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Abstract

The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as
those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates
to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corre-
sponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of infor-
mation, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular
choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an
effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-inte-
grable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner
transformation of the quantum state.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of the classical limit of quantum mechanics has a long history. In the beginning, on the basis of the
analogy with special relativity where the limit c!1 leads to classical behavior, it was thought that the classical limit
was just the limit �h! 0. But it was soon realized that this was only one element of the problem, namely, macroscopicity,
and that other elements must be taken into account: e.g., quantum mechanics has a probabilistic non-Boolean structure
while classical mechanics has a non-probabilistic and Boolean one. Thus, necessarily two new elements must come into
play:

• Decoherence, that transforms the non-Boolean structure into a Boolean one, and
• Localization (actualization or the choice of a trajectory) that, with macroscopicity—which circumvents the uncer-
tainty principle—, turns the probabilistic structure into a non-probabilistic one.
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In general, decoherence in quantum systems is defined as a process that leads to the diagonalization of a density
matrix. In a first period, decoherence was explained as the result of the destructive interference of the off-diagonal ele-
ments of the density matrix (see [1,2]); however, this line of research was abandoned due to technical difficulties derived
from the formalism used to describe the process. As a consequence, decoherence begun to be conceived as produced by
the interaction between a system and its environment. This approach gave rise to the einselection program, based on the
works of Zeh [3–5] and later developed by Zurek and coworkers [6–12]. Although many relevant results have been ob-
tained by means of einselection, this approach still involves certain unsolved problems, as those related with the expla-
nation of the emergence of classicality in closed quantum systems, the criterion for introducing the �cut� between the
system and its environment, and the definition of the preferred (�pointer�) basis where the system behaves classically
(see [13]). As the result of these and other difficulties, a number of alternative accounts of decoherence have been pro-
posed (see [14–20]).

On the basis of the formalism introduced in papers [21–25], in a series of papers [13,26–35] we have returned to the
initial idea of the destructive interference of the off-diagonal terms of the density matrix, but now by means of a dif-
ferent formalism: the formalism introduced by van Hove [36–39]. We have called this new approach �self-induced deco-
herence� [13] because, from this viewpoint, decoherence is not produced by the interaction between a system and its
environment, but it results from the own dynamics of the whole quantum system governed by a Hamiltonian with
continuous spectrum. In this approach, the difficulties derived from the einselection program are absent: self-induced
decoherence can be used in closed systems as the universe [30], the definition of a convenient subalgebra plays the role of
the coarse-graining induced by the environment, avoiding the �cut� problem [13], and the pointer basis is perfectly
defined [13,34].

Self-induced decoherence is capable of addressing relevant problems from a general perspective, e.g., the problem of
supplying a good definition of the classical limit in all cases. We will apply this main idea to the non-integrable case, and
present the computations in all detail in Section 3.2, by using our previous results on quantum systems with continuous
spectrum contained in papers [22–24,27–29]. With this strategy we have already obtained, in paper [26], the classical
limit for integrable systems. We have also presented this result in more rigorous mathematical basis in [33] and
explained the physical foundations of the method in papers [13,34]. The mathematical basis of the theory is explained
in papers [21,32]. Decoherence characteristic times were obtained in [35]. But, of course, the big challenge to prove the
consistency and generality of the method is to find its version for non-integrable systems, obtaining potentially chaotic
classical trajectories as a final result, which could explain models as those of Ref. [16].

In the case of integrable systems, the classical limit was obtained by a combination of the van Hove formalism and
the Weyl–Wigner–Moyal isomorphism in a globally defined pointer basis. But in the non-integrable case, such a global
basis does not exist. Nevertheless, the just quoted isomorphism is what allows us to relax the global condition and to
generalize the formalism: quantum mechanics is formulated in a phase space that is covered with charts where local

pointer bases can be defined. The set of all these local pointer bases will yield decomposition of Eq. (3.18), which is
the essential tool of this paper.

The formalism of the theory is presented in a self-comprehensive way, with a mathematics as simple as possible and
in the simplest possible case; this seems enough for the physical purposes of this paper. In Section 2, a brief review of the
Weyl–Wigner–Moyal mapping is developed, and in Section 3, the theory of decoherence in non-integrable systems is
explained. In Section 4, the classical limit of quantum non-integrable system is obtained. In Section 5, the localization
phenomena is briefly discussed. In the conclusion (Section 6), we list the possible future applications of the theory and
explain why our formalism could be considered as a minimal formalism for quantum chaos. Finally, in Appendix A we
give an example of a non-integrable system.
2. Weyl–Wigner–Moyal mapping

Let M ¼M2ðNþ1Þ � R2ðNþ1Þ be the phase space of our classical system. The functions over this phase space will be
called f(/), where / symbolizes the coordinates over M
/a ¼ q1; . . . ; qNþ1; p1q; . . . ; p
Nþ1
q

� �
a ¼ 1; 2; . . . ; 2ðN þ 1Þ. ð2:1Þ
As it is known (see [40,41]), we can map cA, the algebra of regular operators bO of our quantum system, on Aq, the
algebra of L1 functions over M, via the Wigner symbol
symb : cA !Aq; symb bO ¼ Oð/Þ. ð2:2Þ
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Precisely: let us consider that M has a symplectic form
1 Fro
import
2 In

Howev
the cla
xab ¼
0 INþ1

�INþ1 0

� �
; xab ¼

0 �INþ1
INþ1 0

� �
. ð2:3Þ
Then,
symb f̂$f ð/Þ ¼
Z

d2ðNþ1Þw exp
i

�h
waxabw

b

� �
Tr bT ðwÞf̂� �

; ð2:4Þ
where f̂ 2 cA, f ð/Þ 2Aq, and
bT ðwÞ ¼ exp
i

�h
waxab

b/b
� �

. ð2:5Þ
OnAq we can define the star product (i.e., the classical operator related with the multiplication on cA and, therefore,
defining the corresponding operation on Aq) as
symbðf̂ ĝÞ ¼ symb f̂ � symb ĝ ¼ ðf � gÞð/Þ. ð2:6Þ
It can be proved [40, Eq. (2.59)] that
ðf � gÞð/Þ ¼ f ð/Þ exp � i�h
2
oa
 
xab ob

!
� �

gð/Þ ¼ gð/Þ exp i�h
2
oa
 
xab ob

!
� �

f ð/Þ. ð2:7Þ
We also define the Moyal bracket as the symbol corresponding to the commutator in cA

ff ; ggmb ¼

1

i�h
ðf � g � g � f Þ ¼ symb

1

i�h
½f ; g�

� �
¼ 1

i�h
f ð/Þ sin � i�h

2
oa
 
xab ob

!
� �

gð/Þ. ð2:8Þ
In the limit �h! 0, the star product becomes the ordinary product, and the Moyal bracket becomes the Poisson bracket1
ðf � gÞð/Þ ¼ f ð/Þgð/Þ þ 0ð�hÞ; ð2:9Þ
ff ; ggmb ¼ ff ; ggpb þ 0ð�h2Þ. ð2:10Þ
By means of Eq. (2.7) it can be proved that, if f̂ commutes with ĝ, Eq. (2.9) changes to
ðf � gÞð/Þ ¼ f ð/Þgð/Þ þ 0ð�h2Þ. ð2:11Þ
Finally, if we want that the mapping symb be one-to-one, we must define a unique inverse of symb, namely, the usual
quantization rule q! q̂, p! p̂ endowed with a unique ordering prescription, e.g., the symmetrical or Weyl ordering

prescription that maps
symb�1ðqpÞ ¼ 1
2
q̂p̂ þ p̂q̂ð Þ. ð2:12Þ
Then, we have
symb�1 : Aq ! cA; symb : cA !Aq. ð2:13Þ
The one-to-one mapping so defined is the Weyl–Wigner–Moyal symbol. With symb�1 we can �deform� the classical sys-
tem and obtain a quantum mechanical system. With symb we go from usual quantum mechanics to a quantum mechan-
ics �alla classica�, formulated over a phase space M. The relation between the two structures, given by Eq. (2.13) (and
Eq. (4.9) below), is an isomorphism that we will call Weyl–Wigner–Moyal isomorphism, the only one we will use in this
paper.

Since cA is a space of operators on a Hilbert space H, so it is its dual cA0
; then, as it is known, the symbol for any

q̂ 2 cA0
is defined as2
qð/Þ ¼ symb q̂ ¼ ð2p�hÞ�ðNþ1Þsymbðfor operatorsÞq̂; ð2:14Þ
m Eq. (2.7) it is clear that the 0(⁄) and 0(⁄2) of Eqs. (2.9) and (2.10) are continuous functions in the limit ⁄ = 0. This fact will be
ant in Section 5.
the case of states, we must add a new factor (2p⁄)�(N+1) to definition (2.4) in order to preserve the usual normalization of q(/).
er, q(/) is not non-negatively defined. With decoherence and ⁄! 0 we will obtain a non-negatively defined q(/), and Aq !A,
ssical boolean algebra of L1 operators over M.
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where the symb for operators is defined by Eqs. (2.4) and (2.5). From this definition, we have (see [40], Eq. (2.13))
3 Ob
4 Th

demon
ðq̂jbOÞ ¼ ðsymb q̂jsymb bOÞ ¼ Z
d/2ðNþ1Þqð/ÞOð/Þ. ð2:15Þ
Let us remark that the last equation is the cornerstone of our theory of the classical limit. In fact, as we will see, it
will remain the same when we go from regular to singular objects. Once this statement is understood, the translation from
the quantum language to the classical one will be easy.
3. Decoherence in non-integrable systems

3.1. Local CSCO

(a) We will begin with demonstrating an important theorem: when our quantum system is endowed with a CSCO of
N + 1 observables containing bH that defines a basis in terms of which the state of the system can be expressed, the
underlying classical system is integrable. In fact, let a classical system be defined in a phase space M � R2ðNþ1Þ that
can be deformed �alla Weyl�. If our quantum system is endowed with a (N + 1)-CSCO f bH ; bO1; . . . ; bONg, the Moyal
brackets of these quantities are
fOIð/Þ;OJ ð/Þgmb ¼ symb
1

i�h
½bOI ; bOJ �

� �
¼ 0; ð3:1Þ
where I,J, . . . = 0,1, . . . ,N and bH ¼ bO0. Then, when �h! 0, from Eq. (2.10) we know that
fOIð/Þ;OJ ð/Þgpb ¼ 0. ð3:2Þ
Thus, asH(/) = O0(/), the set {OI(/)} is a complete set of N + 1 constants of the motion in involution, globally defined
over all M and, therefore, the system is integrable.

