)] and the 
differentiation occurred mainly at the clustering step 
(Fig. 1). Also, differences in OTU/ASV richness 
were observed between toolkits at the sample level 
(Fig. 2, above). Furthermore, both AMPtk pipelines 
evidenced significant variations in their richness 
per sample (Wilcoxon test, p<0.001) evidencing 
that the clustering algorithm performed affects 
richness results. However, the rarefaction curves 
approximated asymptotes for the three datasets when 
manually curated data was considered (Fig. 2, below).  

Deleting OTUs/ASVs with low reads abundance 
and bad taxonomic resolution improved the 
representation of the fungal community for the 
three pipelines tested. Manual curation reduced 
the differences in OTUs/ASVs richness between 
pipelines, although those were still significant (Fig. 
1; Fig. 2, above). This is because 34% of PIPITS final 
OTUs lacked taxonomic assignment at the Kingdom 
level (against 20% from the AMPtk pipelines), 
which might indicate a redundant OTU clustering 
and a lower performance of post-clustering curation 
methods in this pipeline. After these taxa were 
removed from the set, the taxonomic resolution did 
not differ significantly between pipelines, although 
PIPITS showed a slightly higher proportion of 
OTUs assigned to Class or lower taxonomic levels 
(48% against 37% and 36% in AMPtk-UPARSE 
and AMPtk-DADA2, respectively). 

Comparison with culture prospection dataset
The sequence matches between cultured and 

uncultured datasets, and their estimated identity 
percentage, are listed in Table 1. There were certain 
cultured taxa that the pipelines did not detect 
in the HTS experiment. In that sense, PIPITS 
was the most sensitive pipeline, with 19% of the 
cultured taxa undetected, followed by AMPtk-
DADA2 (24%) and USEARCH (28%) (Table 2). 
Cultured taxa were molecularly identified at genus 
or species ranks in Molina et al. (2020), whereas 
the same uncultured OTUs/ASVs were identified 
at higher taxonomic ranks: 40% and 47% of the 
matched OTUs/ASVs were assigned at Family 
level or higher in AMPtk and PIPITS pipelines, 
respectively. Despite low taxonomic resolution, 
the AMPtk pipelines did not mistake the taxonomic 
identifications (Table 2) whereas PIPITS exhibited 
1.39% of misassignment.

Clustering redundancy was low for AMPtk 
pipelines, only 5.6% of the cultured taxa matched 
with multiple OTUs/ASVs (maximum 3) resulting 
in a mean value of 1.10 OTUs and 1.12 ASVs per 
taxon for UPARSE and DADA2, respectively 
(Table 2). In contrast, PIPITS evidenced high 
redundancy in OTU clustering: 33.33% of the 
cultured taxa matched with multiple OTUs, the 
maximum number of matched OTUs for the same 
cultured taxon was 35, giving an average number 
of hits of 1.85 OTUs per taxon.
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Sanger AMPtk - UPARSE AMPtk - DADA2 PIPITS
Molina et al. (2020)  %identity UNITE  %identity UNITE  %identity UNITE

