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We describe all the twisted tensor products of K3 with K3, where K is an
arbitrary field.
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0. Introduction

Let K be a commutative ring with 1, and let A and C be unitary K-algebras. Recall that a twisted
tensor product of A with C is an algebra structure defined on A�KC, with unit 1� 1, such that
the canonical maps iA : A ! A�KC and iC : C ! A�KC are algebra maps satisfying a� c ¼
iAðaÞiCðcÞ: This structure, which was introduced independently in [11] and [13], have been study
by many people with different motivations (see for instance [2–4, 7, 9, 11, 12, 13] and [14])). It is
well known that there is a canonical bijection between the twisted tensor products of A with C
and the so called twisting maps v : C�KA ! A�KC, of C with A. So, each twisting map v :
C�KA ! A�KC is associated with a twisted tensor product of A with C over K, which will be
denoted by A�vC, and the problem of constructing all the twisted tensor products of A with C is
equivalent to the problem of finding all the twisting maps of C with A. This problem, even in the
simplest cases, turn out to be very hard. To our knowledge, the first paper in which this problem
was attacked in a systematic way was [6], in which C. Cibils solve the case C :¼ K � K when K is
a field (hypothesis that we maintain throughout this work). In [8] the case C :¼ Kn was analyzed
and some partial classification result were achieved. In [1] we introduced the concept of standard
twisting map of Km with Kn and the more general concept of quasi-standard twisting map of Km
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with Kn. Moreover, in [1, Remark 10.5 and Corollary 10.15] we give a method for constructing
the quasi-standard twisting maps, which we apply in order to obtain all the quasi-standard twist-
ing maps of K3 with K3. But there exist twisting maps of K3 with K3 that are not quasi-standard,
and in this paper we complete the construction of all the twisting maps of K3 with K3, describ-
ing them.

The paper is organized as follows: In Section 1 first we make a quick review of the notion of
twisting map of an algebra C with an algebra A and its relation with the notion of twisted tensor
product, with emphasis in the case A ¼ Kn and C ¼ Km, and then we establish two results that
we need in our quest of the twisting maps of K3 with K3. In Section 2 we describe the twisting
maps of K2 with K2 and of K3 with K2. In the first case this result was obtained in [10], while in
the second case a classification in terms of quivers is given in [6], but to carry out our task of
finding all the twisted tensor products of K3 with K3, we need a direct description. Finally, in
Section 3 we compute the twisting maps of K3 with K3 that are not quasi-standard.

1. Preliminaries

Let K be a field. From now on we assume implicitly that all the maps whose domain and
codomain are K-vector spaces are K-linear maps, that all the algebras are associative and unitary
algebras over K, and that all the algebra homomorphisms are unital. We set K� :¼ K n f0g: The
tensor product over K is denoted by �, without any subscript. Given a matrix X, we let XT

denote the transpose matrix of X. Moreover, we denote with a juxtaposition the multiplication of
two matrices and with a bullet the multiplication in K3. So,

ða1, a2, a3Þ � ðb1, b2, b3Þ ¼ ða1b1, a2b2, a3b3Þ:
Note that an element a ¼ ða1, a2, a3Þ is invertible respect to this multiplication map if and only

if lnðaÞ :¼ a1a2a3 6¼ 0: In this case we let a� denote the inverse ða�1
1 , a�1

2 , a�1
3 Þ of a. Finally, for

the sake of simplicity we write 1 ¼ 13 :¼ 1T
K3 :

1.1. Twisting maps

Let A and C be two K-algebras and let lA, gA, lC and gC be the multiplication and unit maps of
A and C, respectively. A twisted tensor product of A with C is an algebra B with underlying vector
space A� C, such that the canonical maps iA : A ! A� C and iC : C ! A� C are algebra
homomorphisms and l � ðiA � iCÞ ¼ idA�C, where l denotes the multiplication map of B. It is
well known that given a twisted tensor product of A with C, the map

v : C � A ! A� C,

defined by v :¼ l � ðiC � iAÞ, satisfies:

1. v � ðgC � AÞ ¼ A� gC,
2. v � ðC � gAÞ ¼ gA � C,
3. v � ðlC � AÞ ¼ ðA� lCÞ � ðv� CÞ � ðC � vÞ,
4. v � ðC � lAÞ ¼ ðlA � CÞ � ðA� vÞ � ðv� AÞ:

A map that fulfills these conditions is called a twisting map of C with A. Conversely, if

v : C � A ! A� C

is a twisting map, then A� C becomes a twisted tensor product, denoted A�vC, via
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lv :¼ ðlA � lCÞ � ðA� v� CÞ:
Furthermore, these constructions are inverse one to each other.

1.2. Twisting tensor products of Kn with Km

Let v : Km � Kn ! Kn � Km be a map and let fe1, :::, emg and ff1, :::, fng be the canonical bases
of Km and Kn, respectively. There exist unique scalars kklij such that

vðei � fjÞ ¼
X
k, l

kklij fk � el for all ei and fj: (1.1)

For all i, l 2 N�
m and j, k 2 N�

n , we let Avði, lÞ 2 MnðKÞ and Bvðj, kÞ 2 MmðKÞ denote the matrices
defined by

Avði, lÞkj :¼ kklij ¼: Bvðj, kÞli: (1.2)

Moreover we set

Av :¼ ðAvði, lÞÞi, l2N�
m

and Bv :¼ ðBvðj, kÞÞj, k2N�
n
:

In [1, Proposition 3.3, Corollary 3.6, Remark 3.7 and Proposition 3.11] we find necessary and suf-
ficient conditions for v to be a twisting map.

Let

v : C � A ! A� C and v0 : C0 � A0 ! A0 � C0

be twisting maps. A morphism Fgh : v ! v0 is a pair (g, h) of algebra homomorphisms g : C ! C0

and h : A ! A0 such that the equality v0 � ðg � hÞ ¼ ðh� gÞ � v holds. In [1, Proposition 3.15] we
show that two twisting maps v, v0 : Km � Kn ! Kn � Km are isomorphic if and only if there
exists r 2 Sm and 1 2 Sn such that

Av0 ði, lÞkj ¼ AvðrðiÞ, rðlÞÞ1ðkÞ1ðjÞ ðor, equivalently,Bv0 ðj, kÞli ¼ Bvð1ðjÞ, 1ðkÞÞrðlÞrðiÞÞ:
If two twisting maps of Km with Kn are isomorphic, then we also say that they are equivalent.

Let v be a twisting map of Kn with km. Recall from [1, Definition 3.12] that the Av-rank
matrix Cv 2 MmðKÞ and the Bv-rank matrix ~Cv 2 MnðKÞ are the matrices

Cv :¼
c11 ::: c1m
..
. . .

. ..
.

cm1 � � � cmm

0
B@

1
CA and ~Cv :¼

~c11 ::: ~c1n
..
. . .

. ..
.

~cn1 � � � ~cnn

0
B@

1
CA,

where cil :¼ rkðAvði, lÞÞ and ~cjk :¼ rkðBvðj, kÞÞ:
In this paper we will make extensive use of the previous results and other results of [1] in

order to obtain all the twisting maps of K3 with K3. We also will need the following propositions:

Proposition 1.1. If rkðAvði, iÞÞ ¼ 1 for some i 2 N�
m, then there exists j 2 N�

n such that ~cjk 6¼ 0 for
all k. Moreover, if such j is unique, then Avði, iÞst ¼ dtj for all s, t 2 N�

n. A similar statement holds
for Bvðj, jÞ and Cv:

Proof. Since TrðAvði, iÞÞ ¼ rkðAvði, iÞÞ ¼ 1, there exists j such that Avði, iÞjj 6¼ 0: Consequently, by
[1, Remark 5.13],

Bvðj, kÞii ¼ Avði, iÞkj ¼ Avði, iÞjj 6¼ 0 for all k:

This implies that ~cjk 6¼ 0 for all k. If j is unique, then for each l 6¼ j there exists k such that ~clk ¼
0, and so, again by [1, Remark 5.13], we have
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Avði, iÞhl ¼ Avði, iÞkl ¼ Bvðl, kÞii ¼ 0 for all h:

The argument for Bvðj, jÞ and Cv is the same. w

Proposition 1.2. Let v : Km � K3 ! K3 � Km be a twisting map and let i1, i2 and i3 be three dif-
ferent elements of N�

m such that Avði2, i1Þ 6¼ 0 6¼ Avði3, i1Þ:

1. If the i1-th column of Av is not quasi-standard and Avði1, i1Þ is
1 0 0
1 0 0
1 0 0

0
@

1
A,

0 1 0
0 1 0
0 1 0

0
@

1
A or

0 0 1
0 0 1
0 0 1

0
@

1
A,

then Avði2, i3Þ 6¼ 0 6¼ Avði3, i2Þ and neither the i2-th nor the i3-th column of Av are quasi-stand-
ard columns.

