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Abstract: Arterial stiffness is a major condition related to many cardiovascular diseases. Traditional
approaches in the assessment of arterial stiffness supported by machine learning techniques are
limited to the pulse wave velocity (PWV) estimation based on pressure signals from the peripheral
arteries. Nevertheless, arterial stiffness can be assessed based on the pressure–strain relationship by
analyzing its hysteresis loop. In this work, the capacity of deep learning models based on generative
adversarial networks (GANs) to transfer pressure signals from the peripheral arterial region to
pressure and area signals located in the central arterial region is explored. The studied signals are
from a public and validated virtual database. Compared to other works in which the assessment of
arterial stiffness was performed via PWV, in the present work the pressure–strain hysteresis loop is
reconstructed and evaluated in terms of classical machine learning metrics and clinical parameters.
Least-square GAN (LSGAN) and Wasserstein GAN with gradient penalty (WGAN-GP) adversarial
losses are compared, yielding better results with LSGAN. LSGAN mean ± standard deviation of
error for pressure and area pulse waveforms are 0.8 ± 0.4 mmHg and 0.1 ± 0.1 cm2, respectively.
Regarding the pressure–strain elastic modulus, it is achieved a mean absolute percentage error of
6.5 ± 5.1%. GAN-based deep learning models can recover the pressure–strain loop of central arteries
while observing pressure signals from peripheral arteries.

Keywords: arterial stiffness; deep learning; arterial pressure waveform

1. Introduction
1.1. Arterial Stiffness

Cardiovascular (CV) disease remains the leading cause of death around the world [1].
Early detection is currently one of the main strategies to mitigate occurrence and damage
caused by CV disease events. In this sense, increased arterial stiffness is considered a
major CV risk factor, jointly with aging, hypertension, smoking, and diabetes, among
others, due to its impact on the viscoelastic properties of the arterial wall (mainly in
large arteries such as the aortic, carotid, and femoral) [2]. While the elastic function of
vascular mechanics is performed by collagen and elastin fibers, the viscous behavior is
related to the vascular smooth muscle cells [3]. The viscoelastic dynamics can be addressed
through the pressure–strain relationship, in which the delay of the arterial deformation
against the pressure produces a hysteresis loop [4]. From a biomechanical perspective,
the pressure-diameter (P-D) relationship provides valuable information in terms of the
elastic and viscous properties of the arterial wall. In particular, the elastic module (E) is
usually obtained from the diastolic phase, whereas the viscous module is estimated from
the P-D loop enclosed area [4]. Unfortunately, in vivo measurements of aortic dynamics
along this pathway are difficult to obtain due to their invasiveness and the requirement for
specialized equipment and trained operators.
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1.2. Arterial Stiffness and Machine Learning

In recent years, advances in machine learning (ML) have offered different models
and algorithms that can be adapted to CV healthcare. In this context, ML model tasks
are divided into parameter estimation and subject risk stratification. For instance, systolic
blood pressure (SBP) and diastolic blood pressure (DBP) value estimation constitutes a
typical approach of the use of both classic ML and deep learning models. In certain cases,
classic ML models such as support vector machine (SVM) and fully-connected neural
network (NN) implement a feature extraction step in their pipeline. On the contrary,
deep learning models have the capacity to generate their own features, meaning that
the feature extraction step is not required. Nevertheless, deep learning models require a
greater amount of samples to produce better generalization compared to classic ML models.
This condition is probably the reason why there seems to be a gap in the use of in vivo
datasets jointly with deep learning models. According to the literature, researchers in the
CV signal field have focused on a feature-based approach with classic ML, using peripheral
blood pressure (BP) or photoplethysmography (PPG) signals rather than deep learning
techniques. In Alty et al. [5], several PPG features were extracted and used as the input of
a SVM model in order to estimate PWV, a surrogate of regional arterial stiffness. Similarly,
in Tavallali et al. [6], features were extracted from the uncalibrated carotid pulse wave
(PW) and clinical information was used to train a NN and estimate PWV. In particular,
and focusing on the same objective, in Jin et al. [7] both classic ML and deep learning
models were compared using in vivo radial PWs.

