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Abstract When rats acquire sensory information by actively
moving their vibrissae, a neural code is manifested at different
levels of the sensory system. Behavioral studies in tactile
discrimination agree that rats can distinguish different rough-
ness surfaces by whisking their vibrissae. The present study
explores the existence of neural encoding in the afferent
activity of one vibrissal nerve. Two neural encoding schemes
based on “events”were proposed (cumulative event count and
median inter-event time). The events were detected by using
an event detection algorithm based on multiscale decomposi-
tion of the signal (Continuous Wavelet Transform). The
encoding schemes were quantitatively evaluated through the
maximum amount of information which was obtained by the
Shannon’s mutual information formula. Moreover, the effect

of difference distances between rat snout and swept surfaces
on the information values was also studied. We found that
roughness information was encoded by events of 0.8 ms
duration in the cumulative event count and event of 1.0 to
1.6 ms duration in the median inter-event count. It was also
observed that an extreme decrease of the distance between rat
snout and swept surfaces significantly reduces the information
values and the capacity to discriminate among the sweep
situations.

Keywords Neural coding . Vibrissae (whiskers) . Roughness
discrimination .Maximumamountof information . Information
theory

1 Introduction

Rodents as well as many mammals are characterized by the
presence of vibrissae or whiskers located on both sides of
the muzzle (Vincent 1912). When rats acquire sensory in-
formation by actively moving their vibrissae, a neural code
is manifested at different levels of the trigeminal sensory
system. During the past 10 years, the neural code at different
stages of the whisker sensory pathway has been extensively
studied (Arabzadeh et al. 2005, 2006; Mehta et al. 2007;
Wolfe et al. 2008; Farfán et al. 2011).

The repetitive application of a stimulus set (static or
dynamic) is the experimental paradigm most widely used
and accepted for the study of evoked neural responses.
These responses are usually grouped into peristimulus time
histogram in which the accumulated response to many stim-
ulus presentations is, in effect, averaged (Rogers et al.
2001). The result obtained by this experimental paradigm
is called "system response to the stimulus”, considering that
the system could be a cell or cell population. However, as
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others authors have pointed out (Rieke et al. 1997), this is
rather unrelated to the problem that the nervous system must
solve. The nervous system must often in short order perform
accurate and appropriate computations and generate behav-
ioral responses and/or motor commands given just one
stimulus presentation, or, more commonly, given a continu-
ously changing stimulus. In this biological scheme, the
currency of information content and exchange among and
between neurons is the ongoing action potential trains of
cells, being them sensory (primary afferent), motor, or any
other. The principal challenge for neurophysiologist lies in
decoding these spike trains.

Different structures of the neural code have been pro-
posed for texture coding by considering the mechanical
characteristics of the vibrissae (resonant frequencies and
damping in isolated whiskers) and their location in the
whisker pad (Hartmann et al. 2003; Mehta and Kleinfeld
2004; Mitchinson et al. 2004). Arabzadeh et al. (2006) have
demonstrated that a texture code would exist in peripheral
afferent response of the vibrissal system and that spike rate
would be the coding mechanism that underlies textures
discrimination in the primary somatosensory cortex.

In this paper, the afferent activity of one vibrissal follicle
innervation (average activity) was analyzed, and two bio-
logically plausible neural encoding schemes were proposed.
In this sense, we assumed that the roughness information is
coded by events of different durations. These events were
detected by using an event detection algorithm based on
multiscale decomposition of the signal (Continuous Wavelet
Transform—CWT). The neural encoding schemes based on
events were: the cumulative event count and the inter-event
time. Then, the performance of these encoding schemes was
evaluated through the maximum amount of information by
using the Information Theory (Cover and Thomas 1991;
Rieke et al. 1997).

We found that roughness information would be codified
by events of 0.6 to 2.0 ms duration, and that two plausible
neural encoding schemes would carry that information. On
the other hand, it was observed that the discrimination
degree among sweep situations would depend on different
slip-resistance levels.

2 Materials and methods

2.1 Procedures

Five Wistar adult male rats (300 g–350 g), between 60 and
80 days, were used in our experiments. They were deeply
anesthetized with urethane (1.5 g/Kg) and their temperature
was maintained at 37° by a servo-controlled heating pad.
Surgery consisted of exposing the infraorbital nerve as well
as the two branches of the facial nerve (buccal and upper

marginal mandibular) on the right side. The motor branches
were dissected and transected proximally to avoid possible
motor influences on the sensorial pathway. The stimulation
electrodes were placed on their distal stumps producing the
contraction of the mystacial muscles. The deep vibrissal
nerve innervating a vibrissal follicle (DELTA vibrissa) was
identified with a high magnification microscope. The dis-
sected nerve was also transected proximally and this action
allowed eliminating discharges arriving from higher level of
the sensorial pathway. To make sure that the nerve transec-
tion did not affect the vibrissal nerve functionality during
our recording time, we tested the falling of the nerve afferent
activity throughout the time (data not shown). We concluded
that the activity starts decreasing 1 h after the nerve section,
so we never exceeded this space of time in our experiments.
We used a bipolar electrode (insulated silver wire, 0.2 mm
diameter) to record the multifiber afferent discharge from
deep vibrissal nerve (a branch of the infraorbital nerve),
which innervates the follicle of DELTAvibrissa. The record-
ing electrodes as well as the nerves were immersed in a
mineral oil bath during all recording.