1. If the i1-th column of Av is not quasi-standard and Avði1, i1Þ ¼
� 1 0 0
1 0 0
1 0 0

�
, then

Avði2, i1Þ22 ¼ Avði2, i2Þ22 ¼ Avði2, i3Þ22, Avði3, i1Þ22 ¼ Avði3, i2Þ22 ¼ Avði3, i3Þ22,
and there exist z 2 K� and a 2 K n f0, 1g such that

Avði2, i1Þ ¼
0 0 0

�a� z a z

a� 1� að1� aÞ
z

að1� aÞ
z

1� a

0
BB@

1
CCA

and

Avði3, i1Þ ¼
0 0 0

aþ z � 1 1� a �z
að1� aÞ

z
� a � að1� aÞ

z
a

0
BB@

1
CCA:

Proof. Assume we are in the hypothesis of item (2) . Without loss of generality we can assume
that i1 ¼ 1, i2 ¼ 2 and i3 ¼ 3: By [1, Corollary 3.13], we have

Pn
i¼1 ci1 ¼ 3: Hence Avði, 1Þ ¼ 0

for i> 3 and TrðAvði, 1ÞÞ ¼ ci1 ¼ 1 for i � 3: Moreover, by items (1) and (3) of [1, Corollary 3.6]
we know that

Avð1, 1ÞAvði, 1Þ ¼ 0 for all i > 1 and that Avð1, 1ÞþAvð2, 1ÞþAvð3, 1Þ¼ id3:

Hence there exists a 2 K such that

Avð2, 1Þ ¼
0 0 0
� a �
� � 1� a

0
@

1
A and Avð3, 1Þ ¼

0 0 0
� 1� a �
� � a

0
@

1
A:

Moreover, by [1, Proposition 8.17(b)] we know that a 62 f0, 1g: Let z :¼ Avð2, 1Þ23: Since the
sum of the entries of each row of Avð2, 1Þ and Avð3, 1Þ is zero,

Avð2, 1Þ ¼
0 0 0

�a� z a z
� � 1� a

0
@

1
A and Avð3, 1Þ ¼

0 0 0
aþ z � 1 1� a �z

� � a

0
@

1
A:

Furthermore, since lower triangular idempotent matrices have 0 or 1 in each diagonal entry,
necessarily z 6¼ 0: Now it is clear that, since rkðAvð2, 1ÞÞ ¼ rkðAvð3, 1ÞÞ ¼ 1, both matrices have
the desired form. But then the first row of Bvð2, 2Þ is ð0, a, 1� a, 0, :::, 0Þ, the first row of Bvð1, 2Þ
is ð1, � ðaþ zÞ, ðaþ zÞ � 1, 0, :::, 0Þ and the first row of Bvð3, 2Þ is ð0, z, � z, 0, :::, 0Þ: An easy
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computation using these facts, that Bvð1, 2Þ þ Bvð2, 2Þ þ Bvð3, 2Þ ¼ idn since [1, Remark 3.7], and
that by [1, Proposition 3.3(2)] the columns of Bvð2, 2Þ are orthogonal to the first rows of Bvð1, 2Þ
and Bvð3, 2Þ, shows that

Bvð2, 2Þ ¼

0 a 1� a 0 ::: 0

0 a 1� a 0 ::: 0

0 a 1� a 0 ::: 0

� � � � �
..
. ..

. ..
.

� � � � �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

which finishes the proof of item (2) via (1.2). Moreover

Avð2, 3Þ22 ¼ Bvð2, 2Þ32 ¼ a and Avð3, 2Þ22 ¼ Bvð2, 2Þ23 ¼ 1� a:

Item (1) follows immediately from this fact and [1, Proposition 3.15]. w

2. Twisting maps of K2 with K2 and of K3 with K2

To achieve our objective of constructing the twisting maps of K3 with K3 we need first to describe
in detail the twisting maps of K2 with K2 and the twisting map of K3 with K2.

2.1. Twisting maps of K2 with K2

We first give a classification of all twisting maps v of K2 with K2 in a direct way. This classifica-
tion was already obtained in [10]. In the next computation we confirm that (up to isomorphism),
there are four different twisted tensor products of K2 with K2. By [1, Corollary 3.13 and
Proposition 3.15] we can assume that the Av-rank matrix is one of the following:

C1 ¼ 2 0
0 2

� �
, C2 ¼ 2 1

0 1

� �
or C3 ¼ 1 1

1 1

� �
:

2.1.1. First case

If the Av-rank matrix is C1, then Avð1, 1Þ ¼ Avð2, 2Þ ¼ id: Consequently v is the flip
and K2�vK2 ffi K4:

2.1.2. Second case

If the Av-rank matrix is C2, then v is a standard twisting map (use [1, Proposition 5.10 and
Remark 8.15], and one verifies readily that v is equivalent via identical permutations in rows and
columns to the standard twisting map v0 with

Av0 ð1, 1Þ ¼ id, Av0 ð2, 1Þ ¼ 0, Av0 ð2, 2Þ ¼ 1 0
1 0

� �
and Av0 ð1, 2Þ ¼ 0 0

�1 1

� �
,

or, which the same, to the standard twisting map with quiver
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Here the bullets represent the vertices of v0 Q and the white circle in the coordinate (2) indicates
that the arrow a22 starts at the 2-th row and ends at the 2-th column. By [1, Remark 10.2] the
Jacobson radical of K2�v0K2 has dimension 1.

In the sequel we will simply represent the quivers of this twisting map and of its equivalent
twisting maps as

where there is a bullet in the position (j, i) if (j, i) is a vertex (thus j 2 JiðiÞÞ, and there is a
white circle in the position (j, l) if the quiver has an arrow ajl that starts at the j-th row and
ends at the l-th column (it is unique) . The quivers associated with standard twisting maps of
K3 with K2 and of K3 with K3 will be represented by diagrams constructed following the same
instructions.

2.1.3. Third case

If the Av-rank matrix is C3, then by [1, Corollary 3.6(3) and Remark 4.1] there exist a, a0 2 K
such that

Avð1, 1Þ ¼ a 1� a
a 1� a

� �
, Avð2, 1Þ ¼ 1� a a� 1

�a a

� �
,

Avð1, 2Þ ¼ 1� a0 a0 � 1
�a0 a0

� �
, Avð2, 2Þ ¼ a0 1� a0

a0 1� a0

� �
:

Thus, by (1.2) we have Bvð1, 1Þ ¼
�

a 1� a
1� a0 a0

�
: Therefore a0 ¼ 1� a by [1, Proposition 6.1

and Remark 4.1], and so

Avð1, 1Þ ¼ a 1� a
a 1� a

� �
, Avð2, 1Þ ¼ 1� a a� 1

�a a

� �
,

Avð1, 2Þ ¼ a �a
a� 1 1� a

� �
, Avð2, 2Þ ¼ 1� a a

1� a a

� �
:

Now a direct computation using (1.2) shows that Bvði, jÞ ¼ Avði, jÞ for i, j 2 f1, 2g, which enable
us to check easily that the conditions of [1, Proposition 3.3] are satisfied. Hence we have a family
of twisting maps parameterized by a 2 K: Applying [1, Proposition 3.15] we see that the twisting
maps corresponding to a and 1� a are isomorphic. Moreover, using again the same proposition,
we check that these are the only isomorphisms between these twisting maps. If a 2 f0, 1g, then
the twisting map is standard and the quiver is one of

By [1, Remark 10.2] the Jacobson radical of K2�v0K2 is a two dimensional k-vector space. On the
other hand, by [1, Proposition 3.16 and Remark 3.17] we know that for a 62 f0, 1g, the morphism
q1 : K

2�vK2 ! M2ðKÞ, given by
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q1ðfj � 1Þ :¼ Ejj and q1ð1� eiÞ :¼ Avði, 1Þ,
is an algebra isomorphism.

