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2CONICET, Godoy Cruz 2290, Buenos Aires, Argentina
3Departamento de Física, Comisión Nacional de Energía Atómica,

Avenida Libertador 8250, (1429) Buenos Aires, Argentina

(Received 7 September 2022; accepted 6 February 2023; published 21 February 2023)

We revisit the quark-mass density-dependent model—a phenomenological equation of state for
deconfined quark matter in the high-density low-temperature regime—and show that thermodynamic
inconsistencies that have plagued the model for decades can be solved if the model is formulated in the
canonical ensemble instead of the grand canonical one. Within the new formulation, the minimum of the
energy per baryon occurs at zero pressure, and the Euler’s relation is verified. Adopting a typical mass-
formula, we first analyze in detail a simple model with one particle species. We show that a “bag” term that
produces quark confinement naturally appears in the pressure (and not in the energy density) due to density
dependence of the quark masses. Additionally, the chemical potential gains a new term as in other models
with quark repulsive interactions. Then, we extend the formalism to the astrophysically realistic case of
charge-neutral three-flavor quark matter in equilibrium under weak interactions, focusing on two different
mass formulas: a flavor dependent and a flavor blind one. For these two models, we derive the equation of
state and analyze its behavior for several parameter choices. We systematically analyze the parameter space
and identify the regions corresponding to self-bound 2-flavor and 3-flavor quark matter, hybrid matter and
causal behavior.
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I. INTRODUCTION

First principle calculations of deconfined quark
matter are not available at present in the high-density
low-temperature regime expected in neutron star (NS)
interiors. Thus, although perturbative quantum chromody-
namics (QCD) imposes some constraints on the equation of
state (EOS) at NS densities [1], most conclusions about
quark matter in the NS regime rely on phenomenological
models that, inspired by QCD, incorporate in the EOS key
properties of quarks such as color confinement, asymptotic
freedom and chiral symmetry breaking/restoration. In
this context, the quark-mass density-dependent model
(QMDDM) has been discussed in the literature for decades.
Its basic idea is that some relevant features of the strong
interaction between quarks can be encoded in the appro-
priate variation of quark masses with the baryon number
density nB and the system as a whole would be described
as a noninteracting gas of quasiparticles with density-
dependent masses.

The QMDDM was originally introduced by Fowler,
Raha, and Weiner to study the properties of quark-matter
[2] and was then applied by Chakrabarty and coworkers to
describe self-bound strange quark matter [3–5]. In this
original version all thermodynamic formulas keep exactly
the same form as in the constant-mass case.
Later, the QMDDMwas reformulated by Benvenuto and

Lugones [6,7] who showed that a new term arises naturally
in the pressure when the density dependence of quark
masses is taken into account in the thermodynamic deriv-
atives. Indeed, the pressure P was claimed to be given by:

P ¼ −Ωþ nB
∂Ω
∂nB

; ð1Þ

being Ω the grand thermodynamic potential. The second
term has the same confining role as the bag constant in the
MIT bag model, i.e. it makes the pressure to vanish at a
finite density. A new term also appears in the energy
density ϵ via Euler’s relation [6–9]:

ϵ ¼ Ts − Pþ
X
i
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where T is the temperature, s the entropy density, ni the
particle number density of the i − species, and μi the
corresponding chemical potential. However, that reformu-
lation of the model still contained a thermodynamic
inconsistency associated with the energy density formula,
because the minimum of the energy per baryon does not
correspond to the zero pressure point [6,7,10,11], as it
should be according to the relation:

P ¼ n2B
∂ðϵ=nBÞ
∂nB

: ð3Þ

To circumvent this problem, a different version of the
QMDDM was proposed [12]. The new term coming from
the density dependence of quark masses was retained in the
pressure but not in the energy density. To justify this choice
it was argued that Euler’s relation should only be used
when P ¼ −Ω, but it would not be valid in the QMDDM
because in this case the pressure has the extra term shown in
Eq. (1). Therefore, according to Ref. [12], the energy
density in the QMDDM should be obtained from the
inverse Legendre transformation:

ϵ ¼ Ωþ Tsþ
X
i

μini; ð4Þ

and not from the Euler’s relation shown in Eq. (2). With that
change, it was shown that the energy per baryon minimum
occurs now at zero pressure [12].
However, as emphasized by Yin and Su [13] the

reformulation presented in [12] is also inconsistent because
in their formulas, the variable that are kept constant in the
partial derivatives were not treated properly for some
quantities. As a consequence, new inconsistencies appear
in the pressure, the entropy and the particle number density
(see Ref. [13] for more details). Moreover, while the use of
Eq. (4) is correct, Eq. (2) cannot be taken as invalid, as
claimed in [12]. The reason is that Eq. (2) is a direct con-
sequence of the fact that the total internal energyU ≡ Vϵ is
an extensive quantity, i.e. it must be a homogeneous first-
order function of the extensive parameters [14]:

UðλS; λV; fλNigÞ ¼ λUðS; V; fNigÞ; ð5Þ

being λ an arbitrary constant, V the system’s volume,
S ¼ sV and Ni ¼ niV. Thus, Eqs. (2) and (4) must both be
valid, and hence the pressure must be always given by
P ¼ −Ω. Therefore, there should be some reason that
makes Eq. (1) wrong.
A possible solution to the above-mentioned problems

was proposed by Yin and Su [13] who argued that the
medium dependent mass m�, must be taken as a new
independent thermodynamic variable. According to them,
m� must be considered as a constant in the derivatives of the
pressure, the entropy and the particle number density (see
also [15]):

S ¼ −
�
∂Ω
∂T

�
V;μ;m�

; p ¼ −
�
∂Ω
∂V

�
T;μ;m�

;

n ¼ −
�
∂Ω
∂μ

�
T;V;m�

; X ¼
�
∂Ω
∂m�

�
T;V;μ

; ð6Þ

where X is an extensive quantity corresponding to the
intensive variable m�. Within this approach, all thermody-
namic quantities (Ω, ni, S, p, ϵ, etc.) take the same
functional form as for the standard Fermi ideal gas, but
with medium dependent masses. However, negative pres-
sures expected from the physical vacuum do not emerge
naturally in this version of QMDDM, and must be
introduced ad hoc in the same way as they are in other
models (e.g. MIT bag EOS). Thus, one of the most
interesting aspects of the first reformulation [6,7] of the
QMDDM is lost, which is the natural appearance of
confinement directly from the medium dependence of
the quasiparticle masses.
All pathologies of the above versions of the QMDDM

arise from the fact that the quark mass is assumed to be a
function of nB but the thermodynamic treatment is made in
the frame of the grand canonical ensemble. Such starting
point is ill-defined because the grand potential Ω depends
explicitly on T, V and μi, but not on nB or ni, which are
derived quantities in the grand canonical representation.
The natural frame for constructing the QMDDM is the
canonical ensemble because a quark mass, parametrized in
terms of nB or ni, can be introduced consistently in the
associated thermodynamic potential (the Helmholtz free
energy F) which depends naturally on T, V and ni. In the
present paper we will reformulate the QMDDM in the
canonical ensemble and show that a self-consistent EOS
can be derived while maintaining key properties of quark
matter such as confinement, asymptotic freedom and chiral
symmetry breaking/restoration.
Thermodynamic inconsistencies arising from medium