As a consequence, non-integrable classical systems, in their quantum version, cannot have a CSCO of N + 1 observ-
ables globally defined containing bH . But, according to the self-induced approach, the pointer basis is precisely the
eigenbasis of a global (N + 1)-CSCO containing bH (in such a way that the vectors of the pointer basis turn out to
be stationary states, see [26]). Therefore, pointer bases cannot be globally defined in non-integrable systems. These sys-
tems can be adequately quantized, but it is impossible (at least globally) to define a complete stationary eigenbasis of
(N + 1)-CSCO and, a fortiori, a pointer (N + 1)-CSCO or pointer basis where the system would decohere according to
the self-induced approach.3 This is the main problem with non-integrable quantum systems.

(b) We will now prove that N + 1 constants of the motion in involution always exist locally.4 Let us consider a non-
integrable quantum system (i.e., with no global (N + 1)-CSCO), but let us suppose that, as usual, Hð/Þ ¼ symb bH is
given and it is globally defined over M (this means that any non-global CSCO has at least one global observable:bH ). Now we can try to find N constants of the motion {OI(/)} (I = 1,2, . . . ,N) satisfying
fHð/Þ;OIð/Þgpb ¼
XN
j¼1

oH
opqj

oOI

oqj
� oH

oqj

oOI

opqj
¼ 0. ð3:3Þ
This is a system of N partial differential equations which, with adequate boundary conditions, has a unique solution in a
maximal domain of integration D/i

around any point /i 2M (provided that the functions involved satisfy reasonable—
e.g., Lipschitzian—mathematical conditions and that certain determinant D, defined in [42, p. 72], be D 5 0 in this
domain).

But we would like to obtain a set of constants of the motion in involution. Then, let us suppose that the initial con-
ditions for Eq. (3.3) are given in a 2N + 1 dimensional hypersurface containing /i, that we will callD

N
/i
. Integrating (3.3)

we will obtain N constants of the motion OI(/). Moreover, we can easily show that, if these solutions are in involution
inDN

/i
, they will remain in involution in the domainD/i

¼ DNþ1
/i

of 2(N + 1) dimensions. In fact, according to the Jacobi
property of the Poisson brackets we have
fHð/Þ; fOIð/Þ;OJ ð/Þgpbgpb þ fOIð/Þ; fOJ ð/Þ;Hð/Þgpbgpb þ fOJ ð/Þ; fHð/Þ;OIð/Þgpbgpb ¼ 0. ð3:4Þ
serve that, if the CSCO has <N + 1 operators, we have not good quantum numbers enough to label the eigenvectors.
is fact can be considered as almost evident, but since it is not demonstrated in usual textbooks, we will give a complete
stration below.
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Then, since OI(/) and OJ(/) are constants of the motion in D/i
, the {OI(/),OJ(/)}pb will also be so. As a consequence,

if we could define N constants of the motion in involution such that
5 An
fact, th
these C
that ca
6 Th

explici
tends t
back t
7 Th
fOIð/Þ;OJ ð/Þgpb ¼ 0 ð3:5Þ
at each point / 2 DN
/i
(where DN

/i
is the just defined domain of 2N + 1 dimensions around /i), by using these functions

as initial conditions we can obtain a complete set of constants of the motion in involution in the domain D/i
¼ DNþ1

/i
of

dimension 2(N + 1), as promised.
Now the problem is reduced to prove the existence of theOI(/), OJ(/) satisfying Eq. (3.5) inDN

/i
. Again, the existence

of such a set can be easily proved by using the same strategy as above, but now recursively. We can begin with an arbi-
trary function O1(/) defined in a domain D0

/i
of N + 1 dimensions. Then, we consider another O2(/) (defined in a N + 2

dimension domain D1
/i
containing D0

/i
) as the Hamiltonian of Eq. (3.3) and obtain by integration a function O1(/), de-

fined in the domain D1
/i
of N + 2 dimensions, such that in this domain {O2(/),O1(/)}pb = 0. Finally, we iterate the pro-

cedure up to find the set of functions in involution in the DN
/i

of dimensions 2N + 1, which can be taken as initial
conditions of Eq. (3.3). In this way, the proof is completed.5

(c) Now, in order to go from classical to quantum, we can also extend these local OI(/), defined in D/i ¼ DNþ1
/i of

dimensions 2(N + 1), to all M by defining OI(/) = 0 for / 2M nD/i
. In this case, there will be a jump in the frontier of

D/i
, and the definition will be only continuous a.e. (almost everywhere). Or, on physical grounds, we can take the pre-

caution of joining these zero functions with functions OI(/) inside D/i
in an smooth way (e.g., by using Cr functions

with an adequate r, as we explain in detail below).
Therefore, we have proved the existence of local complete systems of constants of the motion in involution {OI(/)} =

{H(/),O1(/), . . . ,ON(/)} that we can extend to all M, at least a.e., by adding null functions in M nDNþ1
/0

as explained.
Since they belong to D/i

, we will call them fHð/Þ;O/i1ð/Þ; . . . ;O/iN ð/Þg. Each system fHð/Þ;O/i1ð/Þ; . . . ;O/iN ð/Þg can
be considered as a local (approximate) (N + 1)-CSCO inD/i

¼ DNþ1
/i

in the sense that, even if it is not an exact CSCO, we
can compute their Weyl transformations obtaining
f bH /i
; bO/i1; . . . ;

bO/iNg
and their Wigner transformations are a complete set of constants of the motion in involution in D/i
. In fact, from Eq.

(2.10) we see that
fO/i Ið/Þ;O/jJ ð/Þgmb ¼ 0ð�h2Þ or ½bO/i I ;
bO/jJ � ¼ 0ð�h2Þ; ð3:6Þ
namely, they only commute approximately.
Let us now consider in more detail the joining zone where we have used Cr-functions that do not satisfy the required

differential Eqs. (3.3)–(3.5), in such a way that the higher order terms i�h
2
oa
 
xab ob

!
of Eq. (2.8) produce unwanted con-

tributions of the order of �h/PQ, where P and Q are of the order of magnitude of the jumps in the momentum and con-
figuration variables in the joining zone. Since PQ = e2 is an action measuring the joining zone (where e is the
characteristic mean width of the joining zone, precisely e2(N+1) ffi Ve, the volume of the joining zones F), the unwanted
terms are of the order of �h/e2, that is, they are another contribution 0 �h2

e4

� �
, or simply 0(�h2), to add to (3.6). Anyhow,

these terms will vanish when we make the limit �h! 0 in Section 4.6

(d) Let us observe that natural global coordinates / = (q,pp) of phase space M can be (locally) substituted, by using
a (local) canonical transformation, with (local) coordinates ðh/i I ;O/i IÞ, with i = 0,1, . . . ,N and H ¼ O/i0, where the
h/i Ið/Þ are the coordinates canonically conjugated to the O/i Ið/Þ defined in point (b) in each D/i

. The ðh/i I ;O/i IÞ is
clearly a chart of M in the domain D/i

.7 Since the system is endowed with adequate smooth properties (let us say
Cr), another similarly constructed chart ðh/jI ;O/jIÞ in the domain D/j

is smoothly connected with the previous one
at any / 2 D/i

\D/j
(see demonstration in Section 5). Then, the set of all these charts is a Cr-atlas in M. This will

be the atlas we will primarily concerned with.
example of this phenomenon is the Sinai billiard discussed in Appendix A. Other examples are classical scattering systems: in
ey have an �in� CSCO and an �out� CSCO, which are different since the values of the constants of the motion are not the same in
SCOs. More complex examples are the so-called pseudointegrable systems [43, p. 98; 44; 45]; tori become spheres with �handles�
nnot be covered with a single chart. A further example is Robnik�s billiard [46].
e term 0(⁄) tends to zero only counterfactually, since ⁄ is a constant. The term tends to zero factually when the dimension is
t, i.e., when we write it as 0(⁄/S), where S is the characteristic action: we can neglect 0(⁄/S) when S� ⁄. This means that 0(⁄2/e4)
o zero if the action S of the system is large enough, S� ⁄, and, therefore, we choose an e such that ⁄� e2� S (we shall come
o this argument in footnote 8).
is is not a generic chart, but a very peculiar one, since coordinates O/i I are constants of the motion satisfying Eqs. (3.3) and (3.5).
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(e) We can also define a (ad hoc) positive partition of the identity (see [47, Section 3.4]) in the following sense. Let us
define
1 ¼ Ið/Þ ¼
X
i

