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Abstract

A mathematical formalism that allows to deal with many problems on quantum systems with continuous evolution

spectrum is presented. The usual Hilbert space is generalized to a prehilbert oneT where singular states can be represented

and an extended Dirac’s notation can be introduced. The obtained formalism contains the Van Hove one but in a more

natural way. It allows to explain decoherence and other phenomena.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In paper [1] we have introduced a formalism to deal with density operators in systems with continuous
evolution spectrum taking into account their ‘‘diagonal singularity’’. Using this formalism we have studied
statistical and thermodynamical phenomena [2], have searched the mathematical and physical properties of
Gamow vectors [3], and have introduced a theory of decoherence, that can be used in the case of close (integrable
[4] and nonintegrable quantum [6]) systems and cosmological models [5]. The mathematical structure is explained
in paper [7], its relation with the usual theory in Ref. [8], and its decoherence time is estimated in Ref. [9].

But our formalism only deals with mixed states, generalized adding decoherent mixtures of energy
eigenstates, and we could not normalize the energy eigenbasis of these states. As a consequence, in the case of
our decoherence theory, we could only have a nuclear representation for the observables, while we could not
define a similar one for the states. In this paper, we feel this gap and present a formalism to deal with quantum
system with continuous spectrum that could be useful in other (may be many) physical problems.

After this introduction let us precise the problem: let us consider a Hamiltonian with continuous spectrum
(the only one we will use in this paper):

H ¼

Z 1
0

EjEihEjdE, (1)
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where jEi is a energy eigenstate. As usual we consider that the space of states is a Hilbert space H, but as H is
a noncompact operator, so jEi must be a generalized state, such that jEieH (see Refs. [10–12]) but it can be
represented in a rigged Hilbert space (see Refs. [10,13]):

F �H � F0, (2)

whereH is the original space, F is a space of functions included in a continuous and dense way inH, and F0 is
the topological dual of F. Then with an adequate rigging we can show that jEi 2 F0 (see Ref. [12]). Obviously,
the inner product of H is also defined in F and the Dirac bracket notation can be used for this inner product
and for the functional contained in F0:

hajji¼: a½j�; a 2 F0; j 2 F.

Nevertheless, since jEieH expressions like

ðiÞ hEjEi or hEjf i where jf i 2H,

ðiiÞ hEjHjEi

are not well defined. Then even if we restraint the space of states H to be a nuclear space, in which case we can
use the Dirac notation as in Eq. (1) we cannot normalize the generalized states jEi and therefore they do not
belong to the state space. Then we cannot use this notation to compute the mean value of an operator O in
jEi, i.e.,

hOijEi ¼ hEjOjEi (3)

nor the density matrix

rðE;E0Þ ¼ hEjE0ihE0jE
0i (4)

and therefore we cannot have a representation of the microcanonical or canonical ensembles.
Traditionally, the density matrices of normalized states of H belong to a Hilbert–Schmidt space H�H0

and the mean value TrðrOÞ is the inner product in this space [14]. Then to include generalized states it is
necessary to extend this space via, e.g. an algebraic formulation of quantum mechanics. The first of these
formulations was introduced by Segal [15]. In his formulation, and in the great majority of the following ones,
the observables belong to a C� algebra of compact operators, the states are positive linear functional on the
space of observables, and the mean value is the one of the functional-state in the observable. Nevertheless to
consider unbounded observables like the Hamiltonian (1) it is necessary to introduce other algebras containing
this kind of observables.

To solve the problem and to represent, e.g. canonical and microcanonical observables with a Hamiltonian
with continuous spectrum Antoniou et al. [14] considered an extension of the Hilbert–Schmidt space: an
algebra with identity, i.e.,

C � I � ðH�H0Þ.

This algebra allows us to define observables with continuous spectrum with diagonal singularity and to
construct biorthonormal bases for the observables and the states. For a usual Hilbert space of infinite
dimension the identity operator is not compact, and then it does not belong to a C� algebra, therefore it is a
more general structure, that allows us to incorporate the states and observables with diagonal singularity
which, in fact, cannot be described by the conventional C� formulations. Antoniou et al. named their
formalism as the Van Hove’s one [17] because he was a pioneer in the study of the diagonal singularities. We
used this formalism to explain in an extremely simple way the decoherence process for Hamiltonians with
continuous spectrum [4]. Van Hove formalism was also used in papers [1–3].

In the Van Hove formalism the space of states corresponds to the mixture states of the usual one plus the
decoherent mixtures of states with definite energy. So it is not possible to represent coherent mixtures of states
of defined energy and regular states. Moreover in this formalism the states do not have density matrices and
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then the mean value of an observable O in a state r cannot be computed in the usual way, i.e.,

hOir ¼

Z 1
0

Z 1
0

rðE;E 0ÞOðE;E 0ÞdE dE0. (5)

As we will see we must add decoherent mixtures of energy eigenstates to the usual rðE;E0Þ or OðE;E0Þ. But in
the usual formalism there is not a way to normalize the energy eigenstates. Then we will find the way to do it
by including the eigenstates of the Hamiltonian, with continuous spectrum, in the space of the theory,
introducing a generalization of the usual product of the L2 space, that allows us to normalize these eigenstates,
in such a way to define and use a prehilbert space T. In this way we can also generalize the Dirac’s notation,
and to obtain a nuclear representations for the Van Hove observables and states, in such a way to unify the
Van Hove formalism with the traditional one.

The paper is organized as follows:
In Section 2 we define the spaces of observables and regular states and the space of generalized states T;

Section 3 introduces a generalized Dirac’s notation in T; Section 4 defines the mean values and shows that the
generalized Dirac’s notation is compatible with this definition. In Section 5.1 we find the density matrices of
the generalized states in T, and in Section 5.2 we do so for the mixed states and we obtain an equation similar
to (5), showing again the compatibility with the Dirac’s notation. In Section 5.3 we discuss the relation
between coherent and decoherent mixtures, both discrete or continuous.

Section 6 sketches the decoherence theory of papers [4] with the new formalism; and finally Section 7 draws
the conclusions.