dependent single particle characteristics are known in the
theory of nuclear matter since long ago. For example, in the
mean-field approximation, a quasinucleon dispersion rela-
tion of the form E�ðk; T; μÞ ¼ ðk2 þM2Þ1=2 þ U with an
effective nucleon mass MðT; μÞ and potential energy
UðT; μÞ appears due to the presence of the interaction
between nucleons and the scalar and vector fields. These
fields contribute to the effective Hamiltonian of the system
and, therefore, produce additional field terms in the
pressure and the energy density to restore the thermody-
namical consistency of the model [16]. The same occurs
when medium effects are included in models of cold
degenerate quark matter making use of effective quark
masses derived from the zero momentum limit of the
dispersion relations following from an effective quark
propagator obtained from resumming one-loop self-energy
diagrams in the hard dense loop approximation. Due to the
μ-dependence of the effective mass, a counterterm is added
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to the effective Hamiltonian in order to maintain thermo-
dynamic self-consistency. From this Hamiltonian the
energy density and pressure at zero temperature of a
Fermi gas of free quasiparticles are given by expressions
that contain an extra term [17,18]. Notice that in the above
“quasiparticle models” the effective masses are parame-
trized in terms of μi and/or T and the addition of an extra
term is sufficient to solve thermodynamic inconsistencies
within the grand canonical ensemble. However, the same
procedure has been tried to solve the QMDDM without
success as explained above.
This paper is organized as follows. In Sec. II we review

some well-known results for degenerate Fermi gases with
medium independent particle masses in order to set the
notation and introduce some functions that are used along
the paper. In Sec. III we reformulate the QMDDM in the
canonical ensemble for the simple case of a system with
only one flavor. We show that thermodynamic inconsis-
tencies do not arise in the model; for example, the
minimum of the energy per baryon occurs at zero pressure
and the Euler’s relation is verified. It is also shown that a
“bag” term that produces quark confinement naturally
appears in the pressure (and not in the energy density)
due to density dependence of the quark masses.
Additionally, the chemical potential gains a new term as
in other models with quark repulsive interactions. In
Sec. IV we extend the QMDDM to the more realistic case
of charge-neutral three-flavor quark matter in equilibrium
under weak interactions. We introduce two different mass
formulas—a flavor dependent and a flavor blind one—and
derive analytic formulas for the EOS. In Sec. V we solve
numerically the EOS for several parameter choices. We
systematically analyze the parameter space and identify the
regions corresponding to self-bound 2-flavor and 3-flavor
quark matter, hybrid matter and causal behavior. In Sec. VI
we summarize our main results and discuss some of the
consequences of the model.

II. DEGENERATE FREE FERMI GAS IN
DIFFERENT STATISTICAL ENSEMBLES

In order to develop a thermodynamically consistent
formulation of the QMDDM one must work within the
Helmholtz representation associated with the canonical
ensemble. We review here some well-known results for
degenerate Fermi gases with medium-independent particle
masses. We begin establishing the notation and introducing
some functions that will be used along the paper. For
simplicity, we start by considering a system with only one
particle species.

A. Degenerate free Fermi gas in the grand
canonical ensemble

The thermodynamic behavior of a free Fermi gas is
usually described within the grand canonical ensemble.

From the grand canonical partition function one obtains the
grand thermodynamic potential ΩðT; V; μÞ, where T is
the temperature, V is the system’s volume, and μ is the
chemical potential. For relativistic fermions of mass m at
T ¼ 0, ΩðV; μÞ reads [19]:

ΩðV; μÞ ¼ −
1

3

gV
2π2

Z
kF

0

∂EðkÞ
∂k

k3dk ¼ −gVm4ϕðxÞ; ð7Þ

where g is the particle’s degeneracy and

ϕðxÞ ¼ 1

48π2
½x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
ð2x2 − 3Þ þ 3arcsinhðxÞ�; ð8Þ

being

xðμÞ≡ kF
m

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

m2
− 1

r
; ð9Þ

with kF the Fermi momentum.
All thermodynamic quantities can be derived from

ΩðV; μÞ. The particle number density n is given by:

nðμÞ≡ NðV; μÞ
V

¼ −
1

V
∂Ω
∂μ

����
V
¼ gm3

6π2
x3; ð10Þ

and the pressure p is

pðμÞ ¼ −
∂Ω
∂V

����
μ

¼ gm4ϕðxÞ: ð11Þ

Finally, the internal energy U can be obtained from the
Legendre’s transform Ω≡U − TS − μN. Dividing U by
the system’s volume, one obtains the energy density
ϵ≡U=V

ϵðμÞ ¼ gm4χðxÞ; ð12Þ

where

χðxÞ ¼ 1

16π2
½x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
ð2x2 þ 1Þ − arcsinhðxÞ�: ð13Þ

B. Degenerate free Fermi gas
in the canonical ensemble

In the canonical ensemble all thermodynamic quantities
can be derived once the Helmholtz free energy FðT; V;NÞ
is specified. FðT; V; NÞ is defined as the Legendre trans-
form of the internal energy UðS; V; NÞ with respect to the
entropy S, i.e. F≡U − TS. Thus, at zero temperature we
obtain from Eq. (12):

FðV;NÞ ¼ ϵV ¼ gVm4χðxÞ ðfor T ¼ 0Þ; ð14Þ

COLD DENSE QUARK MATTER WITH PHENOMENOLOGICAL … PHYS. REV. D 107, 043025 (2023)

043025-3



where χ is given by Eq. (13) and x is now expressed in
terms of the particle number density n ¼ N=V [using
Eq. (10)]:

xðnÞ ¼ 1

m

�
6π2n
g

�
1=3

: ð15Þ

Since at T ¼ 0 we have U ¼ F, the energy density
ϵ ¼ U=V ¼ F=V reads:

ϵðnÞ ¼ gm4χðxÞ: ð16Þ
The pressure can be obtained from the standard thermo-

dynamic derivative of FðV;NÞ:

pðnÞ ¼ −
∂F
∂V

����
N
¼ −

∂ðϵV=NÞ
∂ðV=NÞ

����
N
¼ n2

∂ðϵ=nÞ
∂n

ð17Þ

¼ gm4

�
−χ þ nχ0

∂x
∂n

�
: ð18Þ

Replacing χ from Eq. (13), ∂x=∂n ¼ x=ð3nÞ, and:

χ0ðxÞ≡ dχ
dx

¼ x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

2π2
; ð19Þ

one finds:

pðnÞ ¼ gm4ϕðxÞ; ð20Þ
where ϕðxÞwas already defined in Eq. (8) and x is given by
Eq. (15). Notice that, although Eq. (20) coincides formally
with the grand canonical result given in Eq. (11), the
variable x in Eq. (20) is now regarded as a function of n and
not as a function of μ.
The chemical potential is given by:

μ ¼ ∂F
∂N

����
V
¼ ∂ðF=VÞ

∂ðN=VÞ
����
V
¼ ∂ϵ

∂n
ð21Þ

¼ gm4χ0
∂x
∂n

¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
: ð22Þ

Again, the above result coincides with Eq. (9), but x is
given now by Eq. (15).
In summary, at T ¼ 0, all thermodynamic quantities are

functions of the particle number density n. The complete
EOS reads:

xðnÞ ¼ 1

m

�
6π2n
g

�
1=3

; ð23Þ

ϵðnÞ ¼ gm4χðxÞ; ð24Þ

pðnÞ ¼ gm4ϕðxÞ; ð25Þ

μðnÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
: ð26Þ

III. REVISITING THE QMDDM FOR
A ONE-COMPONENT COLD GAS

In this section we will reformulate the QMDDM in the
simplest case of a one-species system. The central idea of
this model is that important aspects of the strong interaction
among quarks in the high-density low-temperature regime
can be described by treating the system as a free gas of
quasiparticles with density-dependent effective masses.
Clearly, it is not possible to mimic all QCD features in
the effective masses and more sophisticated versions of the
model including interaction terms would be required in
order to extend the applicability range of the model.
Although this idea is widely known in physics, the

implementation of quasiparticle mass formulas depending
on the baryon number density nB has been subject to long-
standing problems of thermodynamic consistency (see
Refs. [6,7,10–13,15,18] and references therein). The source
of all these issues is that density-dependent functions were
always introduced within the grand canonical ensemble
whereΩ explicitly depends on T, V and μ, being the particle
number density a derivedquantity. Then, it is ambiguoushow
to deal with a density-dependent mass when thermodynamic
derivatives are performed. As we will show in this section,
such ambiguity disappears when density-dependent masses
are introduced within the canonical ensemble where F
depends on T, V and the number of particles N.

A. Phenomenological quasiparticle mass

For the effective quasiparticle mass we will adopt the
following ansatz:

MðnÞ ¼ mþ C

na=3
; ð27Þ

where m is the current quark mass, a and C are positive
constant free parameters, and n ¼ N=V is the particle
number density. In the next section, we will present a
model for 3-flavor quark matter with the mass parametrized
in terms of the particle number densities ni (i ¼ u, d, s) or
the baryon number density nB.
The ansatz of Eq. (27) has been used in almost all previous

versions of the QMDDM as well as in other phenomeno-
logicalmodels [20]. The effectivemass diverges for densities
approaching zero (see Fig. 1), thus mimicking confinement
by removing the occurrence of quasiparticles. At zero
pressure M has its largest physical value as seen in Fig. 1.
At asymptotically large densities the effective mass tends to
the current quark mass resembling the restoration of the
chiral symmetry in a phenomenological way when m ¼ 0.
Finally, since we will need the first and second deriv-

atives of MðnÞ to obtain some thermodynamic quantities,
we present them here:

∂M
∂n

¼ −
C
3

a

na=3þ1
; ð28Þ
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∂
2M
∂n2

¼ C
9

aðaþ 3Þ
na=3þ2

: ð29Þ

Notice that ∂M=∂n is always negative for n > 0.

B. QMDDM in the canonical ensemble

In the following we reformulate the QMDDM in the
canonical ensemble assuming that the system can be
described as a Fermi gas of free quasiparticles of mass
MðnÞ. Thus, our starting point is the Helmholtz free energy
given in Eq. (14), but using MðnÞ instead of m:

FðV;NÞ ¼ gVM4ðnÞχðxÞ: ð30Þ

Notice that x is given by the same expression of Eq. (15)
but now with a density dependent mass:

xðnÞ ¼ 1

MðnÞ
�
6π2n
g

�
1=3

: ð31Þ

From Eq. (30) we can derive all the thermodynamic
quantities that describe the macroscopic behavior of the
system. In particular, the energy density at T ¼ 0 is given
by ϵ ¼ F=V and reads:

ϵðnÞ ¼ gM4χðxÞ: ð32Þ

The pressure, chemical potential and speed of sound will be
derived in the following subsections.

C. Pressure

To obtain the pressure we use the standard expression
given in Eq. (17)

pðnÞ ¼ n2
∂ðϵ=nÞ
∂n

; ð33Þ

from which we find:

pðnÞ ¼ −gM4χ þ gn4M3
∂M
∂n

χ þ gnM4χ0
∂x
∂n

; ð34Þ

where χ0 is given by Eq. (19), and:

∂x
∂n

¼ x
3n

−
x
M

∂M
∂n

: ð35Þ

Replacing Eq. (35) into Eq. (34) and rearranging terms we
obtain:

pðnÞ ¼ pFGðnÞ − BðnÞ ð36Þ

being

pFGðnÞ≡ gM4ϕðxÞ; ð37Þ

BðnÞ≡ −gM3n
∂M
∂n

βðxÞ > 0; ð38Þ

where ϕðxÞ ¼ −χ þ xχ0=3 is given by Eq. (8), and the new
function βðxÞ≡ 4χ − xχ0 is given by:

βðxÞ≡ 1

4π2
½x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− arcsinhðxÞ�: ð39Þ

The total pressure in Eq. (36) has two terms. The first
one, given in Eq. (37), is formally identical to the one
shown in Eq. (20) but with a density dependent mass. Thus,
we interpret pFG as the “free gas” contribution to the
pressure. The new term B, given in Eq. (38), comes from
the density dependence of the quasiparticle’s mass M.
Since βðxÞ is always positive for x > 0, and ∂M=∂n < 0,
we obtain BðnÞ > 0. Therefore, the pressure contains now a
new term that is always negative, which is interpreted as a
“bag constant” that confines the particles. The bag constant
vanishes at asymptotically large densities and the system
becomes a free Fermi gas of particles with M ¼ m. The
total pressure and its contributions pFG and B are shown in
Fig. 2(a). Notice that, due to the effect of B, the total
pressure vanishes at a finite density.
An important feature of the model is that confinement

naturally arises as a consequence of the density dependence
of the particle’s masses. In contrast with previous versions
of the QMDDM, this feature does not spoil the thermo-
dynamic consistency of the model. For example, the energy
per particle as a function of the total pressure has its
minimum located at p ¼ 0 [see Fig. 2(b)].

FIG. 1. Effective quasiparticle mass M as a function of: (a) the
particle number density n in units of the nuclear saturation
density n0, (b) the chemical potential, and (c) the pressure. For
these plots we adoptedm ¼ 5 MeV, a ¼ 3 and C ¼ 100 (units of
a and C are such that n is in fm−3 and M in MeV). Notice that
according to the mass formula,M diverges as n → 0. However, in
practice, M has its maximum finite value at zero pressure and
tends to the current massm at asymptotically large pressures. The
gray shaded zones indicate the unphysical regions of negative
pressure.
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D. Chemical potential

The chemical potential is given by [cf. Eqs. (21)
and (32)]:

μðnÞ ¼ ∂ϵ

∂n
¼ gM4χ0

∂x
∂n

þ g4M3
∂M
∂n

χ: ð40Þ

Replacing χ0 by Eq. (19), ∂x=∂n by Eq. (35), and rearrang-
ing terms we obtain:

μðnÞ ¼ μFGðnÞ − BðnÞ
n

ð41Þ

where

μFGðnÞ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
ð42Þ

and the bag constant was already given in Eq. (38).
The chemical potential in Eq. (41) has two terms. The

first one, μFG, has the same form as for a free Fermi gas but
withM instead ofm [cf. Eq. (22)]. This contribution comes
from the first term of Eq. (40) which depends on ∂x=∂n; i.e.
it takes into account the variation of the Fermi’s momentum
x with the density. Usually, the Fermi’s momentum
increases with n1=3 but in the QMDDM it has an extra

density dependence embedded in the quasiparticle’s mass,
as seen in Eq. (31). Writing Eq. (42) as a function
of the density, one finds μFGðnÞ ¼ MðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðnÞ2 þ 1

p
¼

½ð6π2n=gÞ2=3 þm2 þ 2mCn−a=3 þ C2n−2a=3�1=2. The first
two terms inside the square root are the same as for a Fermi
gas with a medium independent quark mass. The third and
fourth terms increase the chemical potential with respect to
the standard case, taking into account that the Fermi surface
changes differently when medium effects are included
in M.
The second term,B=n, of Eq. (41) comes from the second

term of Eq. (40) which depends on ∂M=∂n. Contrary to the
first term, it is negative; i.e. it decreases the chemical
potential. It takes into account that the effect of adding a
newparticle (at fixedV) is not simply to put it at the top of the
Fermi’s sea. There is an extra effect related to themass shrink
of all particles. As seen in Figs. 2(c) and 2(d), the term B=n
vanishes at asymptotically large densities.

E. Speed of sound

The sound speed is defined as:

c2s ¼
∂p
∂ϵ

����
S
: ð43Þ

At zero temperature the system has S ¼ 0; therefore, we
have:

c2s ¼
∂pðnÞ
∂ϵðnÞ ¼ ∂p=∂n

∂ϵ=∂n
¼ 1

μ

�
∂pFG

∂n
−
∂B
∂n

�
; ð44Þ

where:

∂pFG

∂n
¼ gM3

∂M
∂n

ð4ϕ − ϕ0xÞ þ gM4

3n
ϕ0x; ð45Þ

∂B
∂n

¼ −gM2n

�
∂M
∂n

�
2

½3β − β0x�

−
gM3

3

∂M
∂n

½3β þ β0x� − gM3n
∂
2M
∂n2

β; ð46Þ

being:

ϕ0ðxÞ ¼ x4

6π2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p : ð47Þ

The speed of sound is shown Fig. 3 for the same choices
of the parameters a and C used in Fig. 1. At asymptotically
large densities cs tends to the conformal limit 1=

ffiffiffi
3

p
and at

low densities it increases significantly (we adopt c ¼ 1,
being c the speed of light).

FIG. 2. EOS for a one component gas: (a) total pressure p (and
its contributions pFG and B) as a function of the particle number
density n in units of the nuclear saturation density n0; (b) energy
per particle ϵ=n as a function of p; (c) chemical potential μ and its
contributions μFG and B=n as a function of p; (d) chemical
potential as a function of n=n0. Notice that ϵ=n has a minimum at
p ¼ 0, as required by thermodynamic consistency (see red circle
in panel b). The gray shaded zones indicate the unphysical
regions of negative pressure.
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IV. GENERALIZATION TO THREE-FLAVOR
QUARK MATTER: FORMALISM

For astrophysical applications, the most relevant state of
quark matter is an electrically neutral mixture of u, d and s
quarks together with a small fraction of electrons e, all in
chemical equilibrium under weak interactions. The one-
flavor formula of the previous section can be extended to
three flavors in different ways. In Sec. IVA we discuss
some theoretical motivations for the flavor blind and the
flavor dependent mass formulas that will be used in
Secs. IV B and IV C. For convenience, we summarize both
EOS in Sec. IV D. The chemical equilibrium and charge
neutrality conditions that will be used in the calculations of
the following sections are discussed in Sec. IV E.

A. Quasiparticle mass formulas
for 3-flavor quark matter

In the context of the QMDDM, the mass formula for
each flavor has been written in previous works as a function
of the baryon number density nB. This choice is based on an
analysis of a schematic form of the QCD Hamiltonian
density, which is written as [10]:

HQCD ¼ Hkin þ
X
i

miq̄iqi þHint; ð48Þ

where Hkin is the kinetic term, mi is the quark current mass
of flavor i, Hint is the interaction contribution, and the
summation goes over all flavors considered. The original
Hamiltonian density can be replaced by an equivalent one
of the form

Heq ¼ Hkin þ
X
i

Miq̄iqi; ð49Þ

where Mi is an equivalent mass to be determined.
Requiring that Heq and HQCD have the same eigenenergies
for any eigenstate jΨi, and assuming that ðMi −miÞ is the
same for all flavors, Mi turns out to be (see Ref. [10] for
further details):

Mi ¼ mi þ
hnBjHintjnBi − h0jHintj0iP
q½hnBjq̄iqijnBi − h0jq̄iqij0i�

ð50Þ

≡mi þmint; ð51Þ

where jnBi is a state with baryon number density nB and j0i
is the vacuum state. The first term of Eq. (50) is the original
current mass, while mint is a contribution arising from
interactions. Since mint is the ratio of the total interacting
part of the energy density and the total relative quark
condensate, it is flavor independent and density dependent.
In Eq. (44) of [21] it is argued that the numerator of

Eq. (50) is given by 3nBvðrÞ where vðrÞ is the quark-quark
interaction, while the denominator is proportional to nB.
The resultingmint scales with vðrÞ. Assuming that vðrÞ∝ra

and r ∝ n−1=3B one obtains:

mint ∝ n−a=3B : ð52Þ

Therefore, as expected, at low densities mint diverges
(confinement), and at asymptotically large densities it
vanishes (asymptotic freedom):

lim
nB→0

mint ¼ ∞; lim
nB→∞

mint ¼ 0: ð53Þ

Most models assume a linear quark-quark interaction
which leads to a ¼ 1. To keep the analysis as general as
possible we assume here a simple functional form that
fulfills the above requirements [2–13,15,18]:

Mi ¼ mi þ
C

na=3B

; ð54Þ

where C and a are positive flavor independent free
parameters to be determined.
On the other hand, an effective quark mass can be

derived from the pole of the resummed one-loop quark
propagator at finite chemical potential which is calculated
in the hard dense loop approximation (see Refs. [17,22–24]
and references therein):

Mi ¼
mi

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i

4
þ 4παsμ

2
i

6π2

s
; ð55Þ

where mi is the quark current mass, αs is the strong
interaction coupling constant and μi is the chemical potential
of flavor i. Notice thatMi grows roughly linearly with μi for
μi ≫ mi, suggesting that the effective mass in the QMDDM
could bemodified to include an additional term that increases
with the density, as done inRefs. [15,25,26]. The inclusion of
such a term within the canonical reformulation of the
QMDDM is left for a future work. However, since Mi in
Eq. (55) is flavor-dependent, we will analyze here the case
where the quasiparticle masses are flavor dependent.