2.2. Twisting maps of K3 with K2

Now we use the results of [1] to classify all the twisting maps

v : K3 � K2 ! K2 � K3,

distinguishing those that are almost standard, those that are quasi-standard and those that are
not quasi-standard (by [1, Remark 3.2 and Propositions 7.9 and 8.20], this immediately gives a
similar classification for the twisting maps of K2 with K3). By [1, Corollary 3.13 and Proposition
3.15] we can assume that the Av-rank matrix is one of the following:

C1 ¼
2 0 0
0 2 0
0 0 2

0
@

1
A, C2 ¼

2 0 0
0 2 1
0 0 1

0
@

1
A, C3 ¼

2 1 1
0 1 0
0 0 1

0
@

1
A, C4 ¼

2 1 0
0 1 1
0 0 1

0
@

1
A,

C5 ¼
2 0 0
0 1 1
0 1 1

0
@

1
A, C6 ¼

1 0 0
0 1 1
1 1 1

0
@

1
A, C7 ¼

1 0 1
1 1 0
0 1 1

0
@

1
A:

By [1, Proposition 5.10], except perhaps in the cases C5 and C6, the matrices Avðl, lÞ are 0, 1-
matrices, which, by [1, Remark 8.15], implies that v is a standard twisting map. In Table 1 we list
all the possible standard twisting maps v whose Av-rank matrix is one of C1 � C7 (for this we
use the method given in [1, Remark 10.5]):

Here
P

Tr :¼ P
i TrðAvði, iÞÞ ¼

P
j TrðBvðj, jÞÞ and # equiv. indicates how many equivalent

standard twisting maps there are (we say that two standard twisting maps Km with Kn are equiva-
lent if they are isomorphic).

If Cv ¼ C5, then v is a direct sum of the flip of K with K2 and a twisting map v0 of K2 with K2

such that Cv0 ¼
�
1 1
1 1

�
, and the twisted tensor product algebra is isomorphic to K2 � A, where A

Table 1. Standard twisting maps of K3 with K2.

#
P

Tr quiver Cv
~Cv # equiv.

1. 6 � 2 0 0
0 2 0
0 0 2

� �
3 0
0 3

�
1

2. 5 � 2 0 0
0 2 1
0 0 1

� �
3 1
0 2

�
12

3. 4 � 2 1 1
0 1 0
0 0 1

� �
3 2
0 1

�
6

4. 4 � 2 1 0
0 1 1
0 0 1

� �
2 1
1 2

�
12

5. 4 � 2 0 0
0 1 1
0 1 1

� �
2 1
1 2

�
6

6. 4 � 2 1 0
0 1 0
0 0 1

� �
2 1
1 2

�
6

7. 3 � 1 0 0
0 1 1
1 1 1

� �
2 2
1 1

�
12
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is the twisted tensor product K2�v0K2: So either it is standard (recovering the case #5 in the list), or
it corresponds to a value of a 62 f0, 1g in the third case of Subsection 2.1. Consequently

Avð1, 1Þ ¼ 1 0
0 1

� �
, Avð2, 1Þ ¼ 0 0

0 0

� �
, Avð3, 1Þ ¼ 0 0

0 0

� �
,

Avð1, 2Þ ¼ 0 0
0 0

� �
, Avð2, 2Þ ¼ a 1� a

a 1� a

� �
, Avð3, 2Þ ¼ 1� a a� 1

�a a

� �
,

Avð1, 3Þ ¼ 0 0
0 0

� �
, Avð2, 3Þ ¼ a �a

a� 1 1� a

� �
, Avð3, 3Þ ¼ 1� a a

1� a a

� �
,

and we obtain an algebra isomorphic to K2 �M2ðKÞ:
If Cv ¼ C6, then by [1, Proposition 5.10 and Remark 8.15] the first column of Av is standard

column, so that either

Avð1, 1Þ ¼ 1 0
1 0

� �
and Avð3, 1Þ ¼ 0 0

�1 1

� �

or

Avð1, 1Þ ¼ 0 1
0 1

� �
and Avð3, 1Þ ¼ 1 �1

0 0

� �
:

By [1, Proposition 3.15] we can assume, and we do it, that Avð1, 1Þ ¼
�
1 0
1 0

�
: Moreover, by [1,

Remark 3.14] the matrices Avði, jÞ for i, j 2 f2, 3g define a twisting map v0 of K2 with K2, such

that Cv0 ¼ ð 1 1
1 1

Þ, which is either standard, or corresponds to a value of a not in {0, 1} in the

third case of Subsection 2.1. But [1, Theorem 8.21] shows that

f2g ¼ FðAvð3, 1ÞÞ 
 F0ðAv, 3Þ:
Consequently Avð3, 3Þ22 ¼ 1 and the twisting map is standard, corresponding to the sixth case on
the list.

If Cv ¼ C7, then the twisting map is necessarily standard (because the columns of C7 have
reduced rank 1), but no standard twisting map v yields Cv ¼ C7, and so there is no twisting map
in this case.

3. Twisting maps of K3 with K3

Our next aim is to determine up to isomorphisms all twisting maps

v : K3 � K3 ! K3 � K3

that are not quasi-standard. By [1, Proposition 3.15], for this we can and we will assume that the
values of the diagonal of Cv are non increasing. So in the rest of this subsection v denotes an
arbitrary twisting map satisfying this restriction and we look for conditions in order that v be not
quasi-standard. We organize our search according to the values of

P
Tr :¼ P

i TrðAvði, iÞÞ:

3.1. Tr¼ 9; 8 or 7

Theorem 3.1. If
P

Tr � 7 and v is not standard, then the diagonal of Cv is (2, 3) and v is a not
quasi-standard twisting map with Av given by
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Avð1, 1Þ :¼
1 0 0
0 1 0
0 0 1

0
@

1
A, Avð2, 1Þ :¼

0 0 0
0 0 0
0 0 0

0
@

1
A, Avð3, 1Þ :¼

0 0 0
0 0 0
0 0 0

0
@

1
A,

Avð1, 2Þ :¼
0 0 0
0 0 0
0 0 0

0
@

1
A, Avð2, 2Þ :¼

1 0 0
0 a b
0 a b

0
@

1
A, Avð3, 2Þ :¼

0 0 0
0 b �b
0 �a a

0
@

1
A,

Avð1, 3Þ :¼
0 0 0
0 0 0
0 0 0

0
@

1
A, Avð2, 3Þ :¼

0 0 0
0 a �a
0 �b b

0
@

1
A, Avð3, 3Þ :¼

1 0 0
0 b a
0 b a

0
@

1
A,

where a 2 K n f0, 1g and b :¼ 1� a. Independently of a, we have K3�vK3 ’ K5 �M2ðKÞ:
Proof. Under the hypothesis the diagonal of Cv may be (1–3) or (2, 3). By [1, Proposition 8.22],
in the first three cases necessarily v is a standard twisting map. In the last case Cv is equivalent
via identical permutations in rows and columns to one of the following matrices:

3 1 1
0 2 0
0 0 2

0
@

1
A,

3 1 0
0 2 1
0 0 2

0
@

1
A or

3 0 0
0 2 1
0 1 2

0
@

1
A:

By [1, Proposition 5.10] in the two first cases the diagonal matrices are 0, 1-matrices, and so by
[1, Remark 8.15] the obtained twisting maps are standard. In the last one v is a direct sum of the
flip of K with K3 and a twisting map v0 : K2 � K3 ! K3 � K2: Moreover, the analysis made in
Subsection 2.2 shows that if v0 is not quasi-standard, then the matrices Avði, jÞ are as in the state-
ment. Since, moreover K3�v0K2 is isomorphic to the direct product K2 �M2ðKÞ, we conclude
that K3�vK3 ’ K5 �M2ðKÞ: w