B/i
ð/Þ; ð3:7Þ
where B/i
ð/Þ are �bump� smooth functions such that
B/i
ð/Þ

¼ 1 if / 2 D/i
;

2 ½0; 1� if / 2 F /i
;

¼ 0 if / 62 D/i
[ F /i

;

8><>: ð3:8Þ
where D/i
is a domain and F /i

is the frontier zone around D/i
(all the F /i

belong to the joining zoneF) defined in such a
way that D/i

[ F /i
� D/i

and the intersection zones of the D 0s vanish: D/i
\ D/j

¼ ;. Let us stress that the B/i
ð/Þ in the

frontier zones satisfy Eq. (3.7). Now, for any A(/) we can define a
A/i
ð/Þ ¼ Að/ÞB/i

ð/Þ
and for any A(/) we have
Að/Þ ¼ Að/Þ
X
i

B/i
ð/Þ ¼

X
i

A/i
ð/Þ.
With the mapping symb�1 we find
bA ¼ symb�1Að/Þ ¼
X
i

symb�1A/i
ð/Þ ¼

X
i

bA/i
; ð3:9Þ
where bA/i
¼ symb�1A/i

ð/Þ can be considered as a localizationof bA in D/i
. Moreover, since we have a local (N + 1)-

CSCO in each D/i
[ F /i

� D/i
, we can decompose
bA/i

¼
X
j

Aj/i
jjiðAÞ/i
hjjðAÞ/i

; ð3:10Þ
where the fjjiðAÞ/i
g are the corresponding eigenvectors of bA/i

. If the bA/i
also commute with bH , the set fbA/i

g can be con-
sidered as a local (N + 1)-CSCO of D/i

� D/i
.

Now we can prove that symbjjiðAÞ/i
hjjðAÞ/i

has the same support D/i
[ F /i

than symb bA/i
. In fact, from Eq. (3.10) we have
bA/i

jjiðAÞ/i
¼ Aj/i

jjiðAÞ/i
or bA/i

jjiðAÞ/i
hjjðAÞ/i

¼ Aj/i
jjiðAÞ/i
hjjðAÞ/i

.

Then,
symb bA/i
� symbjjiðAÞ/i

hjjðAÞ/i
¼ Aj/i

symbjjiðAÞ/i
hjjðAÞ/i

. ð3:11Þ
But symb bA/i
and all its derivatives vanish for / 62 D/i

[ F /i
. Therefore, if Aj/i

6¼ 0, this also must happen for

symbjjiðAÞ/i
hjjðAÞ/i

, and the support of this function is contained in D/i
[ F /i

. If Aj/i
¼ 0, we can repeat the argument with

the operator bA/i
þ abB/i

, with bB/i
6¼ 0, and take the limit a! 0, and we will find the same result.

From Eqs. (3.9) and (3.10) we have
bA ¼X
ij

Aj/i
jjiðAÞ/i
hjjðAÞ/i

ð3:12Þ
all over M. Moreover, from Eq. (3.10) we also have
symb bA/i
¼

X
j

Aj/i
symbjjiðAÞ/i

hjjðAÞ/i
and, as we have just proved,
symbjjiðAÞ/i
hjjðAÞ/i
ð/Þ ¼ symbjjiðAÞ/i

hjjðAÞ/i
ð/Þ if / 2 D/i

;

0 if / 62 D/i
[ F /i

.

(

Then, since for i 5 k, D/i

\ D/k
¼ ; (but F /i

\ F /j
6¼ 0), we have
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hjjðAÞ/i
jj0iðAÞ/k

��� ���2 ¼ hjjðAÞ/i
jj0iðAÞ/k

hj0jðAÞ/k
jjiðAÞ/i

¼ jj0iðAÞ/k
hj0jðAÞ/k

jjjiðAÞ/i
hjjðAÞ/i

� �
¼

Z
M

symbjj0iðAÞ/k
hj0jðAÞ/k

symbjjiðAÞ/i
hjjðAÞ/i

d/2ðNþ1Þ ¼
Z
F

symbjj0iðAÞ/k
hj0jðAÞ/k

symbjjiðAÞ/i
hjjðAÞ/i

d/2ðNþ1Þ

¼ 0ðe2ðNþ1ÞÞ; ð3:13Þ
where F is the frontier or joining zone and e is the characteristic width of the joining zone. Therefore, for i5 k and
e! 0,8 we obtain
hjjðAÞ/i
jj0iðAÞ/k

¼ 0. ð3:14Þ
This means that, in the limit e! 0, decomposition (3.12) is an orthogonormal decomposition in the jjiðAÞ/i
.

3.2. Decoherence in the energy

(a) We will now introduce decoherence according to the self-induced approach. Let us define, in each D/i
, a local

(N + 1)-CSCO where, as in Eq. (3.12) now applied for the (N + 1)-CSCO f bH ; bO/i Ig, the observables can be expressed as
bH ¼ Z 1

0

x
X
im

jx;mi/i
hx;mj/i

dx; bO/i I ¼
Z 1

0

X
m

OmI/i
jx;mi/i

hx;mj/i
dx; ð3:15Þ
where the energy spectrum is continuous, precisely 0 6 x <1, and mI/i
¼ fm1/i

; . . . ;mN/i
g, mI/i

2 N (the spectra of thebO/i I are discrete for simplicity).9 Therefore
bH jx;mi/i
¼ xjx;mi/i

; bO/i I jx;mi/i
¼ OmI/i

jx;mi/i
ð3:16Þ
where the jx;mi/i
are the eigenvectors of the observables bO/i

(such that symb bO/i
¼ O/i

ð/Þ 6¼ 0 only in D/i
\ F /i

Þ and m

is a shorthand for m/i I ¼ fm/i1; . . . ;m/iNg. The set fjx;mi/i
g is orthonormal in x and in m, in the usual eigenvalue indi-

ces and in i, as proved in Eq. (3.14):
hx;mj/i
jx0;m0i/j

¼ dðx� x0Þdmm0dij. ð3:17Þ
(b) Now we can define our relevant algebra of observables. This choice will play the role of coarse-graining in our
approach. A generic observable reads, in the orthonormal basis just defined,
bO ¼X
imm0

Z 1

0

Z 1

0

dxdx0 eOðx;x0Þ/imm0
jx;mi/i

hx0;m0j/i
; ð3:18Þ
cisely: let us call V M the volume of phase space: V M 	 SNþ1. Moreover,

IM ¼
Z
M

symbjj0iðAÞ/k
hj0jðAÞ/k

symbjjiðAÞ/i
hjjðAÞ/i

d/2ðNþ1Þ 	 V M 	 SNþ1.

also define

I e ¼
Z
F

symbjj0iðAÞ/k
hj0jðAÞ/k

symbjjiðAÞ/i
hjjðAÞ/i

d/2ðNþ1Þ 	 V e ¼ e2ðNþ1Þ.

er to prove Eq. (3.13), it is necessary that I e � IM in such a way that Ie could be neglected. But Ie 	 Ve and IM 	 SNþ1; then,
.Therefore, e must be (see footnote 6):

that the ratio �h
e2 be negligible to eliminate the unwanted terms i�h

2
oa
 
xab ob

!
in the joining zone.

mall as e2� S to satisfy Eq. (3.13).Since ⁄� S, we can satisfy both conditions with an adequate e, namely, such that:

�h� e2 � S.

miltonians with continuous spectra are considered in papers [23,24]. We use this kind of spectra since they are the usual ones in

croscopic limit ⁄! 0 (see [43, Eq. (3.1.24), p. 67]). Strictly, we should call jx;mið
bH ;bO/i Þ
/i

the vectors jx;mi/i
, but we will just call

x;mi/i
for simplicity.
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where eOðx;x0Þ/imm0
is a generic kernel or distribution in x, x 0.10 But we have to restrict this set of observables since it is

too large for our purposes; furthermore, it is not easy to work with generic kernels or distributions. However, we cannot
make the algebra too small either. In fact, let us suppose that, in order to make computation easier, we postulate that
the eOðx;x0Þ/imm0

be just regular functions. Then, the states read
10 As
decom
11 Th
part b
12 If ð
q̂ ¼
X
imm0

Z 1

0

Z 1

0

dxdx0 ~qðx;x0Þ/imm0
jx;mi/hx0;m0j/i

;

where the ~qðx;x0Þ/imm0
in the dual space are also regular functions. Then,
hbOiq̂ðtÞ ¼X
imm0

Z 1

0

Z 1

0

dxdx0 ~qðx;x0Þ/imm0
eiðx�x

0Þt eOðx;x0Þ/imm0
and, since the product ~qðx;x0Þ/imm0
eOðx;x0Þ/imm0

is a regular function (i.e., L1 in m = x � x 0), as a result of the Riemann–
Lebesgue theorem the mean value hbOiq̂ðtÞ would vanish for t!1: we would obtain destructive interference not only for
the off-diagonal terms, but for all of them. This is obviously an unacceptable result. On the contrary, if ~qðx;x0Þ/imm0

andeOðx;x0Þ/imm0
were generic kernels, we could not use the Riemann–Lebesgue theorem, and there would be no destructive

interference. This means that eOðx;x0Þ/imm0
cannot be so regular nor so non-regular: we must choose something in be-

tween. In order to avoid these unacceptable results, the simplest choice is the van Hove choice; so, as in paper [26], we
will take:
eOðx;x0Þ/imm0