1.3. Virtual Databases in Research

Deep learning models are usually trained using synthetic datasets [8], as the acqui-
sition of real samples, even when possible, turns to out be difficult, expensive, and/or
time-consuming. In this context, 1D modeling of arterial PWs, such as that specified in
Charlton et al. [9] and Xiao et al. [10], allows the limitations of deep learning samples to be
overcome. Furthermore, different profiles or “virtual subjects” are generated by modifying
the more representative CV properties, allowing consolidation of a useful database. These
simulations can be used then to (1) complement clinical studies [11]; (2) examine meth-
ods [12]; or (3) explore the capacity of ML models to explain the relationship between PWs
and the underlying CV parameters. In keeping with this approach, Willemet et al. [11] pro-
posed that the occurrence of reflected waves in the late diastole phase affects the foot-to-foot
PWV algorithm, causing inaccuracies in PWV estimation. With respect to point (2), Alas-
truey [12] compared methods for estimating PWV and concluded that those relying on P-D
loops were closer to the theoretical values. Finally, regarding ML capacity, several works
have proposed estimating CV parameters using a features-based approaches, generally
with peripheral arterial information. Bikia et al. [13] used classic ML models to estimate
aortic systolic BP, cardiac output, and end-systolic elastance from cuff SBP and DBP, heart
rate, and PWV. Ipar et al. [14] investigated a similar approach, extracting features such as
systemic vascular resistance from radial and carotid signals. Xiao et al. [15] estimated the
stroke volume based on features using only radial signals. Jin et al. [7] examined different
signal-to-noise ratios and their impact in terms of percentage error by estimating the PWV
from radial pressure PW.

By virtue of the above, it is clear that the research approaches in the literature are
consistent with the use of pressure signals from peripheral arteries in estimating parameters
related to the properties of the central arteries. Nevertheless, to the best of our knowledge,
aortic dynamics have not been addressed in terms of the P-D relationship in a way that
is non-invasive using deep learning approaches. This rest of this work is structured as
follows. In Section 2, the information obtained from public databases is detailed along
with the framework for P-D loop evaluation, the deep learning model, the metrics used to
evaluate the results, and the definitions of the different hyperparameter settings used in the
experiments. In Section 3, the experimental results of the trained models are reported. In
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Section 4, the results are discussed and similarities and differences in relation to other works
are pointed out. Lastly, in Section 5, a brief conclusion of the present work is summarized.

2. Methodology
2.1. Dataset

The dataset used in this work corresponds to the one in Charlton et al. [9]. It is
composed of 3837 simulated PWs with different cardiac, vascular, arterial, vascular bed,
and blood properties. The simulated PWs’ hemodynamic characteristics exhibit ten-
dencies that are in accordance with those in the literature in terms of both values and
morphology [9]. The magnitudes provided by this dataset are pressure (mmHg), luminal
area (m2) and flow velocity (m/s), corresponding to different sites of the arterial tree.
Furthermore, because the arterial wall viscosity property is considered in the database [9],
the hysteresis phenomenon between pressure and strain can be evaluated, as shown in
Figure 1.
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Figure 1. Abdominal aorta pressure–strain hysteresis loop; the color of the line refers to the time.