In the appendix we present the Van Hove formalism and, using the results of the previous sections, we unify
this formalism with the usual one.
2. Spaces of observables and states

2.1. Regular states and space of observables

Let us consider a quantum system with Hamiltonian (1). We will call S to the space of regular states that in
the energy representation reads

jci ¼
Z 1
0

cðEÞjEidE,

where cðEÞ is a Schwarz function with cðEÞ and all its derivatives in L2. S is dense in H ¼ L2, as the space F
of Eq. (2).

Now, following the line of papers [1,14–17] we will consider the space of observables O that in the energy
representation are defined by the kernels

OðE;E0Þ ¼ ORðE;E
0Þ þOSðEÞdðE � E0Þ (6)

i.e.,

O ¼

Z 1
0

Z 1
0

ORðE;E
0ÞjEihE0jdE dE0 þ

Z 1
0

OSðEÞjEihEjdE, (7)

where ORðE;E
0Þ and OSðEÞ are regular functions of two and one variables, respectively, and such that

ORðE;E
0Þ ¼ O�RðE

0;EÞ and OSðEÞ is a real function. The choice of the spaces of functions ORðE;E
0Þ and OSðEÞ

is not unique and depends on the system under consideration (see Refs. [1,4,14]), from now on we will assume
that they are Schwarz functions, but the results we obtain below can also be reached by other spaces with
adequate regularity conditions. The regular component ORðE;E

0Þ of the kernel (6) gives a compact operator
while those that come from the singular component OSðEÞ correspond to operators that commute with the
Hamiltonian. Nevertheless HeO since OSðEÞ ¼ E is not bounded, and therefore it is not a Schwarz function.
Thus we can measure the energy in any bounded set of the energy spectrum but not in the whole spectrum. But
H 2 O if OSðEÞ is chosen in a space of unbounded functions. It can be shown (see Ref. [14]) that the singular
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component of the observables are noncompact and therefore the space of observables is

O ¼ OR � OS,

where OR is the space of regular observables ðOSðEÞ ¼ 0Þ and OS is the space of pure singular observables
ðORðE;E

0Þ ¼ 0Þ.
The dynamic of the system is defined by

ctðEÞ ¼ c0ðEÞe
�iEt

and the mean value of the observable O in the state jci reads

hcjOjci ¼
Z 1
0

Z 1
0

OðE;E0ÞcðEÞc�ðE 0ÞdE dE0

¼

Z 1
0

Z 1
0

ORðE;E
0ÞcðEÞc�ðE0ÞdE dE0 þ

Z 1
0

OSðEÞcðEÞc
�
ðEÞdE. ð8Þ

2.2. Space of generalized states T

The generalized eigenstates jEi are ‘‘delta normalized’’

hEjE0i ¼ dðE � E0Þ

and therefore it is not possible to compute their norm or to obtain mean values or matrix densities like those of
Eqs. (3) and (4). So, to solve this problem, in this section we propose an alternative normalization of states jEi
based in an extension of the inner product of space L2, obtaining a generalization of the Dirac’s notation.

As hEjE0i ¼ dðE � E 0Þ the coordinates of vector jEi; in the energy basis, are dðE � E0Þ . Moreover Dirac’s
delta is a weak limit of a sequence of ‘‘approximations of the delta’’ (see Ref. [18]), i.e., a sequence fgng of
positive functions such that:

ðD1Þ

Z 1
0

gn dx ¼ 1,

ðD2Þ For each d40 we have lim
n!1

Z
jxj4d

gn dx ¼ 0.

Functions gn are normalized to one in L1, but their norm diverges in L2

lim
n!1

Z 1
0

g2
n dx ¼ 1. (9)

So it is reasonable to normalize these functions as

hnðE � E0Þ ¼ gnðE � E0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
0

g2
n dx

s,
. (10)

We will name jhE
n i the state with the energy representation hnðE � E0Þ, namely

hE0jhE
n i ¼ hnðE � E0Þ. (11)

In these states is clear that, given �40, the probability of a measure of energy inside the interval ðE � �;
E þ �Þ converges to 1:

lim
n!1

Z Eþ�

E��
ðhnðE � E0ÞÞ2 dE ¼ 1.

In this sense the sequence of states fjhE
n ig is an approximation to a normalized state with defined energy E.

So we define this ‘‘limit state’’ j eEi as the class of sequences fjhE
n ig.

I.e. in the same way that we consider that the sequence fgnðE � E 0Þg is an approximation of the
unnormalized state jEi, j eEi has norm one but it is, of course, a generalized state.
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Let us precise these ideas. We will say that the space V is the vector space generated by the set fj eEig where
E 2 R40. We will call T to the sum of this space plus the space of regular Schwarz states S

T ¼V�S (12)

then the vectors of this space read

jai ¼ jji þ
Xn

i¼1

aij eEii, (13)

where jji 2S and j eEii 2V. We can consider T as an extension of the space S and its vectors as generalized
states. We can also generalize the inner product of L2, which is well defined in S, via the following inner
products1:

hjj eEi ¼ lim
n!0

Z 1
0

j�ðE0ÞhnðE � E0ÞdE0 ¼ 0, (14)

heEj eE0i ¼ lim
n!0

Z 1
0

hnðE � E00ÞhnðE
0 � E 00ÞdE00 ¼

0 if E ¼ E0;

1 if EaE0;

(
(15)

where jji 2S and jeEi; j eE0i 2V. Since the inner product in T must be bilinear we can deduce the general
formula

hajbi ¼ hjj þ
Xn

i¼1

a�i h
eEij

 !
jci þ

Xn

j¼1

bjj eEji

 !
¼ hjjci þ

Xn

i¼1

a�i bi, (16)

which is endowed with the usual properties of the inner product

hajbi ¼ hbjai�; hajaiX0; hajai ¼ 0) jai ¼ 0

as follows from Eq. (16).
This inner product defines a norm in space T that becomes a prehilbert space. Moreover this inner product

restricted to S coincides with the norm of L2, and as in the case of S we must identify the physical states with
the projective space of T. Thus in general we will only consider the norm one vectors of T:

jai ¼ a0jji þ
Xn

i¼1

aij eEii; hajai ¼ ja0j
2 þ

Xn

i¼1

jaij
2 ¼ 1, (17)

where jji is a regular norm one state.
The states of a system can be consider as functionals on the space of observables defined by the mean values.