All these procedures were carried out in accordance with
the recommendations of the Guide for the Care and Use of
Laboratory Animals (National Research Council, NRC).
Depth of anesthesia was ascertained and controlled during
the experiment by the lack of either withdrawal reflex to
hindlimb pinching or blink reflex to a gentle stimulation of
the cornea.

2.2 Recording of vibrissal nerve electrical activity

In this study we have recorded the electrical activity of the
DELTA vibrissal nerve (multifiber activity), while the
DELTA vibrissa was sweeping surfaces of different rough-
ness. This multifiber activity is the weighted sum of mul-
tiple fibers discharges (in short, average activity). The
experimental protocol used in this paper has been previ-
ously described in detail by Albarracín et al. (2006) and
Farfán et al. (2011).

Vibrissa movements were induced by electrical stimula-
tion of facial motor nerve (VII). Square-wave pulses (30 μs,
7 V supramaximal, 10 Hz) simulated vibrissal whisking at
its natural frequency. A diagram of the experimental set up
is shown in Fig. 1. Nerve activity was recorded and digitized
at 20 kHz during a 90 ms window following onset of each
cycle of whisker movement (Digidata 1322A, Axon Instru-
ments). Fifty whisker movement cycles were obtained for
each surface, and an additional 50 cycles were recorded
while whisker moved unobstructed in air as control.

Various studies have shown that rats would implement
different behavioral strategies to enhance the acquisition of
tactile information (Carvell and Simons 1990; Berg and
Kleinfeld 2003; Sachdev et al. 2003). In particular, it was
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observed that when a rough surface touch the vibrissal tip
(changing the kinematic characteristics of the sweep), the
performance for texture discrimination could be modified
(Albarracín et al. 2006; Farfán et al. 2011). On the other
hand, it is well known that the active whisking on rough
surfaces evokes kinematic patterns in vibrissae movements
(Wolfe et al. 2008). In this paper, we have varied the
distance between rat snout and the swept surface to evaluate
a possible behavioral strategy of discrimination. Such be-
havioral strategy was herein referred to as slip-resistance
levels, without implying a direct relationship. Importantly,
the changes of kinematic patterns evoked by varying the
distance between the rat snout and swept surface are
unknown.

Thus, three slip-resistance levels were used for each
surface. These levels were obtained by mounting the sur-
face at different distances from the whisker base. The
minimal level was established by placing the surface at a
maximal distance from the whisker base so that the tip just
barely contacted the surface (slip-resistance level 1). The
following levels were obtained by approaching the surface
1 and 2 mm to the whisker base (slip-resistance levels 2
and 3, respectively).

The DELTA whisker movements were recorded simulta-
neously with the nerve activity by using a custom-made
photoresistive sensor (Fig. 1c). The sensor has a maximal

frequency response in the range of 0–100 Hz, enabling
direct identification of the protraction and retraction phases
of the movement cycle (Dürig et al. 2009). The vibrissal
movements were recorded at 20 kHz.

2.3 Rough surfaces

The rough surfaces used in this paper were sandpapers of
different grain size: P1200, P1000, P600, P220, and P180
(Fig. 1a). We measured the surfaces roughness by using a
Hommel Tester T1000 (Hommel Werke, www.hommel-
etamic.de) and we used the Ra parameter (arithmetical devi-
ation of the assessed profile) as a roughness estimation (Inter-
national Standards BS.1134 and ISO 468). Ra values obtained
were: 2.2, 2.9, 5.6, 8.9 and 9.2 μm, respectively.

2.4 Neural codes hypothesis based on events

When the tip or the whisker shaft makes contact with a texture,
its movement changes; whisker motion signals report to the
brain what the whiskers have contacted (Diamond et al. 2008).
In particular, Wolfe et al. (2008) found that when whiskers
were moving along the texture, their trajectory was character-
ized by an irregular, skipping motion: the whisker tip tended
to get fixed in place (“stick”), before bending and springing
loose (“slip”) only to get stuck again. A slip-stick event was a
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Fig. 1 Experimental procedure. (a) Surfaces Pictures. Photographs of
the surfaces used in this paper. (b) The three slip-resistance levels were
obtained by approaching the surfaces. At slip-resistance level 1 (r1),
the vibrissa remains in contact with the surface without undergoing
deformation. The slip-resistance levels 2 and 3 (r2 and r3) were
obtained by using a micromanipulator, and bringing the surfaces closer
to the vibrissa by 1 mm each time. (c) Preparation used for recording
the afferent activity during the sweep on different sandpapers. The
micromanipulator is used to control the rough surfaces position and