FIG. 3. Speed of sound for the same choices of a and C of
Fig. 1 as a function of (a) the number density, (b) the chemical
potential, and (c) the pressure. At asymptotically large densities
cs tends to the conformal limit 1=

ffiffiffi
3

p
.
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To retain a qualitative behavior similar to that in Eq. (54), we
will adopt a flavor dependent formula of the form:

Mi ¼ mi þ
C

na=3i

: ð56Þ

B. EOS with a flavor dependent mass formula

Let us assume that the quark mass of flavor i depends on
the number density ni as follows:

Mi ¼ mi þ
C

na=3i

; ði ¼ u; d; sÞ: ð57Þ

We will work in the canonical ensemble assuming that
quark matter can be described as a mixture of noninteract-
ing quarks with effective masses Miði ¼ u; d; sÞ and free
electrons. The Helmholtz free energy of the mixture is
simply the sum of the contribution of each species:

FðV; fnigÞ ¼
X

i¼u;d;s;e

Fi: ð58Þ

For quarks, the Helmholtz free energy is given by Eq. (30)
but with the replacement MðnÞ → MiðniÞ:

Fi ≡ FðV; niÞ ¼ VgMiðniÞ4χðxiÞ; ð59Þ

where g ¼ 2ðspinÞ × 3ðcolorÞ ¼ 6 and

xi ¼
1

MiðniÞ
�
6π2ni
g

�
1=3

: ð60Þ

Electrons do not have density dependent masses (they do
not perceive strong interactions); thus, their contribution is
given by:

Fe ¼ Vgem4
eχðxeÞ; ð61Þ

where ge ¼ 2, xe ¼ m−1
e ð6π2ne=geÞ1=3, being me the elec-

tron’s mass.
Notice that each Fi depends only on the particle number

density of the same index i. Therefore, all thermodynamic
quantities will have the same functional form as in the one-
flavor case, as we will show below. The energy density at
T ¼ 0 is given by ϵ ¼ F=V and reads:

ϵðfnigÞ ¼
X

i¼u;d;s;e

Fi=V ¼
X

i¼u;d;s;e

ϵi ð62Þ

where

ϵi ≡ ϵiðniÞ ¼
�
gM4

i χðxiÞ ði ¼ u; d; sÞ;
gem4

eχðxeÞ ðelectronsÞ: ð63Þ

The total pressure p ¼ −∂F=∂VjfNig is

p ¼ −
X
i

∂Fi

∂V

����
fNig

¼ −
X
i

∂ðϵiV=NiÞ
∂ðV=NiÞ

����
fNig

ð64Þ

¼
X
i

n2i
∂ðϵi=niÞ
∂ni

¼
X
i

pi ð65Þ

being

pi ≡ piðniÞ ¼
�
pFG
i − Bi ði ¼ u; d; sÞ;

gem4
eϕðxeÞ; ðelectronsÞ; ð66Þ

where the “free gas” contribution pFG
i and the “bag

constant” Bi are given by:

pFG
i ðV;NiÞ≡ gM4

iϕðxiÞ; ð67Þ

−BiðV;NiÞ≡ gniM3
i
∂Mi

∂ni
βðxiÞ: ð68Þ

Finally, the chemical potential μi is

μiðV;NiÞ ¼
∂F
∂Ni

����
V;Nj≠i

¼ ∂ϵi
∂ni

ð69Þ

¼ μFGi −
Bi

ni
ði ¼ u; d; sÞ; ð70Þ

being

μFGi ¼ Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
: ð71Þ

C. EOS with a flavor blind mass formula

Now, let us assume that the quark mass of flavor i
depends on the baryon number density nB as follows:

Mi ¼ mi þ
C

na=3B

; ði ¼ u; d; sÞ; ð72Þ

where nB ¼ 1
3
ðnu þ nd þ nsÞ. The flavor dependence

of Mi comes only from the different values of the current
masses mi.
Again, we will describe the system as a mixture of

noninteracting quarks with effective masses Mi and free
electrons. The total Helmholtz free energy is simply the
sum of the contribution of each species:

FðV; nBÞ ¼
X

i¼u;d;s;e

Fi: ð73Þ

For quarks, Fi is given by Eq. (30) with the replacement
MðnÞ → MiðnBÞ:

Fi ≡ FiðV; fnigÞ ¼ VgM4
i ðnBÞχðxiÞ; ð74Þ
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where:

xi ¼
1

MiðnBÞ
�
6π2ni
g

�
1=3

: ð75Þ

Notice that in the case of quarks each Fi depends on the
particle number densities of all three flavors, and the
thermodynamic quantities derived from F will not neces-
sarily have the same functional form as in the one-flavor
case. For electrons, Fe is given by Eq. (61) and, therefore,
ϵe, pe and μe are given by the same expressions of the
previous subsection.
The energy density at T ¼ 0 is given by ϵ ¼ F=V and

reads:

ϵðfnigÞ ¼
X

i¼u;d;s;e

Fi=V ¼
X

i¼u;d;s;e

ϵi; ð76Þ

where

ϵi ¼ gM4
i ðnBÞχðxiÞ ði ¼ u; d; sÞ: ð77Þ

The total pressure is given by p ¼ −∂F=∂V keeping
fNig constant. Using F ¼ P

i Fi, replacing Fi ¼ ϵi=V and
dividing the numerator and denominator of each term byNi
we obtain:

p ¼ −
X
i

∂Fi

∂V

����
fNig

¼ −
X

i¼u;d;s

∂ðϵi V
Ni
Þ

∂ðVNi
Þ
����
fNig

þ pe ð78Þ

¼
X

i¼u;d;s

n2i
∂ðϵi=niÞ
∂ni

þ pe: ð79Þ

Thus, the total pressure reads

p ¼
X

i¼u;d;s

pi þ pe; ð80Þ

being

pi ¼ n2i
∂ðϵi=niÞ
∂ni

ði ¼ u; d; sÞ: ð81Þ

Replacing Eq. (77) into Eq. (81) and using

∂xi
∂ni

¼ xi
3ni

−
xi
Mi

∂Mi

∂ni
ði ¼ u; d; sÞ; ð82Þ

we obtain

pi ¼ pFG
i − Bi ði ¼ u; d; sÞ; ð83Þ

where the “free gas” contribution pFG
i and the “bag

constant” Bi are given by:

pFG
i ≡ gM4

iϕðxiÞ; ð84Þ

−Bi ≡ gniM3
i
∂Mi

∂ni
βðxiÞ: ð85Þ

Notice that pFG
i and Bi have the same form in the flavor

blind and in the flavor dependent cases.
The chemical potential μi is

μi ¼
∂F
∂Ni

����
V;Nj≠i

¼ ∂
P

kϵk
∂ni

����
nj≠i

¼
X
k

∂ϵk
∂ni

����
nj≠i

ð86Þ

¼ g
X
k

∂ðM4
kχðxkÞÞ
∂ni

����
nj≠i

ð87Þ

Performing the derivative of the product and using Eq. (82)
we obtain:

μi ¼ μFGi −
X
j

Bj

nj
; ð88Þ

where μFGi is given by Eq. (71).