For the present study, the pressure from the radial and brachial artery (PBra-Rad)
signals correspond to the X domain (the blue and green lines in Figure 2) and the aortic
abdominal pressure and area (P-AAbdo) signals correspond to the Y domain (the red lines
in Figure 2). Although PWs are noiseless, a pre-processing stage is performed to prepare
the model’s input. First, the area magnitude is converted to cm2. Second, because PWs
have different durations, the time-window is fixed to the maximum PW duration across
the database; shorter pulses are repeated until time-windows are fulfilled, considering a
stationary situation. Third, a MinMax [−1, 1] normalization is performed for both pressure
and area magnitude. Finally, PWs are resampled from 500 Hz to 256 Hz, which is done
for two reasons: (1) to reduce computational cost, and (2) because 256 Hz is a common
sampling frequency used in commercial devices (SphygmoCor®XCEL, AtCor Medical,
Sydney, Australia).
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Figure 2. Left: Brachial, radial and abdominal aorta pressure signals (blue, green, and red lines,
respectively). Right: Abdominal aorta area signal.

2.2. Pressure–Strain Elastic Modulus

From a biomechanical point of view, arterial stiffness is defined in terms of E:

E = dσ/dε (1)

where ε refers to the arterial strain and σ to the axial stress, defined as

σ = P · R/h (2)

where h is the arterial wall thickness, P refers to the inner BP, and R is the arterial radius.
Nevertheless, because h is not directly defined in the dataset, a simplification of Equation (1)
that only regards P and ε, called pressure-strain elastic modulus (EP-ε) [16], is considered
as the measurement of arterial stiffness:

EP-ε = dP/dε (3)

As detailed in the next section, the proposed model estimates the magnitudes of both
pressure and area. Then, in Section 2.4, after the P-D loops are constituted from estimations,
EP-ε is observed as an evaluation parameter.

2.3. CycleGAN Model

GANs are a type of generative deep learning models composed of a discriminator (D)
and a generator (G). The generator tries to generate samples similar to a given domain in
such a way that the discriminator cannot differentiate between real and fake samples. On
the contrary, the discriminator tries to recognize real samples from created by the generator.
GANs are trained by defining the Adversarial Loss (LGAN), which is a function that measures
the distance between two probabilistic distributions.

The CycleGAN [17] architecture has been proposed to learn mapping functions be-
tween two domains, X and Y, using GANs. Although it was originally proposed for
unpaired image-to-image translation, in this work the X and Y samples are paired, as men-
tioned before, and correspond to the PBra-Rad and P-AAbdo signals, respectively.

2.3.1. General Architecture

As shown in Figure 3, the mapping functions are Gxy : X → Y and Gyx : Y → X,
given training samples xi ∈ X and yi ∈ Y. Two adversarial discriminators Dx and Dy
are incorporated, where the goal of Dx is to discriminate signals from X and Gyx(y).
Similarly, Dy aims to distinguish signals from Y and Gxy(x). In addition to LGAN , a Cycle-
Consistency Loss (Lcyc) function is added to force learnable mapping functions to recover
their originals inputs.
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The full objective function contains two terms [17],

L(Gxy, Gyx, Dx, Dy) = LGAN(Gxy, Gyx, Dx, Dy, X, Y)

+ λcycLcyc(Gxy, Gyx, X, Y) (4)

we expand LGAN(Gxy, Gyx, Dx, Dy, X, Y) and Lcyc(Gxy, Gyx, X, Y) in detail in Section 2.3.3;
moreover, λcyc is a scalar that helps to scale the losses.

Figure 3. CycleGAN architecture and its training connection flow.

2.3.2. Architecture of Generators and Discriminators

In the present work, the generators Gxy and Gyx are two stacked gated recurrent unit
(GRU) layers followed by a linear projection with two out features and ending with a tanh()
activation function. Discriminators Dx and Dy are five stacked layers of convolutional
neural networks (CNNs) (kernel, stride, and padding having sizes of 5, 2, and 1, respec-
tively) with a normalization layer and LeakyReLU (α = 0.2) activation function in each
layer. At each layer of discriminator, the number of output features is doubled; finally, one
last layer of linear projection with one output feature ending with an activation function
is added. Depending on the selected LGAN , the normalization and last activation layers
change; details are provided in Section 2.3.4. Figure 4 shows the structures of G and D.