to generate three slip-resistance levels (r1, r2 and r3). Afferent signals
are amplified (×1000) and acquired by a Digidata 1322A Interface of
Axon Instruments. The acquisition parameters such as sample rate,
recording time and data storage are controlled by a personal computer
(through Axoscope® software). The whisker movements were mea-
sured by using a photoresistive sensor. (d) Recording site and place-
ment of recording electrodes. The microphotography below shows the
transversal section of the DELTA vibrissal nerve
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jump in speed and acceleration; the two quantities covaried.
Thus, a pattern of slip-stick events would be set by surface
features like the size of grains and the distance between them
(Diamond et al. 2008). Follicular receptors would respond to
the most prominent features of the vibrissal movement -the
high velocity jumps over texture grains- giving rise to the
texture neural code (Arabzadeh et al. 2005; Shoykhet et al.
2000; Ito 1985).

More specifically, follicular receptors transform the me-
chanical events (slip-tick) to electrical activity (spikes) that
would travel through multiple axons (infraorbital nerve) to
higher levels. The multifiber activity registered by using bipo-
lar electrodes is inherently averaged into a given time interval.
That weighted sum of multiple fibers discharges could be
considered as electrophysiological events (in short, events) in
afferent recordings. According to the observations of Diamond
et al. (2008) and studies conducted on texture neural coding at
peripheral level (Arabzadeh et al. 2006), afferent events could
be evoked by the impact of vibrissa with the prominent fea-
tures of swept surfaces such as grain size and grain spacing. In
this paper we have defined the electrophysiological event
duration as the time interval in which the activity of multiple
axons is temporally and spatially averaged by the recording
electrodes (Calvin 1975). We established 0.5 ms as the mini-
mum spike duration, considering the observations made by
Albarracín (2008). On the other hand, we stated that the
maximum electrophysiological event duration should be the
duration of a slip-tick. Wolfe et al. (2008) established that a
slip-tick event takes approximately 5 to 10 ms.

Recent investigations have demonstrated that amplitude
changes in the average activity of afferent nerve are related
to roughness surfaces and slip-resistance levels (Farfán et al.
2011). However, in such studies an encoding scheme at
peripheral level has not been shown. In the present study
we hypothesize that the amplitude changes in the afferent
nerve activity are due to temporal distribution changes of
electrophysiological events (TDEE) related to the roughness
of the swept surfaces. In short, we propose here neural encod-
ing schemes based on the temporal distribution of events
produced by the impact of vibrissae with the mechanical
stimuli of rough surfaces.

2.5 Event detection via wavelets

The events in the multifiber recordings were detected by using
an event detection algorithm based on multiscale decomposi-
tion of the signal (Continuous Wavelet Transform—CWT).
The algorithm was proposed by Nenadic and Burdick (2005).
The methodology used in the events detection consists of a
combination of several techniques stemming from multireso-
lution wavelet decomposition, statistics, detection theory and
estimation theory. Next, we state the five major steps of the
algorithm up-front.

1. Multiscale decomposition of the signal using an appro-
priate wavelet basis.

A wavelet ψ is a function of finite energy and zero
average. It is normalized and centered in the neighborhood
of the origin. From this function, also called mother wavelet,
one can obtain a family of time-scale waveforms by trans-
lation and scaling

Wa;bðtÞ ¼ 1ffiffiffi
a

p y
t � b

a

� �
a; b 2 R ð1Þ

where a>0 represents the scale and b is the translation. The
functions ψa,b are called wavelets and they share the prop-
erties of the mother function (Nenadic and Burdick 2005).
The wavelet transform of an arbitrary function x(t) is a
projection of that function onto the wavelet basis

Txða; tÞ ¼
Z
R
xðtÞya;bðtÞ dt ð2Þ

For event detection is important to choose a wavelet that
is suitable for the signal of interest. Here, our choice is
motivated by the shape of the afferent activity. The mother
wavelet used in this paper belongs to the family of biorthog-
onal wavelets: ‘bior1.5’ (Daubechies 1992). This wavelet
was chosen because its biphasic shape is reminiscent of
action potentials recorded with bipolar electrodes (Fig. 1d).

The continuous wavelet transform defined by (2) oper-
ates on a continuous set of scales and translations. Hence,
the basis functions ψa,b are not orthogonal and the represen-
tation of the signal x by its wavelet coefficients is redundant.
Here we choose the set of basis function translations to be
finite, where this set is determined by the sampling rate of
the signal fs(kHz) and its duration T(s), i.e., b є B, where B0
{0,1,…,k,…,N-1}, and N0Tfs+1 is the number of samples
of the discrete signal (time series). Biophysical considera-
tions we used to restrict the relevant scales of the wavelet
basis functions. Here, we use a limited set of scales A0{a0,
a1,…, aj,…aJ}, where a0 and aJ are determined from the
signal sampling rate and the minimum and maximum event
durations, denoted by Wmin and Wmax, respectively. Here
we choose the intermediate scales {a1, a2,…,aJ-1} uniformly
sampled between the two extrema a0 and aJ with an arbi-
trary step. The wavelet decomposition scales were chosen in
order to detect events duration from 0.2 to 2.4 msec.