D. Summary and discussion of the 3-flavor EOS

As seen in the previous subsections, all thermodynamic
quantities (with the exception of the chemical potentials)
have the same form in both flavor dependent and flavor
blind models, but with different formulas for the quasi-
particle’s mass and its derivative. For convenience, we
summarize below all the formulas necessary to determine
the EOS. The density dependent masses and their deriv-
atives are

Mi ¼
�
mi þ Cn−a=3i ðflavor dependentÞ;
mi þ Cn−a=3B ðflavor blindÞ;

ð89Þ

∂Mi

∂ni
¼

�− a
3
Cn−a=3−1i ðflavor dependentÞ;

− 1
3
a
3
Cn−a=3−1B ðflavor blindÞ;

ð90Þ

being a and C positive free parameters. The Helmholtz free
energy is F ¼ P

i¼u;d;s;e Fi, being

Fi ¼
�
gVM4

i χðxiÞ ði ¼ u; d; sÞ;
geVm4

eχðxeÞ ðelectronsÞ; ð91Þ

with g ¼ 6 and ge ¼ 2. The function χðxÞ is defined in
Eq. (13) and:

xi ¼
1

Mi

�
6π2ni
g

�
1=3

ði ¼ u; d; sÞ; ð92Þ

xe ¼
1

me

�
6π2ne
ge

�
1=3

ðelectronsÞ: ð93Þ
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The energy density is ϵ ¼ P
i¼u;d;s;e ϵi, where:

ϵi ¼
�
gM4

i χðxiÞ ði ¼ u; d; sÞ;
gem4

eχðxeÞ ðelectronsÞ: ð94Þ

The total pressure is p ¼ P
i¼u;d;s;e pi, being

pi ¼
�
gM4

iϕðxiÞ − Bi ði ¼ u; d; sÞ;
gem4

eϕðxeÞ ðelectronsÞ; ð95Þ

where ϕðxÞ is defined in Eq. (8) and the “bag constant” Bi
is given by:

−Bi ¼ gniM3
i
∂Mi

∂ni
βðxiÞ; ð96Þ

with βðxÞ defined in Eq. (39). Notice that, due to the density
dependence of the mass, a new term appears (the “bag
constant”) which naturally introduces confinement in the
model, without the necessity of introducing an ad hoc
constant. This bag constant depends on the density of the
system and does not break thermodynamic consistency as
in previous versions of the model. Notice that Bi does not
appear in the expression for energy density as in some
previous versions of the QMDDM [6,7].
Finally, the chemical potential of u, d and s quasipar-

ticles is

μi ¼
8<
:

Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

p
− Bi

ni
ðflavor dependentÞ;

Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

p
−
P
j

Bj

nj
ðflavor blindÞ; ð97Þ

while for electrons it reads:

μe ¼ me

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e þ 1

q
: ð98Þ

Notice that the chemical potential in Eq. (97) has two terms.
The first one, μFG, has the same form as for the free Fermi
gas and takes into account that in a completely degenerate
fermionic system any new particle must be added with the
Fermi energy. The second one, Bi=ni or

P
j Bj=nj, arises

naturally in a free Fermi gas with density dependent Mi. It
takes into account that the energy cost of adding a new
particle is smaller than in the case of a medium-independent
mass (see discussion in Sec. III D). Remarkably, that new
term resembles repulsive vector interactions in other
approaches such as the MIT and the NJL model.
However, the shift in the effective chemical potential of
the above mentioned models is proportional to the density,
while in the QMDDM it is always a decreasing function of
the density [as already shown in Figs. 2(c) and 2(d)].
Finally, as remarked before, thermodynamic consistency

is guaranteed in the present version of the QMDDM
because we worked within the canonical ensemble, which

depends naturally on ni. In particular, the minimum of the
energy per baryon occurs at zero pressure and the Euler’s
relation is verified.

E. Chemical equilibrium and charge neutrality

In the following, we focus on cold dense quark matter
under typical NS conditions. Therefore, we work under the
assumption that quark matter is in chemical equilibrium
under weak interaction processes, such as:

uþ e− → dþ νe;

uþ e− → sþ νe;

d → uþ e− þ ν̄e;

s → uþ e− þ ν̄e;

uþ d ↔ uþ s: ð99Þ

In cold matter, neutrinos leave freely the system (μνe ¼ 0)
and the chemical equilibrium conditions read:

μd ¼ μu þ μe; ð100Þ

μs ¼ μd; ð101Þ

where the chemical potentials are functions of the particle
number densities [cf. Eqs. (97) and (98)].
We also assume local electric charge neutrality;

therefore:

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0: ð102Þ

The three conditions above, relate the particle number
densities nu, nd, ns, and ne, meaning that only one of them
is independent.
Alternatively, we can use the definition of the baryon

number density:

nB ¼ 1

3
ðnu þ nd þ nsÞ: ð103Þ

Equations (100), (101), (102) and (103) relate the variables
nu, nd, ns, ne and nB; i.e. all thermodynamic quantities can
be obtained for a given value of nB.

V. NUMERICAL RESULTS FOR THE EOS
UNDER COMPACT STAR CONDITIONS

A. Analysis of the parameter space

In all the following calculations we adopt fixed values
for the current quark masses: mu ¼ md ¼ 3.4 MeV and
ms ¼ 93 MeV [27].
Let e0 be the energy per baryon of bulk quark matter at

vanishing pressure and temperature: e0≡ϵ=nBðp¼T¼0Þ.
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Depending on the choice of the two free parameters, a and
C, e0 can be greater or less than the energy per nucleon of
the most tightly bound free atomic nucleus (62Ni), which is
≈930 MeV. Therefore, we have two qualitatively different
situations:
(a) If the parameters of the model are such that e0 <

930 MeV we are in the case of self-bound quark
matter. This means that bulk quark matter in vacuum
will not decay into hadronic matter, i.e. it is absolutely
stable [28]. If self-bound quark matter is made of only
two flavors at vanishing pressure and temperature,
we will designate it as self-bound ud quark matter
(sb-udQM). If it is made of three flavors at P ¼ T ¼ 0,
we will call it strange quark matter (SQM). If quark
matter is self-bound, compact stars made of quark
matter from the center up to the surface would be
possible in Nature (self-bound quark stars).

(b) On the contrary, if e0 > 930 MeV, the preferred state
of dense matter is hadronic at low enough p and
deconfined at high p (hybrid matter). In this case, stars
containing quark matter are always hybrid stars. We
will distinguish two types of hybrid matter: (I) when
the quark phase is always made of uds quarks and (II)
when there is a first order phase transition between ud
and uds matter.

In the following we analyze some general properties of
the quark matter EOS that are determined by the choice of a
and C. To this end we will obtain the following curves in
the parameter space (C versus a diagram):
(1) Curve with e0ud ¼ 930 MeV: This curve is obtained

by imposing the following conditions:

pu þ pd þ pe ¼ 0; ð104Þ

ðe0u þ e0d þ e0eÞ ¼ 930 MeV: ð105Þ

Together with charge neutrality and chemical equi-
librium we have four equations and five unknowns
(nu, nd, ne, C, a). Thus, for each given value of a we
can obtain the corresponding value of C that fulfills
all the above conditions. This curve is shown in
Fig. 4 for the flavor dependent (panel a) and the
flavor blind (panel b) cases presented before. Below
this line e0ud < 930 MeV. This is not necessarily in
contradiction with the observed existence of atomic
nuclei, due to finite size effects. In fact, the decay of
an atomic nucleus into a drop of deconfined quarks
has an additional cost with respect to the bulk case
due to the surface and curvature energy of a finite
drop. For large enough surface and curvature ten-
sions, ud-QM may be self-bound in compact stars
without being in conflict with the existence of
nuclei. Above this line, deconfined 2-flavor quark
matter in vacuum will decay into hadrons.