Last Activation(W.x + b)

CNN(k=5,s=2,p=1),

Norm.Layer(),

LeakyReLU(α =0.2)
x 5

GRU(n_layers = 2)

Tanh(W.x + b)

Generators Discriminators

Figure 4. Generator and discriminator components.
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2.3.3. Loss Functions

First, considering Figure 3 and the first term in Equation (4), LGAN can be decomposed
as follows [17]:

LGAN(Gxy, Gyx, Dx, Dy, X, Y) = Lx
GAN(Gyx, Dx, Y, X) + Ly

GAN(Gxy, Dy, X, Y) (5)

To measure LGAN , two different metrics have been implemented:

• LSGAN [18]
• WGAN-GP [19]

where LSGAN and WGAN-GP measure the Pearson χ2 divergence and the Wasserstein
distance, respectively. For the sake of simplicity, only the case where Gxy : X → Y (the
second term in Equation (5)) is written, because Gyx : Y → X is defined analogously by
replacing the X with the Y domain and vice versa. The objective for LGAN(Gxy, Dy, X, Y)
considering LSGAN is defined as follows:

min
Dy
Ly

GAN(Gxy, Dy, X, Y) =
1
2 E

y∼Y

[(
Dy(y)− 1

)2
]
+

1
2 E

ỹ∼Ỹ

[(
Dy(ỹ)

)2
]

min
Gxy
Ly

GAN(Gxy, Dy, X, Y) =
1
2 E

ỹ∼Ỹ

[(
Dy(ỹ)− 1

)2
]

(6)

where ỹ = Gxy(x) and Ỹ refers to the estimated distribution of Y.
When WGAN-GP is considered, the objective forLy

GAN(Gxy, Dy, X, Y) is as follows [18]:

min
Gxy

min
Dy
Ly

GAN(Gxy, Dy, X, Y) = E
ỹ∼Ỹ

[
Dy(ỹ)

]
− E

y∼Y

[
Dy(y)

]

+ λGPy E
ŷ∼Ŷ

[(
‖∇ŷDy(ŷ)‖2 − 1

)2
]

(7)

where λGPy is a scalar hyperparameter defined as 10, ŷ = δy + (1− δ)ỹ (given δ ∼ U[0, 1])
and∇ is the differential operator. The third term in Equation (7) is a regularization term that
penalizes the gradient during training in order to achieve the constraint that discriminators
must be 1-Lipschitz functions [19].

Finally, the objective of Lcyc, the second term of Equation (4), is

Lcyc(Gxy, Gyx, X, Y) = Lx
cyc(Gxy, Gyx, X) + Ly

cyc(Gxy, Gyx, Y) (8)

= E
x∼X

[
‖Gyx(Gxy(x))− x‖1

]
+ E

y∼Y

[
‖Gxy(Gyx(y))− y‖1

]

2.3.4. Hyperparameters and Experimental Settings

All experiments were performed in tge Google Collaboratory environment. The train-
ing and test set proportions were 85% and 15%, respectively, from the total virtual subjects
mentioned in Section 2.1. The CycleGAN parameters were updated using the Adam opti-
mizer [20], the learning rate (LR) value was 10−4, and the batch size was equal to 96. All
the hyperparameters are shown in Table 1. In particular, the number of discriminators per
generator updates (DIters) was only considered for the WGAN-GP case [21], while for the
LSGAN case it was always 1. The normalization layers and last activation function for
LSGAN were batch-normalization and sigmoid function, respectively, while for WGAN-GP
they were instance-normalization and linear function, respectively. Models were trained
for 1750 epochs.
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Table 1. Grid search of hyperparameters. LGAN refers to the adversarial loss function. GGRU and
Dl=1 refer to the feature size of the generator’s GRU units and the first layer output’s discriminators.
DIters refers to the number of discriminators per generator updates (only for WGAN-GP; for LSGAN
it is always 1).