2. To separate the signal and noise at each scale.

By applying the continuous wavelet transform we obtain
a multiscale representation of the signal in terms of its
wavelet coefficients. If the discrete observations x contain
useful signal s and noise w, then the statistical properties of
the wavelet coefficients will depend on those of the noise.
For purposes of unsupervised signal detection, we must
separate these coefficients by estimating the noise level σ
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in each coefficient from the sampled data. Then, the noise of
each temporal series was eliminated by using simple thresh-
old detection. Donoho proposes to use an adaptive thresh-
old, T, defined using the algorithm introduced in (Donoho
1994). Equations are given in (3) and (4). This algorithm
was developed with the assumption that the input to the
system consists of spikes added to band-limited white
Gaussian noise (Shoham et al. 2003).

Tj ¼ σj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:logeðNÞ

p
ð3Þ

where N is the number of samples of the analyzed time series,
σ2j is the variance of the noise coefficients W(j,k) at scale aj
and Tj is the threshold of the time series. For a Gaussian
random variable, it can be shown that the median of its
absolute deviation effectively estimates the standard deviation:

bσj ¼ M X ðj; 0Þ � X j

�� ��; :::; X ðj;N � 1Þ � X j

�� ��� �
=0:6745 ð4Þ

whereX j is the simple mean of Xj andM{.} denotes the sample
median.

3. Detect events at a single scale.

The problem of detecting events in a noisy signal can be
seen as a binary hypothesis testing problem, where under the
null hypothesis, the signal is not present, and under the alter-
native, both signal and noise are present. Because of the
transient nature of the signal, the alternative hypothesis, if
true, will be so only for an interval of time, or equivalently
for a subset of the discrete time. Moreover, multiple transients
could be present, and these represent the main differences
between the problems of classical signal detection and detec-
tion of action potentials. The first step of detection problem as
a sequential binary hypothesis test at each scale was formu-
lated by Nenadic and Burdick (2005). Thus, the procedures
above how to combine the coefficient level decisions and
hypothesis testing rule for each wavelet coefficient are avail-
able at (Nenadic and Burdick 2005). The hypothesis testing
rule for each wavelet coefficient depends upon the acceptable
costs of false alarms and omissions and the prior probabilities
of the two hypotheses (null and alternative). These factors are
related to an acceptance threshold for the alternative hypoth-
esis at each scale. In order to evaluate this threshold the costs
of false alarms and omissions should be specified. The algo-
rithm proposed by Nenadic and Burdick (2005), uses a pa-
rameter L which is the result of a reparameterization of the
relationship between costs of false alarms and omissions (for
more details see Nenadic and Burdick 2005). For most prac-
tical purposes −0.2<0L<00.2. Larger L probably produces
omissions, smaller L produce false positives likely.

4. To combine the decisions at different scales.

Because they are highly localized in time, the samples
corresponding to neural transients occupy contiguous sub-
sets of the discrete time vector B. This property of transients

if often referred to as a temporal contiguity. Temporal con-
tiguity translates into the contiguity of coefficients in the
wavelet domain (Wang and Willett 2001), i.e., the wavelet
coefficients corresponding to the same transient tend to be
neighbors in both time and scale. Since the algorithm used
here use the continuous wavelet transform with the basis
functions of compact support roughly matched to the scale
of neural transients, the temporal contiguity in the wavelet
domain is inherently preserved. The scale contiguity follows
from a broad frequency spread of a time-limited signal, name-
ly if a scale is thought of as an approximation of the frequency,
a time-limited transient will be spread across many scales. The
presence of noise, however, may obscure the picture at the
scales that are not relevant. The scale contiguity can also be
viewed in the present context as a cross-correlation (redun-
dancy) of the wavelet coefficients (decisions) at different
scales. The problem of redundancy and statistical decision
criteria for event detection on multiple scales are formally
described in Nenadic and Burdick (2005).

5. To estimate the arrival times of individual events.

In a noise-free environment, the wavelet basis function
that provides the maximum correlation with the transient to
be detected, corresponds to a wavelet coefficient of maxi-
mum magnitude. The time associated with the translation
index of the basis function with maximal coefficient can be
taken as a good approximation to the occurrence time of the
underlying transient. Because we choose the set of trans-
lations B with time resolution down to the sampling period,
this approximation is essentially as good as the sampling
period. Tracking of modulus maxima of the wavelet coef-
ficients across scales has been proposed for the detection of
signal singularities (Mallat and Hwang 1992). In a noisy
environment, there is naturally a jitter associated with the
location of this maximal coefficient. This jitter can be re-
duced by averaging the locations of the maxima across
different scales. This is basically the idea employed in
procedures used to estimate the arrival times of individual
events.