Aleurodiscus patagonicus OTU2205 98.639 Stereaceae OTU2257 98.639 Stereaceae -   
Ambrosiozyma sp. OTU4296 100.000 Ascomycota OTU4807 99.558 Ascomycota OTU591 100 Saccharomycetales
Anthostomella sp. OTU5800 99.111 Xylariaceae OTU5133 99.111 Xylariaceae OTU4781 98.895 Fungi
Anthracobia muelleri -   -   -   
Anthracobia sp. -   -   OTU3073 100 Tricharina praecox
Arambarria destruens -   -   -   
Armillaria umbrinobrunnea OTU2654 98.485 Armillaria OTU2335 98.485 Armillaria OTU1098 98.039 Armillaria
 OTU4824 98.413 Armillaria OTU3483 100 Armillaria OTU1181 98.039 Armillaria
Arthrinium sacchari OTU364 100.000 Arthrinium sacchari OTU282 100.000 Arthrinium sacchari OTU4874 100 Arthrinium sacchari
Arthrinium sp. OTU76 99.160 Fungi OTU75 99.160 Fungi OTU4800 98.343 Fungi
       OTU4943 98.333 Fungi
       OTU4979 98.333 Fungi
       OTU4985 98.87 Fungi
       OTU5006 98.333 Fungi
       OTU5010 98.333 Fungi
       OTU5034 98.333 Fungi
       OTU5056 98.324 Fungi
       OTU5120 97.778 Fungi
Ascocoryne cylichnium -   -   OTU2201 100 Ascocoryne cylichnium
Ascocoryne sp. OTU12 99.608 Ascocoryne OTU10 99.608 Ascocoryne OTU1938 99.519 Ascocoryne cylichnium
Ascocoryne sarcoides       OTU2141 99.476 Ascocoryne cylichnium
Atheliaceae OTU1621 100.000 Fungi OTU1923 100.000 Fungi OTU7975 100 Agaricomycetes
Aurantiporus albidus OTU110 100.000 Aurantiporus albidus -   OTU2325 98.125 Agaricomycetes
       OTU2363 99.367 Agaricomycetes
       OTU2425 99.367 Agaricomycetes
       OTU2426 98 Agaricomycetes
       OTU2431 98.734 Agaricomycetes
       OTU2444 99.355 Agaricomycetes
       OTU2445 98.101 Agaricomycetes
       OTU2446 98 Agaricomycetes
       OTU2447 98.101 Agaricomycetes
       OTU2448 98.101 Agaricomycetes
       OTU2449 98.101 Agaricomycetes
       OTU2450 98 Agaricomycetes
       OTU2452 98.101 Agaricomycetes
Beauveria sp. OTU862 100.000 Beauveria bassiana OTU1010 100.000 Beauveria bassiana OTU9070 100 Beauveria pseudobassiana
Cadophora sp. OTU403 100.000 Helotiales OTU426 100.000 Helotiales OTU8490 100 Helotiales
       OTU8521 98.78 Helotiales

Table 1. BLASTn results of the comparison between Sanger sequences set of Molina et al. (2020), against the OUT/ASV sequence data set of each pipeline.
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Sanger AMPtk - UPARSE AMPtk - DADA2 PIPITS
Molina et al. (2020)  %identity UNITE  %identity UNITE  %identity UNITE

       OTU8306 98.182 Cadophora
       OTU8605 98.16 Helotiales
       OTU8753 98.16 Helotiales
       OTU8742 98.137 Helotiales
       OTU8608 97.546 Cadophora
       OTU8741 97.546 Helotiales
Capronia sp. OTU505 100.000 Capronia kleinmondensis OTU472 100.000 Capronia 

kleinmondensis
OTU2689 99.49 Herpotrichiellaceae

       OTU2860 97.436 Herpotrichiellaceae
Cladosporium sp. OTU19 99.502 Cladosporium OTU23 99.502 Cladosporium OTU8584 99.359 Fungi
       OTU9435 98.052 Fungi
       OTU10332 97.436 Cladosporium 

ramotenellum
       OTU10565 97.419 Fungi
Coniochaeta sp1 -   OTU721 99.465 Coniochaeta OTU6998 98.817 Coniochaeta
       OTU6696 98.256 Coniochaeta
       OTU7198 98.246 Coniochaeta
       OTU6982 97.647 Coniochaeta
       OTU6981 97.076 Coniochaeta
Coniochaeta sp2 OTU700 99.465 Coniochaeta OTU1847 97.382 Coniochaeta ligniaria OTU6285 97.701 Coniochaeta ligniaria
       OTU6262 97.11 Coniochaeta
       OTU6455 97.093 Coniochaetales
Coprinellus sp. OTU4015 100.000 Coprinellus OTU3770 100.000 Coprinellus OTU1276 100 Coprinellus
Ophiostoma novae-zelandiae -         
Cordycipitaceae -   -   -   
Cosmospora sp. -   OTU1299 100.000 Nectriaceae OTU10892 100 Hypocreales
Curreya sp. OTU104 100.000 Pleosporales OTU64 100.000 Pleosporales OTU6708 99.419 Teichosporaceae
       OTU6857 98.361 Teichosporaceae
       OTU6950 98.4 Teichosporaceae
       OTU7002 100 Pleosporales
       OTU7027 98.246 Teichosporaceae
       OTU7059 98.235 Pleosporales
       OTU7073 98.235 Teichosporaceae
       OTU7087 98.235 Teichosporaceae
       OTU7094 99.194 Teichosporaceae
       OTU7109 98.387 Pleosporales
       OTU7134 100 Teichosporaceae
       OTU7135 98.387 Pleosporales