LGAN GGRU Dl=1 DIters λcyc

[LSGAN, WGAN-GP] [64, 128] [6, 8] [5, 15, 25] [5, 15, 25]

2.4. Evaluation

After the training was finished, the only relevant part of the CycleGAN interesting
for clinical purpose was Gxy. Recalling that the signals were within the MinMax ranges
defined in Section 2.1, the predictions were returned to the original scale. Furthermore,
evaluation was performed only across the first completed pulse presented in both the test
and estimated signals. Two scopes were considered. The first was a typical ML metric,
using the root-mean squared error (RMSE) for both pressure and area prediction:

RMSE =

√√√√ 1
N

N

∑
i=1

1
T

T

∑
j=1

(zij − ẑij)2 (9)

where N, T, z, and ẑ refer to the number of samples, pulse duration, ground truth pulse,
and estimated pulse, respectively.

Second, in order to evaluate the elastic properties of the predictions, EP-ε was calculated
for both the ground truth and estimated pulses. The strain ε was derived from the area PW,
then EP-ε is computed as the slope β of a simple linear regression:

β̂ =
T

∑
j=1

(ε j − ε̄)(Pj − P̄)
/ T

∑
j=1

(ε j − ε̄)2 (10)

After calculating each βi, mean error (ME) and mean absolute percentage error (MAPE)
were evaluated regarding EP-ε as follows:

ME =
1
N

N

∑
i=1

(βi − β̂i) (11)

MAPE =
100%

N

N

∑
i=1

(
|βi − β̂i|

/
βi

)
(12)

To account for the possible differences in duration between the estimated and true
pulses, the shorter one was used. Finally, the minimum and maximum values for pressure
and diameter were extracted to perform a Bland–Altman analysis.

3. Results

The statistical results for the test set are shown in Table 2 for the best hyperparameter
combination of each LGAN . The means± standard deviation of error during evaluations for
the best LSGAN and WGAN-GP were 0.8 ± 0.4 mmHg and 1.7 ± 0.8 mmHg, respectively.
For area evaluations, the results were 0.1± 0.1 cm2 and 0.2± 0.2 cm2, respectively. Figure 5
compares the true and predicted samples.

Concerning EP-ε, the ME for the best LSGAN and WGAN-GP results were
13.1 ± 56.5 mmHg/% and 70.6 ± 216.0 mmHg/%, respectively. Finally, according to
MAPE, the LSGAN and WGAN-GP results were 6.5 ± 5.1% and 28.6 ± 19.3%, respec-
tively. Figure 6 shows a hysteresis comparison for the same signals in Figure 5, where the
black dotted line represents the β and β̂ parameters from Equation (10).
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Table 2. Mean ± standard deviation of error for Brachial–Radial to Aortic Abdominal case on the
test set.

LGAN Experiment Pressure [mmHg] Area [cm2] EP-ε [mmHg/%]
RMSE RMSE ME MAPE

LSGAN A 0.8 ± 0.4 0.1 ± 0.1 13.1 ± 56.5 6.5 ± 5.1
WGAN-GP B 1.7 ± 0.8 0.2 ± 0.2 70.6 ± 216.0 28.6 ± 19.3

A→ GGRU = 128, Dl=1 = 8, DIters = 1, λcyc = 5. B→ GGRU = 64, Dl=1 = 6, DIters = 15, λcyc = 25.
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Figure 5. Comparison between true and predicted signals for pressure (left) and area (right); blue
and red correspond to the true and predicted signals, respectively.
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Figure 6. Comparison between true (blue) and predicted (red) hysteresis cycles. Line brightness
refers to time; the black dashed lines refer to β and β̂ from Equation (10).

The esults in Table 3 corresponding to the training set are presented to demonstrate
that the error does not suffer from overfitting.

Table 3. Mean ± standard deviation of error for Brachial–Radial to Aortic Abdominal case on
training set.