¼ OðxÞ/imm0
dðx� x0Þ þ Oðx;x0Þ/imm0

; ð3:19Þ
where the Oðx;x0Þ/imm0
are ordinary functions of the real variables x and x 0 (these functions must have some mathe-

matical properties in order to develop the theory; these properties are listed in paper [24]; moreover, this choice is the-
oretically explained in papers [21,26,36,38,39]). The addition of the term d(x � x 0) is necessary in order that the
members of the (N + 1)-CSCO of Eq. (3.15) be contained in the space of observables. So our operator belongs to
an algebra cA (defined by Eq. (3.19) and the properties just required for the Oðx;x0Þ/imm0

), and reads
bO ¼X
imm0

Z 1

0

dxOðxÞ/imm0
jx;mi/i

hx;m0j/i
þ
X
imm0

Z 1

0

Z 1

0

dxdx0Oðx;x0Þ/imm0
jx;mi/i

hx0;m0j/i
. ð3:20Þ
The first term in the r.h.s. will be called bOS , the singular component, and the second term will be called bOR, the regular
component,11 and ½ bH ; cOS � ¼ 0. The observables are the self-adjoint O� = O operators. We will say that these observ-
ables belong to a space bO (which is contained in the operator algebra cA); fjx;m;m0Þ/i

; jx;x0;m;m0Þ/i
g is a basis of this

space, where
jx;m;m0Þ/i
¼: jx;mi/i

hx;m0j/i
; jx;x0;m;m0Þ/i

¼: jx;mi/i
hx0;m0j/i

. ð3:21Þ
(c) The quantum states q̂ are measured by the observables just defined, leading to the mean values of these observ-
ables; in the usual notation: hbOiq̂ ¼ Trðq̂y bOÞ. We can conceive that mean values as the more primitive objects of the
quantum theory (see [48]). These mean values, generalized as in paper [24] and symbolized as ðq̂jbOÞ, can be considered
as the result of the action of the linear functionals q̂ on the observables of the vector space bO. Then, q̂ 2cS � bO0, wherecS is a convenient (i.e., satisfying Eqs. (3.24) and (3.25)) convex set contained in bO0, the space of linear functionals overbO. The basis of bO 0 (that is, the co-basis of bO in each D/i

) is fðx;m;m0j/i
; ðx;x0;m;m0j/i

g, and it is defined in terms of its
functionals by the equations
ðx;m;m0j/i
jg; n; n0Þ/j

¼ dðx� gÞdmndm0n0dij;
ðx;x0;m;m0j/i

jg; g0; n; n0Þ/j
¼ dðx� gÞdðx0 � g0Þdmndm0n0dij;

ð3:22Þ
and all other ( Æ j Æ ) are zero. The orthogonality in i, j, . . . is a consequence of Eqs. (3.17) and (3.21). Let us observe that
ðx;x0;m;m0j/i

¼: jx;mi/i
hx0;m0j/i

but ðx;m;m0j/i
6¼ jx;mi/i

hx;m0j/i
.12 Then, a generic quantum state reads
explained at the end of the last subsection, the index i in projector jx;mi/i
hx0;m0j/i

corresponds to the fact that the
position is done in the D/i

and, therefore, the index is repeated in jx;mi/i
and in hx0;m0j/i

.
e component bOS is called singular because it contains a hidden distribution d(x � x 0). In fact, it can be obtained from the regular
y making Oðx;x0Þ/imm0

¼ OðxÞ/imm0
dðx� x0Þ.

x;m;m0j/i
¼ jx;mi/i

hx;m0j/i
, it is easy to show that a divergence appears.
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q̂ ¼
X
imm0

Z 1

0

dxqðxÞ/imm0
ðx;m;m0j/i

þ
X
imm0

Z 1

0

dx
Z 1

0

dx0 qðx;x0Þ/imm0
ðx;x0;m;m0j/i

. ð3:23Þ
As before, the first term in the r.h.s. of Eq. (3.23) will be called q̂S , the singular component, and the second term will be
called q̂R, the regular component. Functions qðx;x0Þ/imm0

are regular (see [24] for details). We also require that q̂y ¼ q̂,
i.e.,
qðx;x0Þ/imm0
¼ qðx0;xÞ/im0m

ð3:24Þ
and that qðxÞ/imm0
be real and non-negative, satisfying the total probability condition
ðq̂jbI Þ ¼X
im

Z 1

0

dxqðxÞ/i
¼ 1; ð3:25Þ
where bI ¼ R1
0

dx
P

imjx;mi/i
hx;mj/i

is the identity operator in bO represented in each D/i
. Eq. (3.25) is the extension to

state functionals of the usual condition Tr q̂y ¼ 1, when q̂ is a density operator. Thus, from now on, Tr q̂¼: ðq̂jbI Þ. For
these reasons, q̂ belongs to the just defined convex set cS � bO 0. The time evolution of the quantum state q̂ reads
q̂ðtÞ ¼
X
imm0

Z 1

0

dxqðxÞ/imm0
ðx;m;m0j/i

þ
X
imm0

Z 1

0

dx
Z 1

0

dx0 qðx;x0Þ/imm0
eiðx�x

0 Þt=�hðx;x0;m;m0j/i
. ð3:26Þ
As we have already said, at the statistical quantum level we essentially measure mean values of observables in quan-
tum states
hbOiq̂ðtÞ ¼ ðq̂ðtÞjbOÞ
¼

X
imm0

Z 1

0

dxqðxÞ/imm0
OðxÞ/imm0

þ
X
imm0

Z 1

0

dx
Z 1

0

dx0 qðx;x0Þ/imm0
eiðx�x

0Þt=�hOðx;x0Þ/imm0
. ð3:27Þ
If we take into account that O(x,x 0) and qðx;x0Þ/imm0
are regular (as regular as needed to use the Riemann–Lebesgue

theorem, i.e., Oðx;x0Þqðx;x0Þ/imm0
2 L1ðx� x0Þ, see [24]), we can take the limit t!1 and use the Riemann–Lebesgue

theorem. As the result, we see that the fluctuating-regular part vanishes and we arrive to the weak (quantum and clas-
sical) limits
W lim
t!1

q̂ðtÞ ¼ q̂S ¼ q̂� ¼
X
imm0

Z 1

0

dxqðx; pÞ/imm0
ðx;m;m0j/i

ð3:28Þ
Since only the singular diagonal terms remain, we have obtained decoherence in the energy variable x. Precisely, any
quantum state weakly tends to a linear combination of the energy diagonal states ðx;m;m0j/i

(the energy �off-diagonal�
states (x;x0;m;m0j/i

are not present in q̂�). This is the case when we observe and measure the system evolution with any

possible observable of space bO. Therefore, from the observational point of view, we have decoherence of the energy levels
in spite of the fact that, from the strong limit point of view, the off-diagonal terms never vanish: they just oscillate since
we cannot directly use the Riemann–Lebesgue theorem in the operator Eq. (3.26).

3.2.1. Important remarks

(i) It might be supposed that this kind of decoherence takes place without a coarse-graining. It is no so: the choice of
the algebra cA among all possible algebras (see under Eq. (3.19)) and the systematic use of mean values
hbOiq̂ðtÞ ¼ ðq̂ðtÞjbOÞ (Eq. (3.27)), restrict the available information and produce the effect of a coarse-graining. In fact,
we can define the projector P ¼ jbOÞðq̂0j, with jbOÞ 2 cA and ðq̂0jbOÞ ¼ 1, that projects ðq̂ðtÞj as ðq̂ðtÞjP ¼ hbOiq̂ðtÞðq̂0j,
and translates everything in projectors language: then we obtain, from Eq. (3.28), limt!1ðq̂ðtÞjP ¼ ðq̂�jP. This projec-
tion will obviously break the unitarity of the primitive evolution. In this way we could develop a formalism closer to the
usual one (see a detailed explanation in [13,34]).

(ii) Theoretically, decoherence takes place at t!1. But, in practice, decoherence appears at a decoherence time, as
we have defined in [49]: the decoherence time can be easily computed from the poles of the resolvent or the initial con-
ditions in the complex extension of the bH spectrum. Trivial bH (e.g., free particle bH ) and trivial initial conditions (e.g.,
zero temperature ones) do not have poles and the decoherence time is infinite. This means that, to reach equilibrium in a
finite characteristic time, bH must be non-trivial (e.g., the sum of a free Hamiltonian plus an interaction Hamiltonian)
and/or the initial conditions must be non-trivial (e.g., T 5 0). For details, see [35], where decoherence times are esti-
mated of the order of 10�37–10�39s for macroscopic bodies at room temperature.
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3.3. Decoherence in the remaining variables

Having obtained decoherence in the energy levels, we must consider decoherence in the other dynamical variables
O/i I of the set of local CSCOs we are using. We will call these variables �momentum variables�. Since the expression
of q̂�, given in Eq. (3.28), only involves the time independent components of q̂ðtÞ, it is impossible that a further deco-
herence process eliminates the off-diagonal terms in the remaining N dynamical momentum variables. Therefore, the
only alternative is to find the basis where these off-diagonal components qðxÞ/imm0

vanish at any time.
Let us consider the following unitary change of basis:
13 Th
the po
14 If w

where
asymp

with c
jx; pi/i
¼

X
m

UðxÞmpjx;mi/i
; ð3:29Þ
where p and m are shorthand notations for p G {p1, . . . ,pN} and m G {m1, . . . ,mN}, and ½UðxÞ�1�mp ¼ UðxÞpm. We
choose the new basis fjx; pi/i

g such that it verifies the generalized orthogonality condition
hx; pj/i
jx0; p0i/i

¼ dðx� x0Þdpp0 .
Since qðxÞ/i
¼ qðxÞ/i

, it is possible to choose U(x) in such a way that the off-diagonal parts of qðxÞ/ipp0
vanish, i.e.,
qðxÞ/ipp0
¼ q/i

ðxÞpdpp0 . ð3:30Þ
This means that there is a final local pointer basis in D/i
for the observables, given by fjx; p; p0Þ/i

; jx;x0; p; p0Þ/i
g and

defined as in Eq. (3.21) but now with the p. The corresponding final pointer basis for the states,
fðx; p; p0j/i

; ðx;x0; p; p0j/i
g, diagonalizes the time independent part of q̂ðtÞ and, therefore, diagonalizes the final state q̂�.

