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Abstract

We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using
arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-
Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This pic-
ture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is
not always applicable to systems with higher dimensions.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In a recent publication on the classical limit and its relation with quantum chaos [1], attention was drawn to a char-
acteristic of a type of Sinai billiard: the existence of local constants of motion. Then, it arises the question whether there
are other non-Hamiltonian systems on phase space that have local constants of motion and admit a Hamiltonian for-
malism. Although this problem has been discussed with some generality elsewhere [2,3], it is rather unknown to the
physics community. In this paper, we want to present some very handy examples that illustrate this problem in a
way that be accessible to a wide audience.

We shall see that, under very general conditions, two-dimensional (in phase space) dynamical systems have local
constants of motion, although this result cannot be extended to 2N dimensions with N > 1 using the arguments of
the present work. As a consequence, we can define a sort of locally defined Hamiltonian for some type of dissipative
systems, whose Hamilton equations provide local solutions for the equations of motion in phase space.

As an illustrative example, we begin with the discussion of a one-dimensional particle subjected to a dissipative force
such as friction. The position of this particle obeys the following equation of motion:
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where a is a constant, which we can assume positive (a > 0) without loss of generality. In order to translate Eq. (1) to the
phase space language, let us construct from (1) the following system:
_x ¼ y; _y ¼ �ay: ð2Þ
The solutions of both (1) and (2) are trivial:
yðtÞ ¼ y0e�at;

xðtÞ ¼ x1 �
y0

a
e�at:

ð3Þ
We note that the system given by (2) has a constant of motion which can be straightforwardly obtained. If we divide
the second row of (2) by the former, we readily obtain:
dy
dx
¼ �a) y ¼ �axþ C; ð4Þ
where C is an arbitrary constant. From (4), it is obvious that
F þðx; yÞ ¼ y þ ax ð5Þ
is a constant of motion for the system that fulfills (1).
Let us study the motion given by system (2) on phase space. First of all, from either (2), (3) or (5), we note that all

points in the real axis are fixed points. For any initial condition (x0,y0), we have that:
lim
t!þ1

yðtÞ ¼ 0; lim
t!þ1

xðtÞ ¼ x1: ð6Þ
However, if t # �1, both x(t) and y(t) go to the infinity. We note that the solutions of system (2) are all half lines,
pointing in the direction of the real axis, plus the fixed points in the real axis. This situation is depicted in Fig. 1.

Going further with our discussion, note that system (2) cannot have been obtained from a system of Hamilton equa-
tions, since no function H � H(x,y) can satisfy the following system:
dx
dt
¼ y ¼ oH

oy
;

dy
dt
¼ �ay ¼ � oH

ox
: ð7Þ
This is equivalent to say that the differential form
ay dxþ y dy ð8Þ
is not exact. However, we know that any differential form like M(x,y)dx + N(x,y)dy always admit an integrating factor,
under the assumption of certain regularity conditions on M(x,y) and N(x,y) (see Appendix). In our case, the integrating
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Fig. 1. Plot of solutions of system (2).
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factor is given by Cy�1, where C is an arbitrary constant. If we set C = 1, and multiply (8) by the integrating factor, we
obtain the differential form:
System

_x ¼ y;
_x ¼ 1;
dF ¼ adxþ dy; ð9Þ
which is obviously exact. Its potential function is precisely (5). If we use F(x,y) = ax + y as a Hamiltonian and use the
Hamilton equations, we obtain the following system:
dx
dT
¼ 1;

dy
dT
¼ �a ð10Þ
for which the solutions are of the form (5). Note that we have introduced a new parameter T that replaces time. The
relation of T with time will be discussed later.

Obviously, if we divide the second equation in (10) by the former, we obtain the Pfaff equation dF = adx + dy = 0.
Then, we can compare system (2) and system (10) to conclude that they cannot have the same set of solutions because

(i) System (10) has no fixed points. On the other hand, the system given by (2) has an infinite number of fixed points
that cover the real axis.