From Eq. (14) we can see that, the product between states of the spaces V and S is zero. As a consequence,
we will see in Section 4 that the functionals associated to the states of the space V vanish on the set of
observables without singular component (i.e., OSðEÞ ¼ 0). Then the states of the space V only can ‘‘see’’ the

singular part of the observables. Precisely, the mean value of the observable given in Eq. (7) in the state j eE0i is

hOi
jeE0i
¼ OSðE0Þ. This equality shows that the set fj eEig is the cobasis of the singular component of the

observables (see Refs. [1,4,14]).
We have seen in Section 2.1 that the space of observables O is O ¼ OR � OS. Then the space SM of mixed

states is a subspace of the dual of O:

SM 	 O0 ¼ O0R � O0S. (18)

The mixtures of regular states, whose kernels are regular functions of two variables, belong to the space O0R
whereas the decoherent mixtures of states jeEi, defined in Section 5, belong to the space O0S.

Let us note that the inclusion of Eq. (18) becomes an equality if we consider the definitions of the spaces OR

and OS chosen by Antoniou et. al. (see Ref. [14]). They define the space OR as the set of compact operators B1H
and the space OS is given by the observables with kernels of the form OðE;E0Þ ¼ OSðEÞdðE � E0Þ, where OSðEÞ
1That can be proved using Eqs. (D1), (D2) and (10) (see also Section 3).
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belongs toL1. This is a natural choice because in this way O0 corresponds to the space of trace class operators
B1

H and O0S is isomorphic to the space of measures on R40.
Finally, let us note that the prehilbert T can, of course, be completed becoming a Hilbert space, but

Eq. (15) shows that this space is not separable. Then the closure of T does not have a countable basis and it is
not isomorphic to the usual space L2.
3. The Dirac’s notation in space T

Using the just defined inner product in T we will generalize the Dirac’s notation, that we will use to
compute the mean values. With this notation in a basis fjEig the inner product of regular states reads:

hjjci ¼
Z 1
0

j�ðEÞhEjdE

� � Z 1
0

cðE0ÞjE0idE0
� �

¼

Z 1
0

Z 1
0

j�ðEÞcðE 0ÞhEjE 0idE dE0

¼

Z 1
0

Z 1
0

j�ðEÞcðE0ÞdðE � E0ÞdE dE0 ¼

Z 1
0

j�ðEÞcðEÞdE. ð19Þ

But in space T we also have the basis fj eEig, thus in order to extend the Dirac’s notation we must define the
products:

ðiÞ hEjE0i; ðiiÞ h eEj eE0i; ðiiiÞ hEj eE0i. (20)

Of course, (i) is hEjE0i ¼ dðE � E0Þ: Using a sequence of approximations (ii) was defined in Eq. (15). We will
define (iii) using a notation similar to the one of the Dirac’s delta as follows.

From definitions D1, D2 and (10) we can prove that, if f ðEÞ is a continuous function, we have

ðaÞ lim
n!1

Z 1
0

hnðE � E0Þf ðE0ÞdE0 ¼ 0,

ðbÞ lim
n!1

Z 1
0

½hnðE � E0Þ�2f ðE0ÞdE0 ¼ f ðEÞ,

ðcÞ lim
n!1

Z 1
0

hnðE � E00ÞhnðE
0 � E00Þf ðE00ÞdE00 ¼ 0 if EaE0.

These properties and Eq. (11) suggest the following ‘‘Dirac-like’’ notation

lim
n!1

hnðE � E 0Þ ¼ hE0j eEi ¼ d1=2ðE � E0Þ. (21)

Then we get

ða0Þ

Z 1
0

d1=2ðE � E 0Þf ðE0ÞdE0 ¼ 0,

ðb0Þ

Z 1
0

½d1=2ðE � E0Þ�2f ðE 0ÞdE0 ¼ f ðEÞ,

ðc0Þ

Z 1
0

d1=2ðE � E 00Þd1=2ðE0 � E00Þf ðE00ÞdE00 ¼ 0 if EaE0.

So we have solved the problem presented in Eq. (20) as

ðiÞ hEjE0i ¼ dðE � E0Þ; ðiiÞ h eEjeE0i ¼ 1 if E ¼ E 0;

0 if EaE0;

(
ðiiiÞ hEj eE 0i ¼ d1=2ðE � E 0Þ.



ARTICLE IN PRESS
G. Murgida, M. Castagnino / Physica A 381 (2007) 170–188176
Finally, using this Dirac-like formulae we can reobtain Eq. (16), in fact

hajbi ¼
Z 1
0

j�ðEÞhEjdE þ
Xn

i¼1

a�i h
eEij

 ! Z 1
0

cðE0ÞjE0idE 0 þ
Xn

j¼1

bjj eEji

 !

¼

Z 1
0

Z 1
0

j�ðEÞcðE0ÞdðE � E 0ÞdE dE0 þ
Xn

i;j¼1

a�i bjdij

þ
Xn

j¼1

bj

Z 1
0

j�ðEÞd1=2ðE � EjÞdE þ
Xn

i¼1

a�i

Z 1
0

cðE0Þd1=2ðE0 � EiÞdE0 ¼ hjjci þ
Xn

i¼1

a�i bi.

We remark that the symbol d1=2ðE � E0Þ must be considered at the same level that the usual Dirac’s delta
dðE � E 0Þ, namely is a useful symbol, that can be considered as a rigorous notation if it is properly used inside
an integral.2
4. Mean values in space T

Let us consider the normalized state (17) and the observable (7). We define the corresponding mean value as

hOijai ¼ lim
n!1
hOijani

, (22)

where

jani ¼ a0jji þ
Xn

i¼1

aijh
Ei

n i.

As the states jhEi

n i are regular Eq. (22) reads:

hOijai ¼ lim
n!1

ja0j
2hjjOjji þ

Xn

i¼1

jaij
2hhEi

n jOjh
Ei

n i þ
Xn

iaj¼1

a�i ajhh
Ei

n jOjh
Ej

n i

"

þ
Xn

i¼1

a�0aihjjOjh
Ei

n i þ
Xn

i¼1

a0a
�
i hh

Ei

n jOjji

#
ð23Þ

if we introduce definition (7), we develop this expression, we use properties (a), (b), and (c) of Section 3, and
we take the limit we obtain

hOijai ¼ ja0j
2hOijji þ

Xn

i¼1

jaij
2hOi

jeEii
, (24)

where hOi
jeEii
¼ OSðEiÞ. Let us remark that in the last equation there are neither (jji � j eEii) nor (j eEii � j eEji)

cross terms due to the fact that the components ORðE;E
0Þ and OSðEÞ are regular functions and then the state

jai, which is a coherent mixture of states jji and j eEii, cannot be distinguished from a decoherent mixture of
the same states with probabilities ja0j

2 and jaij
2, respectively.