Now, we have diagonalized the qðxÞ/imm0
in m and m 0, obtaining
W lim
t!1

q̂ðtÞ ¼ q̂S ¼ q̂� ¼
X
ip

Z 1

0

dxq/i
ðxÞ

p
ðx; p; pj/i

. ð3:31Þ
Here we are using a local pointer (N + 1)-CSCO f bH ; bP /i1; . . . ;
bP /iNg at each D/i

, where the bP /i I are
bP /i I ¼
X
i

Z 1

0

dx
X
p

p/i I
ðxÞjx; p; pÞ/i

; ð3:32Þ
where jx; p; pÞ/i
¼ jx; pi/i

hx; pj/i
or simply fjx; pi/i

g is the local pointer basis in D/i
; so, we can write Eq. (3.20) in this

new basis (see Eq. (4.2) below).13 Now all the operators and matrices involved are diagonal, and decoherence is com-
plete. We can define all the observables bO of Eq. (3.20) in this new local pointer basis.

Since in the limit �h! 0 we usually have bP with continuous spectra, instead of the last equations we would have the
natural analogues of Eq. (3.31) (see [31,33] for details)
W lim
t!1

q̂ðtÞ ¼ q̂S ¼ q̂� ¼
X
i

Z 1

0

dx
Z
p2D/i

dpN qðxÞ/i
ðx; p; pj/i

. ð3:33Þ
In the next section we will consider the classical limit and, then, we will only use continuous spectra14; then, we will re-
write some equations in the new basis for the sake of completeness.
4. The classical statistical limit

4.1. Quantum and classical operators

(a) From now on, we will consider a system from the point of view of the local pointer complete set of (N + 1)-com-
muting observables f bH ; bP /i1; . . . ;

bP /iNg, defined by Eqs. (3.15) and (3.32). As above, to simplify the notation we will just
e complexity of these formulae demonstrates why it was so difficult to define the pointer basis in a general case. As we can see,
inter basis depends on H and the initial conditions, but obviously there are some particular cases where it only depends on H.
e use the Heisenberg picture, the bA would become diagonal in the bH eigenbasis. So, heuristically

lim
t!1
ðq̂�j½bAðtÞ; bB�Þ ¼ lim

t!1
Trðq̂�bAðtÞbB � q̂�bBbAðtÞÞ ¼ Trðq̂�bA�bB � q̂�bBbA�Þ ¼ Trðq̂�bA�bB � bA�q̂�bBÞ ¼ 0;

bA� is the diagonal weak limit of bA and, therefore, commutes with the diagonal q̂�. As a consequence, the evolution is weakly
totically abelian [47, Definition 4.11] since, in the limit t!1, cA can be considered commutative. Therefore, a quantum system
ontinuous spectrum is weakly asymptotically abelian.
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call f bH ; bP /i
g the set f bH ; bP /i1; . . . ;

bP /iNg. Thus, we will consider the orthonormal eigenbasis fjx; pi/i
g of f bH ; bP /i

g, and
write the Hamiltonian and bP as
15 Th
bH ¼X
i

Z
p2D/i

dpN
Z 1

0

xjx; pi/i
hx; pj/i

dx; bP /i
¼

Z
p2D/i

dpN
Z 1

0

pjx; pi/i
hx; pj/i

dx. ð4:1Þ
Furthermore, we will consider the algebra cA of the operators (3.20), which now reads
bO ¼X
i

Z
p2D/i

dpN
Z 1

0

O/i
ðx; pÞjx; pi/i

hx; pj/i
dxþ

X
i

Z
p2D/i

Z
p02D/i

dpN dp0N
Z 1

0



Z 1

0

O/i
ðx;x0; p; p0Þjx; pi/i

hx; p0j/i
dxdx0. ð4:2Þ
As before, the first term in the r.h.s. will be called bOS , the singular component, and the second term will be called bOR, the
regular component. Also as before, functions O/i

ðx;x0; p; p0Þ are regular (see [24] for details), ½ bH ; bOS � ¼ 0, bOS 2 cLS ,
where cLS is the singular space, bOR 2 cLR, where cLR is the regular space, and cA ¼ cLS �cLR. The observables are
the self-adjoint operators of cA, and they belong to a space bO.

(b) Let us now consider the Wigner transformation of these objects. The operators of cLR are regular; so, their trans-
formation is obtained as explained in Section 2. Then, we have to consider only the singular space cLS , the space of the
operators that commute with bH . This is not a regular space of operators on a Hilbert spaceH as cLR, since it contains a
hidden d(x � x 0) (see Eq. (3.19)), but the mapping symb given by Eq. (2.4) can also be well defined for the observables
in cLS . In fact, from Eq. (4.2) we know that
bOS ¼
X
i

Z
p2D/i

dpN
Z 1

0

O/i
ðx; pÞjx; pi/i

hx; pj/i
dx. ð4:3Þ
If we consider, as usual, first O/i
as a polynomial, and then O/i

as a function of a certain space where the polynomials
are dense,15 by using Eq. (4.1) we can conclude that
bOS ¼

X
i

O/i
ð bH ; bP /i

Þ ¼
X
i

bOS/i
; ð4:4Þ
where, for the last equality, we have used Eq. (3.9); so bOS/i
is related with D/i

. But, when bH ; bP /i
commute, we can use

Eq. (2.11); then, by means of the same procedure as before and Eq. (2.7)) we have
symb bOS ¼ OSð/Þ ¼
X
i

O/i
ðHð/Þ; P/i

ð/ÞÞ þ 0ð�h2Þ ¼
X
i

symb bOS/i
; ð4:5Þ
whereH(/), P/i
ð/Þ can be computed as usually (see [31] for details). In this way, we have succeeded in computing all the

symb of the observables of cLS up to 0(�h2), which are just the O/i
ðHð/Þ; P ð/ÞÞ, and we have defined the mapping
symb : cLS !LSq; symb bOS ¼ OSð/Þ ¼
X
i

O/i
ðHð/Þ; P/i

ð/ÞÞ þ 0ð�h2Þ. ð4:6Þ
Moreover, since decompositions D/i
or D/i

are arbitrary (because they depend on the initial conditions of Section 3.1),
from Eqs. (4.4) and (4.5) we obtain (up to 0(�h2))
bOS/i

¼ O/i
ð bH ; bP /i

Þ; OS/i
ð/Þ ¼ symb bOS/i

¼ O/i
ðHð/Þ; P/i

ð/ÞÞ. ð4:7Þ
Let us observe that, if O/i
ðx; pÞ ¼ dðx� x0Þdðp � p0Þ, we have (also up to 0(�h2))
symbjx0; p0i/i
hx0; p0j/i

¼ dðHð/Þ � x0ÞdðP/i
ð/Þ � pÞ ð4:8Þ
an equation that we will use below.
Summing up, from Eqs. (2.2) and (4.6) we have defined a classical space Aq ¼LR �LS and a mapping
symb : cA !Aq; symb bO ¼ Oð/Þ; ð4:9Þ
where Eqs. (2.9) and (2.10) are also valid. Then, we can repeat what we have said below Eq. (2.10), but now for the
algebra cA defined as in this section, with its regular and singular parts.

If now we take the limit �h! 0, we obtain Aq !A, where A is the usual algebra of observables on phase space.
Then, in this limit we have a correspondence cA !A. However, even if this limit is well defined and can be considered
ese polynomials have several variables, but there is no problem since all these variables commute.
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as the classical limit of the algebra of operators, it is only the limit of the equations of the system, since these are a con-
sequence of the algebra. Therefore, this is just a �formal� limit. The limit �h! 0 will be completely studied when we deal
with the state space.

For the sake of simplicity, from now on we will systematically eliminate all the 0(�h2) from the equations and call the
Aq just A. This is a rigorous simplification. In fact, when �h = 0, we can make the 0(�h) = 0 everywhere since, from Eq.
(2.7), when �h = 0 we have exp0 = 1 in that equation; in other words, the lim�h!0 is continuous.