The MATLAB code of the method and a supporting
tutorial are available at: http://robotics.caltech.edu/~zoran/
Research/detection.html.

2.6 Neural encoding schemes based on events

Two encoding schemes based on events have been pro-
posed: one based on cumulative event count (hereafter re-
ferred to as CEC code) and the other on inter-event time
(hereafter referred to as IET code). As described above, each
experimental situation consists of 50 sweeps, and hence 50
afferent recordings.

We evaluated the CEC code by measuring the cumulative
event count: the buildup of events from stimulus onset until
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sometime ti, at which point the discrimination would be
made. The mechanism is illustrated schematically along
the time axis in (Fig. 2a). Thus, each experimental situation
is represented by 50 values, which are the numbers of events
detected in each recording. These values are represented in
box plot diagram (Fig. 2a). This procedure is repeated for all
experimental situations.

For the IET code, the inter-event time is computed along the
whole-whisk (gray zone of Fig. 2b). Then, a median is calculated
from the IET values obtained in each sweep. This procedure is
repeated for all sweeps and represented in a box plot diagram.

For the CEC code, the discrimination among sweep sit-
uations mainly depends on two factors: the window length

where the cumulative count is made, and the duration of the
events detected. Here, the window length varies from 0 until
ti. For the IET code, the discriminations will only depend on
the duration of the detected events. The event durations
analyzed for the both schemes were: 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0, 2.2 and 2.4 ms.

Encoding schemes proposed here are analogous to rate
code and temporal code, except that spikes are replaced
by events. These schemes will be evaluated by measur-
ing the amount of information that the neuronal response
convey about the stimulus. For this purpose it will be
used concepts of the information theory (McDonnell et
al. 2011).
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Fig. 2 Neural encoding schemes of tactile information based on events detected in afferent activity. (a) CEC code. (b) IET code

94 J Comput Neurosci (2013) 34:89–101



2.7 Information theory

To determine the amount of information in a biological
system it is necessary to have at least a pair of stimuli/
responses situations. The stimulus may be a time series or
simply to belong to a class (for example, Situation 1, situ-
ation 2, situation 3,…, situation N). The response (r)
depends on the characteristic of the signal that is being
examined. Thus, for example, they can be real values (inter-
event time, inter-spikes time, and others) or integer values
(number of events/spikes).

The information the neuronal response convey about the
stimulus can be quantified by Shannon’s mutual information
formula (Cover and Thomas 1991), abbreviated hereafter as
information:

I ¼
X

PðrÞ:P sjrð Þlog2
P sjrð Þ
PðsÞ ð5Þ

Where P(s) is the probability of presentation of roughness
stimulus s, P(s|r) is the posterior probability of s given obser-
vation of r, and P(r) is the probability of r unconditional on the
stimulus. Information determines the maximum amount of
knowledge (the upper bound of information) available to an
observer who knows the posterior probabilitiesP(s|r) and uses
them to read off the signals available in a single observation of
a spike train (Rieke et al. 1997).

In this paper, the stimuli are sweeps situations, P1200,
P1000, P600, P220 and P180, and the responses are the
inter-event times and the number of events into a time
interval. The procedures used to estimate the probabilities
of Eq. (5) have been previously described in detail by Farfán
et al. (2011). The most important steps are listed below:

1. First, the frequency diagrams (or histograms) are deter-
mined. For each experimental situation, the number of
occurrences of r is obtained. Importantly, the response r
is a scalar in both coding schemes (CEC and IET codes).
For each trial yields an r value (the cumulative event
count) in CEC code, while for the IET code, an r value
is computed from the IET values determined in each
trial. Here we used the median of IET values obtained
during each trial (the results were not significantly
changed when it was used the average of IET values).
In this way both encoding schemes will have the same
number of responses per experimental situation and may
be compared.

2. Determination of the joint probability distribution, P(s,
r).

3. Determination of the P(r) and P(s) probability distribu-
tions. The probability of obtaining a response r, regard-
less of whether stimulus s did or not occur, is called the
marginal probability, and it can be calculated by the sum
of joint probabilities for a given response r.

4. Determination of conditional probability distribution P
(s|r).

5. Determination of the amount of information. After
obtaining all probability distributions, it is possible to
obtain the mutual information using Eq. (5).