LGAN Experiment Pressure [mmHg] Area [cm2] EP-ε [mmHg/%]
RMSE RMSE ME MAPE

LSGAN A 0.8 ± 0.4 0.1 ± 0.1 13.4 ± 51.5 6.2 ± 4.9
WGAN-GP B 1.8 ± 0.9 0.2 ± 0.2 71.1 ± 209.3 28.3 ± 20.8

A→ GGRU = 128, Dl=1 = 8, DIters = 1, λcyc = 5. B→ GGRU = 64, Dl=1 = 6, DIters = 15, λcyc = 25.
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In particular, the Bland–Altman plots (Figure 7) for the SBP and DBP values for
the LSGAN best model (Table 2, experiment A) express a mean difference of 0.81 and
0.27 mmHg, respectively. It is worth repeating that the SBP and DBP values are the
maximum and minumum values of the pressure signal, respectively. Limits of agreement
(LOA) are [+3.25, −1.63] mmHg for SBP, while the LOA for DBP are [+2.49, −1.94] mmHg.
Concerning the maximum and minimum values of the diameter, the Bland–Altman plots
show a mean difference of 0.013 and 0.017 cm, respectively. LOA for the maximum diameter
are [+0.253, −0.227] cm, while LOA for the minimum diameter are [+0.243, −0.210] cm.
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Figure 7. Bland–Altman plots showing the difference between the maximum and minimum values
of pressure (top) and diameter (bottom) for true and estimated signals; the plots were obtained for
the best LSGAN model.

4. Discussion

In this paper, a new methodology based on a deep learning technique (CycleGAN)
is proposed to estimate pressure vs. strain dynamics. While the majority of the literature
considers the estimation of PWV using the feature extraction approaches, in this paper
two peripheral pressure PWs are considered to estimate central pressure and area PWs.
Consequently, a wider approach to the aortic dynamics is achieved in terms of the P-D
relationship. According to the literature [16,22], after these two PW are estimated both
the ground truth and estimated hysteresis loop can be constructed and evaluated through
assessment of each EP-ε. It is worth noting that the obtained P-D loops correspond to
an aortic site where the real measurement would, while highly invasive, be very useful
regarding the potential information that could extracted [23,24].

Regarding the LSGAN model, and considering that it was not particularly trained to
estimate calibration values, visual inspection of the Bland–Altman plots in Figure 7 does
not suggest any heteroscedasticity. In relation to systematic bias, DBP seems to be slightly
overestimated as values increase. It is observed that estimation of pressure PW values
shows a lower relative error compared to area estimation. It is hypothesized that calibration
similarities between PBra-Rad and PAbdo reduce the learning difficulty and offer bounds
on the estimated PW. For example, systolic PBra-Rad values are always greater than PAbdo,
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and the model can easily learn this, while the shape of the PW remains as a challenging
task. On the contrary, the calibration of the area PW values has no reference points from the
pressure values, meaning that the learning task increases in complexity. In particular, for
the pressure PW, in comparison with previous works [25–27] it is apparent that the error as
presented in Table 2 is lower. It should be noted, however, that these previous works were
obtained from real subjects, which is a more challenging task.

It is worth mentioning that a similar model was used in Brophy et al. [28], where
domain transformation was performed from finger PPG to peripheral BP and signals were
taken from subjects in intensive care units. In Brophy et al. [28], evaluation was performed
only with respect to the mean BP and trained with a single LGAN , while in the present
approach two LGAN were explored, a generator Gxy returned both pressure and area
values, and the evaluation was performed across all the PWs and their inter-relationship
(P-D loop).