(ii) If (x(T),y(T)) are solutions for (10), we always have:
lim
T!�1

xðT Þ ¼ �1; lim
T!�1

yðT Þ ¼ �1: ð11Þ
Note on the big difference between (11) and the behavior as t # ±1 of the solutions of (2). This situation is sur-
prising because both systems have analogous Pfaff equations. The sole difference between their corresponding Pfaff dif-
ferential forms ((8) and (9)) come from the multiplication by the integrating factor. We summarize this fact in the
following table:
Pfaff equation

_y ¼ �ay aydx + ydy = 0
_y ¼ �a adx + dy = 0
Then, although both Pfaff equations only differ by the integrating factor, we see through their corresponding systems
that their solutions are not the same. However, there is a way to make both Pfaff equations dynamically equivalent in
such a way that their solutions in the phase space (x,y) coincide. We have seen that the integrating factor depends on an
arbitrary constant. We can make this constant equal to +1 on the upper half plane and equal to �1 on the lower half
plane. Thus, the potential function or Hamiltonian remains to be (5) on the upper half plane and
F �ðx; yÞ ¼ �ax� y ð12Þ
on the lower half plane. In this latter case, the Hamilton equations for (12) give
dx
dT
¼ �1;

dy
dT
¼ a: ð13Þ
The solutions of (10) and (13) are respectively:
xðT Þ ¼ T þ Cx; yðT Þ ¼ �aT þ Cy ð14Þ
and
xðT Þ ¼ �T þ Dx; yðT Þ ¼ aT þ Dy ; ð15Þ
where Cx, Dx, Cy and Dy are arbitrary constants. If we want y(0) = 0, then Cy = Dy = 0. Note that x(0) = Cx in (13) and
x(0) = Dx in (14), so that we may want Cx = Dx to match solutions above and below the real axis. If Eq. (14) is the
solution in the upper half plane, one needs that T 6 0 (with T = 0 on the real line only), since a > 0. Also, if (15) gives
the solution in the lower half plane, T has to be negative as well. Thus, the solutions are now straight half lines oriented
towards the real axis, i.e., as T grows to zero the flux is directed towards the real axis as in Fig. 1. Note that F(x,y) is
discontinuous on the real axis. In order to maintain the character of fixed points for the points on R, we may assume
that for each x0 2 R we have that F(x0,0) = x0.

Thus, in order to produce the same flow as the system given by (2), we have to divide the phase plane into three
sectors and provide a different Hamiltonian function for each sector. This gives the following table:



Region in phase space Hamiltonian function

y > 0 y + ax

y = 0 x0 (initial condition)
y < 0 �y � ax
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Note that, properly speaking the real line is not a sector, but each point in the real line should be considered as a
sector because their character of fixed points.

We can compare solutions (3) of system (2) with (14,15). If y0 > 0, i.e., the initial condition is in the upper half plane,
comparison between (3) and (14) gives:
dT ¼ �y0e�at dt: ð16Þ
If y0 < 0, initial condition in the lower half plane, we have that
dT ¼ þy0e�at dt: ð17Þ
In both cases, we have a complete agreement with previous results as the parameter T is always negative and goes to
zero as t #1. Also this confirms the phase space diagram given in Fig. 1.

In conclusion, we have studied the behavior of the free particle with friction (or viscosity) in one dimension and we
have observed the following facts:
• Although this system is not conservative, in the sense that the system (2) does not represent a system of Hamilton
equations, we can find constants of motion, which are not globally defined. They are constants of motion in the sense
that they are constant along each curve solution.

• As the curves solution are defined in sectors of the phase plane, the constants of motion are different on each of these
sectors. The constants of motion are given by different values of the potential function F(x,y) in different sectors.
These different values appear because of the need of different integrating factors, in each sector, of a Pfaff differential
form related to the equations of motion.

• The potential function F(x,y) works in each sector as a Hamiltonian, in the sense that Hamilton equations, when
applied to F(x,y) in each sector, give the equations of motion of the system. Thus, we have seen that a non-Ham-

iltonian, non-conservative system could be Hamiltonian and conservative at least by sectors.
• In order to complete this equivalence between Hamiltonian and non-Hamiltonian systems, we have to replace the

time scale of a non-Hamiltonian system, given by t by a new parameter T. The relation between both is given, in
the present case, by (16) and (17). Note that the time scale changes within each region.