3.2. Tr¼ 6

Theorem 3.2. Up to isomorphisms, the unique family of not quasi-standard twisting maps of K3

with K3 such that
P

Tr ¼ 6 is obtained taking

Avð1, 1Þ :¼
0 1 0

0 1 0

0 0 1

0
B@

1
CA, Avð2, 1Þ :¼

1 �1 0

0 0 0

0 0 0

0
B@

1
CA, Avð3, 1Þ :¼

0 0 0

0 0 0

0 0 0

0
B@

1
CA,

Avð1, 2Þ :¼
0 0 0

0 0 0

0 0 0

0
B@

1
CA, Avð2, 2Þ :¼

1 0 0

0 a b

0 a b

0
B@

1
CA, Avð3, 2Þ :¼

0 0 0

0 b �b

0 �a a

0
B@

1
CA,

Avð1, 3Þ :¼
0 0 0

0 0 0

0 0 0

0
B@

1
CA, Avð2, 3Þ :¼

0 0 0

0 a �a

0 �b b

0
B@

1
CA, Avð3, 3Þ :¼

1 0 0

0 b a

0 b a

0
B@

1
CA,

where a 2 K n f0, 1g and b :¼ 1� a:

Proof. Since
P

Tr ¼ 6, the diagonal of Cv is either (2) or (1–3). We treat each case separately:
DiagðC vÞ ¼ ð2; 2; 2Þ By [1, Proposition 3.15] we can assume that Cv it is one of the following

matrices:
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2 1 1
1 2 0
0 0 2

0
@

1
A,

2 1 0
1 2 1
0 0 2

0
@

1
A,

2 0 0
1 2 1
0 1 2

0
@

1
A or

2 0 1
1 2 0
0 1 2

0
@

1
A:

Moreover, by [1, Proposition 5.10 and Remark 8.15] each twisting map whose rank matrix is the
last one is standard, and, again by [1, Proposition 3.15], each twisting map whose rank matrix is
the first or the second one is isomorphic to one twisting map whose rank matrix is the third one.
So we only must consider the case

Cv ¼
2 0 0
1 2 1
0 1 2

0
@

1
A:

Since, by [1, Proposition 5.10 and Remark 8.15] the first column of Av is standard, the hypoth-
esis of [1, Theorem 8.21] are satisfied. By this theorem we know that v is twisting map if and
only if the matrices Avð2, 2Þ,Avð3, 2Þ,Avð3, 3Þ and Avð2, 3Þ define a twisting map of K2 with K3

and FðAvð2, 1ÞÞ 
 F0ðAv, 2Þ (in fact, we also need that FðAvði, 1ÞÞ 
 F0ðAv, iÞ for i 2 f1, 3g, but
for i¼ 3 this is trivial and for i¼ 1 this follows from [1, Remark 8.3]). Since we are looking for
non quasi-standard twisting maps, by the discussion in Subsection 2.2 we may assume that
Avð2, 2Þ,Avð2, 3Þ,Avð3, 2Þ and Avð3, 3Þ are as in the statement. But then F0ðAv, 2Þ ¼ f1g and so,
necessarily

Avð2, 1Þ ¼
1 �1 0
0 0 0
0 0 0

0
@

1
A or Avð2, 1Þ ¼

1 0 �1
0 0 0
0 0 0

0
@

1
A:

In both cases setting Avð1, 1Þ :¼ id3 � Avð2, 1Þ,Avð3, 1Þ :¼ 0,Avð1, 2Þ :¼ 0 and Avð1, 3Þ :¼ 0 (
which is forced) , we obtain a twisting map which is not quasi-standard, since a 62 f0, 1g: Note
that the twisting map of the first family corresponding to a is equivalent to the twisting map of
the second family corresponding to 1� a: Note also that the first family is the one listed in the
statement and that, in this case, Bvði, jÞ ¼ Avði, jÞ for all i, j. So the diagonal of ~Cv is (2).

DiagðCvÞ ¼ ð3; 2; 1Þ If v is a not quasi-standard twisting map, then by the last assertion in the
previous case we know that Diagð~CvÞ ¼ ð3, 2, 1Þ: The rank matrix Cv is one of the following
matrices:

3 0 0
0 2 2
0 1 1

0
@

1
A,

3 0 2
0 2 0
0 1 1

0
@

1
A,

3 0 1
0 2 1
0 1 1

0
@

1
A,

3 1 0
0 2 2
0 0 1

0
@

1
A,

3 1 1
0 2 1
0 0 1

0
@

1
A,

3 1 2
0 2 0
0 0 1

0
@

1
A:

By Proposition 1.1, both Cv and ~Cv ¼ C~v must be one of the last two matrices. But by [1,
Corollary 5.11, Proposition 7.9 and Remark 8.15], if Cv or ~Cv is the last matrix, then v is a stand-
ard twisting map. So the only chance of being not standard for the twisting map v is that both
Cv and ~Cv be the second last matrix. In that case by [1, Corollary 5.11] we know that Avðl, lÞ is a
0, 1-matrix for l 2 f1, 2, 3g: Hence, by [1, Remark 8.15] the first two columns of Av are standard.
Moreover, using [1, Corollary 5.9] and [1, equality (3.2)] we obtain

Avð1, 3Þ ¼
� 0 0
� � 0
� � �

0
@

1
A, Avð2, 3Þ ¼

� 0 0
� � 0
� � �

0
@

1
A and Avð1, 3Þ ¼

1 0 0
1 � 0
1 � �

0
@

1
A:

Since rkðAvð1, 3ÞÞ ¼ rkðAvð3, 3ÞÞ ¼ 1 and Avð1, 3Þ þ Avð2, 3Þ þ Avð3, 3Þ ¼ id3, from this it fol-
lows easily that Aði, 3Þkk 2 f0, 1g for i, k 2 f1, 2, 3g: Thus we can apply [1, Proposition 8.17(b)] in
order to obtain that v is quasi-standard. w
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3.3. Tr¼ 5

Theorem 3.3. Up to isomorphisms, the unique family of not quasi-standard twisting maps of K3

with K3 such that
P

Tr ¼ 5 is obtained taking Avð1, 3Þ and Avð2, 3Þ as in Proposition 1.2(2) with
z 2 K�, a 2 K n f0, 1g, i1 ¼ 3, i2 ¼ 1 and i3 ¼ 2, taking

Avð1, 1Þ :¼
1 0 0
0 a 1� a
0 a 1� a

0
@

1
A, Avð2, 1Þ :¼

0 0 0
0 1� a a� 1
0 �a a

0
@

1
A

Avð1, 2Þ :¼
0 0 0
0 a �a
0 a� 1 1� a

0
@

1
A, Avð2, 2Þ :¼

1 0 0
0 1� a a
0 1� a a

0
@

1
A,

and taking Avð3, jÞ :¼ id3 � Avð1, jÞ � Avð2, jÞ for j 2 f1, 2, 3g:
Proof. The diagonal of Cv necessarily is either (1, 2) or (1, 3) . By [1, Proposition 3.15] we can
assume that in the first case the rank matrix Cv is one of

2 1 0
0 2 2
1 0 1

0
@

1
A,

2 1 0
1 2 2
0 0 1

0
@

1
A,

2 0 0
1 2 2
0 1 1

0
@

1
A,

2 0 0
0 2 2
1 1 1

0
@

1
A,

2 1 1
0 2 1
1 0 1

0
@

1
A,

2 1 1
1 2 1
0 0 1

0
@

1
A,

2 0 1
0 2 1
1 1 1

0
@

1
A,

(3.1)

while in the second case the rank matrix Cv is one of

3 2 0
0 1 2
0 0 1

0
@

1
A,

3 0 0
0 1 2
0 2 1

0
@

1
A,

3 0 1
0 1 1
0 2 1

0
@

1
A,

3 2 2
0 1 0
0 0 1

0
@

1
A,

3 2 1
0 1 1
0 0 1

0
@

1
A,

3 1 1
0 1 1
0 1 1

0
@

1
A:

(3.2)