(2) Curve with e0uds ¼ 930 MeV: The curve is obtained
by imposing:

pu þ pd þ ps þ pe ¼ 0; ð106Þ

ðe0u þ e0d þ e0s þ e0eÞ ¼ 930 MeV; ð107Þ

which, together with charge neutrality and chemical
equilibrium, provide five equations for six unknowns

FIG. 4. Parameter space of quark matter in bulk for the (a) flavor dependent and (b) flavor blind models. If a set of parameters is
chosen below the black solid line the resulting EOS will have e0ud < 930 MeV. Similarly, if a and C are taken below the red dash-dotted
line the EOS will have e0uds < 930 MeV. Thus, below these lines quark matter will be sb-udQM if e0ud < e0uds and SQM if e0uds < e0ud.
Above the 930 MeV lines, dense matter is hybrid, i.e. the preferred state is hadronic at low p and deconfined at high p. The label II in the
hybrid matter region denotes the possibility of having a first order phase transition from ud to udsmatter, which does not happen in case
I (see Figs. 5 and 7). In panel (a) the curve where e0ud ¼ e0uds is shown with a dashed line; to the right of this line quark matter is
3-flavored at high enough p and 2-flavored at low enough p. In panel (b) we find that the e0ud ¼ 930 MeV curve is always below the
e0uds ¼ 930 MeV one; thus, sb-udQM and hybrid matter II are not possible. If C and a are chosen to the left of the c0s ¼ c curve, the
resulting EOS will always be causal. However, to the right of that curve the EOS is acausal at low enough p and self-bound matter is
forbidden.
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(nu, nd, ns ne, C, a). Thus, for each a one obtains the
value of C that fulfills all previous conditions (see
Fig. 4). Below this line deconfined 3-flavor quark
matter is self-bound and above it decays into hadrons.

(3) Curve with e0ud ¼ e0uds: This line is present only in
the flavor dependent case [Fig. 4(a)] and crosses the
intersection between the e0ud ¼ 930 MeV and the
e0uds ¼ 930 MeV curves, as expected. To the left of
the e0ud ¼ e0uds curve, quark matter is 3-flavored at
high p, 2-flavored at low p, and there is a first order
phase transition between both regimes; i.e. we have
hybrid matter II [Fig. 5(d)] and sb-udQM [Fig. 5(b)].
To the right of this curve bulk quark matter is
3-flavored at any pressure; i.e. we have hybrid
matter I [Fig. 5(c)] and SQM [Fig. 5(a)]. In the
flavor blind model the e0ud ¼ 930 MeV curve is
always below the e0uds ¼ 930 MeV one, and these
lines tend to overlap for small enough values of a.
As a consequence, sb-udQM and hybrid matter II are
not possible in panel (b) of Fig. 4.

(4) Curve with c0s ¼ c: The dotted line in Fig. 4
indicates the values of C and a for which the speed
of sound at vanishing pressure and temperature
[c0s ≡ csðp ¼ T ¼ 0Þ] equals the speed of light c.
Since cs is a decreasing function of p (see Figs. 9
and 10), the region to the left of this curve is always
causal. To the right, the EOS is acausal at low
enough p. This is not necessarily a problem in the
case of hybrid matter, provided that the hadronic
phase is energetically favorable in the region where
quark matter is acausal. However, such behavior is
not admissible for self-bound matter because it
exists all the way down to p ¼ 0. Thus, the gray
region to the right of the c0s ¼ c curve is forbidden

since the resulting EOS will always have an acausal
regime at low enough p. Notice that the curve
cs ¼ c is almost vertical, meaning that the causality
boundary depends only on the parameter a, i.e. on
the intensity of the quark-quark interaction (see
Sec. IVA). Notice that for the typical value a ¼ 1
the model is comfortably within the causal region.
Problems with causality arise for very strong quark-
quark interactions with a beyond ∼ 4–5.

All the previous curves define different regions in the
parameter space that are shown and discussed in Fig. 4.

B. Equation of state

To better understand the parameter space, we show in
Figs. 5 and 6 the Gibbs free energy per baryon G=nB ≡
ðϵþ pÞ=nB as a function of the pressure. We consider
parameters within all regions of Fig. 4.
First notice that, since e0 ¼ G=nBðP ¼ T ¼ 0Þ, a direct

connection can be established between Fig. 4 and the zero
pressure points of the curves in Figs. 5 and 6. Indeed,
for SQM the magenta dash-dotted curve is always below
930 MeVat P ¼ 0 [Figs. 5(a) and 6(a)]. Also, for sb-udQM
the continuous blue curve is below the 930 MeV line at
P ¼ 0 [Fig. 5(b)]. On the contrary, for hybrid matter
the value of G=nB at P ¼ 0 is always above 930 MeV
[Figs. 5(c), 5(d), and 6(b)].
Now, let us analyze the flavor composition of quark

matter at finite pressures. In the flavor blind model, the uds
curve is always below the ud one, as exemplified in Fig. 6.
Since the preferred phase is the one with lower G=nB, one
concludes that sb-udQM and hybrid matter II are not
possible in this case. Now let us focus on the flavor
dependent model. For parameter choices within the hybrid
matter II and the sb-udQM regions of Fig. 4(a), one finds
crosses between the ud and uds curves indicating that there
is a first order phase transition from 2 to 3 flavors at that
point [Figs. 5(b) and 5(d)]. For choices within the hybrid
matter I and the SQM regions of Fig. 4(a), the uds curve is
always below the ud one, meaning that quark matter is
always made of three flavors, whether self-bound or hybrid
[Figs. 5(a) and 5(c)].
In Figs. 7 and 8 we show the total pressure p ¼ P

i pi
[Eq. (95)] and the bag constant B ¼ P

i Bi as a function of

FIG. 5. Gibbs free energy per baryon of 2-flavor and 3-flavor
quark matter in bulk for the flavor dependent case. Labels (a)–(d)
correspond to different parameter choices that are specified
within each panel.

FIG. 6. Same as in the previous figure but for the flavor blind
model. Labels (a) and (b) correspond to different parameter
choices that are specified within each panel.
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the energy density for the same parametrizations presented
in Figs. 5 and 6. In all cases the pressure becomes negative
at finite energy density due to the effect of B. The bag
constant depends on density, always being a decreasing
function of ϵ. At asymptotically large densities B tends to
zero and the system behaves as a free Fermi gas of electrons
and quarks with Mi ¼ mi. In Figs. 7(b) and 7(d) the
pressure presents a plateau corresponding to the phase
transition from 2 to 3 flavors mentioned above. For that
reason, the bag constant is discontinuous in these cases.