The stimulus-response probabilities in the Eq. (5) are not
known a priori and must be estimated empirically from a
limited number, N, of experimental trials for each unique
stimulus. In our data set, N was 50. Limited sampling of
response probabilities can lead to an upward bias in the esti-
mate of information (Optican et al. 1991; Panzeri and Treves
1996; Golomb et al. 1997; Victor 2000; Paninski 2003). We
used a number of bias-correction procedures (Panzeri and
Treves 1996; Strong et al. 1998; Nemenman et al. 2004).
Because they all gave almost identical results, we present only
results based on the quadratic extrapolation correction proce-
dure of Strong et al. (1998). This bias correction procedure
assumes that the bias can be accurately approximated as second
order expansions in 1=Ntot

tr (whereNtot
tr is the number of trials),

that is

bias ¼ a

Ntot
tr

þ b

Ntot
tr

� 	2 ð6Þ

Where a and b are free parameters that depend on the
stimulus-response probabilities, and are estimated by re-
computing the information from fractions of the trials as
follows. The dataset is first broken into two random parti-
tions and the information quantities are computed for each
sub-partition individually: the average of the two partitions
provides an estimate corresponding to half of the trials.
Similarly, by breaking the data into four random partitions,
it is possible to obtain estimates corresponding to a fourth of
the trials. Finally, a and b are extrapolated as parameters of
the parabolic function passing through theNtot

tr =2 andNtot
tr =4

estimates (Magri et al. 2009).

3 Results

3.1 Recording of afferent activity

The neural activity is conducted from the axons to the
electrodes through resistive/capacitive filters (low pass fil-
ters), resulting in spikes appearing as weak signals whose
shape and amplitude may differ from intracellular spike
shapes (Smith and Mtetwa 2007). Further, the activity of
distant axons may appear as noise which is highly correlated
with the target signal. Therefore, the afferent activity is
inevitably corrupted by noise from diverse sources: the
recording hardware, the recording environment and the spa-
tially averaged activity of distant axons. All these issues
make the problem of the signal analysis a real challenge.
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The afferent discharge recorded in our experiments is the
average electrical activity of about 200 myelinated axons
(Fig. 1d) and not all of those fibers have the same firing
patterns. The recording site is shown in (Fig. 1d).

Figure (3a) shows the multifiber recordings belonging to
DELTAvibrissa innervation recorded during different sweep
situations and for resistance level 1. These recordings show
an increase of afferent activity (reflected in its amplitude) in
relation to surface roughness and a higher level of activation
for slip-resistance level 2.

In all cases the whisker displacements and evoked affer-
ent activity were recorded simultaneously at the same sam-
pling frequency. (Figure 1b) shows the afferent activity
evoked by sweeping in air (control) and its corresponding
vibrissal displacement. Displacement recordings were used
solely to identify the protraction and retraction phases.

3.2 Event detection—coding scheme based on events

The detection algorithm was set up to detect events from 0.2
to 2.4 ms duration. (Figure 3c) shows the afferent activity
and events of 0.8 and 1.6 ms duration. As shown, events
detected have a significant variability in amplitude. Thus,
the events of greater amplitude are the result of spatio-
temporal average activity of fibers that are closest to the
recording electrodes.

The events durations were established according to
results obtained from a preprocessing. Basically, this pre-
processing consisted of evaluating events from 0.2 ms
to 2.4 ms duration. These results showed that it is not
possible to distinguish the experimental situations by using
events of <0.6 ms duration. In these cases, the information
values were very low (close to zero). Furthermore, few
events (or none) of >2 ms duration were detected in the
afferent activity. These analyses were performed for the both
neural encoding schemes (CEC and IET).

These preliminary results clearly showed that roughness
information is relevant for the afferent activity and that it is
naturally found in cluster of events with 0.6 to 2.0 ms
duration.

3.3 Coding scheme based on cumulative event count

The information values mainly depend on two factors in
CEC code: the window length where the cumulative count is
made and the duration of events detected. Events of 0.8, 1.0,
1.2 and 1.4 ms duration were the most relevant for CEC
code. The slip-resistance protocol as a variable affecting
information values was also considered here.

(Figure 4a) (top left) shows the information values obtained
for the total stimulus set versus temporal window where the
cumulative event count is performed. In this figure we can see
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Fig. 3 Afferent discharges and events detected. (a) Ten afferent activ-
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sandpaper P180. All recordings were registered at slip-resistance level
1. (b) Displacement and afferent activity recordings from DELTA
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sor. (c) Event detection from afferent activity recording during a sweep
on sandpaper P1000 (above). Events temporal location of 0.8 and
1.6 ms duration are shown in figures lower down. The detected events
are shown on the right side
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that the most important events for the CEC code have dura-
tions of 0.8 and 1.0 ms (i.e. information values obtained with
these events durations are significant). On the other hand, we
observe that higher information values (I>1 bit) were obtained
between 7 and 33 ms, period of time that mainly corresponds
to the protraction phase.

By increasing the slip-resistance level, the information
was greater than 1 bit in the range of 28 ms to 50 ms, which
mainly covers the retraction phase (Fig. 4b). It can be also
note that information provided by events of 1.0 ms duration
decreased considerably. All information values decreased
significantly at slip-resistance 3 (Fig. 4c).

The information obtained from stimulus pairs was also
analyzed. Thus, events of 0.8 ms duration mainly contribute
to the information obtained from the pair P1200–P1000. For
slip-resistance level 1, the most significant information val-
ues are given for the retraction phase (Fig. 4a, top right), but
for slip-resistance level 2 the maximum information values
are reduced to the range between 23 and 35 ms (Fig. 4b,
middle right). Like values obtained with total stimulus set,
the information values obtained from the pair P1200–P1000
decrease considerably at slip-resistance level 3 (Fig. 4b,
bottom right). Results for all possible pairwise comparisons
are shown in Additional files 1, 2 and 3 (slip-resistances 1, 2
and 3, respectively).