Since ~Cv has at least one 1 in the diagonal, by Proposition 1.1 the rank matrix Cv can not be
either the first in (3.3) or the first three in (3.4). Moreover, by [1, Proposition 5.10], if Cv is the
first or the second matrix of the second row in ( 3.4) , then Avðl, lÞ is a 0, 1-matrix for l 2
f1, 2, 3g: So, in the first case by [1, Remark 8.15] we know that v is a standard twisting map;
while, in the second case, again by [1, Remark 8.15] the first two columns of Av are standard,
and by [1, Corollary 5.9] the matrix Avð3, 3Þ is one of

1 0 0
1 0 0
1 0 0

0
@

1
A,

0 1 0
0 1 0
0 1 0

0
@

1
A or

0 0 1
0 0 1
0 0 1

0
@

1
A: (3.3)

Thus, since Avð2, 1Þ ¼ 0, applying Proposition 1.2(1) with i1 ¼ 3, i2 ¼ 1 and i3 ¼ 2 we obtain
that the last column of Av is quasi-standard. Consequently, if v is not a quasi-standard twisting,
then Cv is among the six last matrices in (3.3) and the last matrix in (3.4) . Since Trð~CvÞ ¼
TrðCvÞ by [1, Proposition 7.9], the same thing happens with ~Cv: Furthermore the same argu-
ments as above show that

1. if Cv is the second matrix in (3.3), then the third column of Av is standard,
2. if Cv is the third or fourth matrix in ( 3.3) , then the first and third columns of Av

are standard,
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3. if Cv is the fifth matrix in (3.3), then the second column of Av is standard and the third col-
umn of Av is quasi-standard,

4. If Cv is the sixth matrix in (3.3), then Avð3, 3Þ is one of (3.5),
5. if Cv is the seventh matrix in (3.3), then the third column of Av is quasi-standard.

If Cv is the second matrix in (3.3), then v is quasi-standard. In fact, otherwise by item (1) we
know that v is an extension of a not quasi-standard twisting map v0 of K2 with K3. Consequently,
by the analysis made in Subsection 2.2 there exists a 2 K n f0, 1g such that

Avð1, 2Þ ¼
0 0 0
0 a �a
0 a� 1 1� a

0
@

1
A, Avð2, 2Þ ¼

1 0 0
0 1� a a
0 1� a a

0
@

1
A, Avð3, 2Þ ¼

0 0 0
0 0 0
0 0 0

0
@

1
A:

Therefore F0ðAv, 2Þ ¼ f1g, which is impossible since FðAvð2, 3ÞÞ 
 F0ðAv, 2Þ by [1, Theorem
8.21(1)] and #FðAvð2, 3ÞÞ ¼ 2 by [1, Remark 8.4].

If Cv is the third or fourth matrix in (3.3) , then by item (2) the first column of Av is
standard and v is the extension of a twisting map of K2 with K3, which is necessarily stand-
ard since, otherwise, by [1, Proposition 7.9] it is dual of some twisting map of the unique
family of non quasi-standard twisting maps of K3 with K2 obtained in the analysis made in
Subsection 2.2 (which is impossible because it implies that c23 ¼ 1) . Consequently, in these
cases v is standard.

If Cv is the fifth matrix in ( 3.3) , then v is quasi-standard. For this, by item ( 3) we only
must prove that the first column of Av is quasi-standard. By [1, Proposition 3.15] we can assume
that

Avð2, 2Þ ¼
1 0 0
0 1 0
1 0 0

0
@

1
A, and so Avð1, 2Þ ¼

0 0 0
0 0 0
�1 0 1

0
@

1
A:

By equality (1.2) and [1, Proposition 3.3], from this and the fact that Avð3, 2Þ ¼ 0 ¼ Avð2, 1Þ it
follows that

Bvð1, 1Þ ¼
� 0 �
0 1 0
� � �

0
@

1
A, Bvð2, 2Þ ¼

� 0 �
0 1 0
� � �

0
@

1
A,

Bvð3, 3Þ ¼
� 0 �
1 0 0
� � �

0
@

1
A, Bvð1, 3Þ ¼

� 0 �
�1 1 0
� � �

0
@

1
A:

By [1, Remark 5.13] neither rkðBvð1, 1ÞÞ nor rkðBvð2, 2ÞÞ can be 1. Hence

rkðBvð1, 1ÞÞ ¼ 2 ¼ rkðBvð2, 2ÞÞ and so rkðBvð3, 3ÞÞ ¼ 1:

Moreover we can assume that rkðBvð1, 3ÞÞ ¼ 1, because, otherwise (modulo equivalence) , ~Cv

is one of the cases 2, 3 or 4 of ( 3.3) , and hence the twisting map v is quasi-standard.
Consequently,

Bvð3, 3Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A and Bvð1, 3Þ ¼

0 0 0
�1 1 0
� � 0

0
@

1
A:
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Hence

Avð3, 3Þ33 ¼ Bvð3, 3Þ33 ¼ 0 and Avð3, 3Þ31 ¼ Bvð1, 3Þ33 ¼ 0, and so Avð3, 3Þ ¼
0 1 0
0 1 0
0 1 0

0
@

1
A:

Then the main diagonal of Bvð1, 1Þ is ð�, 1, 0Þ and the main diagonal of Bvð2, 2Þ is ð�, 1, 1Þ: Since
both matrices have rank 2, it follows that the main diagonal of Bvð1, 1Þ is (1, 1, 0) and the main
diagonal of Bvð2, 2Þ is (0, 1, 1). Moreover, Bvð2, 1Þ33 ¼ Avð3, 3Þ12 ¼ 1 implies Bvð2, 1Þ 6¼ 0, which,
together with rkðBvð1, 1ÞÞ ¼ 2, yields Bvð3, 1Þ ¼ 0: Hence

Avð1, 1Þ31 ¼ Bvð1, 3Þ11 ¼ 0,
Avð1, 1Þ33 ¼ Bvð3, 3Þ11 ¼ 1,
Avð1, 1Þ11 ¼ Bvð1, 1Þ11 ¼ 1,
Avð1, 1Þ22 ¼ Bvð2, 2Þ11 ¼ 0

and
Avð1, 1Þ13 ¼ Bvð3, 1Þ11 ¼ 0:

Furthermore, rkðBvð2, 2ÞÞ ¼ 2 implies that either Bvð1, 2Þ ¼ 0 or Bvð3, 2Þ ¼ 0, and so

Avð1, 1Þ21 ¼ Bvð1, 2Þ11 ¼ 0 or Avð1, 1Þ23 ¼ Bvð3, 2Þ11 ¼ 0:

Using all this and the fact that each row of Avð1, 1Þ sums 1, we obtain that

Avð1, 1Þ ¼
1 0 0
1 0 0
0 0 1

0
@

1
A or Avð1, 1Þ ¼

1 0 0
0 0 1
0 0 1

0
@

1
A:

In both cases Avð1, 1Þ is a standard idempotent, and hence, by [1, Remark 8.15], the first column
of Av is standard, as desired.

Assume now that Cv is the sixth matrix in (3.3) and that the twisting map v is not quasi-
standard. By [1, Remark 3.14] we know that v is an extension of a twisting map v0 of K2 with K3.
Clearly, if the third column of Av is quasi-standard, then v0 must be a non quasi-standard twist-
ing map. But by item (4) above, applying Proposition 1.2(1) with i1 ¼ 3, i2 ¼ 1 and i3 ¼ 2, we
obtain that this is also the case if the third column of Av is not quasi-standard. Thus, by the ana-
lysis made in subsection 2.2 we can assume that there exists a 2 K n f0, 1g such that

Avð1, 1Þ ¼
1 0 0

0 a 1� a

0 a 1� a

0
B@

1
CA, Avð1, 2Þ ¼

0 0 0

0 a �a

0 a� 1 1� a

0
B@

1
CA

Avð2, 1Þ ¼
0 0 0

0 1� a a� 1

0 �a a

0
B@

1
CA, Avð2, 2Þ ¼

1 0 0

0 1� a a

0 1� a a

0
B@

1
CA:

If the third column of Av is quasi-standard, then by [1, Remark 8.4 and Theorem 8.21] we
have

FðAvð1, 3ÞÞ \ FðAvð2, 3ÞÞ ¼ ; and FðAvð1, 3ÞÞ [ FðAvð2, 3ÞÞ 
 F0ðAv, 2Þ ¼ f1g,
which is impossible since it implies that 2 ¼ rkðAvð1, 3ÞÞ þ rkðAvð2, 3ÞÞ � 1: Thus it is not quasi-
standard. In the two last cases in (3.5) a straightforward computation using [1, Propositions 3.15
and 1.2(2)] leads to the contradiction Avð1, 2Þ11 6¼ 0: Hence Avð3, 3Þ is the first matrix of (3.5) ,
and so necessarily there exists z 2 K� such that Avð1, 3Þ and Avð2, 3Þ are as in Proposition 1.2(2).