Let us now verify that we obtain the same result if we use the Dirac’s notation

hOijai ¼ hajOjai ¼ ja0j
2hjjOjji þ

Xn

i;j¼1

a�i ajh eEijOjeEji þ
Xn

i¼1

a�0aihjjOj eEii þ
Xn

i¼1

a0a
�
i h
eEijOjji

if we introduce definition (7), we develop this expression, and we use properties ða0Þ, ðb0Þ, and ðc0Þ of Section 3,
we obtain again Eq. (24).
2Of course, the d can be rigorously defined as a functional in distribution theory. d1=2ðE � E0Þ is not a functional like dðE � E0Þ, so it is

just a symbol that allows to represent the identities (a), (b), and (c) with the expressions ða0Þ, ðb0Þ, and ðc0Þ. Using these expressions and the

inner product and density matrices definitions we can develop our generalized Dirac’s notation.
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Let us use Eq. (24) in the particular case

hHi
jeEi ¼ h eEjHj eEi ¼ E (25)

namely the correct and finite result, while hHijEi was infinite and therefore ill defined (see Section 1, problem (ii)).

5. Density matrices

5.1. Density matrices of pure states

The density matrix of a regular pure states is

rðE;E0Þ ¼ jðEÞj�ðE0Þ ¼ hEjjihjjE0i. (26)

Since our Hamiltonian has a continuous spectrum actually rðE;E0Þ is not a matrix but a regular function
or a kernel of two variables. Knowing this rðE;E0Þ we can compute the mean value of any observable
OðE;E0Þ using Eq. (5) and when the space of the observable is O (see Eqs. Eqs. (6) and (7)) we will
obtain (7).

Let us now study the corresponding formulation in T space. We want to find a kernel rðE;E0Þ that would
allow to compute the mean value hOijai given by Eq. (24) if

jai ¼ a0jji þ
Xn

i¼1

aij eEii. (27)

Then we must satisfy the conditionZ 1
0

Z 1
0

ORðE;E
0ÞrðE;E0ÞdE dE0 þ

Z 1
0

OSðEÞrðE;EÞdE

¼ ja0j
2

Z 1
0

Z 1
0

ORðE;E
0ÞjðEÞj�ðE0ÞdE dE0 þ

Z 1
0

OSðEÞjðEÞj�ðEÞdE

� �
þ
Xn

i¼1

jaij
2OSðEiÞ ð28Þ

but it is easy to see that there is no regular function rðE;E0Þ that would satisfy this equation. However, we can
define a generalized function or kernel

rðE;E0Þ ¼ hEjaihajE 0i ¼ a0hEjji þ
Xn

i¼1

aihEj eEii

 !
a�0hjjE

0i þ
Xn

j¼1

a�j h
eEjjE

0i

 !

¼ ja0j
2jðEÞj�ðE0Þ þ

Xn

i;j¼1

aia
�
j d

1=2
ðE � EiÞd

1=2
ðE0 � EjÞ

þ a0jðEÞ
Xn

j¼1

a�j d
1=2
ðE0 � EjÞ þ a�0j

�ðE0Þ
Xn

i¼1

aid
1=2
ðE � EiÞ. ð29Þ

If we substitute this kernel in the l.h.s. of Eq. (28) and use properties ða0Þ, ðb0Þ and ðc0Þ we obtain Eq. (24) as we
wanted.

A simpler alternative would be just to define

rðE;E0Þ ¼ ja0j
2jðEÞj�ðE0Þ þ

Xn

i;j¼1

aia
�
j d

1=2
ðE � EjÞd

1=2
ðE0 � EiÞ, (30)

which only has the two first terms of the r.h.s. of Eq. (29). But the difference between the two proposed kernels
cannot be observed in the space O since from condition ða0ÞZ 1

0

Z 1
0

OðE;E0ÞjðEÞ
Xn

j¼1

a�j d
1=2
ðE0 � EjÞdE dE0 ¼ 0 8O 2 O.
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Thus the two kernels define the same functional corresponding to the state jai and we can use the simpler one.
Moreover, kernel (30) can be further simplified since from condition ðc0ÞZ 1

0

Z 1
0

OðE;E0Þd1=2ðE � EiÞd
1=2
ðE0 � EjÞdE dE0 ¼ 0 if iaj

thus the off-diagonal terms can be eliminated in Eq. (30) and we obtain the simplest kernel

rðE;E0Þ ¼ ja0j
2jðEÞj�ðE0Þ þ

Xn

i¼1

jaij
2d1=2ðE � EiÞd

1=2
ðE0 � EiÞ. (31)

Let us finally consider the normalization of r. The trace of a pure regular matrix as rc ¼ jcihcj is

Trrc ¼
Z 1
0

rcðE;EÞdE ¼ 1 (32)

so

Trrc ¼ hIijci ¼ 1,

where I is the identity operator

I ¼

Z 1
0

jEihEjdE.

Then we can naturally extend this trace definition to the density matrices of the pure states of space T. So if
jai is the pure state of Eq. (27) and r is the correspondent density we define

Trr ¼ hIijai

so from Eq. (24) we obtain

Trr ¼ hIijai ¼ ja0j
2hIijji þ

Xn

i¼1

jaij
2hIi

jeEii
¼ ja0j

2 þ
Xn

i¼1

jaij
2 ¼ 1.