Figure (5) shows the matrices of all pairwise information
values for the different slip-resistance levels. These results
illustrate pairwise stimulus discriminability by using CEC
code at peripheral level (events of 0.8 ms duration). Rows
and columns are labeled by a stimulus, and gray scale
entries give the information available between the two
corresponding stimuli. At slip-resistance level 1, the stimu-
lus pair with the highest degree of discriminability (more
information) is P220–P1200 (0.4 bits). The information
values were approximately 0.4 bits for comparisons between
stimulus pairs P220–P1000 and P220–P600. The increase of
the slip-resistance from level 1 to level 2, improved the
degree of discriminability for the stimulus pairs P1200–
P1000, P1200–P220, P600–P180 and P600–P180 (Fig. 5).
Finally, at slip-resistance level 3, the information values
decreased significantly in most cases (except P600–P220).

3.4 Coding scheme based on IET

The IET were obtained from events of 0.2 to 2.4 ms dura-
tion. The analysis showed that events shorter than 0.6 ms
duration and longer than 2.0 ms duration do not provide
relevant information about stimuli. Then, the IET code was
evaluated considering the total stimulus set and the pair wise
stimulus at different slip-resistance levels.
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The information values for the total stimulus set were
higher for events longer than 1 ms duration. (Figure 6)
shows that the information values vary according to the
event duration and the different slip-resistance levels. In
particular, the information values decrease with the in-
crease of slip-resistance level for events of 1.0, 1.4 and
2.0 ms duration. However, increases of information values
were observed when slip-resistance increased from level 1
to 2 for the remaining event durations. These increases of
information values are related to a better discrimination
among sweep situations. Then, information decreased
when the slip-resistance increased from 2 to 3 for all cases.
This particularity indicates that the stimuli discriminability
has decreased.

The P1200 versus P1000 could be slightly discriminated
through the IET code by considering events between 1.0 ms
and 1.8 ms duration (Fig. 7, top left) at slip-resistance level

1. It was possible to note that the discriminability between
these experimental situations increases with slip-resistance
levels.

The discrimination of P1200 versus P180 was maximum
for events of 1.0 ms at slip-resistance level 1, and for events
of 1.2 ms at slip-resistance level 2. Likewise, it was possible
to note that at slip-resistance level 3, the information in-
creased for events of 1.4 ms duration (Fig. 7, top right).
P600 could be optimally discriminated from P180 with
events of 1.0, 1.2 and 1.4 ms duration at slip-resistance level
2 (Fig. 7, bottom left), while P220 versus P180 could be
discriminated with events of 1.2 and 1.4 ms duration at slip-
resistance level 1 (Fig. 7, bottom right).

Although we only show four pairwise stimuli (Fig. 7), all
possible combinations were analyzed. Additional file 4
shows the information values belonging to all pairwise
stimuli.
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4 Discussion

In general, inferences about systems behaviour (neural encod-
ing) from specific observations (such as single-unit record-
ings) are very difficult. In particular, the texture encoding in
the vibrissal system comes being studied from the neural
activity of one or a few neurons of trigeminal ganglion and/
or cortex (Arabzadeh et al. 2005, 2006). Ideally, whether
information from each constituent element of the system is
obtained, then the system could be fully described. However,
this would be practically impossible due to the complexity of
necessary instruments. Here, the afferent activity related to
texture information was obtained from entire follicular inner-
vation of a DELTA vibrissa. This approach was also imple-
mented at Albarracín et al. 2006, and Farfán et al. 2011.

Wolfe et al. (2008), demonstrated the existence of kine-
matic patterns (slip-stick events) in the rat vibrissae during
the active touch on rough surfaces. Then, Diamond et al.
(2008), carried out a review about the way those kinematic
patterns would be related to both electrophysiological activ-
ity at peripheral and central levels. On the other hand, our
previous investigations have shown that roughness informa-
tion can be analyzed and characterized through afferent
activity of a single vibrissa innervation. Based on these
studies, we have hypothesized that the tactile sensory infor-
mation could be carried by spikes trains, which are seen as
events in afferent activity recordings when a bipolar elec-
trode is placed on the vibrissal nerve.

In the current study, the afferent nerve activity—from
200 myelinated axons—was the result of phase summation
and cancellation of single fiber potentials. Thus, the afferent

activity amplitude depends on axons diameter and the dis-
tribution of the axons diameter in relation to the recording
electrode. In this sense, the complexity of multifiber record-
ings (activity of about 200 myelinated axons) is an impor-
tant factor, which presents advantages and disadvantages
when a system behavior is studied.