Finally Avð3, 1Þ and Avð3, 2Þ are determined by the equality
P3

i¼1 Avði, jÞ ¼ id3: Since these
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matrices satisfy the conditions of [1, Corollary 3.6], we obtain a family of not quasi-standard
twisting maps parameterized by a 2 K n f0, 1g and z 2 K�: Furthermore a direct computation
shows that

~Cv ¼
3 1 1
0 1 1
0 1 1

0
@

1
A: (3.4)

The same argument shows that if ~v is not quasi-standard and ~Cv is the sixth matrix in (3.3), then
Cv is the matrix at the right side of equality (3.6).

Assume now that Cv is the seventh matrix in (3.3). We claim that v is quasi-standard. By item
(5) we know that the third column of Av is quasi-standard. Moreover by [1, Definition 8.2(2) ,
Remark 8.4 and Propositions 3.3(3) and 3.15], we can assume that

Avð1, 3Þ ¼
0 0 0
�k 0 k
�1 0 1

0
@

1
A, Avð2, 3Þ ¼

0 0 0
k� 1 1 �k
0 0 0

0
@

1
A and Avð3, 3Þ ¼

1 0 0
1 0 0
1 0 0

0
@

1
A,

for some k 2 K: Using this and the fact that Avð1, 2Þ ¼ Avð2, 1Þ ¼ 0, we obtain

Bvð1, 1Þ ¼
� 0 �
� � 0
0 0 1

0
@

1
A, Bvð2, 2Þ ¼

� 0 �
� � 0
0 1 0

0
@

1
A and Bvð3, 3Þ ¼

� 0 �
� � 0
1 0 0

0
@

1
A:

By [1, Remark 5.13] neither rkðBvð1, 1ÞÞ nor rkðBvð2, 2ÞÞ can be 1. Hence

rkðBvð1, 1Þ ¼ 2 ¼ rkðBvð2, 2ÞÞ, and so Bvð3, 3Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A:

Moreover Bvð1, 2Þ 6¼ 0, because Bvð1, 2Þ33 ¼ Avð3, 3Þ21 ¼ 1: Since

rkðBvð1, 2ÞÞ þ rkðBvð2, 2ÞÞ þ rkðBvð3, 2ÞÞ ¼ 3,

we have rkðBvð1, 2ÞÞ ¼ 1 and Bvð3, 2Þ ¼ 0: Hence

~Cv ¼
2 1 �
� 2 �
� 0 1

0
@

1
A:

If v is not quasi-standard, then ~Cv can not be the sixth matrix in (3.3), because otherwise Cv is
the sixth matrix in (3.4). But we already have proven that in the other cases ~v is quasi-standard
and so, by [1, Proposition 8.20], we conclude that v is also quasi-standard.

Assume finally, that v is a non quasi-standard twisting map of K3 with K3 and Cv is the last
matrix in (3.4) . By [1, Proposition 8.20] we know that ~v is not quasi-standard, and so ~Cv is
necessarily the sixth matrix in (3.3) or the last matrix in (3.4). In the first case we obtain a family
of not quasi-standard twisting maps v dual to the family found above when analyzing the case
where Cv is the sixth matrix in (3.3); while, in the second case, by Proposition 1.1

Avð2, 2Þ ¼ Avð3, 3Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A,

which, by Proposition 1.2(1) implies that the last two columns of Av are quasi-standard. Since
the first column of Av has reduced rank 0, we conclude that v is quasi-standard. w

3.4
P

Tr¼ 4
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Theorem 3.4. All the twisting maps of K3 with K3 with
P

Tr ¼ 5 are quasi-standard twist-
ing maps.

Proof. By [1, Proposition 3.15] in order to prove this it suffices to check that v is quasi-standard
if its rank matrix Cv is one of the following matrices:

2 0 2
1 1 0
0 2 1

0
@

1
A,

2 0 0
1 1 2
0 2 1

0
@

1
A,

2 2 2
1 1 0
0 0 1

0
@

1
A,

2 2 0
1 1 2
0 0 1

0
@

1
A,

2 2 1
1 1 1
0 0 1

0
@

1
A,

2 0 1
1 1 1
0 2 1

0
@

1
A,

2 1 0
1 1 2
0 1 1

0
@

1
A,

2 1 2
1 1 0
0 1 1

0
@

1
A,

2 1 1
1 1 1
0 1 1

0
@

1
A:

(3.5)

By Proposition 1.1, the rank matrix Cv can not be the first matrix in the first row. Also Cv can
not be the second matrix, because otherwise it would be the extension of a twisting map v0 of K2

with K3 with Cv0 ¼
�
1 2
2 1

�
, but

P
Tr ¼ 2 is impossible by [1, Remark 5.2]. If Cv is the third,

fourth or fifth matrix, then by [1, Remark 3.14] we know that v is a extension of a twisting map
v0 of K2 with K3, that is necessarily standard (see the arguments in the analysis of the cases in
which Cv is the third or fourth matrix in ( 3.3) ) . Moreover, in the first two cases by [1,
Proposition 5.10 and Remark 8.5] the third column of Av is standard; while, if Cv is the fifth
matrix, then by [1, Proposition 5.10] the matrix Avð3, 3Þ is one of ( 3.5) , and so, applying
Proposition 1.2(1) with i1 ¼ 3, i2 ¼ 1 and i3 ¼ 2, we obtain that the last column of Av is quasi-
standard (since the first row of Av is standard). Hence, if v is not quasi-standard, then necessarily
Cv is one of the last four matrices. By [1, Propositions 3.15 and 8.20] the same happens with C~v

is one of the above matrices. In particular Bvð3, 1Þ ¼ 0, and so Avði, lÞ13 ¼ 0 for all i, l.
Consequently, by [1, Remark 5.13], we have

Avð2, 2Þ ¼
� � 0
� � 0
� � 0

0
@

1
A and Avð3, 3Þ ¼

� � 0
� � 0
� � 0

0
@

1
A,

Moreover, again by [1, Remark 5.13], from the equality Avð3, 1Þ ¼ 0 it follows that

Bvð2, 2Þ ¼
� � 0
� � 0
� � 0

0
@

1
A and Bvð3, 3Þ ¼

� � 0
� � 0
� � 0

0
@

1
A:

Hence, Avð3, 3Þ22 ¼ Bvð2, 2Þ33 ¼ 0 and Bvð3, 3Þ22 ¼ Avð2, 2Þ33 ¼ 0: Thus,

Avð3, 3Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A and Bvð3, 3Þ ¼

1 0 0
1 0 0
1 0 0

0
@

1
A, (3.6)

where we had used again [1, Remark 5.13]. Since

Avð3, 2Þ22 ¼ Bvð2, 2Þ23 ¼ 0, Avð3, 2Þ33 ¼ Bvð3, 3Þ23 ¼ 0, Avð3, 2Þ13 ¼ 0

and TrðAvð3, 2ÞÞ ¼ rkðAvð3, 2ÞÞ ¼ 1, we have
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Avð3, 2Þ ¼
1 �1 0
0 0 0
� � 0