Finally, if we use Eq. (22) we also obtain

Trr ¼ lim
n!1

Trrn (33)

5.2. Density matrix for mixed states

The mean value of an observable O in a mixture of pure states fjaiig with probabilities fcig, let say
r ¼

Pn
i¼1cijaiihaij, reads

hOir ¼
Xn

i¼1

cihOijaii
, (34)

where ciX0 and
Pn

i¼1 ci ¼ 1.
The density matrix of the state r corresponds to a kernel that can be obtained as the linear convex

combination of matrices riðE;E
0Þ

r ¼
Xn

i¼1

ciriðE;E
0Þ

and each riðE;E
0Þ can be obtained from Eqs. (29), (30), or (31) of Section 5.1. So if

jaii ¼ ai0jjii þ
Xn

j¼1

aijj eEiji
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is substituted in Eq. (34) we obtain

hOir ¼
Xn

i¼1

cijai0j
2hOijjii

þ
Xn

i¼1

ci

Xn

j¼1

jaijj
2hOi

jeEiji
. (35)

This is a discrete decoherent mixture, if we would like to represent a continuous one of the pure states jaxi with
x 2 R, Eq. (34) becomes

hOir ¼

Z 1
�1

f ðxÞhOijaxi
dx, (36)

where f ðxÞX0,
R1
�1

f ðxÞdx ¼ 1, and

jaxi ¼ ax0jjxi þ
Xn

j¼1

axj j eExji

so we obtain the analogue of Eq. (35), i.e.,

hOir ¼

Z 1
�1

f ðxÞjax0j
2hOijjxi

dxþ

Z 1
�1

ðxÞ
Xn

j¼1

jaxjj
2hOi

jeExji
dx. (37)

In due time we will reobtain this equation using Dirac’s notation. Now, let us just observe that the singular
states j eExji and the regular states jjxi allow us to represent the mean value as the sum of integrals of the last
equation, where the first term of the r.h.s. corresponds to a decoherent distribution of regular states and the
second one is a definite energy one, so

hOir ¼ ahOirR
þ bhOirS

, (38)

where rR is a mixture of regular states, rS is a mixture of singular states and

a ¼
Z 1
�1

f ðxÞjax0j
2 dx; b ¼

Z 1
�1

f ðxÞ
Xn

j¼1

jaxjj
2 dx

with the sum

aþ b ¼
Z 1
�1

f ðxÞ
Xn

j¼1

jaxj j
2 þ jax0j

2

 !
dx ¼ 1.

Eq. (38) shows that matrix r can be decomposed as the convex sum

rðE;E0Þ ¼ arRðE;E
0Þ þ brSðE;E

0Þ (39)

namely

r ¼ arR þ brS; a;bX0; aþ b ¼ 1 (40)

therefore the problem to find the generic density matrix is simply to find its regular and singular components.

5.2.1. Mixtures of regular states

The density matrices of regular states are functions of two variables rRðE;E
0Þ that corresponds to

Hilbert–Schmidt kernels with the following properties:

ðiÞ rðE;E0Þ ¼ r�ðE0;EÞ; ðiiÞ rðE;EÞX0; ðiiiÞ

Z 1
0

rðE;EÞdE ¼ 1



ARTICLE IN PRESS
G. Murgida, M. Castagnino / Physica A 381 (2007) 170–188180
and they can be decomposed as mixtures of regular pure states:

rRðE;E
0Þ ¼

Z 1
�1

f ðxÞjxðEÞj
�
xðE
0Þdx.

But since rRðE;E
0Þ is also the kernel of a compact operator in L2 it has also a discrete spectrum, and therefore

it also is the discrete mixture of regular states

rRðE;E
0Þ ¼

Xn

i¼1

cijiðEÞj
�
i ðE
0Þ,

where ciX0 and
Pn

i¼1ci ¼ 1.

5.2.2. Mixtures of states with defined energy

Let r be a decoherent mixture of eigenstates of the energy j eEi combined with a probability density f ðEÞ,
namely

r ¼
Z 1
0

f ðEÞj eEih eEjdE.

In this state the mean value of observable O reads

hOir ¼

Z 1
0

f ðEÞhOi
jeEi dE ¼

Z 1
0

f ðEÞOSðEÞdE,

where OSðEÞ is the singular component of O. Then let us search for the kernel that produces this mean value
i.e., a rðE;E 0Þ such that:Z 1

0

Z 1
0

rðE;E0ÞOðE;E 0ÞdE dE 0 ¼

Z 1
0

f ðEÞOSðEÞdE (41)

and Z 1
0

Z 1
0

rðE;E0ÞORðE;E
0ÞdE dE0 þ

Z 1
0

rðE;EÞOSðEÞdE ¼

Z 1
0

f ðEÞOSðEÞdE. (42)

As the double integral must vanish for any Schwarz function ORðE;E
0Þ then rðE;E0Þ ¼ 0, a.e., and

rðE;EÞ ¼ f ðEÞ:

rðE;E0Þ ¼
f ðEÞ if E ¼ E 0;

0 if EaE0:

(
(43)

Then we are forced to define a ‘‘Kronecker delta’’ extended to the whole R2 as

dE;E0 ¼
1 if E ¼ E 0;

0 if EaE0:

(
(44)

It is quite easy to show that dðE � E0Þ would not do this job. Then we can say that

rðE;E0Þ ¼ f ðEÞdE;E0 (45)

if Z 1
0

Z 1
0

f ðEÞdE;E0ORðE;E
0ÞdE dE0 þ

Z 1
0

f ðEÞdE;E0OSðEÞdE ¼

Z 1
0

f ðEÞOSðEÞdE,

which is plausible since dE;E0 ¼ 0 but in a set of zero measure, but in order to verify Eq. (41) we must take some
mathematical precautions because we must be sure thatZ 1

0

Z 1
0

f ðEÞdE;E0ORðE;E
0ÞdE dE0 þ

Z 1
0

Z 1
0

f ðEÞdE;E0dðE � E0ÞOSðEÞdE dE0 ¼

Z 1
0

f ðEÞOSðEÞdE.
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The first integral is zero since dE;E0 ¼ 0 but only in a set of zero measure, so it must beZ 1
0

Z 1
0

f ðEÞdE;E0dðE � E0ÞOSðEÞdE dE0 ¼

Z 1
0

f ðEÞOSðEÞdE. (46)

But the first term cannot be considered as an integral since there is a dðE � E 0Þ. May be we could try to think
this dðE � E0Þ as a functional, but we cannot do it since f ðEÞdE;E0OSðEÞ is not a regular function. So we must
consider (46) as a notation that only allows us to obtain the mean value as the product of the matrix density
and the kernel of the observable. Then we have thatZ 1

0

Z 1
0

gðEÞdE;E0dðE � E0ÞdE dE0 ¼

Z 1
0

gðEÞdE (47)

for any regular function gðEÞ. Clearly using the usual way of operate with the Dirac’s delta and the fact that
dE;E ¼ 1 the last equation can be ‘‘deduced’’. But it is most wise and rigorous directly to think Eq. (47) as a
definition.3

Let us now return to Section 2 where we defined the j eEi as a class of sequences of states. Let us call jhE
n i the

regular states with wave function hnðE � E 0Þ and we obtain the limit (22) namely the weak limit

j eEi ¼ w� lim
n!1
jhE

n i

in a similar way, we can interpret the decoherent mixture of states with the defined energy with probabilities
f ðEÞ as the weak limit of regular mixtures

r ¼ w� lim
n!1

Z 1
0

f ðEÞrE
n dE, (48)

where rE
n ¼ jh

E
n ihh

E
n j.