Table 1. (Continuation). BLASTn results of the comparison between Sanger sequences set of Molina et al. (2020), against the OUT/ASV sequence data set of each pipeline.
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Molina et al. (2020)  %identity UNITE  %identity UNITE  %identity UNITE

       OTU7137 98.235 Pleosporales
       OTU7149 98.387 Teichosporaceae
       OTU7155 98.387 Pleosporales
       OTU7157 99.194 Pleosporales
       OTU7181 97.619 Teichosporaceae
       OTU7217 98.235 Pleosporales
       OTU7218 98.235 Pleosporales
       OTU7220 98.235 Teichosporaceae
       OTU7221 98.387 Pleosporales
       OTU7222 98.235 Teichosporaceae
       OTU7223 98.235 Pleosporales
       OTU7224 98.333 Teichosporaceae
       OTU7225 98.374 Teichosporaceae
       OTU7226 98.387 Teichosporaceae
       OTU7228 98.817 Teichosporaceae
       OTU7230 98.235 Pleosporales
       OTU7234 98.387 Pleosporales
       OTU7235 98.347 Teichosporaceae
       OTU7236 98.81 Teichosporaceae
       OTU7432 97.581 Teichosporaceae
       OTU7681 97.633 Teichosporaceae
       OTU8067 100 Teichosporaceae
Cytospora sp. OTU2105 100.000 Valsa cypri OTU2153 99.597 Valsa cypri OTU2462 100 Valsa cypri
Fistulina antarctica OTU91 99.571 Fistulina OTU2962 100.000 Fistulina OTU839 100 Fistulina
    OTU92 98.589 Fistulina OTU861 98.326 Fistulina
    OTU7105 98.958 Fungi OTU888 97.881 Fistulina
       OTU889 97.458 Fistulina
       OTU893 97.458 Fistulina
Ganoderma australe -   -   -   
Gyromitra sp. OTU3049 99.425 Gyromitra esculenta OTU3733 99.425 Gyromitra esculenta - -  
Helotiales OTU966 100.000 Helotiales OTU1001 100.000 Helotiales OTU7438 100 Helotiales
       OTU6643 100 Helotiales
Hyaloscypha sp1 -   -   OTU7848 97.024 Helotiales
Hyaloscypha sp2 OTU1534 99.537 Hyaloscypha OTU1524 99.537 Hyaloscypha OTU10358 99.351 Hyaloscypha
Hypholoma frowardii OTU338 99.609 Hypholoma australe OTU263 99.609 Hypholoma australe OTU1192 99.163 Hypholoma
       OTU1243 97.479 Hypholoma
       OTU1296 97.468 Hypholoma
       OTU1301 97.468 Hypholoma

Table 1. (Continuation). BLASTn results of the comparison between Sanger sequences set of Molina et al. (2020), against the OUT/ASV sequence data set of each pipeline.
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Sanger AMPtk - UPARSE AMPtk - DADA2 PIPITS
Molina et al. (2020)  %identity UNITE  %identity UNITE  %identity UNITE

       OTU1313 97.468 Hypholoma
       OTU1314 97.468 Hypholoma
       OTU1315 97.468 Hypholoma
       OTU1393 97.468 Hypholoma
       OTU1378 97.436 Hypholoma
       OTU1644 99.539 Hypholoma
Lachnum sp OTU1985 98.726 Lachnum OTU1917 98.734 Lachnum OTU8630 100 Helotiales
       OTU8696 100 Helotiales
Laetiporus portentosus OTU1680 100.000 Fomitopsidaceae OTU1593 100.000 Fomitopsidaceae OTU4147 99.459 Laetiporus
Leptodontidium sp. OTU1344 97.807 Leptodontidium OTU1331 97.807 Leptodontidium OTU7446 99.405 Helotiales
 OTU1651 97.807 Leptodontidium OTU1737 97.368 Leptodontidium OTU7496 97.633 Helotiales
 OTU2899 97.368 Leptodontidium 