• Nevertheless, it is not strictly correct to say that we have replaced a dissipative system by a local Hamiltonian system
on phase plane in the usual sense [4]. First of all, the Hamiltonian F(x,y) is defined on regions which are not all open
sets (see above diagram). In the open sets given by the upper and the lower half plane, the values of the Hamiltonian
F(x,y) are different, but these open sets do not cover the whole phase plane. It remains the real line, in which every
point could be considered as a ‘‘sector’’.

• Note that in the limit a # 0, we recover the behavior of the one-dimensional free particle, for which the constant of
motion is just the momentum y, i.e., F(x,y) � y. Also, if we take the limit in (25) below, as a # 0, since ±y�1 is the
integrating factor (see next section), we have that
T ¼ �
Z t

0

yðtÞdt ¼ � y0

a
ðe�at � 1Þ !

a!0
jy0jt:
Thus in the limit a # 0, we obtain T = jy0jt. This shows that the new parameter T does not have the dimensions of a
time, although it serves equally well as a time parameter. To see the relation of T with a time, we first note that, after (3),
a must have dimensions of the inverse of a time. Then, if we write (16) and (17) as T = ±y0s, with s = a�1e�at, we see
that s is a parameter with dimensions of time. In terms of s, the trajectories can be written as:
xðsÞ ¼ x0 � y0s; yðsÞ ¼ �y0as:
Also, note that in the limit a # 0, we have here that s # t, where t is the time in (2) and (3). This is an expected result
because in the non-dissipative limit, we have to obtain the free particle.
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1.1. A second form for the sectorial Hamiltonians of the free particle with friction

The Hamiltonian functions on the above result strongly depend on the choice of the integrating factor. On the other
hand, for any choice we must recover in the limit a # 0 the Hamiltonian of the free particle. Is this correct? What we
can expect in general if we use another choice?

Let us go back to Eq. (8) and consider the following integrating factor:
Regio

y > �
y < �
y < �
y > �
y þ ax
y

: ð18Þ
If we carry (18) into (8), we obtain the following Pfaff equation:
dF ðx; yÞ ¼ aðy þ axÞdxþ ðy þ axÞdy ¼ 0; ð19Þ
whose solution is:
F ðx; yÞ ¼ 1

2
ðaxþ yÞ2: ð20Þ
After (20), we note the following facts:

1. First of all if a # 0, we recover the usual Hamiltonian of the free particle.
2. As the Hamiltonian function in (20) is a function of the Hamiltonian functions F±(x,y) = ±(ax + y) of the previous

section, in fact the square divided by two, we know that both give the same curves solution. This is obvious. Assume
that /(F) is a differentiable function of the Hamiltonian F. Then,
d/ðF Þ ¼ d/ðF Þ
dF

oF
ox

dxþ d/ðF Þ
dF

oF
oy

dy ¼ d/ðF Þ
dF

½dF � ¼ 0:

Then, if /(Æ) has a non-vanishing derivative, the Pfaff equation dF = 0 is equivalent to d/(F) = 0, which proves our
assertion.

3. Also from (20), we can derive the equations of motion:
dx
dS
¼ y þ ax;

dy
dS
¼ �aðy þ axÞ; ð21Þ
where S is the new ‘‘time’’ parameter. The set of fixed points is given by the straight line ax + y = 0. Thus, we cannot
recover completely the picture given by the Hamiltonians F±(x,y) = ±(ax + y). If we want to recover a picture like the
given by (10), we have to state that each point in the real axis is fixed. In addition, in order to obtain the same direction
of the flux in each half plane, we have to make a proper choice of the signs in the integrating factor, and therefore in the
Hamiltonian, as indicated in the following table and in Fig. 2.
n Hamiltonian

ax, y > 0 1
2 ðaxþ yÞ2

ax, y > 0 � 1
2 ðaxþ yÞ2

ax, y < 0 1
2 ðaxþ yÞ2

ax, y < 0 � 1
2 ðaxþ yÞ2
Note that, after Eq. (10), and taking into account that ax + y is a constant of motion if y > 0, i.e., this amount is
constant on each curve solution in the upper half plane, we have that:
1 ¼ dx
dT
¼ dx

dT
¼ dx

dS
dS
dT
¼ ðaxþ yÞ dS

dT
ð22Þ
and, then, on the upper half plane,
dT ¼ ðaxþ yÞdS: ð23Þ
If ax + y > 0, the parameters T and S have the same sign and their flows are oriented in the same direction, which in this
case is the real axis. Therefore, the dynamics produced by (21) is totally equivalent to the dynamics produced by (10) in
the sector given by ax + y > 0, y > 0, i.e., in the upper half plane to the right of the line y = �ax. However, on the left of
this line, we have that ax + y < 0 and therefore S and T have opposite signs. The only possibility for recovering the right
direction of the flow is producing the dynamics in this sector by using the Hamiltonian function � 1