0
@

1
A:

Hence,

Avð1, 2Þ ¼ id� Avð2, 2Þ � Avð3, 2Þ ¼
� � 0
� � 0
� � 1

0
@

1
A ¼

0 0 0
0 0 0
� � 1

0
@

1
A,

where for the last equality we use that rkðAvð1, 2ÞÞ ¼ 1, and so

Avð2, 2Þ ¼ id� Avð1, 2Þ � Avð3, 2Þ ¼
0 1 0
0 1 0
� � 0

0
@

1
A ¼

0 1 0
0 1 0
0 1 0

0
@

1
A,

where the last equality follows from [1, Remark 5.13]. Consequently, since Avð3, 1Þ ¼ 0, applying
Proposition 1.2(1) with i1 ¼ 2, i2 ¼ 1 and i3 ¼ 3, we obtain that the second column of Av is
quasi-standard. By this and the first equality in (3.8) we can apply Proposition 1.2(1) with i1 ¼
3, i2 ¼ 1 and i3 ¼ 2, in order to obtain that the last column of Av also is quasi-standard. Arguing
as above we conclude that

Bvð1, 2Þ ¼
0 0 0
0 0 0
� � 1

0
@

1
A, Bvð3, 2Þ ¼

1 �1 0
0 0 0
� � 0

0
@

1
A and Bvð2, 2Þ ¼

0 1 0
0 1 0
0 1 0

0
@

1
A:

Hence

Avð1, 1Þ21 ¼ Bð1, 2Þ11 ¼ 0, Avð1, 1Þ23 ¼ Bð3, 2Þ11 ¼ 1 and Avð1, 1Þ22 ¼ Bð2, 2Þ11 ¼ 0:

Since moreover Avð1, 1Þ13 ¼ 0, we have

Avð1, 1Þ ¼
� � 0
0 0 1
� � 1

0
@

1
A ¼

1 � 0
0 0 1
� � 1

0
@

1
A ¼

1 0 0
0 0 1
0 0 1

0
@

1
A,

where in the second equality we use that TrðAvð1, 1ÞÞ ¼ rkðAvð1, 1ÞÞ ¼ 2, and in the last one,
that rkðAvð1, 1ÞÞ ¼ 2 and the sum of the element of the each row of Avð1, 1Þ is equal to 1. So, by
[1, Remark 8.15] the first column of Av is standard. w

3.4.1
P

Tr¼ 3

Theorem 3.5. Let v : K3 � K3 ! K3 � K3 be a twisting map. Assume that
P

Tr ¼ 3. If v satisfies
the conditions required in items (1, 2) or (3) bellow, then v is not quasi-standard. Moreover, each
not quasi-standard twisting map of K3 with K3, such that

P
Tr ¼ 3, is equivalent to one of the

described in (1, 2) and (3).

1. There exists in invertible vectors v1, v2 2 K3 with detðvT1 vT2 vT3 Þ ¼ 1, where v3 :¼ 1, such that

Avð1, lÞ :¼ ðv�l � v1ÞTðvl � ðv2 � v3ÞÞ,
Avð2, lÞ :¼ �ðv�l � v2ÞTðvl � ðv1 � v3ÞÞ

and
Avð3, lÞ :¼ ðv�l � v3ÞTðvl � ðv1 � v2ÞÞ

for all l.
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1. There exists a 2 K n f0, 1g such that

Avð1, 1Þ ¼
a b 0
a b 0
a b 0

0
@

1
A, Avð2, 1Þ ¼

b 0 �b
�a 0 a
�a 0 a

0
@

1
A, Avð3, 1Þ ¼

0 �b b
0 a �a
0 �b b

0
@

1
A,

Avð1, 2Þ ¼
a �a 0
�b b 0
�b b 0

0
@

1
A, Avð2, 2Þ ¼

b 0 a
b 0 a
b 0 a

0
@

1
A, Avð3, 2Þ ¼

0 a �a
0 a �a
0 �b b

0
@

1
A,

Avð1, 3Þ ¼
a �a 0
�b b 0
a �a 0

0
@

1
A, Avð2, 3Þ ¼

b 0 �b
b 0 �b
�a 0 a

0
@

1
A, Avð3, 3Þ ¼

0 a b
0 a b
0 a b

0
@

1
A,

where b :¼ 1� a:

1. There exists a 2 K n f0, 1g such that

Avð1, 1Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A, Avð2, 2Þ ¼

0 a b
0 a b
0 a b

0
@

1
A and Avð3, 3Þ ¼

0 b a
0 b a
0 b a

0
@

1
A,

where b :¼ 1� a, and there exist x, y, z 2 K� with y ¼ að1�aÞ
x such that

Avð2, 1Þ ¼
0 0 0

�a� z a z
�bðaþ zÞ

z
ab
z

b

0
BB@

1
CCA, Avð3, 1Þ ¼

0 0 0
z � b b �z

aðb� zÞ
z

�ab
z

a

0
BB@

1
CCA,

Avð1, 2Þ ¼
1 �a� x x� b
0 0 0
0 0 0

0
@

1
A, Avð3, 2Þ ¼

0 x �x
0 b �b
0 �a a

0
@

1
A,

Avð1, 3Þ ¼
1 y� b �a� y
0 0 0
0 0 0

0
@

1
A, Avð2, 3Þ ¼

0 �y y
0 a �a
0 �b b

0
@

1
A:

Proof. By [1, Proposition 6.1] we know that Cv ¼ ~Cv ¼ J3: By [1, Remark 5.13] each matrix
Avði, iÞ and each matrix Bvðj, jÞ has their three equal rows and, moreover, the sum of the
element of each row is 1. Hence, for each one of these matrices we have the following possi-
bilities: It is equivalent to a standard idempotent 0, 1-matrix via identical permutations in
rows and columns, it has all entries non-zero, or it has two non-zero columns and one zero
column. Assume that one of the Avðl, lÞ has all its entries non-zero. By [1, Proposition 6.2]
the image of each Avði, lÞ is generated by an invertible element vi 2 K3: Consequently, by [1,
Proposition 6.5] the twisting map v is obtained as in [1, Theorem 6.3] with v1, v2 and v3
such that vl ¼ 1 and detðvT1 vT2 vT3 Þ ¼ 1: Moreover, by [1, Proposition 3.15] we can assume that
l¼ 3. Suppose now that two of the matrices Avð1, 1Þ, Avð2, 2Þ and Avð3, 3Þ are different 0, 1-
matrices. Since TrðBvðj, kÞÞ ¼ rkðBvðj, kÞÞ, this implies that all the matrices Bvðj, kÞ have zeroes
and ones in its diagonal entries. Furthermore, by [1, Remark 5.13] we know that each Bvðj, jÞ
is a (0, 1)-matrix. Therefore the hypothesis of [1, Proposition 8.17(b)] are fulfilled by all the
columns of Bv, and so ~v is a quasi-standard twisting map. Therefore, by [1, Proposition
8.20] the twisting map v is also. Suppose now that two of Avð1, 1Þ, Avð2, 2Þ and Avð3, 3Þ are
equal 0, 1-matrices. By [1, Proposition 3.15] we can assume that they are Avð1, 1Þ and
Avð2, 2Þ and that
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Avð1, 1Þ ¼ Avð2, 2Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A:

Using equality (1.2) and that TrðBvðj, kÞÞ ¼ 1 for all j, k 2 N�
3 , we obtain that

Bvðj, kÞ33 ¼
�1 if j ¼ 1,
1 otherwise:

�

Consequently Avð3, 3Þkj ¼ BvðjkÞ33 6¼ 0 for all i, j 2 N�
3 and we are in the first case considered in

this subsection. So there are two cases left:

1. All three matrices Avð1, 1Þ,Avð2, 2Þ and Avð3, 3Þ have exactly one zero column.
2. One of them is a 0, 1-matrix and the other two have exactly one zero column.