trabinellum
OTU3097 97.368 Leptodontidium 

trabinellum
   

Metapochonia sp. OTU768 100.000 Metapochonia OTU835 100.000 Metapochonia OTU6814 98.837 Fungi
       OTU6542 97.688 Fungi
Meyerozyma caribbica OTU282 100.000 Debaryomycetaceae OTU246 100.000 Debaryomycetaceae OTU7478 100 Meyerozyma
Meyerozyma guilliermondii       OTU7342 99.342 Meyerozyma
Microcera sp. OTU83 100.000 Microcera OTU88 100.000 Microcera OTU10146 99.363 Microcera
       OTU10402 100 Nectriaceae
       OTU10533 98.052 Microcera
Nemania sp. -   -   -   
Obba valdiviana -   -   -   
Oidiodendron sp1 OTU1373 99.548 Oidiodendron OTU1465 99.548 Oidiodendron OTU7439 99.405 Oidiodendron
Ophiostoma nothofagi OTU1135 99.621 Sordariomycetes OTU1225 99.621 Sordariomycetes OTU3658 99.465 Sordariomycetes
 OTU1695 97.753 Sordariomycetes    OTU3221 97.895 Sordariomycetes
Ophiostoma valdivianum -   -   -   
Paecilomyces / Isaria OTU924 99.167 Isaria OTU1003 99.167 Isaria OTU4876 100 Hypocreales
       OTU2663 100 Hypocreales
Paraphoma sp. -   -   OTU1999 99.528 Pleosporales
Pezicula sp. OTU21 100.000 Leotiomycetes OTU27 100.000 Leotiomycetes OTU6720 100 Dermateaceae
       OTU7515 100 Dermateaceae
       OTU6622 99.371 Dermateaceae
       OTU7121 99.363 Dermateaceae
Phacidium sp. OTU54 100.000 Phaciciadeae OTU55 100.000 Phacidiaceae OTU7096 100 Fungi
Phanerochaete velutina / 
sordida

OTU1086 100.000 Phanerochaete velutina OTU1100 100.000 Phanerochaete velutina OTU2329 99.505 Phanerochaete

       OTU2366 97.015 Phanerochaete velutina
       OTU2389 97 Phanerochaete velutina

Table 1. (Continuation). BLASTn results of the comparison between Sanger sequences set of Molina et al. (2020), against the OUT/ASV sequence data set of each pipeline.
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Phialocephala sp1 -   -   -   
Phialocephala sp2 OTU4346 100.000 Helotiales OTU3925 100.000 Helotiales OTU10524 100 Helotiales
 OTU8649 98.013 Helotiales    OTU10734 100 Helotiales
       OTU10695 97.521 Helotiales
Phlebia sp. OTU2762 100.000 Phlebia OTU3016 100.000 Phlebia OTU2543 100 Phlebia
Pholiota baeosperma OTU2626 100.000 Pholiota OTU2521 99.606 Pholiota OTU1121 100 Agaricales
Pholiota brunnescens -   -   -   
Pholiota multicingulata OTU2521 100.000 Pholiota OTU2405 100.000 Pholiota OTU1434 100 Pholiota
Pleurostoma sp. OTU4819 99.539 Ascomycota OTU484 97.235 Sordariomycetes OTU6249 98.851 Ascomycota
Postia dissecta OTU1288 100.000 Postia dissecta OTU1344 100.000 Postia dissecta OTU3052 100 Postia dissecta
Postia pelliculosa OTU1645 100.000 Postia pelliculosa OTU1730 100.000 Postia pelliculosa OTU3118 98.958 Postia pelliculosa
 OTU850 99.119 Postia OTU796 99.119 Postia OTU3483 98.413 Postia
Pseudoinonotus crustosus -   -   -   
Pseudovalsaria sp. OTU2323 100.000 Pseudovalsaria OTU2253 100.000 Pseudovalsaria OTU6930 99.415 Boliniaceae
       OTU7177 97.015 Fungi
Rasamsonia sp. -   -   -   
Sarocladium sp. OTU2330 97.585 Sarocladium OTU2702 97.858 Sarocladium OTU8624 99.387 Sordariomycetes
Sistotrema brinkmannii OTU7907 99.038 Sistotrema brinkmannii OTU7408 99.038 Sistotrema brinkmannii OTU6717 100 Cantharellales
Sporothrix cabralii OTU1261 98.605 Sporothrix OTU1326 98.605 Sporothrix OTU3542 97.386 Ophiostomataceae
 OTU6747 97.120 Sporothrix variecibatus       
Stereum sp. OTU963 99.545 Stereum OTU940 99.099 Stereum hirsutum OTU3591 98.936 Stereum hirsutum
       OTU3463 97.884 Stereum hirsutum
       OTU3810 97.861 Stereum
       OTU3842 97.861 Stereum hirsutum
       OTU3872 97.861 Stereum hirsutum
Tolypocladium album OTU212 100.000 Tolypocladium OTU203 100.000 Tolypocladium OTU8327 98.788 Tolypocladium
Umbelopsis vinacea OTU339 100.000 Umbelopsis OTU266 100.000 Umbelopsis OTU2241 98.864 Umbelopsis
    OTU706 98.936 Umbelopsis OTU2314 98.857 Umbelopsis
    OTU71 100.000 Umbelopsidales OTU2230 97.159 Umbelopsis
Umbelopsis changbaiensis OTU94 100.000 Umbelopsidales OTU71 100.000 Umbelopsidales OTU2272 97.059 Umbelopsis
       OTU2192 99.512 Umbelopsis changbaiensis
       OTU2288 97.688 Umbelopsis changbaiensis
Umbelopsis nana-dimorpha -   OTU299 99.554 Umbelopsis versiformis OTU6856 98.844 Umbelopsis dimorpha
Umbelopsis ramanianna -   -   -   
Xylariales OTU50 98.421 Fungi OTU60 98.421 Fungi OTU9902 98.11 Ascomycota
       OTU10432 98.065 Fungi
       OTU10430 97.351 Xylariales