2
ðaxþ yÞ2. The sign



Fig. 2. Plot of the form of the sectorial Hamiltonian F(x,y) as introduced in the table above.
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minus is obtained by multiplying the integrating factor (18) by minus. In the lower half plane a similar situation arises.
Note that the fixed points are those in the line y + ax = 0.

In the next section, we generalize the above ideas and we explore the limits of this generalization.
2. Dynamical systems in two-dimensional phase space. A general discussion

Let us consider the following system of equations in phase space:
_x ¼ dx
dt
¼ f ðx; yÞ; _y ¼ dy

dx
¼ gðx; yÞ: ð24Þ
We are assuming that the functions f(x,y) and g(x,y) satisfy sufficient conditions for the existence and uniqueness of
local solutions with given initial conditions. In particular, they satisfy the conditions of the Picard–Lindelöf theorem
that assumes that both f(x,y) and g(x,y) are continuous on a certain region and satisfy a Lipschitz condition for the
second variable y [5,6].

System (24) yields to the following Pfaff equation:
�gðx; yÞdxþ f ðx; yÞdy ¼ 0: ð25Þ
System (24) is a set of Hamilton equations if and only if the differential form g(x,y)dx � f(x,y)dy is exact. In this case,
there exists a function H(x,y) such that
_x ¼ f ðx; yÞ ¼ oHðx; yÞ
oy

; _y ¼ gðx; yÞ ¼ � oHðx; yÞ
ox

: ð26Þ
In general, this is not the case. The solution of (24) can be found. However, this dynamical system is not in general
Hamiltonian. We have seen in the example developed in Section 1, that sometimes it is possible to define a kind of local
Hamiltonian, defined by sectors, such that the equations of motion in phase space are equivalent within these sectors to
the equations of motion of a Hamiltonian system in which we have changed the scale of times. We want to explore a
generalization of this result.

This generalization comes from the fact that any sufficiently regular two-dimensional differential form has always an
integrating factor, at least locally (see Appendix). In fact, let us assume that the differential form in (25) is not exact.
Then it exists an integrating factor which is a function h(x,y) such that the form given by
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dF :¼ �hðx; yÞgðx; yÞdxþ hðx; yÞf ðx; yÞdy ð27Þ
is now exact. The solution of the Pfaff equation dF = 0 is obviously given by F(x,y) = C. Note that the integrating fac-
tor is not unique, as we can multiply it by an arbitrary constant and obtaining a new integrating system. We have seen in
the example given in Section 1, that this change is responsible of the locality of the Hamiltonian character of the dynam-
ical system given by (25). Thus, for any dynamical system (with simple regularity conditions) in two dimensions in phase
space, we always have sectors in which the equations of motion can be derived from a potential function which plays the
role of a Hamiltonian. Consequently, there exists in these sectors at least a constant of motion along the curves solution,
even if the system is dissipative.

As we have shown for the simplest case of the free particle with friction, the transition from a non-Hamiltonian to a
Hamiltonian system is made also at the price of changing the time scale on each of the sectors. We want to discuss the
role of the integrating factor in this change of scale. In fact, let us apply the Hamilton equations to F(x,y) as obtained
after the integration of (27). These are:
dxðT Þ
dT

¼ hðx; yÞf ðx; yÞ ¼ oF ðx; yÞ
oy

;

dyðT Þ
dT

¼ �hðx; yÞgðx; yÞ ¼ � oF ðx; yÞ
ox

:

ð28Þ
Combining (28) with (26), we realize that
dxðT Þ
dT

¼ hðx; yÞdxðtÞ
dt

;
dyðT Þ

dT
¼ hðx; yÞdyðtÞ

dt
; ð29Þ
which implies that
dT ¼ dt
hðx; yÞ : ð30Þ
By integrating:
T ¼
Z

dt
hðxðtÞ; yðtÞÞ : ð31Þ
This gives the change of scale in each sector. Sectors obviously depend on each particular situation. In the case studied
in Section 1, we have that h(x,y) = y�1 in the upper half plane and h(x,y) = �y�1 in the lower half plane. Then, (31) and
(3) give
T ¼ �
Z t

t0

yðtÞdt0 ¼ � y0

a
e�at � e�at0ð Þ; ð32Þ
which obviously coincides with (16) and (17).
These results are valid for a two-dimensional phase space, although it cannot be generalized to higher dimensions.

The reason is clear: a Pfaff differential form in n dimensions:
X 1ðx1; . . . ; xnÞdx1 þ � � � þ X nðx1; . . . ; xnÞdxn ð33Þ
is not always exact and therefore no integrating factor may exist. A necessary and sufficient condition for the form (28)
be exact is that for each three-dimensional vector field Y :¼ ðX k1

;X k2
;X k3
Þ, where X ki are three different functions out of

X1,X2, . . . ,Xn, we have that
Y � rotY ¼ 0;
where ‘rot’ means rotational. Then, for dynamical systems in four and more dimensions in phase space, this discussion
only makes sense for those systems that can lead to an integrable Pfaff equation.

2.1. The harmonic oscillator with friction

As an example of all of above, we propose the one-dimensional oscillator with friction, sometimes called the
Caldirola–Kanai oscillator after work by these authors [7,8]. The discussion on this example is not new. A Lagrangian
presentation of this system is well known [9]. An attempt to introduce a quantum dissipative equivalent system can be
seen for instance in the work of El Naschie and Ord [10,11].
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In its simplest form, this oscillator satisfies the following differential equation:
€xðtÞ þ a _xðtÞ þ bxðtÞ ¼ 0: ð34Þ
Eq. (34) is equivalent to the following system:
_x ¼ y; _y ¼ �ay � bx: ð35Þ
Both (33) and (34) are easily solvable. For the sake of completeness, we here study a slightly more general case and,
instead of (35), we consider the system
_x ¼ a11xþ a12y;

_y ¼ a21xþ a22y:
ð36Þ
This system is easily solvable [5,6] and it yields to the following Pfaff equation:
�ða21xþ a22yÞdxþ ða11xþ a12yÞdy ¼ 0: ð37Þ
This Pfaff equation is also easily solvable by making the change of variable given by y = xu, where u is the new variable.
Eq. (37) is then transformed into a differential equation with separate variables solvable by quadratures. However, after
the above discussion, we are more interested in finding the integrating factor for the differential form in (37). This is
hðx; yÞ ¼ f�a21x2 þ ða11 � a22Þxy þ a12y2g�1: ð38Þ
The potential function F(x,y) such that dF = �h(x,y)(a21x + a22y)dx + h(x,y)(a11x + a12y)dy is given by
F ðx; yÞ ¼ C
1

2
log½�a21x2 þ ða11 � a22Þxy þ a12y2� þ 1ffiffiffiffi

D
p arctan

ða11 � a22Þxþ 2a12y

x
ffiffiffiffi
D
p

� �
ða11 þ a22Þ

� �
; ð39Þ
where
D ¼ �ða11 þ a22Þ2 þ 4D with D ¼
a11 a12

a21 a22

����
���� ¼ a11a22 � a12a21: ð40Þ
We note that, due to the presence of the logarithm, the potential function F(x,y) blows up at the singular points of
the integrating factor. These points satisfy the following equation:
�a21x2 þ ða11 � a22Þxy þ a12y2 ¼ 0; ð41Þ
that gives
x ¼
ða11 � a22Þy � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 � a22Þ2 þ 4a12a21

q
2a21

¼ A�y; ð42Þ
where the values of A± can be immediately derived from (42). If both A± are real, the singular points of the integrating
factor lie on two straight lines crossing the origin, except if the discriminant (a11 � a22)2 + 4a12a21 is negative. In this
case, the set of singular points drawn a parabola passing through the origin.