4.2. Quantum and classical states

(a) Let us remember that jx; pÞ/i
¼ jx; p; pÞ/i

¼ jx; pi/i
hx; pj/i

and jx;x0; p; p0Þ/i
¼ jx; pi/i

hx0; p0j/i
as in Eq. (3.21).

fjx; p; p0Þ/i
g is the basis of cLS and fjx;x0; p; p0Þ/i

g is the basis of cLR. Then, Eq. (4.2) reads
16 We
norma
bO ¼X
i

bO
¼

X
i

Z
p2D/i

dpN
Z 1

0

O/i
ðx; pÞjx; pÞ/i

dxþ
X
i

Z
p2D/i

Z
p02D/i

dpN dp0N
Z 1

0



Z 1

0

O/i
ðx;x0; p; p0Þjx;x0; p; p0Þ/i

dxdx0. ð4:10Þ
Since the states are functionals over the space cA ¼ cLS �cLR, let us consider the dual space cA0
¼ cL0

S �cL0
R. We will

call fðx; pj/i
g the local bases of cL0

S and fðx;x0; p; p0j/i
g the local bases of cL0

R. Let us remember that

ðx;x0; p; p0j/i
¼ jx; pi/i

hx0; p0j/i
but ðx; pj/i

6¼ jx; pi/i
hx; pj/i

. Moreover, as in Eq. (3.22),
ðx; pj/i
jx0; p0Þ/j ¼ dðx� x0ÞdN ðp � p0Þdij;

ðx; r; p; sj/i
jx0; r0; p0; s0Þ/j

¼ dðx� x0Þdðr� r0ÞdN ðp � p0ÞdN ðs� s0Þdij;
ðx; r; j/i

jx0; r0; p0; s0Þ/j
¼ ðx; r; p; sj/i

jx0; r0Þ/i
¼ 0.

ð4:11Þ
Then, a generic functional of cA0
reads
q̂ ¼
X
i

Z
p2D/i

dpN
Z 1

0

q/i
ðx; p; Þðx; pj/i

dxþ
X
i

Z
p2D/i

Z
p02D/i

dpN dp0N
Z 1

0



Z 1

0

q/i
ðx;x0; p; p0Þðx;x0; p; p0j/i

dxdx0. ð4:12Þ
Like functions O/i
ðx;x0; p; p0Þ, functions q/i

ðx;x0; p; p0Þ are regular and have all the mathematical properties necessary
to make the formalism successful (see [24]). Moreover, the q̂ must be self-adjoint, and their diagonal q/i

ðx; pÞ must rep-
resent probabilities; thus,

P
i;p

R1
0

q/i
ðx; pÞdx ¼ 1 (as in Eq. (3.25)) and, most important,
q/i
ðx; pÞP 0. ð4:13Þ
The q̂ with such properties belong to a convex set cS, the set of states. Also, as in Eq. (3.27),
ðq̂jbOÞ ¼X
i

Z
p2D/i

Z 1

0

q/i
ðx; p; ÞO/i

ðx; pÞdxdpN þþ
X
i

Z
p2D/i

Z
p02D/i

Z 1

0



Z 1

0

q/i
ðx;x0; p; p0ÞO/i

ðx;x0; p; p0Þdxdx0 dpN dp0N . ð4:14Þ
(b) Since cLR and cL0
R are spaces of operators on a Hilbert space H, the symbol for any q̂R 2 cL0

R is defined as in Eq.
(2.14).16 From this definition, Eq. (2.15) can be proved for the regular parts with the usual demonstration in the bib-
liography (see [40, Eq. (2.13)]):
ðq̂RjbORÞ ¼ ðsymb q̂RjsymbbORÞ ¼
X
i

Z
D/i

d/2ðNþ1Þ q/iR
ð/ÞO/iRð/Þ. ð4:15Þ
Then, in cLR and cL0
R all the equations are the usual ones (i.e., those of papers [40,41]).
repeat that, in the case of states, we must add a new factor (2p⁄)�(N+1) to definition (2.4) in order to maintain the usual
lization of q(/).
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Let us now consider the singular dual space cL0
S , the case not treated in the bibliography. In this space we will define

symb q̂S as the function on M that satisfies an equation similar to Eqs. (2.15) or (4.15) for any bOS 2 cLS , namely,
17 We
system
action-
18 In
reobta
let us c
D2 wit

If q(/)

namely
ðq̂S jbOSÞ¼: ðsymb q̂S jsymbbOSÞ;
precisely,
X
i

Z
p2D/i

Z 1

0

q/iðx; p; ÞO/i
ðx; pÞdxdpN ¼

X
i

Z
D/i

d/2ðNþ1Þ q/iS
ð/ÞO/iSð/Þ; ð4:16Þ
where the unknown density function qSð/Þ ¼ symb q̂S can be decomposed as
symb q̂S ¼ qSð/Þ ¼
X
i

q/iS
ð/Þ ð4:17Þ
in each D/i
. Thus, since we know q/iðx; p; Þ, O/i

ðx; pÞ, and O/iSð/Þ, we can compute q/iS
ð/Þ to obtain qSð/Þ ¼ symb q̂S .

Now, q̂S , being time invariant, must be a function of the constants of the motion; therefore (as in Section 4.1) its Weyl-
transformed qS(/) must be endowed with the same property, but now in the classical case. Since the fHð/Þ; P/i

ð/Þg are
locally a complete set of constants of the motion in involution, we must have
q/i
ð/Þ ¼ F ðHð/Þ; P/i

ð/ÞÞ. ð4:18Þ
We will find the function F. The system has a local pointer CSCO of N + 1 operators and the dimension of its phase
space is 2(N + 1), i.e., it is locally an integrable system.17 Then, we can define locally at D/i

the action angle variables
ðh0; h1; . . . ; hN ; J 0

/i
; J 1

/i
; . . . ; JN

/i
Þ, where J 0

/i
; J 1

/i
; . . . ; JN

/i
would be just H ; P/i1; . . . ; P/iN (multiplied by adequate constants

in such a way that the hi0/i
variables belong to an interval 0 6 hi0/i

6 2p in the integrable case). We will call �J� just the
�H ; P/i

�. Thus, we can make the canonical transformation /a ! h0/i
; h1/i

; . . . ; hN/i
;H ; P/i1; . . . ; P/iN , and we obtain
d/2ðNþ1Þ ¼ dqðNþ1Þ dpðNþ1Þ ¼ dhðNþ1Þ/i
dH dPN

/i
; ð4:19Þ
since the Jacobian of a canonical transformation is one.
In order to compute the r.h.s. of Eq. (4.16), we must know how to integrate functions f ðHð/Þ; P/i

ð/ÞÞ ¼
F ðHð/Þ; P/i

ð/ÞÞO/iSð/Þ (see Eqs. (4.7) and (4.16)), which are just functions of the constants of motion, precisely,
Z
D/i

d/2ðNþ1Þ f ðH ; P/i
Þ ¼

Z
D/i

dhðNþ1Þ/i
dH dPN

/i
f ðH ; P/i

Þ ¼
Z
D/i

dH dPN
/i
C/i
ðH ; P/i

Þf ðH ; P/i
Þ; ð4:20Þ
where we have integrated the angular variables h0/i
; h1/i

; . . . ; hN/i
and obtained the configuration volume C/i

ðH ; P/i
Þ of the

portion of the hypersurface defined by (H = constant, P/i
¼ constant) and contained in D/i

. So, from Eqs. (4.16) and
(4.20) we have that
Z

p2D/i

Z 1

0

q/iðx; p; ÞO/i
ðx; pÞdxdpN ¼

Z
dH dPN

/i
C/i
ðH ; P/i

Þq/iS
ðH ; P/i

ÞO/iSðH ; P/i
Þ; ð4:21Þ
for all O/i
ðH ; P/i

Þ ¼ OS/i
ðH ; P/i

Þ (see Eq. (4.7)). The last equation defines qS/i
ðH ; P Þ ¼ 1

C/i
q/i
ðH ; P Þ for / 2 D/i

,18but
not for / 2M nD/i

; then, as in the case of OS/i
ð/Þ, we will consider that qS/i

ð/Þ ¼ 0 for / 2M nD/i
and that they are
have discussed this fact in detail at the beginning of Section 3. The constants J are global or isolating in the case of an integrable
, but not in the non-integrable case. Nevertheless, they are locally defined. Moreover, we will only consider the cases where
angle variables can be locally defined.
the integrable case, where there is just one q(H,P), it would be q/i

ðH ; PÞ ¼ C/i ðH ;PÞ
2pNþ1 qðH ; PÞ and the results of paper [26] would be

ined. In fact, by integrating over a torus in the h, we have ð2pÞNþ1qðH ; P Þ ¼
P

iC/i
ðH ; PÞq/i

ðH ; P Þ.An example to fix the ideas:
onsider the harmonic oscillator and the plane q, p in radial coordinates h, H. Let us define two D/i: D1 with 0 6 h < H(H) and
h H(H) 6 h < 2p, where H(H) is an arbitrary function. Then,

qð/Þ ¼ q1ð/ÞI1ð/Þ þ q2ð/ÞI2ð/Þ.