Table 1. (Continuation). BLASTn results of the comparison between Sanger sequences set of Molina et al. (2020), against the OUT/ASV sequence data set of each pipeline.
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Fig. 2. Richness per sample comparisons (above): significant differences were detected between the three pipelines 
for curated (right) and non-curated data (left). Rarefaction curves (below): cumulative number of OTUs as a function 
of cumulative number of samples for the manually curated (right) and non-curated data (left) of the three pipelines 
tested: PIPITS (blue), AMPtk-UPARSE (pink) and AMPtk-DADA2 (green). Color version at https://www.ojs.
darwin.edu.ar/index.php/darwiniana/article/view/1127/1309

 AMPtk PIPITS

UPARSE DADA2

Matched taxa (%) 72.22 76.39 80.56

Merged taxa (%) 2.78 4.17 2.78

Misassigned taxa (%) 0.00 0.00 1.39

OTUs per taxa (mean) 1.10 1.12 1.85

Maximum number of OTU per taxa 3 3 35

Table 2. Parameters describing the comparison between culture-dependent and culture-independent 
approaches for each pipeline.
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DISCUSSION

In recent years, HTS metabarcoding approaches 
have revolutionized fungal ecology, increasing 
our ability to assess biodiversity in a wide range 
of habitats (Alberdi et al., 2018). As an emerging 
technology, it implied new methodological and 
theoretical challenges in terms of data processing 
and integration of knowledge production with 
existing backgrounds. Despite the number of studies 
that compare the performance of the different tools 
developed for data processing, there is still no 
consensus on the most appropriate bioinformatics 
approach (Anslan et al., 2018; Pauvert et al., 
2019). These studies use comparison criteria with 
mock communities to evaluate the results of the 
pipelines. This is the first study that assesses the 
performance of different automated bioinformatic 
toolkits in the characterization of natural fungal 
communities, and that uses diversity data -obtained 
from culture methods- from the same sites and 
samples, as comparison criteria. This is a key step 
to further characterize endophyte communities and 
their beta diversity patterns through metabarcoding 
methodologies. 

Bioinformatic pipelines comparisons
When evaluating the performance of a 

bioinformatic pipeline for analyzing community 
data, important factors to consider include 
the runtime, sensitivity, and precision. These 
parameters provide valuable insights into the 
efficiency and accuracy of the pipeline, serving 
as important tools for making informed decisions 
on which pipeline to apply based on the study 
goals and capabilities. The runtime of a pipeline 
determines the computational efficiency and speed 
of processing the large volumes of sequencing data. 
The sensitivity of the pipeline is directly impacted 
by the reads filtering, clustering, and chimera 
detection steps. These steps influence the ability to 
accurately capture the true fungal taxa present in the 
samples because the more reads are removed from 
the dataset during the filtering steps, the greater 
the risk of inadvertently eliminating existing taxa 
in the biological community. On the other hand, 
precision, which measures the pipeline’s accuracy 
in identifying true fungal taxa without introducing 
false positives, relies on stringent filtering and 

error correction methods, such as chimera removal, 
clustering, and taxonomy assignment. The choice 
of clustering algorithm affects precision, with 
conservative algorithms creating distinct clusters, 
reducing the risk of merging sequences from 
different taxa. Conversely, sensitive algorithms 
may capture more taxa but have a higher chance of 
including false positives. In this context, it becomes 
evident the trade-off between sensitivity and 
precision (Weiss et al., 2016). Increasing sensitivity 
by relaxing filtering criteria may lead to a higher 
chance of false positives or including artifactual 
taxa, whereas prioritizing precision through more 
stringent filtering may result in the loss of rare or 
low-abundance taxa (Baldrian et al., 2021).  