Finally, it is interesting to remark that density (45) is also the point-limit of the density matricesR1
0 f ðE00ÞrE00

n ðE;E
0ÞdE00 since

lim
n!1

Z 1
0

f ðE00ÞrE00

n ðE;E
0ÞdE00 ¼ lim

n!1

Z 1
0

f ðE00ÞhnðE � E 00ÞhnðE
0 � E00ÞdE00

but then

lim
n!1

Z 1
0

f ðE00ÞrE00

n ðE;E
0ÞdE00 ¼

f ðEÞ if E ¼ E0;

0 if EaE0

(
and so

lim
n!1

Z 1
0

f ðE00ÞrE00

n ðE;E
0ÞdE00 ¼ f ðEÞdE;E0 .

5.2.3. Density matrices in general

Finally, we can present the most general matrix density of mixed states of space T. From Section 5.2 this
mixed state is a linear convex combination of a mixture of regular states plus a mixture of states of definite
energy (Eqs. (39) and (40)) namely

rðE;E0Þ ¼ arRðE;E
0Þ þ brSðEÞdE;E0 ; a; bX0; aþ b ¼ 1,

where rRðE;E
0Þ is the kernel of a self-adjoint positive operator of trace equal 1 and rSðEÞ is a distribution of

probabilities in Rþ, i.e.,

ðiÞ rRðE;E
0Þ ¼ r�RðE

0;EÞ; ðiiÞ rRðE;EÞX0; ðiiiÞ

Z 1
0

rRðE;EÞdE ¼ 1
3dE;E0 could be defined as a functional over a space of tempered distributions. The properties of such functional allow to prove Eqs. (41),

(45), and (46) and also identities as
R R

dE;E0dðE � E0Þf ðEÞdE dE0 ¼
R

f
ðEÞdE where f ðEÞ is a continuous function. We will develop this

mathematical theory elsewhere.
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and

ðivÞ rSðEÞX0; ðvÞ

Z 1
0

rsðEÞdE ¼ 1.

Now, let us see how with this kernel r we can compute the mean value of an observable O:

hOir ¼

Z 1
0

Z 1
0

rðE;E0ÞOðE;E0ÞdE dE0

¼ a
Z 1
0

Z 1
0

rRðE;E
0ÞORðE;E

0ÞdE dE0 þ

Z 1
0

rRðE;EÞOSðEÞdE

� �
þ b

Z 1
0

Z 1
0

rsðEÞdE;E0 ðORðE;E
0Þ þOSðEÞdE;E0 ÞdE dE0

� �
¼ a

Z 1
0

Z 1
0

rRðE;E
0ÞORðE;E

0ÞdE dE0 þ

Z 1
0

rRðE;EÞOSðEÞdE

� �
þ b

Z 1
0

rSðEÞOSðEÞdE,

where we have used identity (46). Thus

hOir ¼ ahOirR
þ bhOirS

,

where a and b turns out to be the probabilities of the regular states or the singular one. From now on, for the
sake of simplicity we take a ¼ b ¼ 1. Then calling arRðE;E

0Þ and brSðEÞ simply rRðE;E
0Þ and rSðEÞ the

conditions (iii) and (v) above simply becomes

ðiii0Þ

Z 1
0

ðrRðE;EÞ þ rsðEÞÞdE ¼ 1.

We will say that a matrix density is regular if rSðEÞ ¼ 0, and we will say that it is purely singular if
rRðE;E

0Þ ¼ 0. Regular matrices belong to the usual formalism while singular matrices are mixture of states of
definite energy that allows to represent e.g.:
1.
 A canonical ensemble:

rðE;E0Þ ¼ C e�bEdE;E0 .
2.
 The matrix of a state with definite energy E0

rðE;E0Þ ¼ dðE � E0ÞdE;E0 . (49)
3.
 The decoherent mixture of n states of well-defined energies fEig with probabilities fcig

rðE;E0Þ ¼
Xn

i¼1

dðE � EiÞdE;E0 . (50)
These kernels are different from those we found in Section 5.1 where the matrix of definite energy E0 reads (see
Eq. (31))

rðE;E0Þ ¼ d1=2ðE � E0Þd
1=2
ðE 0 � E0Þ. (51)

Nevertheless both kernels allow us to find the same mean values then both representations are equivalent and

dðE � E0ÞdE;E0 ¼ d1=2ðE � E0Þd
1=2
ðE0 � E0Þ. (52)

Making E ¼ E 0 we can find the reason of the name d1=2ðE � E0Þ and we can verify that the introduced
generalized Dirac’s notation is consistent.
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5.3. Discrete and continuous mixtures

A regular pure state jji can be considered as a continuous coherent superposition of energy eigenstates jEi
as

jji ¼
Z 1
0

jðEÞjEidE, (53)

where jðEÞ is a normalized function of L2.
Since hEjE 0i ¼ dðE � E0Þ, we associate the generalized state jEi with the sequences fgng of ‘‘approximations

of the delta’’ defined in Section 2.2. Let us note that jðEÞ is the punctual limit of the following sequence of
developments:

jðEÞ ¼ lim
n!1

Z 1
0

jðEÞgnðE � E0ÞdE0. (54)

The functions gn are not normalized in L2 and their norms diverge

lim
n!1

Z 1
0

g2
nðxÞdx ¼ 1. (55)

However, the limit of (54) is a regular function normalized in L2.
Considering sums in place of the integral in (53) we can represent discrete coherent mixtures of states with

definite energy:

jai ¼
X

i

aijEii. (56)

But this state is not normalized. In order to do it, it was necessary to define the states jeEi and an extension of
L2 as in Section 2.2:

jci ¼
X

i

aijeEii. (57)

Then we can use the states jEi to represent continuous coherent mixtures as in (53), but to do it with discrete
mixtures the normalized states j eEi are necessary. Moreover, it is impossible to engage states j eEi in continuous
developments as

jji ¼
Z 1
0

jhEÞj eEidE

because the norm of this function is zero.

hjjji ¼
Z 1
0

Z 1
0

jðEÞj�ðE0Þh eE0j eEidE ¼

Z 1
0

Z 1
0

jðEÞj�ðE0ÞdE;E0 dE dE0 ¼ 0

and then jji 
 0
Moreover, we know that j eEi is the class of sequences fjhE

n ig, so we can see that in a similar way as in Eq. (54)
it results

limn!1

Z 1
0

jðEÞhE
n ðE

0ÞdE0 ¼ hjj eEi ¼ 0.