Consider the first case. We claim that the zero columns of Avð1, 1Þ,Avð2, 2Þ and Avð3, 3Þ are
different. Suppose this is false. By [1, Proposition 3.15] we can assume that

Avð1, 1Þ ¼
a 1� a 0
a 1� a 0
a 1� a 0

0
@

1
A and Avð2, 2Þ ¼

b 1� b 0
b 1� b 0
b 1� b 0

0
@

1
A

with a, b 2 K n f0, 1g: Using again equality (1.2) and that TrðBvðj, kÞÞ ¼ 1 for all j, k 2 N�
3 , we

obtain that

Bvðj, kÞ33 ¼
1� a� b if j ¼ 1,
aþ b� 1 if j ¼ 2,
1 if j ¼ 3:

8<
:

Consequently

Avð3, 3Þ ¼
1� a� b aþ b� 1 1
1� a� b aþ b� 1 1
1� a� b aþ b� 1 1

0
@

1
A

which contradicts that Avð3, 3Þ has exactly one zero column. So the claim is true. Again by [1,
Proposition 3.15] we can assume that

Avð1, 1Þ ¼
a 1� a 0
a 1� a 0
a 1� a 0

0
@

1
A, Avð2, 2Þ ¼

b 0 1� b
b 0 1� b
b 0 1� b

0
@

1
A and Avð3, 3Þ ¼

0 c 1� c
0 c 1� c
0 c 1� c

0
@

1
A

with a, b, c 2 K n f0, 1g: By equality (1.2) and [1, Remark 5.13] we have

Bvð1, 1Þ ¼
a b 0
a b 0
a b 0

0
@

1
A, Bvð2, 1Þ ¼

1� a � �
� 0 �
� � c

0
@

1
A, Bvð3, 1Þ ¼

0 � �
� 1� b �
� � 1� c

0
@

1
A

Bvð1, 2Þ ¼
a � �
� b �
� � 0

0
@

1
A, Bvð2, 2Þ ¼

1� a 0 c
1� a 0 c
1� a 0 c

0
@

1
A, Bvð3, 2Þ ¼

0 � �
� 1� b �
� � 1� c

0
@

1
A

Bvð1, 3Þ ¼
a � �
� b �
� � 0

0
@

1
A, Bvð2, 3Þ ¼

1� a � �
� 0 �
� � c

0
@

1
A, Bvð3, 3Þ ¼

0 1� b 1� c
0 1� b 1� c
0 1� b 1� c

0
@

1
A,

Since TrðBvðj, kÞÞ ¼ 1 this implies that b ¼ 1� a and c¼ a. Using this and equality (1.2) , we
obtain that

COMMUNICATIONS IN ALGEBRAVR 3631



Avð1, 2Þ ¼
a � �
� 1� a �
� � 0

0
@

1
A, Avð2, 1Þ ¼

1� a � �
� 0 �
� � a

0
@

1
A, Avð3, 1Þ ¼

0 � �
� a �
� � 1� a

0
@

1
A

Avð1, 3Þ ¼
a � �
� 1� a �
� � 0

0
@

1
A, Avð2, 3Þ ¼

1� a � �
� 0 �
� � a

0
@

1
A, Avð3, 2Þ ¼

0 � �
� a �
� � 1� a

0
@

1
A

We claim that Avð1, 2Þ13 ¼ Avð1, 2Þ23 ¼ 0: Assume for example that Avð1, 2Þ23 6¼ 0: Since the
second row of Avð1, 2Þ is not zero and rkðAvð1, 2ÞÞ ¼ 1, there exists k 2 K such that

kAvð1, 2Þ23 ¼ Avð1, 2Þ33 ¼ 0 and kAvð1, 2Þ21 ¼ Avð1, 2Þ31:
But then k¼ 0 and so Bvð1, 3Þ21 ¼ Avð1, 2Þ31 ¼ 0, which is impossible since a 6¼ 0, b 6¼ 0 and
rkðBvð1, 3ÞÞ ¼ 1: Hence the claim is true. Similarly

Avð1, 3Þ13 ¼ 0, Avð1, 3Þ23 ¼ 0, Avð2, 1Þ12 ¼ 0, Avð2, 1Þ32 ¼ 0, Avð2, 3Þ12 ¼ 0,
Avð2, 3Þ32 ¼ 0, Avð3, 1Þ21 ¼ 0, Avð3, 1Þ31 ¼ 0, Avð3, 2Þ21 ¼ 0, Avð3, 2Þ31 ¼ 0:

Using these facts, that Avði, lÞ1 ¼ 0 for all i 6¼ l, and that
P3

i¼1 Avði, lÞ ¼ id3 for all l, we obtain
that the matrices Avði, jÞ are as in item (2). We consider now the second case. By [1, Proposition
3.15] we can assume that

Avð1, 1Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A (3.7)

and that the first column is not quasi-standard. By Proposition 1.2(2) and [1, Remark 5.13] there
exist z 2 K� and a 2 K n f0, 1g such that

Avð2, 1Þ ¼
0 0 0

�a� z a z
ða� 1Þðaþ zÞ

z
að1� aÞ

z
1� a

0
BB@

1
CCA, Avð3, 1Þ ¼

0 0 0
aþ z � 1 1� a �z

að1� a� zÞ
z

aða� 1Þ
z

a

0
BB@

1
CCA,

(3.8)

Avð2, 2Þ ¼
� a �
� a �
� a �

0
@

1
A, Avð3, 3Þ ¼

� 1� a �
� 1� a �
� 1� a �

0
@

1
A, (3.9)

Avð2, 3Þ ¼
� � �
� a �
� � �

0
@

1
A, Avð3, 2Þ ¼

� � �
� 1� a �
� � �

0
@

1
A: (3.10)

So, by equality (1.2) and [1, Remark 5.13],

Bvð1, 1Þ ¼
1 0 0
1 0 0
1 0 0

0
@

1
A, Bvð2, 2Þ ¼

0 a 1� a
0 a 1� a
0 a 1� a

0
@

1
A, Bvð3, 3Þ ¼

0 1� a a
0 1� a a
0 1� a a

0
@

1
A:

Hence, again by equality (1.2) and [1, Remark 5.13],

Avð2, 2Þ ¼
0 a 1� a
0 a 1� a
0 a 1� a

0
@

1
A and Avð3, 3Þ ¼

0 1� a a
0 1� a a
0 1� a a

0
@

1
A: (3.11)

Using equality (1.2) , that Bvð3, 2Þ1 ¼ Bvð2, 3Þ1 ¼ 0 and that rkðBvð3, 2ÞÞ ¼ rkðBvð2, 3ÞÞ ¼ 1, we
obtain
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Bvð3, 2Þ ¼
0 z �z
0 1� a a� 1
0 �a a

0
@

1
A and Bvð2, 3Þ ¼

0
að1� aÞ

z
aða� 1Þ

z
0 a �a
0 a� 1 1� a

0
BB@

1
CCA:

Consequently, since id ¼ P
i Bvði, jÞ, we have

Bvð1, 2Þ ¼
1 �a� z aþ z � 1
0 0 0
0 0 0

0
@

1
A and Bvð1, 3Þ ¼

1
ða� 1Þðaþ zÞ

z
að1� a� zÞ

z
0 0 0
0 0 0

0
BB@

1
CCA:

Using now equality (1.2) and that Avð3, 2Þ1 ¼ Avð2, 3Þ1 ¼ 0, we obtain that there exits x, y 2 K,
such that

Avð3, 2Þ ¼
0 x �x
0 1� a a� 1
0 �a a

0
@

1
A and Avð2, 3Þ ¼

0 �y y
0 a �a
0 a� 1 1� a

0
@

1
A: (3.12)

Consequently, since id ¼ P
i Avði, jÞ, we have

Avð1, 2Þ ¼
1 �a� x aþ x� 1
0 0 0
0 0 0

0
@

1
A and Avð1, 3Þ ¼

1 aþ y� 1 �a� y
0 0 0
0 0 0

0
@

1
A: (3.13)

Finally, again by equality (1.2),

Bvð2, 1Þ ¼
0 0 0

�a� x a x
aþ y� 1 �y 1� a

0
@

1
A and Bvð1, 3Þ ¼

0 0 0
aþ x� 1 1� a �x
�a� y y a

0
@

1
A:

Since rkðBvð2, 1ÞÞ ¼ 1 we have xy ¼ að1� aÞ: So x, y 2 K� and y ¼ að1�aÞ
x : Reciprocally a dir-

ect computation shows that if A ¼ ðAvði, lÞÞi, l2N�
3
, where the A( i, l) ’s are the matrices of (3.9) ,

(3.10), (3.13), (3.14) and (3.15), where a 2 K n f0, 1g and x, y, z 2 K� with y ¼ að1�aÞ
x , then A sat-

isfies the conditions in [1, Proposition 3.11]. w
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