Although the best hyperparameter results were obtained with LSGAN, it is noteworthy
that WGAN-GP results are less sensitive to hyperparameter search and more stable in
terms of training. Increasing the number of epochs could produce better results; however,
considering our resource capacity, 1750 epochs seems to offer a fair comparison between
LGAN . In Appendix A, Tables A1 and A2, the complete results of the grid search and
their corresponding hyperparameters as proposed in Table 1 are reported. Finally, to
ensure collaborate with the community and for ease of reproducibility, our code is publicly
available (please see Supplementary Materials section)

In order to validate the proposed methodology and open new lines of research, in vivo
P-D measurements such as those detailed in [29,30] should be performed. It is notewor-
thy that the virtual subjects considered in this study were simulated assuming a healthy
condition. In addition, the impact of the surrounding tissue on the mechanical behav-
ior of the arteries was not taken into account [31]. Lastly, as a future line of work, it
would be interesting to evaluate model performance considering subjects with particular
CV diseases.

5. Conclusions

The ability of GAN-based deep learning models to transfer pressure signals from
the peripheral artery regions to pressure and area signals in the central arterial region is
analyzed in this paper. Unlike previous studies that used PWV to quantify arterial stiffness,
the present study reconstructs and evaluates the pressure–strain hysteresis loop. When
adversarial losses from LSGAN and WGAN-GP are compared, LSGAN provides more
accurate results.

Supplementary Materials: Source codes are available at https://github.com/AguirreNicolas/
ABPCycleGAN.
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Abbreviations
The following abbreviations are used in this manuscript:

BP blood pressure
CNN convolutional neural network
CV cardiovascular
CVD cardiovascular disease
DBP diastolic blood pressure
E elastic module
EP-ε pressure–strain elastic modulus
GAN generative adversarial network
GRU gated recurrent unit
LOA limit of agreement
LR learning rate
LSGAN least-square GAN
MAPE mean absolute percentage error
ME mean error
ML machine learning
NN neural network
P-D pressure–diameter
PPG photoplethysmography
PW pulse wave
PWV pulse wave velocity
RMSE root mean squared error
SBP systolic blood pressure
SVM support vector machine
WGAN-GP Wasserstein GAN with gradient penalty

Appendix A

Table A1. Experiments and their hyperparameters.

LGAN GGRU Dl=1 DIters λcyc Experiment

LSGAN 128 8 1 5 A
WGAN-GP 64 6 15 25 B

LSGAN 64 6 1 15 C
64 6 1 25 D
64 6 1 5 E

WGAN-GP 128 8 15 5 F
64 6 10 5 G
64 6 15 15 H
64 6 15 5 I
64 6 50 15 J
64 6 50 25 K

Table A2. Detailed Brachial–Radial to Aortic Abdominal results.

LGAN Experiment Pressure [mmHg] Area [cm2] EP-ε [mmHg/%]
RMSE RMSE ME MAPE

LSGAN A 0.8 ± 0.4 0.1 ± 0.1 13.1 ± 56.5 6.5 ± 5.1
WGAN-GP B 1.7 ± 0.8 0.2 ± 0.2 70.6 ± 216.0 28.6 ± 19.3

LSGAN C 4.4 ± 1.2 0.2 ± 0.1 229.3 ± 304.6 45.0 ± 25.7
D 27.1 ± 6.3 0.2 ± 0.1 654.2 ± 265.4 137.5 ± 14.6
E 5.8 ± 3.3 0.3 ± 0.2 18.0 ± 137.7 17.3 ± 13.1

WGAN-GP F 2.7 ± 1.7 0.4 ± 0.2 3.1 ± 349.1 59.7 ± 54.4
G 3.8 ± 1.8 0.2 ± 0.1 84.3 ± 201.0 28.7 ± 19.5
H 1.5 ± 0.7 0.4 ± 0.3 104.8 ± 222.3 28.7 ± 22.7
I 3.4 ± 2.1 0.3 ± 0.2 10.9 ± 273.3 39.3 ± 31.9
J 1.6 ± 0.7 0.4 ± 0.2 12.7 ± 300.1 48.2 ± 47.0
K 2.0 ± 0.8 0.2 ± 0.2 68.4 ± 242.7 32.9 ± 23.6
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