In Section 4 we have shown that discrete coherent mixtures of states of definite energy are indistinguishable
of the decoherent mixtures. This fact is produced by the continuity of the spectrum of the Hamiltonian, and it
would be not the case for discrete spectra. On the other hand, the continuous coherent mixtures of states of
definite energy are pure regular states as (53) while the decoherent continuous mixtures are purely singular
ðrRðE;E

0Þ ¼ 0Þ.
So the ambiguity between coherent and decoherent mixtures only appears in the discrete ones. Then if we

want to represent the density matrix of a discrete mixture of states j eEii we can either make a lineal
combination of its density matrices or first, obtain a state of space T and then compute the density matrix of
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the state. Whereas if we want to represent the density matrix of a continuous mixture of definite energy in the
case of a coherent one, we must first obtain the wave function integrating the states jEi but, in the case the one
of a decoherent mixture, we must integrate the density matrices of the states j eEi.

6. Decoherence

As an interesting example of the use of our method we will consider the decoherence phenomenon using the
self-induced approach to decoherence (SID).

Historically the first attempt to explain decoherence was based in the destructive interference of the off-
diagonal terms of the density matrix [19]. But this formalism does seems not quite satisfactory, so another one
called Ein-selection decoherence (EID) was presented [20]. Nevertheless this formalism has many problems
listed in papers [21–25]. These problems do not seem solved nowadays [26] thus many alternative formalisms
were introduced [27]. In particular following the Van Hove formalism [17] a new approach, based again in the
destructive interference of the off-diagonal terms of the density matrix was proposed: the self-induced
decoherence presented in papers [4,28], based in previous research in quantum system with continuous
spectrum [1,2], and with its conceptual foundations given in papers [29,30].

Let us explain SID using the formalism just introduced. From Section 5.2 any decoherent mixture in space
T is a linear combination of a mixture of regular states with a mixture of states with defined energy, as shown
in Eq. (40).

In Section 5.2 we show that matrix rS can be considered as weak limits of sequences of regular mixtures (see
Eq. (48)) and that this matrix is also the point limit of the density matrices of that sequence. Now we will see a
new characterization of the purely singular states as weak limits of the time evolution of the mixed states.

The time evolution of the coordinates of a regular matrix r0ðE;E
0Þ reads

rtðE;E
0Þ ¼ r0ðE;E

0ÞeiðE
0�EÞt.

Clearly there is not a punctual limit of this oscillatory evolution, nevertheless there is a limit for the mean
values for any observable O defined in Eq. (7). In fact, the mean value of O in state rt according to Eq. (28) is

hOirt
¼

Z 1
0

Z 1
0

ORðE;E
0Þr0ðE;E

0ÞeiðE
0�EÞt dE dE 0 þ

Z 1
0

OSðEÞr0ðE;EÞdE. (58)

As function ORðE;E
0Þr0ðE;E

0Þ is regular we can consider that it is L1 in the variable ðE þ E0Þ, then according
to the Riemann–Lebesgue theorem the first integral vanishes in the limit and we have

lim
t!1
hOirt

¼

Z 1
0

OSðEÞr0ðE;EÞdE. (59)

Namely in the convex mixture (40) only the second term remains. So we have proved the weak limit

w� lim
t!1

rtðE;E
0Þ ¼ r0ðE;EÞdE;E0 (60)

showing how when t!1 the generic matrix rtðE;E
0Þ becomes the diagonal matrix r0ðE;EÞdE;E0 in such a

way that the matrix have decohered in the energy eigen-basis. Of course, this is the simplest case. Much more
general cases are studied in the quoted literature.

Precisely, from Eq. (58) we can see that singular matrices are invariant under time evolution while regular
ones weakly converges to a singular one when t!1 in such a way that the space of density matrices turns
out to be a weakly close space under this evolution.

Moreover, the case rSðE;E
0Þ ¼ r0ðE;EÞdE;E0 corresponds to a continuous singular decoherent mixture of

definite energy states which is invariant under time evolution.
In all the process decoherence was obtained without an environment as in EID being the coarse graining

or trace typical of EID substituted by the systematic use of mean values that produce the weak limits (see
Ref. [29] or [30] for details).
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7. Conclusions

We have extended the usual space of wave functions to a prehilbert space T which includes the definite
energy states for a system with continuous-spectrum Hamiltonian. The inner product of T is an extension of
the ordinary product in L2, it allows to normalize the states and induce a generalization of the Dirac’s
notation.

With this notation we can compute inner products and mean values as in the usual case. We found density
matrices representing decoherent mixtures of the generalized states of T in such a way that it can be used the
following usual formula to compute the mean value

hOir ¼

Z 1
0

Z 1
0

rðE;E 0ÞOðE;E0ÞdE dE0.

We found the way to represent discrete mixture of generalized states as well of continuous mixtures, in such
a way that any state turns out to be a convex linear combination of regular states with a mixture of states of
definite energy

r ¼ arR þ brS; a;bX0; aþ b ¼ 1.

The decoherent mixtures of states of definite energy allow us to represent the canonical ensemble and were
characterized in three different ways (see Sections 5.2 and 6):
(a)
 As weak limits of density matrices rn which are mixtures of regular states whose wave functions are
‘‘approximations of the delta’’ normalized in L2.
(b)
 As point limit of the density matrices rn.