If we apply the general case to (35), we see that (42) takes the form
x ¼ � a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b2
p

2b
y: ð43Þ
The discriminant is real if and only if a2 > 4b2 and (43) is the equation of two straight lines crossing the origin.
This procedure divides the phase plane into four different regions having a noteworthy property: If X is one of these

four regions and (x,y) 2 X, the curve solution passing through (x,y) remains in X. Points in the straight lines (43) are
not fixed points and the only fixed point is the origin.

Contrarily to the case studied in Section 1 concerning the free particle with friction (or viscosity), the fact that the
only fixed point is the origin for system (35) implies that it is possible to describe the dynamics on phase space of the
damped oscillator (34) with the aid of only one Hamiltonian function, which is given by
F ðx; yÞ ¼ 1

2
log½bx2 þ axy þ y2� � a

b1=2
arctan

axþ 2y

xb1=2

� �� �
: ð44Þ
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Fig. 3. Curves solution for the damped oscillator for a2 � 4b2 > 0.
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Note that these Hamiltonian function has singularities that divide the phase plane into sectors. If the discriminant
a2 � 4b2 is positive, the above Hamiltonian is well defined except on the straight lines (43). If the discriminant is neg-
ative, the values which make the logarithm vanish in (44) form a parabola. If the discriminant vanish, Eq. (43) shows
that all the singular points belong to a straight line crossing the origin.

The conclusion is that the damped oscillator can be looked also as a Hamiltonian system by sectors. Here, the sec-
tors are separated by the curves (or curve) bx2 + axy + y2 = 0, where the Hamiltonian function is not defined, although
the Hamiltonian function can be defined to be the same for all sectors.

This Hamiltonian function gives a constant of motion along each curve solution. Curves solution for the case
a2 � 4b2 > 0 are depicted in Fig. 3.

We could have also discussed the behavior of solutions of system (35) versus the behavior of the following system:
_x ¼ y

bx2 þ axy þ y2
;

_y ¼ � bxþ ay

bx2 þ axy þ y2
;

ð45Þ
in which we have introduced the integrating factor. We also may have discussed the transformation that leads into the
change of the parameter, which is an obvious consequence of (31). However, this discussion will increase the length of
the present article and it does not give any new insight.
3. Concluding remarks

• When represented on phase space, one-dimensional dissipative systems satisfying an equation of motion of the form
€xþ F ðx; _xÞ ¼ 0 are sectorially Hamiltonian. This means that we can divide the phase space into disjoint sectors such
that the behavior of the dissipative system can be obtained from a Hamiltonian function defined on each sector.
Consequently, in the given sector the solutions carry a constant of motion given by the Hamiltonian function.

• The sectors may change with a change of variables as we discuss in an example.
• As examples, we discussed the free particle with viscosity and the damped oscillator. Some more examples can be

studied in detail are those for which the integrating factor is easily found.
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Appendix A. Two-dimensional differential forms always admit an integrating factor

Let us consider the following differential form
dF ¼ Aðx; yÞdxþ Bðx; yÞdy: ð46Þ
Does it admit an integrating factor? We know that a three-dimensional form like
dF ¼ Aðx; y; zÞdxþ Bðx; y; zÞdy þ Cðx; y; zÞdz ð47Þ
admits an integrating factor if and only if
X � rotX ¼ 0; ð48Þ
where the vector field X is given by
X � ðAðx; y; zÞ;Bðx; y; zÞ;Cðx; y; zÞÞ: ð49Þ
In the case of (46), the vector field X has components:
X ¼ ðAðx; yÞ;Bðx; yÞ; 0Þ; ð50Þ
so that
rot X ¼
i j k
o
ox

o
oy

o
oz

Aðx; yÞ Bðx; yÞ 0

�������

�������
¼ oBðx; yÞ

oz
iþ oAðx; yÞ

oz
jþ oBðx; yÞ

ox
� oAðx; yÞ

oy

� 	
k ¼ 0; 0;

oBðx; yÞ
ox

� oAðx; yÞ
oy

� 	
:

ð51Þ
Since the third component of X vanishes, the scalar product X Æ rot X vanishes and, therefore, (48) holds.
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