C. Speed of sound

The speed of sound cs is shown in Figs. 9 and 10 for the
same parameter choices of previous figures. In all cases cs
is a decreasing function of the baryon number density and
tends asymptotically to the conformal limit cs ¼ 1=

ffiffiffi
3

p
.

Since the pressure tends to zero at a finite density, we show
a shaded region corresponding to p < 0. For some hybrid
matter parametrizations (not shown in Figs. 9 and 10) we

find that cs > c outside the shaded region. As mentioned
before, this is not necessarily a problem in the case of
hybrid matter, provided that the hadronic phase is ener-
getically favorable in the region where quark matter is
acausal. Notice that cs is not defined in a range of densities
of Figs. 9(b) and 9(d) because there is a first-order phase
transition between ud and uds matter in this region.
Finally, we find that cs grows at low densities as in

Refs. [6,7], unlike other versions of the QMDDM where cs
decreases at low densities [10,15]. This behavior is related
to the fact that quasiparticles acquire a significant mass at
low densities leading to a rapid pressure loss. This rapid
variation produces a strong growth of the speed of sound
c2s ¼ ∂p=∂ϵ. For extremely strong quark-quark interactions
cs becomes acausal at low densities, but this does not
occur for typical values of a. This behavior can be seen in
Fig. 9(a) where, for a ¼ 5.5, cs → c as p → 0.

VI. SUMMARY AND CONCLUSIONS

In this paper we revisited the QMDDM and showed that
thermodynamic inconsistencies that have plagued the

FIG. 7. Pressure and bag constant in the flavor dependent
model. The discontinuity of the bag constant in panels (b) and
(d) occurs because the system does not exist in the density range
corresponding to the plateau in the pressure.

FIG. 8. Same as in the previous figure but for the flavor blind
model. Labels (a) and (b) correspond to different parameter
choices that are specified within each panel.

FIG. 9. Speed of sound in the flavor dependent model. Labels
(a)–(d) correspond to different parameter choices that are speci-
fied within each panel.

FIG. 10. Same as in the previous figure but for the flavor blind
model. Labels (a) and (b) correspond to different parameter
choices that are specified within each panel.

COLD DENSE QUARK MATTER WITH PHENOMENOLOGICAL … PHYS. REV. D 107, 043025 (2023)

043025-13



model for decades, can be solved if the model is formulated
in the canonical instead of the grand canonical ensemble.
We first focused on a simple one-component system

assuming that the phenomenological mass is given by

MðnÞ ¼ mþ C

na=3
ð108Þ

where n is the particle number density, m the current mass,
and a and C are positive free parameters. This functional
form has been widely used in previous versions of the
model because M diverges for densities approaching zero
thus mimicking confinement and tends to the current quark
mass resembling the restoration of the chiral symmetry in a
phenomenological way when m ¼ 0. Differently from
some previous works that consider a ¼ 1 or a ¼ 3, we
did not impose a priori restrictions on a. With this ansatz
for the mass we showed that a “bag” term that produces
quark confinement naturally appears in the pressure (and
not in the energy density) due to density dependence of the
quark masses. Additionally, the chemical potential gains a
new term that resembles quark repulsive interactions.
Unlike some previous versions of the model, within the
new formulation, the minimum of the energy per baryon
occurs at zero pressure, and Euler’s relationship is verified.
Then, we extended the formalism to the astrophysically

realistic case of charge-neutral three-flavor quark matter in
equilibrium under weak interactions, focusing on two
different mass formulas: a flavor dependent and a flavor
blind one:

Mi ¼
�
mi þ Cn−a=3i ðflavor dependentÞ;
mi þ Cn−a=3B ðflavor blindÞ:

ð109Þ

For these two models, we derived the equation of state,
which is summarized in Sec. IV D. We systematically
analyzed the parameter space and identified different
regions corresponding to self-bound 2-flavor and 3-flavor
quark matter, hybrid matter and causal behavior (see
Fig. 4). In the flavor blind model we found that there is
no first order phase transition between ud and uds quark
matter. This means that in this case we only find strange
quark matter or the so called hybrid matter I. However, in a
more realistic model where the C parameter for the s-quark
mass is different from the one for u and d flavors, the s
quarks disappear smoothly at both finite baryon number
density and pressure (see Appendix). In the flavor depen-
dent model the parameter space is richer. In fact, a first
order phase transition between ud and uds quark matter is
possible for some parameter choices. We found a large
region of the parameter space that allows for the existence
of self-bound matter, where a small part of it corresponds to
strange quark matter and the rest to self-bound ud quark
matter. The remainder of the parameter space corresponds
to the so called hybrid matter I (with ud − uds first order
transition) or hybrid matter II (without a ud − uds plateau).

If one focuses on the cases a ¼ 1 or a ¼ 3 adopted in many
previous works, then deconfined quark matter is either
hybrid matter II or self-bound ud for the flavor dependent
model, and hybrid matter I or strange quark matter for the
flavor blind case. We also studied the speed of sound
showing that it tends to the conformal limit cs ¼ 1=

ffiffiffi
3

p
at

asymptotically large densities. Al low densities cs is always
larger that 1=

ffiffiffi
3

p
and it may exceed the speed of light for

some parameter choices. In Fig. 4 we show the regions
where causality is always verified.
The main purpose of the present work has been to carry

out a systematic and exhaustive analysis of the QMDDM in
a proper statistical ensemble that allows solving long
persistent thermodynamic inconsistencies of the model.
The reformulated version of the QMDDM is quite inter-
esting because it encodes in a phenomenological way key
properties of quark matter such as confinement, asymptotic
freedom and chiral symmetry breaking/restoration in a
simple analytical EOS that may be useful for astrophysical
applications.
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APPENDIX: ON THE TWO TO THREE
FLAVOR TRANSITION

In the flavor dependent model we find that the number
density of s quarks vanishes at negative pressures or at a
positive p that is always below the pressure of the crossing
between ðG=nBÞud and ðG=nBÞuds. For example, for the
parametrization shown in Fig. 5(b) the ud and uds curves
cross at a pressure ptr ∼ 35 MeV fm−3 and the number

FIG. 11. A flavor blind model with Cs > Cu;d results in a
smooth transition from two to thee flavor quark matter. Notice
that s quarks disappear from the system at the same pressure at
which the EOS of 2 and 3 flavors merge [cf. panels (a) and (b)].
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density of s-quarks goes to zero at a p < 0. Since below ptr
we find ðG=nBÞud < ðG=nBÞuds, we conclude that the
system would prefer to change abruptly to 2 flavors at
low pressures. This situation persists even in a more
realistic model where the C parameter of the s-quark mass
is different from the one for u and d flavors.
In the flavor blind model, when the C parameter is

the same for all 3 flavors we find that the s quark
density always vanishes at a negative pressure.

However, in contrast with the flavor dependent model,
when a larger C is adopted for strange quarks, ns goes to
zero at finite pressures and the transition from two to three
flavors is smooth. This can be seen in Fig. 11 where
we considered the parametrization a ¼ 1.5, Cu;d ¼ 120

and Cs ¼ 270. Notice that s quarks disappear at a p ¼
105 MeV fm−3 (panel a), where the pressure and energy
density of the two and three flavor solutions coincide
(panel b).
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