Albarracín et al. (2006) have shown that the changes of
afferent signal amplitude would be related to different levels
of mechanoreceptors activation, while Farfán et al. (2011)
have demonstrated that these amplitude changes could be
roughness surfaces dependent. Here, a more detailed analy-
sis was performed over the afferent signal. The event detec-
tion algorithm was able to detect events from 0.2 to 2.4 ms
duration in the afferent signal, and it seems that the rough-
ness information was naturally found in cluster of events of
0.6 to 2.0 ms duration.

In particular, we found that roughness information was
encoded by events of 0.8 ms duration in the CEC code and
event of 1.0 to 1.6 ms duration in the IET code. The best
discriminability among stimuli was found for the slip-
resistance level 2. This result agrees with those obtained
by Farfán et al. (2011). It was also observed that an exces-
sive decrease of slip-resistance level significantly reduces
the degree of discriminability among the sweep situations.

In previous studies we presented evidence that afferent
discharge amplitude changed due to roughness surfaces and
slip-resistance levels. This allows to speculate that roughness
information is slip-resistance dependent at peripheral level,
although the amplitude of the afferent activity is not a biolog-
ically plausible neural coding scheme of texture. Here, we
have shown that the amplitude changes could be due to events
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of different durations that would carry roughness information
through two biologically plausible neural code schemes.

4.1 Neural coding and surfaces morphology

Authors such as Arabzadeh et al. (2006), Petersen et al. (2009),
Panzeri and Diamond (2010) and others (Diamond et al 2008;
Panzeri et al. 2001; Petersen et al 2001; Petersen et al. 2002),
have used the information theory to investigate which features
of ensemble neuronal activity report information about whisker
stimuli. In all of them, the information was calculated based on
the equiprobability of presentation of roughness stimulus P(s),
Eq. (5). However, roughness measurements obtained here
show that P(s) would not have equally likely. Thus, less rough
surfaces P1200 and P1000 have a difference of 0.7 μm (Ra0
2.2 and 2.9 μm respectively), while P1000 and P600 have a
difference of 2.7 μm (Ra02.9 and 5.6 μm respectively).
According to these measurements, it would be more difficult
to distinguish between P1200 and P1000 pair than between
P1000 and P600 pair. The roughness difference between P220
and P180 is only 0.3 μm (8.9–9.2 μm respectively). Then,
P220–P180 pair would be more difficult to discriminate than
P1200–P1000 pair. This inference is supported by information
values obtained in the CEC and IET codes.

The sweep surface morphology is a very important factor,
since of this would depend on the characteristics of kinematic
patterns evoked during the active sweep (Wolfe et al. 2008).
However, surface texture is not a measurable quantity; it is not
possible to assign a unique "texture" value to every different
surface. Despite this, it is possible to measure some of the
intrinsic characteristics, or parameters of surface texture. In this
way, it would be possible to carry out better estimates ofP(s) by
measuring some intrinsic characteristics of surfaces morpholo-
gy. Here, P(s) were considered equally likely in order to com-
pare our results with those obtained by other authors.

A quantitative knowledge of surface morphology could
improve the understanding of the tactile information encod-
ing. This is a crucial point to further understand the tactile
information processing. Based on the existence of electro-
physiological events in afferent signal, and its possible coding
schemes, it is possible to speculate that CEC code could
provides information about the number of kinematic events
evoked in the whiskers by surface irregularities, while the IET
code could provides information about the spatial distribution
of these kinematic events. These speculations are supported
by the current knowledge of sensory processing of tactile
information in vibrissal system.

4.2 Considerations of facial nerve stimulation and whisker
movement

Most of studies in active whisking deliver a train of pulses
throughout the protraction (Szwed et al. 2003; Arabzadeh et

al. 2005); while this generates more realistic motions, it also
introduces concerns about stimulus artifacts. In this paper,
the motions are shorter than typical (~25 ms protraction in
(Fig. 3b) compared to ~60 msec in awake animals and other
electrical whisking studies). This is because only a square-
wave pulse (30 μs, 7 V supramaximal, 10 Hz) is applied to
the facial nerve to produce a whisker movement. This stim-
ulation evokes whisking movements that differ from those
produced during natural whisking. Despite this, our exper-
imental protocol allows to record and to analyze the afferent
activity without stimulus artifacts. In our experimental set-
up, the facial nerve stimulation with train pulses would
contaminate the afferent activity recordings with stimulus
artifacts, and therefore, the processing techniques proposed
here could not be used.

Finally, although the artificial whisking movements are
different to the natural whisking, the slip-tick events evoked
by vibrissa sweeping on roughness surfaces (Wolfe et al. 2008)
could be similar to those produced during natural sweeping.

5 Conclusions

In this paper we have demonstrated the existence of two
biologically plausible neural encoding schemes of tactile in-
formation based on electrophysiological events, and we also
showed that the performance of such neural encoding schemes
depend on the distance between rat snout and swept surfaces.
This last observation suggests that slip-resistance would be a
possible behavioral strategy for rough surfaces discrimination.
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