= q(H), by integrating over the h we obtain

2pqðHÞ ¼
Z HðHÞ

0

q1ðHÞI1ð/Þdhþ
Z 2p

HðHÞ
q2ðHÞI2ð/Þdh ¼ q1ðHÞHðHÞ þ ð2p�HðHÞÞq2ðHÞ ¼ q1ðHÞC1ð/Þ þ q2ðHÞC2ð/Þ;

, the equation ð2pÞNþ1qðH ; P Þ ¼
P

iC/i
ðH ; P Þq/i

ðH ; PÞ for this particular case.
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defined all overM (this causes no problem because in the last equation OS/i
ð/Þ is multiplied by qS/i

ð/Þ, and OS/i
ð/Þ has

this property). In this way, we can arrive from Eq. (4.17) to our final result
19 We

20 In
this ca

21 It m
Riema
counte
now S
qSð/Þ ¼ q�ð/Þ ¼
X
i

1

C/i
ðH ; P/i

Þq/i
ðHð/Þ; P/i

ð/ÞÞ. ð4:22Þ
Now, from Eq. (4.13) we obtain that
qSð/Þ ¼ q�ð/ÞP 0. ð4:23Þ
This means that the Wigner transformation of the singular part can be considered a density function since it is non-neg-

atively defined (of course, this is not the case for the regular part).19

Always working in the domain D/i
and making q/i

ðx; pÞ ¼ dðx� x0ÞdN ðp � p0Þ, we also have20
symbðx0; p0; ð/Þj/i
¼ 1

C/i
ðH ; P/i

Þ dðHð/Þ � x0ÞdðNÞðPð/Þ � p0/i
Þ. ð4:24Þ
(c) From Eqs. (3.33) and (4.24) we obtain
qSð/Þ ¼ q�ð/Þ ¼
X
i

Z
p2D/i

dp
Z 1

0

q/i
ðx; pÞ 1

C/i
ðH ; P/i

Þ dðHð/Þ � xÞdðNÞðP ð/Þ � p/i
Þdx. ð4:25Þ
The continuity of the function q*(/), when it goes from one D/i
to another D/j

(i5 j), will be proved in Section 5.
Therefore, we have obtained a decomposition of q*(/) = qS(/) in classical hypersurfaces (H = x, P/i

ð/Þ ¼ p/i
), con-

taining classical trajectories, summed with different positive weight coefficients q/i
ðx; pÞ=C/i

ðH ; P/i
Þ, and represented

in different ways in each domain D/i
, but still with the same interpretation as in the integrable case.

(d) Since now we know how to deal with the singular part, we have defined the mapping of the quantum space of
states cA0

on the �classical� space of states A0
symb : cA0
!A0. ð4:26Þ
In the limit �h! 0, Eqs. (2.9) and (2.10) are always valid; then, it might be supposed that we have arrived to the classical
limit for the states. But this is not so because, in general, even for �h! 0 the obtained q(/) does not satisfy the condition
qð/ÞP 0. ð4:27Þ
This is due to the fact that the regular part is still present and this part does not satisfy the last condition (on the con-
trary, from Eq. (4.23) we can see that the singular part satisfies the last inequality). As a consequence, q(/) is not a
density function and, therefore, the mapping (4.26) is not a mapping of quantum mechanics on classical statistical
mechanics. This mapping does not give us the classical world, but a deformed classical world where �density functions�
can be negative. In other words, when �h! 0 the isomorphism (4.26) is a mapping of quantum mechanics on a certain
quantum mechanics �alla classica�, namely, formulated in phase space M. This clearly shows that �h! 0 is not the clas-
sical limit.21 In order to obtain this limit, we have to introduce decoherence, as previously studied, both at the quantum
and the classical level.
can verify the normalization:Z
qSð/Þd/2ðNþ1Þ ¼

X
i

Z
qSð/ÞdH dPN

/i
dhNþ1/i

¼
X

i

Z
dH dPN

/i

qSðH ; P/i
Þ

C/i
ðH ; P/i

Þ

Z
dhNþ1/i

¼
X

i

Z
dH dPN

/i
qSðH ; P/i

Þ ¼ 1.

the chaotic, homogeneous, ergodic case, we have a (N + 1)-CSCO with just bH and, classically, justH as a constant of motion. In
se (see [50, p. 247]),

qSð/Þ ¼ q�ð/Þ ¼
Z 1

0

dðx� EÞ 1

CðHÞ dðHð/Þ � EÞ ¼ dðHð/Þ � EÞR
dqdpdðHð/Þ � EÞ .

ight be thought that, since the evolution factor is ei
ðx�x0 Þt

�h , the limit t!1 is equivalent to ⁄! 0 and, therefore, by means of the
nn–Lebesgue theorem the limit ⁄! 0 eliminates the off-diagonal terms making q(/) P 0. But we must recall that ⁄! 0 is a
rfactual limit: ⁄ never tends to zero because it is a constant (see footnote 6). The factual, physical limit is ⁄/S! 0 (S� ⁄), where
= (x � x 0)t, so S!1 either if t!1 or (x � x 0) can be consider very large (eight energy limit).
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4.3. Time evolution and decoherence

As we have seen, the only thing that prevents us from having a good isomorphism (4.26) is that the regular parts do
not satisfy condition (4.27). But the Wigner transform of Eq. (3.33) is
22 Na
23 See
W lim
t!1

qð/; tÞ ¼ qSð/Þ ¼ q�ð/Þ ¼
X
i

Z 1

0

dx
Z
p2D/i

dpN qðxÞ/i
ðx; p; p; ð/Þj/i
Then for t!1, the regular part vanishes and only the singular part remains, which does satisfy this condition. As a
consequence, after decoherence and �h! 0 (that is, the elimination of all the 0(�h2) that we have omitted), we finally ob-
tain the classical statistical limit since the classical densities obtained obey all the laws of classical statistical mechanics.
In fact, as we will see in the next section in detail, Eq. (4.25) shows that these distributions are the result of classical
pointlike-states moving in phase space and following classical trajectories. The usual classical limit is obtained by
choosing one of these trajectories; we will explain this procedure in the next section.
5. The classical limit

From what we have learnt above, we can explain with more detail the three steps involved in the classical limit, pre-
sented in the introduction and shown in the following diagram:
Quantum Mechanics—ðdecoherenceÞ ! Boolean Quantum Mechanics—ðsymb and �h! 0Þ
! Classical Statistical Mechanics—ðchoice of a trajectoryÞ
! Classical Mechanics
Let us comment these three steps:

(i) Quantum Mechanics—(decoherence) ! Boolean Quantum Mechanics. Decoherence transforms non-Boolean
quantum mechanics into Boolean quantum mechanics22 since it eliminates the off-diagonal terms, as we have
shown in Eq. (3.33).

(ii) Boolean Quantum Mechanics—(symb and �h! 0) ! Classical Statistical Mechanics. The Wigner transformation
symb and the limit �h! 0 are defined with no problems in the singular part remaining after decoherence. They
map Boolean quantum mechanics onto classical statistical mechanics: this is what we have essentially shown
above. Our demonstration culminates in Section 4.3, where we have proved that the transformed quantum Bool-
ean states are really positively defined densities. From Eq. (4.25) we also know that these densities are the sums of
densities strongly peaked on the classical hypersurfaces defined by the constants of the motion H(/) = x,
P/i
ð/Þ ¼ p/i

. In the next step we will see that such classical hypersurfaces contain classical trajectories averaged
by the coefficients q/i

ðx; pÞ.
(iii) Classical Statistical Mechanics—(choice of a trajectory) ! Classical Mechanics (Localization or Actualization).

After step (ii), we are still in classical statistical mechanics but not in proper classical mechanics. To perform
the last step we have to pass from classical densities to classical trajectories (i.e., to consider the localization
effect23). For this purpose, let us observe that, after the two first steps, the formalism of Boolean quantum
mechanics is isomorphic with the formalism of statistical classical mechanics:

• For the observables: After symb and �h! 0, we obtain the correspondence symb : cA 	A (see Section 4.1),

namely,

A/i
ð bH ; bP /i

Þ 	 A/i
ðHð/Þ; P/i

ð/ÞÞ.

• For the states: After decoherence, symb and �h! 0, again symb : cA0
	A0 (see Section 4.2), namely,

q/i
ð bH ; bP /i

Þ 	 q/i
ðHð/Þ; P/i

ð/ÞÞP 0;
and the states q�ð bH ; bP Þ and q*(H(/),P(/)) are time invariant (see Eqs. (3.33) and (4.25)).
mely, quantum mechanics in the local CSCO f bH ; bP g using only diagonal states.
[43, Chapter 4], for a different view.
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Moreover, since DADB P �h
2
jh½A;B�iqj, in the limit �h! 0 there are no uncertainty relations and the algebras cA andA

can be considered commutative (remember that, according to the uncertainty principle, �h! 0 has the same effect that
[A,B] = 0). In other words, in the limit �h! 0 all the picture is classical in such a way that the trajectories, contained in
the hypersurfaces H(/) = x, P/i

ð/Þ ¼ p/i
, could be interpreted as real classical trajectories. However, the

dðHð/Þ � xÞdN ðP/i
ð/Þ � p/i

Þ still represent states strongly peaked around these hypersurfaces. Therefore, if we want
to obtain an equation clearly showing the classical trajectories, we have to introduce the initial conditions of each
trajectory.