In the context of this study, it is worth noting that 
the filtering steps result in differences in reading 
recruitment with the fastx-toolkit applied in the 
PIPITS pipeline being less strict compared to the 
error trimming pipeline used in AMPtk. However, 
it is the clustering method that explains most of 
the differences between pipeline performances 
in this study. The VSEARCH and USEARCH 
algorithms did not perform similarly. VSEARCH 
clustering resulted in almost double OTU richness 
than UPARSE, even though it removed singletons 
before clustering. On the one hand, the PIPITS 
pipeline overestimates taxa, as evidenced in the high 
OTU redundancy (number of OTUs per taxa), that 
is, it showed less precision. Moreover, the highest 
richness obtained from this approach is partially 
reflecting actual taxa in the fungal community that 
the other pipelines could not recover, as is evidenced 
by the higher coverage over the cultured dataset 
that was reported for PIPITS (the ratio of cultured 
sequences that matches). These results agree with 
previous studies that have pointed out that the 
VSEARCH clustering method is a more sensitive 
approach (Rognes et al., 2016). However, others 
have found similar results in richness and sensitivity 
between VSEARCH and USEARCH when applied 
in other pipelines/toolkits (Anslan et al., 2018; 
Pauvert et al., 2019). Here, we found that applied 
in AMPtk toolkit, VSEARCH clustering method 
results in lower sensitivity. In fact, the AMPtk-
UPARSE pipeline was the one that recovered the 
lower ratio of cultured taxa (that is, showed less 
sensitivity) and the one that evidenced the best OTU 
redundancy parameters (that is, more precision).  
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Regarding the latter, it might be an effect of the 
LULU algorithm that filtered 800 OTUs from 
the AMPtk-UPARSE pipeline. This tool was 
developed to detect taxa splitted in more than one 
OTU/ASV during the clustering method and merge 
them; plus, it is not available in the PIPITS toolkit. 

The AMPtk-DADA2 pipeline offered the best 
balance concerning both precision and sensitivity. It 
yields low ASV redundancy aligning with sequences 
from culture and more than 76% coverage for the 
cultured dataset and, also, achieving the lowest 
richness among the three pipelines. These results 
are consistent with other studies that found that the 
DADA2 pipeline achieves the most approximate 
characterization of mock community alfa diversity 
(Pauvert et al., 2019). DADA2 is a clustering-free 
method developed to enable result comparisons 
between studies and improve taxonomic resolution 
(Callahan et al., 2017). It evaluates reads at the 
sample level and combines the identification of 
ASVs with chimera detection and removal. This 
approach assumes that highly similar ASVs within 
the same sample represent errors when they occur 
in very low abundances. It allows the detection 
of single-nucleotide polymorphisms that may 
indicate different fungal species while reducing 
OTU redundancy (Callahan et al., 2016).

The taxonomy assignment lacks mycological 
accuracy for the system under study in both 
PIPITS and AMPtk toolkits: up to 35% of total 
manually curated OTUs could not go further 
than the Kingdom Fungi determination. This 
is a common issue in metabarcoding approach 
studies from diverse environments (Kirker et al., 
2017; Purahong et al., 2019), especially when 
plant endophyte mycobiota is being assessed 
(James et al., 2020). In general, sequence-based 
identification depends on informative sequence 
databases (Costello et al., 2013). In particular, 
bioinformatic methods for taxonomy assignment, 
and especially the learning machine approaches, 
are sensitive to the incompleteness of the reference 
databases because the algorithms perform better 
when there are multiple representatives for each 
group (Gdanetz et al., 2017). There is a current 
lack of knowledge about fungal diversity in 
certain environments and about entire fungal 
lineages that keep the public databases incomplete 
(Halwachs et al., 2017). Apart from the general 