(c)
 As weak limit of the time evolution of regular states.
In the appendix, we will compare our formalism with the Van Hove one which historically has being most
useful to represent generalized states, the approximation to thermic equilibrium, the classical limit and the
study of resonances (see Refs. [1,2,14,17,28]), finding a correspondence between the density matrices of
our formalism and the states of Van Hove space of states. In this way, these two formalisms and the usual one
are unified.

We believe that with the new formalism developed in this paper it is possible to study all these subjects with
the advantage of Van Hove formalism but with the natural flavor and intuition of the usual formalism.

Appendix A. Comparison with Van Hove formalism

Van Hove formalism is an algebraic formulation of quantum mechanics which includes, in its state space,
the definite energy states and their decoherent mixtures. The formalism was introduced in papers [1,14], based
in early papers of Van Hove [17]. Essentially, papers [1–5,26,27,30] use this formalism. Nevertheless in Van
Hove formalism density matrices are not obtained as a straight forward generalization of the usual formalism,
so we are always forced to invoke mean values, and the density matrices of the regular states do not have the
same representation as in the usual formalism, i.e., the mean values are not the product of the kernels of the
states and the observables. Moreover Van Hove state space corresponds to a generalized density matrices
space, therefore does not allow us to consider coherent superpositions of pure states/either regular or not. In
the formalism presented in this paper we do not deal with these problems since it is constructed as a
generalization of the usual formalism by the introduction of the approximate sequences fjhE

n ig.
In this appendix, we will present the primitive Van Hove formalism and show how it can be obtained from

the space of density matrices of our formalism and then it can be unified with the usual one, which turns out to
be an extremely particular case of the formalism presented in this paper. In fact there is a one to one
correspondence among the observables and states of both formalisms.

Van Hove observable space contains the self-adjoints operators endowed with the property:

OVH ðE;E 0Þ ¼ OVH
R ðE;E

0Þ þOVH
S ðEÞdðE � E 0Þ, (A.1)
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where OVH
R ðE;E

0Þ and OVH
S ðEÞ are regular functions. If we introduce the notation

jE;E0Þ ¼ jEihE0j; jEÞ ¼ jEihEj; jOVH Þ ¼ OVH

the observables read

jOVH Þ ¼

Z 1
0

Z 1
0

OVH
R ðE;E

0ÞjE;E0ÞdE dE0 þ

Z 1
0

OVH
S ðEÞjEÞdE.

The states are considered as functional over this observable space. Then we can define the basis of the space of
functionals fðE;E0j; ðEjg satisfying the biorthonormality conditions [1,2,14]

ðEjE0Þ ¼ dðE � E0Þ; ðE;E 0jE 00;E 000Þ ¼ dðE � E00ÞdðE0 � E 00Þ; ðEjE0;E 00Þ ¼ ðE;E00jE00Þ ¼ 0

and a generic state reads

ðrVH j ¼

Z 1
0

Z 1
0

rVH
R ðE;E

0ÞðE;E0jdE dE0 þ

Z 1
0

rVH
S ðEÞðEjdE,

where rVH
R ðE;E

0Þ and rVH
S ðEÞ are regular functions satisfying

ðiÞ rVH
R ðE;E

0Þ ¼ rVH�
R ðE0;EÞ; ðiiÞ rVH

S ðEÞ; r
VH
R ðE;EÞX0; ðiiiÞ

Z 1
0

rVH
S ðEÞdE ¼ 1

in such a way that we can define the trace

TrðrVH j ¼ ðrVH jIÞ,

where the unity operator reads jIÞ ¼
R1
0 jEÞdE and therefore

TrðrVH j ¼

Z 1
0

rVH
S ðEÞdE ¼ 1.

Then we can compute the mean value of the observable OVH in the state rVH , and using the conditions of
biorthonormality we obtain

hOVHirVH ¼

Z 1
0

Z 1
0

rVH
R ðE;E

0ÞOVH
R ðE;E

0ÞdE dE0 þ

Z 1
0

rVH
S ðEÞO

VH
S ðEÞdE. (A.2)

We can see that in Van Hove formalism the singular states cannot be represented by kernels like rVH
S ðE;E

0Þ

and we are forced to use (A.2) to compute mean values instead of the usual equation

hOir ¼

Z 1
0

Z 1
0

rðE;E 0ÞOðE;E 0ÞdE dE0,

which is absent in the formalism.
In our formalism (see Section 5.2.3) the matrices density are given by the functions

rðE;E0Þ ¼ rRðE;E
0Þ þ rSðEÞdE;E0 ,

where rRðE;E
0Þ and rSðEÞ satisfy the conditions

ðiÞ rRðE;E
0Þ ¼ r�RðE

0;EÞ; ðiiÞ rSðEÞ; rRðE;EÞX0; ðiiiÞ

Z 1
0

ðrSðEÞ þ rRðE;EÞÞdE ¼ 1

and the mean value of the observable O in the state r is

hOir ¼

Z 1
0

Z 1
0

rðE;E 0ÞOðE;E 0ÞdE dE0

namely

hOir ¼

Z 1
0

rRðE;E
0ÞORðE;E

0ÞdE dE0 þ

Z 1
0

ðrSðEÞ þ rRðE;EÞÞOSðEÞdE. (A.3)
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Now let us compare Eq. (A.3) with Eq. (A.2) and we can obtain the formulae to go from one formalism to
the other

OVH
R ðE;E

0Þ ¼ ORðE;E
0Þ; OVH

S ðEÞ ¼ OSðEÞ, (A.4)

rVH
R ðE;E

0Þ ¼ rRðE;E
0Þ; rVH

S ðEÞ � rVH
R ðE;EÞ ¼ rSðEÞ. (A.5)

Immediately, we can verify that if rVH
S ðEÞXrVH

R ðE;EÞ then conditions (i), (ii), and (iii) are equivalent to conditions
(i), (ii), and (iii). So our density matrices formalism and the Van Hove one with the condition rVH

S ðEÞXrVH
R ðE;EÞ

are equivalents. Moreover, the new formalism is more general since it allows to consider coherent mixtures that
cannot be treated in Van Hove formalism.

In a similar way we can see that:
A state is singular if: rRðE;E
0Þ ¼ 03rVH

R ðE;E
0Þ ¼ 0:

A state is regular if: rSðEÞ ¼ 03rVH
S ðEÞ ¼ rVH

R ðE;EÞ (in fact, See Ref. [1]).
This remark completes the comparison.
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