Let us consider a classical trajectory in phase space M ¼M2ðNþ1Þ, expressed in the classical coordinates
ðs; h/i

;H ; P/i
Þ, where s is the coordinate canonically conjugated to H and the h/i

are the coordinates canonically con-
jugated to the P/i

. The constants of the motion in involution are fH ; P/i
g; but, for conciseness and generality, let us

consider that the constants of the motion in involution are fP/i
g with conjugated coordinates fA/i

g, and that
H ¼ HðP/i

Þ. From the von Neumann–Liouville equation in the Heisenberg representation,
24 Th
25 If t
repres
i�h
dbA
dt
¼ ½A;H �;
we obtain
dAð/Þ
dt

¼ fA;Hgmb ¼ fA;Hgpb þ 0ð�h2Þ.
Then, the Hamiltonian equations in the limit �h! 0 read24
dA/i

dt
¼ oH

oP/i

¼ X/i
ðP/i
Þ ¼ constant;

dP/i

dt
¼ � oH

oA/i

¼ 0. ð5:1Þ
The classical trajectories are
A/i
ðtÞ ¼ Að0Þ/i

þ X/i
ðP/i
Þt; P/i

¼ Pð0Þ/i
¼ constant; ð5:2Þ
where the Að0Þ/i
and Pð0Þ/i

are integration constants. A distribution strongly peaked on this trajectory reads
d A/i
ðtÞ � Að0Þ/i

� X/i
ðP/i
Þt

h i
d P/i

�Pð0Þ/i

� �
;

and a general classical distribution evolving according to the motion (5.2) reads25
qCðt;/Þ ¼
X
i

Z
D/i

qðCÞ/i
Að0Þ/i

;Pð0Þ/i

� �
d A/i

ðtÞ � Að0Þ/i
� X/i

ðP/i
Þt

h i
d P/i

�Pð0Þ/i

� �
dNþ1Að0Þ/i

dNþ1Pð0Þ/i
; ð5:3Þ
where qðCÞ/i
ðAð0Þ/i

;Pð0Þ/i
Þ is a generic classical coefficient (undefined up to now). If we want that this density (evolving

according to a Frobenius–Perron evolution, see [51]) be an equilibrium density, we have to eliminate the variable t.

For this purpose, it is sufficient to choose the initial distribution qðCÞ/i
ðAð0Þ/i

;Pð0Þ/i
Þ as just a function of Pð0Þ/i

, namely,

qðCÞ/i
ðPð0Þ/i

Þ, which is still free to represent different qC(/). Then, we obtain
qCð/Þ ¼
X
i

Z
D/i

qðCÞ/i
ðPð0Þ/i

ÞdðP/i
�Pð0Þ/i

ÞdNþ1Pð0Þ/i
; ð5:4Þ
since, for any fixed t, we have
X
i

Z
D/i

d A/i
ðtÞ � Að0Þ/i

� X/i
ðP/i
Þt

� �
dNþ1Að0Þ/i

¼ 1.
Going back to our primitive variables, Eq. (5.3) reads
qCð/Þ ¼
X
i

Z
qðCÞ/i
ðx; pÞdðHð/Þ � xÞdðP/i

� p/i
Þdðsð/Þ � s0 � xtÞdðh/i

ð/Þ � h/i0

� p/i
tÞdxdNp/i

ds0 dh/i0; ð5:5Þ
ese equations correspond to the system of differential equation (3.1) of [51].
he evolution St of [51] were the (5.2), the corresponding density would be f(t,x) � Ptf(x) (see [51, Eq. (3.2)]) where Pt would
ent a Frobenius–Perron evolution. Moreover, it is easy to show that q(t,/) satisfies the Liouville equation.
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while Eq. (5.4) reads
qCð/Þ ¼
X
i

Z
qðCÞ/i
ðx; pÞdðHð/Þ � xÞdðP/i

� p/i
ÞdxdNp/i

. ð5:6Þ
Then, from Eq. (4.25) and making the undefined coefficient qðCÞ/i
ðx; pÞ ¼ q/i ðx;pÞ

C/i ðx;p/i Þ
, we have
q�ð/Þ ¼ qCð/Þ. ð5:7Þ
The function qC(/) can be interpreted as the equilibrium density of a Frobenius–Perron evolution of particle-like states
ðs; h/i

;H ; P/i
Þ, as if these states would move in phase space M ¼M2ðNþ1Þ according to the classical motions (5.2).

Moreover, each term of the sum
P

i of Eq. (5.5) is valid in the chart D/i
ðD/i

� D/i
Þ. In a different chart

D/jðD/j
� D/jÞ, the equation is also valid and, then, at / 2 D/i

\D/j
we have
Z

q/i
ðx; pÞ

C/i
ðx; p/i

Þ dðHð/Þ � xÞdðP/i
� p/i

Þdðsð/Þ � s0 � xtÞdðh/i
ð/Þ � h/i0 � p/i

tÞdxdNp/i
ds0 dA/i0

¼
Z

q/i
ðx; pÞ

C/i
ðx; p/j

Þ dðHð/Þ � xÞdðP/j
� p/j

Þdðsð/Þ � s0 � xtÞdðh/j
ð/Þ � h/j0 � p/j

tÞdxdNp/j
ds0 dA/j0. ð5:8Þ
Here it is worth emphasizing that the trajectories H = x, P/i
ð/Þ ¼ p/i

, s(/) = s0 + xt, h/i
ð/Þ ¼ h/i0 þ p/i

t in chart D/i

are continuously connected with those H = x, P/j
ð/Þ ¼ p/j

, s(/) = s0 + xt, h/j
ð/Þ ¼ h/j0 þ p/j

t in chart D/j
, because

these charts are not generic but constructed using the solution of Eqs. (3.3) or (5.1). Since D/i
� D/i

and D/j
� D/j

,
the same holds for the trajectories going from D/i

to D/j
. Thus, the continuous connection follows from the fact that

one and only one solution of the trajectory equation passes for each point ofM (and, therefore, for each / 2 D/i
\D/j

).
Summing up, we have obtained a decomposition of q*(/) = qS(/) in classical trajectoriesH = x, P/i

ð/Þ ¼ p/i
, s(/) =

s0 + xt, h/j
ð/Þ ¼ h/j0 þ p/j

t, summed with different weight coefficients q/i
ðx; pÞ=C/i

ðH ; P/i
Þ and represented in differ-

ent ways in each domain D/i
, but still with the same interpretation as in the integrable case. Moreover, as announced in

Section 3.1(c), we see that chart D/i
is continuously connected with chart D/j

, for any D/i
, D/j

. Therefore, we have
finally obtained the classical limit to the extent that we have described each one of the classical trajectories. But, since
from the very beginning our system was a non-integrable one, we have obtained the classical limit of a non-integrable

system, where the tori are broken and the trajectories are potentially chaotic trajectories.
Finally, we must remark that:

• Each one of the described processes, decoherence, route to macroscopicity, i.e., �h! 0 (e.g., the macroscopicity
obtained when the two rays of an Stern-Gerlach experiment gradually separate), and eventually localization (e.g.,
by a localizing potential, see [26, Appendix A]), has its own characteristic time; in particular, the decoherence time
is computed in [35].

• We have explained the classical limit as if each process (decoherence, macroscopicity, and localization) took place
one after the other, only for didactical reasons. But this is an oversimplified picture of the phenomenon. In fact, this
may be not the case if the different processes overlap. Considering that they have different characteristic times, there
are different possibilities according to the order in which the processes finish.
6. Conclusions

We want to conclude the paper proposing some suggestions for future research.

(i) We have essentially presented a minimal formalism for quantum chaos, to the extent that our quantum formalism
satisfies a minimal requirement for such a theory: by definition, a quantum chaotic system has, at least, a classical
non-integrable system as its classical limit. In fact, this is a necessary but not a sufficient condition that any pro-
posed theory of quantum chaos must fulfil (see, e.g., [52]). Our next task is to address the question of whether the
set of phenomena known under the name of �quantum chaos� [43,47,50,53] can be explained by means of our the-
oretical structure.

(ii) Quantum contexts are clearly related with (N + 1)-CSCOs. We have seen that generic (N + 1)-CSCOs are local.
This might have a relation with well known physical questions, as the EPR problem and the Kochen–Speker and
Bell theorems (see [48]), where paradoxes arise when we try to describe the quantum system with just one CSCO.



Fig. 2. A Sinai billiard with potential barriers.

Fig. 1. A Sinai billiard.
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(iii) In some sense, the equations of quantum physics have a local character [54–56]; we have found that this is also the
case of the CSCOs: it might be useful to explore this analogy.
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Appendix A. Sinai billiard

Let us consider the Sinai billiard of Fig. 1 [43]. It is clear that, when the ball is confined to the interior of the billiard,
the trajectories are defined by two independent constants of the motion, H and Px (or H and Py, or Px and Py), which
constitute a complete set of local (i.e., in the interior D0 of the billiard) constants of the motion in involution. When the
ball strikes the boundaries, it is symmetrically reflected, i.e., the incident angle is equal to the reflected angle, and the
value of some of the constants of the motion changes: for the two horizontal boundaries, H and Px still constitute a
complete set of local constants of the motion in involution, but Py changes its sign; for the vertical boundary, H
and Py still constitute a complete set of local constants of the motion in involution, but Px changes its sign.

Without modifying the physical characterization of the example, we can replace the rigid walls with infinitely high
potential barriers of width d, namely, the potentials V(x),V(y) and V(r) of Fig. 2, connected in a smooth way with the
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interior D0 (e.g., V(x) behaves as V(0) = 0, V 0(0) = 0, V(�d)!1). Due to the symmetry of the potentials (translation
symmetry for V(x) and V(y), rotation symmetry for V(r)), the reflections are still symmetric, i.e., the ball climbs the
potential walls and then falls down with symmetrical motion. Calling D1 and D3 the domains in the potential of the
x walls, D2 that of the y wall, and D4 that of the curved wall, we see that x is a cyclic variable in D1 and D3, y is a cyclic
variable in D2, and h is a cyclic angular variable in D4. Therefore, we have the following local constants of the motion in
each domain:
D0 : H Px ðor PyÞ

D1 : H Px

D2 : H Py

D3 : H Px

D4 : H P h
In summary, we have found five domains, each one with two local constants of the motion in involution. If d! 0, we go
from Fig. 2 to Fig. 1.
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