limitations regarding the available databases that 
both toolkits faced, PIPITS and AMPtk pipelines 
performed differently concerning taxonomy 
assignment. On the one hand, PIPITS resulted 
in a larger proportion of unassigned OTUs at 
the Kingdom rank, which might be due to the 
more relaxed algorithms for reads filtering and 
post-clustering curation. On the other hand, this 
pipeline resulted in slightly better taxonomic 
resolution, meaning a larger proportion of 
assignments at Class rank or less. However, it 
also evidenced a proportion of misassignment 
when validating with the cultured dataset. AMPtk 
toolkit has achieved lower resolution but with no 
such errors. Unlike PIPITS, which implements the 
RDP Classifier method, AMPtk uses an approach 
in which taxonomy is assigned through the 
consensus of three different methods. Evidently, 
the hybrid is a more conservative approach, which 
loses resolution by assigning taxonomy with a 
“last common ancestor” criterion but allowing 
reducing errors. 

Cultured taxa from our reference dataset are 
known to be present in the studied ecosystem, 
however, there is a fraction of their sequences 
that the HTS experiment did not recover. 
Culture-dependent and culture-independent 
experiments were not carried out from the same 
samples (although they were taken from the same 
individuals in a year of culture prospection), 
therefore some taxa could be absent in one of 
the approaches, especially if those taxa are rare. 
Nevertheless, some of the sequences absent in the 
pipeline’s outputs were from taxa reported in high 
frequency in the culture-prospection study (Molina 
et al., 2020). Furthermore, certain of these genera 
were not informed at all in the culture-independent 
approaches, such as Ophiostoma or Arambarria. 
Here, we might be witnessing the bias and 
limitations of the HTS metabarcoding approach 
and of the ITS amplicon itself. During total DNA 
extraction from an environmental sample, the 
cell wall properties of the different fungal taxa 
or types (Vesty et al., 2017) and the variable 
number of nuclei per cell across taxa (Roper 
et al., 2011) will affect the DNA recruitment. 
Besides, it is well documented that markers 
differ in their capacity to recover OTUs/ASVs 
across fungal lineages (Tedersoo et al., 2015).  
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The Internal Transcribed Spacer region has been 
used as a universal fungal marker because of 
the optimal multi-copy characteristics and its 
variation rate across lineages (Schoch et al., 
2012). However, there are some drawbacks for 
HTS metabarcoding studies. For instance, the ITS 
region is highly variable in length (Schoch et al., 
2014) and GC content (Wang et al., 2015); longer 
and higher GC content barcodes are reported as 
difficult templates to amplify in NGS because of 
the unequal competition for primers (Aird et al., 
2011). Plus, longer barcodes are less likely to be 
recovered in short-read-based approaches, because 
the quality falls in tails and low-quality sequences 
are problematic to pair (Baldrian et al., 2021).

It is noticeable, however, that compared with 
this study the few studies that have compared 
the alpha diversity achieved by HTS approaches 
versus morphological studies have got a very small 
overlapping of taxa between approaches (Porter 
et al., 2008, Heine et al., 2021). Furthermore, 
the findings of this study align with previous 
assessments of the sensitivity of HTS workflows 
that employ mock community approaches (Pauvert 
et al., 2019), demonstrating consistent results in 
terms of the percentage of recovered sequences. 
All this suggests that sampling and sequencing 
efforts in this study were satisfactory.

Sequencing depth achieved here was higher 
than that of similar wood fungal endophytes studies 
(Küngas et al., 2020; Migliorini et al., 2021). 
Sequence depth is the more important variable in HTS 
experimental design that aims to assess beta diversity 
(Smith & Peay, 2014). However, high sequencing 
depth increases the potential for cross-contamination 
and errors during sequencing (Baldrian et al., 2021). 
In this study, we combine a high sequence depth with 
an approach to correct cross-contamination errors by 
using a synthetic mock community.

In summary, the AMPtk toolkit showed to be more 
precise in terms of false positives and taxonomy 
assignment than PIPITS. Both AMPtk pipelines 
had similar performances but the pipeline that uses 
the DADA2 clustering algorithm showed lower 
redundancy and higher sensitivity. The AMPtk-
DADA2 would be chosen to perform community 
patterns analyses, however, PIPITS showed itself as 
a more sensitive pipeline and would be considered 
in studies aiming for species detection.
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